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4 0 How these notes came to exist

0 How these notes came to exist

In Spring 2007, Martin Olsson taught “Math 274—Topics in Algebra—Stacks” at UC
Berkeley. Anton Geraschenko LATEXed these notes in class,1 and edited them with
other people in the class. They still get modified sometimes. They should be available
at
http://math.berkeley.edu/~anton/index.php?m1=writings

The most recent version of the source files are in in the SVN repository
svn://sheafy.net/courses/stacks_sp2007

You can make commits to the repository with the username “guest” and the empty
password, but I would rather you email me (geraschenko@gmail.com) so I can set up
a user for you.

– When something doesn’t make sense to me, I mark it with three big, eye-catching
stars [[⋆⋆⋆ like this]]. If you can clear any of these up for me, let me know.

– If you have notes that I’m missing or if you have a correct/clear explanation for
something which is incorrect/unclear, let me know (either tell me what you’d like
to modify, give me some notes to go on, or update the tex yourself and send me a
copy). Real (mathematical) errors should be fixed because it would be immoral
to let them propagate (er . . . that is, sit there), and typographical errors hardly
take any time to fix, so you shouldn’t be shy about telling me about them.

1With the exception of two lectures (originally 30 and 31, but the content has been mixed up with
nearby lectures), which were reconstructed from the notes of Tony Varilly, Ed Carter, and Anne Shiu,
along with the usual conversation that went into editing.

http://math.berkeley.edu/~anton/index.php?m1=writings
svn://sheafy.net/courses/stacks_sp2007
mailto:geraschenko@gmail.com
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1 Motivation: non-representable functors

You should do homework (especially if you’re enrolled). You’ll have to do a lot of
work, even if you already know a lot. We’ll try to organize a discussion section. The
prerequisite is schemes. The references are good; you should look at them. Vistoli’s
notes on Grothendieck topologies are good; Knutson’s book is good, so we’ll try to put
it on reserve in the library.

In a (Nov. 5 1959) letter from Grothendieck to Serre, Grothendieck talks about
moduli spaces and says that he keeps running up against the problem that objects
have automorphisms.

A main point for today is that many interesting functors are not representable. If
X is a scheme, then we get a functor hX : Schop → Set given by Y 7→ Hom(Y,X).

Lemma 1.1 (Yoneda). The functor h− : Sch→ Fun(Schop, Set) is fully faithful.

Definition 1.2. A functor F : Schop → Set is representable if F ≃ hX for some X .
When you represent a functor F , you give the scheme X together with the natural
isomorphism F ≃ hX . When you do this, X is unique up to unique isomorphism. ⋄

Example 1.3. An : Y 7→ Γ(Y,OY )n. On morphisms, An takes g : Y ′ → Y to the
pull-back map g∗ : Γ(Y,OY )

n → Γ(Y ′,OY ′)n. Let X = SpecZ[x1, . . . , xn]. Then
Hom(Y,X) ∼= Homalg

(
Z[x1, . . . , xn],Γ(Y,OY )

)
∼= Γ(Y,OY )n = An(Y ) is a natural

isomorphism, so X represents An. ⋄

Example 1.4. An r {0} should be a sub-functor of An. We define it by Y 7→{
(y1, . . . , yn) ∈ Γ(Y,OY )n|for every p ∈ Y , the images of the yi are not all zero in
k(p)

}
. In the homework, you will show that this functor is representable. ⋄

Definition 1.5. An elliptic curve over a scheme Y is a diagram E
f

// Y
e

uu
where e

is a section of f and the fibers of f are genus 1 curves. ⋄

Example 1.6. LetM1,1 be the functor defined by Y 7→ {isoclasses of elliptic curves
over Y }. If g : Y ′ → Y is a morphism of schemes, then we defineM1,1(g) :M1,1(Y )→
M1,1(Y

′) to be the usual pull-back g∗.

M1,1(g)(E) = g∗E //

g∗f
��

·
E

f

��

Y ′ g
// Y

g∗E // E

Y ′
id MM g

//

∃!

OO✤
✤
✤ e◦g

==④④④④④④④④
Y

e

VV

The section Y ′ → g∗E is induced by idY and e ◦ g by the universal property of pull-
backs. ⋄

Proposition 1.7. M1,1 is not representable.
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The intuitive reason thatM1,1 is not representable is the following lemma. It says
that you cannot have any kind of twisting of bundles.

Lemma 1.8. If F is a representable functor, with s1, s2 ∈ F (Y ) and a covering Y =⋃
Ui such that s1|Ui

= s2|Ui
for all i, then s1 = s2.

Proof. We have that F ∼= hX for some X , and s1 and s2 are given by morphisms
Y → X that they agree on a cover of Y . Since morphisms glue, s1 = s2.

Unfortunately, to show that M1,1 is not representable via this Lemma, you need
to generalize your notion of covering (to étale covers). We’ll see these later. For now
we’ll give another proof.

Proof of 1.7. Assume there is a scheme M and an isomorphism M1,1 ≃ hM . Let k
be an algebraically closed field of characteristic not 2. Consider R = k[λ]λ(1−λ), so
SpecR is A1

k with 0 and 1 removed. Let E ⊆ P2
R be the closed subscheme defined by

y2z = x(x − z)(x − λz), so the fibers Eλ of the natural map E → SpecR are genus 1
curves. We define e : SpecR→ D(z) ∼= SpecR[x, y] by the map R[x, y]→ R, x, y 7→ 0
and observe that the image of e lies in E, and e is a section of E → SpecR.

Observe that there is an action of S3 on R generated by σ0 : λ 7→ 1/λ and σ1 : λ 7→

1/(1− λ). Let j = 28 (λ
2−λ+1)3

λ2(λ−1)2
∈ k(λ).

Lemma 1.9. The fixed points k(λ)S3 are exactly the elements of k(j).

Proof. First check that j ∈ k(λ)S3. Then we have that k(j) ⊆ k(λ)S3 ⊆ k(λ). By
Galois theory, the second extension is degree 6, and the total extension is degree 6, so
the first two fields are equal. �Lemma

There are two steps remaining in the proof.
(1) Let Eη be the generic fiber of E → SpecR. It is given by a map φ : Spec k(λ)→M .
We claim that this map has to factor through the obvious map g : Spec k(λ) →
Spec k(j).

M

η = Spec k(λ)
g

//

φ
<<②②②②②②②②

Spec k(j)

ψ
bb❉

❉
❉

❉

φ!Eη //

·

��

Ẽ! ψ

��

Spec k(λ)
g

// Spec k(j)

As we see from the diagram on the left, a factorization of φ is the same thing as a
morphism Hom(g,M) : φ 7→ ψ. By the natural isomorphism hM ≃ M1,1, this is the
same as a morphismM1,1(g) : Ẽ 7→ E, where Ẽ is the elliptic curve over k(j) defined
by ψ, as shown in the diagram on the right.

Thus, we have Eη = Ẽ ×Spec k(j) Spec k(λ). This implies that the action of S3 can
be lifted to Eη by acting on the second factor.
(2) Then we check that the S3 action cannot lift to Eη.
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(1) Say x = φ(η), then we have

∏
σ:k(λ)→֒k(j) k(j) k(λ)

∏
σ

oo k(x)oo

k(j)
?�

diagonal

OO

k(j)
?�

OO

oo

where σ runs over all embeddings of k(λ) into k(j) over k(j) (there are six such em-
beddings). It is enough to show that

∐
σ:k(λ)→֒k(j) Spec k(j)

f
//

��

M

Spec k(j)

77♦♦♦♦♦♦♦

[[⋆⋆⋆ why is this factorization enough?]] Fact: If E1, E2 have the same j-invariant,
then they are isomorphic.

But for any σ : k(λ) →֒ k(j) the j-invariant of Eη×Spec k(λ),σ Spec k(j) is j. [[⋆⋆⋆

j is a regular function on SpecR. The j-invariant of Eη is j ∈ k(η) = k(λ). What does
j-invariant mean for curves not over points in SpecR?]] So when f is restricted to any
particular Spec k(j), it is always the same map, so f factors through Spec k(j).

(2) recall that Eη → Spec k(λ) is the subset of P2
k(λ) defined by y2z = x(x− z)(x−

λz). Elliptic curves have a group structure and torsion points. In fact, Eη[2], the
2-torsion points, are∞ = [0, 1, 0], [0, 0, 1], [1, 0, 1] and [λ, 0, 1]. If S3 acts on Eη, then it
must preserve the 2-torsion points (and it must fix ∞, which is the identity element).
How could we lift σ0 : λ 7→ 1/λ? It would have to lift

Eη
σ̃0 //

��

Eη

��

Spec k(λ) // Spec k(λ)

1/λ λ✤oo

So we need an endomorphism of k(λ)[x, y]/
(
y2 − x(x − 1)(x − λ)

)
which inverts λ.

Working case-by-case, we can show that the only hope you have must be of the form
x 7→ λx and y 7→ uy for some unit u (this all comes from the fact that we must
preserve 2-torsion points). From that we get u2y2 = λ3x(x− 1)(x− λ) [[⋆⋆⋆ I don’t
get that]], so u2 = λ3, so λ3 has a square root in k(λ). Since λ is an indeterminant,
this is a contradiction.

SpecR represents (essentially) Y 7→
(
E/Y an elliptic curve, with a basis for its

2-torsion
)
(it actually represents this together with some ω ∈ f∗Ω′

E/Y ).
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Consider the functor G : Schop → Set given by Y 7→ isomorphisms classes of pairs(
E/Y,O3

Y
∼
−→ f∗OE(3e)

)
, where f : E → Y .

Proposition 1.10. G is representable.

Proof.
hZ

��

⊆ hP2×Hilb

G //

;;①①①①①①①①①①
hHilb(P2)

This gives that G is represented by an open sub-scheme of Z. [[⋆⋆⋆ I can’t make
sense of this]]
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2 Grothendieck topologies

We ignore all set-theoretic issues in this class; I don’t know how to handle them, but
they are taken care of elsewhere (e.g. in [SGA]).

Definition 2.1. Let C be a category. A Grothendieck topology on C consists of, for
each object X in C, a collection Cov(X) of sets {Xi → X} of arrows, called coverings
of X , such that

1. If V → X is an isomorphism, then {V → X} ∈ Cov(X).

2. If {Xi → X} ∈ Cov(X) and any arrow Y → X , then the fiber products Xi×X Y
exist, and {Xi ×X Y → Y } ∈ Cov(Y ).

3. If {Xi → X} ∈ Cov(X) and {Vij → Xi} ∈ Cov(Xi) for each i, then {Vij →
Xi → X} ∈ Cov(X).

A site is a category C together with a Grothendieck topology. ⋄

Remark 2.2. This is called a “pre-topology” in SGA4, but I don’t see any reason not
to call it a topology. ⋄

There is a general framework into which many interesting sites fit. We describe it
here in Sch, but it can be done in other categories, like Top. Let P and Q be properties
of morphisms of schemes. The P-Q site on a scheme Y is the full subcategory of Sch/Y

whose objects are P morphisms to Y , with
{
Xi

//
((◗◗ X

vv♠♠
Y

}
∈ Cov(X → Y ) if each

Xi → X is Q and
∐
Xi → X is surjective. If Y is not specified, it is taken to be the

final object SpecZ. Obviously, this does not form a site in general, but for certain P
and Q, it does.

Example 2.3 (Big and small sites). If P is vacuous (i.e. all morphisms are P, so we
are working in the category Sch/Y ), then we get the big Q site on Y . If P = Q, then
we get the small Q site on Y . ⋄

We will often think about the following sites. You should check that they are indeed
sites.

– Big/small site of a topological space (Q = homeomorphism to an open subset).

– Big/small Zariski site of a scheme (Q = open immersion).1

– Big/small étale site on a scheme (Q = étale). Note that if two schemes are étale
over another scheme S, then any S-morphism between them is automatically
étale.

1It is better to define the Zariski site by taking Q to be the property of being “locally and open
immersion”, where f : X → Y is locally an open immersion if for every point x ∈ X , there is a
neighborhood U of x such that f : U → Y is an open immersion. This is a better definition because
this way we get a chain of topologies, getting progressively finer: Zariski, étale, lisse, fppf, fpqc.
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– Big fppf site on a scheme (Q = fppf = flat, locally of finite presentation).2

– Big fpqc site on a scheme (Q = fpqc3)

– Lisse-étale4 site on a scheme (P = smooth, Q = étale). Note that Y -morphisms
between smooth schemes over Y are not necessarily smooth.

Example 2.4 (Induced site structure on an over category). Let (C, Cov) be a site, and
let X ∈ Ob(C). Then we can define C/X , whose objects are morphisms to X and mor-

phisms are commutative triangles as usual. We define
{
X ′
i ((◗◗ // X ′

vv♠♠
X

}
to be a covering

if {X ′
i → X ′} is a covering in (C, Cov). It is immediate to verify the axioms (the fiber

products are all the same). ⋄

Example 2.5 (Induced site structure on (C ↓ F )). Let (C, Cov) be a site. Let ∆ be
the simplicial category (or any category for that matter). Let F : ∆op → C be a functor.
Define CF as the category whose objects are pairs

(
δ,X → F (δ)

)
, where δ ∈ ∆ and

X → F (δ) an arrow in C, and a morphism
(
δ′, X ′ → F (δ′)

) (f,f♭)
−−−→

(
δ,X → F (δ)

)
is a

map f : δ → δ′ in ∆ and a morphism f ♭ making the following diagram commute.

X ′

��

f♭
// X

��

F (δ′)
F (f)

// F (δ)

We define coverings of
(
δ,X → F (δ)

)
to be a set of the form

{(
δ,Xi → F (δ)

) (id,f♭)
−−−→

(
δ,X ′ → F (δ)

) ∣∣∣ {Xi
f♭

−→ X} ∈ CovC(X)
}
. ⋄

Remark 2.6. Example 2.4 is a special case of Example 2.5 by taking ∆ to be the one
point category with only the identity morphism, with F (∗) = X . ⋄

2If we are dealing with locally noetherian schemes, then locally of finite presentation is the same
as locally of finite type.

3A morphism f : X → Y is said to be fpqc if it is locally faithfully flat and quasi-compact. That
is, for every point x ∈ X , there is a quasi-compact open neighborhood of x whose image under f is
an open affine of Y .

4“Lisse” is French for “smooth”.
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3 Sheaves and Topoi

Definition 3.1. Let C be a category. A presheaf of sets on C is a functor F : C◦ → Set.
If C is a site, then F is a sheaf on (C, Cov) if it is a presheaf such that for every object
X ∈ C and every covering {Xi → X} ∈ Cov(X), the sequence

F (X) //
∏
F (Xi)

pr∗1 //

pr∗2

//

∏
F (Xi ×X Xj)

is exact (an equalizer).1 ⋄

Remark 3.2. Notions of (pre)sheaves of groups, rings, modules, etc. are given by
replacing the target category Set by Gp, Ring, Mod, respectivly. That is, for every X ,
F (X) has the appropriate structure (of a group, for example), and the morphisms go
to the appropriate kinds of morphisms. [[⋆⋆⋆ can you sheafify presheaves with an
arbitrary category as a target?]] ⋄

Example 3.3. Let X be a topological space, and let C be the small site on X . Then
this is the usual sheaf condition. ⋄

The category of sheaves injects fully faithfully into the category of presheaves via
the forgetful funtor.

Theorem 3.4 (Sheafification). The forgetful functor from sheaves to presheaves has a
left adjoint. In particular, if F is a presheaf, there is a morphism to a sheaf F → F a

so that any morphism from F to a sheaf factors uniquely through F a.

Proof. Step 1: define the projection F → F s,2 where F s(X) := F (X)/ ∼, where
a, b ∈ F (X) are equivalent if there is a covering {Xi → X} such that a and b have
the same image in each F (Xi). Here we are forcing the injectivity part of the sheaf
condition. If Y → X is a morphism, then any cover of X pulls back to a cover of Y ,
and if two sections a, b ∈ F (X) agree on an open cover of X , their images in F (Y )
will agree on the pulled-back cover. Thus, the dashed arrow in the following diagram
is well defined, so F s is a functor.

F (X) //

����

F (Y )

����

F s(X) //❴❴❴ F s(Y )

1 S
j

// S′

f
//

g
// S′′ is an equalizer if f ◦ j = g ◦ j and any h : X → S′ with f ◦h = g ◦h uniquely

factors through j. In Set, this just means that j is an injection, with {s′ ∈ S′|f(s′) = g(s′)} = im j.
In Ab, this means that j is the kernel of f − g.

2The “s” stands for “separated”, which means that for every X and every covering {Xi → X},
the map F (X) →

∏
F (Xi) is injective (the “first half” of the sheaf condition). You could make an

intermediate category of separated presheaves. The “a” stands for “associated” sheaf.
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Step 2: define F s → F a, where

F a(X) =
{(
{Xi → X}, {ai}

)∣∣∣

{Xi → X} ∈ Cov(X), {ai} ∈ Eq
( ∏

F s(Xi)
//
//

∏
F s(Xi ×X Xj)

)} /
∼

where
(
{Xi → X}, {ai}

)
∼

(
{X ′

j → X}, {a′j}
)
if for all i and j, the images of ai and

a′i in F (Xi ×X X ′
j) are equal. I leave it to you to check that it works (it’s actually a

lot of work).3

We will see that sheafification arises naturally. For example, affine (n+ 1)-space is
the functor An+1 : Sch◦ → Set given by Y 7→ Γ(Y,OY )n+1. In the homework (Exercise
1.3), you prove that An+1 r {0} : Sch◦ → Set is given by Y 7→ {(y1, . . . , yn+1)|for each
y ∈ Y , not all yi are zero in k(y)}. One might try to define projective space Pn as the
functor An+1 r {0}/Gm, given by Y 7→ (An+1 r {0})(Y )/Γ(Y,OY )×, but it turns out
this is not a sheaf; the correct definition of Pn is the sheafification.

Definition 3.5. A topos is a category equivalent to the category of sheaves on a
site. ⋄

Grothendieck’s insight is that the basic object of study is the topos, not the site. It
is often useful to replace a site by another site with the same topos (in some appropriate
sense). For example, if we use the Zariski topology, the category of sheaves on Sch (the
site of all schemes) is the same as the category of sheaves on Aff (the site of affine
schemes), which is perhaps easier to deal with. [[⋆⋆⋆ maybe this is a good place to
talk about replacing a topology on a site by the finest topology that gives the same
topos, and about the canonical site producing a given topos. maybe better after talking
about continuous functors between sites]]
Notation: we use the following notation for topoi. Note that these are topoi, not sites.

Topcl (Xcl) classical topos (of a topolocical space X)
Schzar (Xzar) (small) Zariski topos (of X)

XZAR big Zariski topos of X (= (Sch/X)zar)
Schet (Xet) (small) étale topos (of X)

XET big étale topos of X (= (Sch/X)et)
Schlis-et (Xlis-et) lisse-étale topos (of X)
Schfppf (Xfppf) (big) fppf topos (of X)

3If you try to just do step 2, you don’t get a sheaf. For example, let X = {p, q} have the discrete
topology, and let S be a set with |S| > 1. If F is the constant presheaf on X associated to S, then
F a(X) = S (a section on p and a section on q “agree on the intersection” only if they are equal
because F (∅) = S), but the sheafification should give you S2 [[⋆⋆⋆ can you get an example that
doesn’t use the empty set in this way?]]. But you do get a separated presheaf, so you could just do
step 2 twice to get the sheafification.
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Definition 3.6. A morphism of topoi f : T → T ′ is an isomorphism class of triples4

(f∗, f
∗, φ), where f∗ : T → T ′, f ∗ : T ′ → T are functors, and φ(F ) : HomT (f

∗F ′, F )
∼
−→

HomT ′(F ′, f∗F ) is an adjunction between them. Also, f ∗ must commute with finite
projective limits. ⋄

Example 3.7. In the classical case, if X
f
−→ X ′ is a continuous map of topological

spaces, we have f−1 : Opens(X ′) → Opens(X). If F is a sheaf on X , we define
(f∗F )(U

′) := F
(
f−1(U ′)

)
. This has a left adjoint which commutes with finite projective

limits, as we will show next two lectures (Proposition 4.3 and Theorem 5.1) ⋄

Limits

Let C be a category, and F : I → C be a functor. For X ∈ C define kX : I → C

to be the functor sending each object to X and each morphism to idX . We define
lim←−F : C → Set as the functor given by X 7→ Nat(kX , F ). We are usually interested
in whether this functor is representable.

Example 3.8. Letting I be different things, we can construct some familiar friends.

1. (equalizers) I = (· ⇒ ·), with F (I) = X1

f1
//

f2
// X2 , we have lim←−F (X) = {X

g
−→

X1|f1 ◦ g = f2 ◦ g}. This functor is represented by the equalizer of f1 and f2.

2. (products) I is a set (i.e. a category with only identity morphisms), and F (I) =
{Xi}i∈I , then lim←−F (X) =

{
{gi : X → Xi}i∈I

}
. This functor is represented by

the product
∏

i∈I Xi.

3. (fibred products) I = (· → · ← ·), with F (I) = X1
f1−→ X2

f3←− X3. Then

lim←−F (X) =
{
X1

g1←− X
g3−→ X3

∣∣ f1 ◦ g1 = f3 ◦ g3
}
.

This functor is represented by the fibred product X1 ×X2 X3. ⋄

Lemma 3.9. Let C be a category, then the following are equivalent.

1. Projective limits (resp. finite projective limits) in C are representable.

2. Products (resp. finite products) and equalizers are representable.

3. Products and fiber products (resp. finite products and fiber products) are repre-
sentable.

4Originally, we defined a morphism to be a triple, but if we do that, we run into the problem that
a continuous functor of (appropriate) sites doesn’t induce a well-defined morphism of topoi. This will
be the topic of the next two lectures.
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Proof. 1 ⇒ 2 and 1 ⇒ 3 are immediate, as (finite) products, equalizers, and fiber
products are (finite) projective limits.

2⇒ 1 Given F : I → C, define

lim←−F = Eq
( ∏

i∈Ob(I) F (i)
p1

//

p2
//

∏
u∈Mor(I) F

(
target(u)

) )

where we need to define p1 and p2. Defining a morphism to a product is equiva-
lent to defining a morphism to each factor, so fix a morphism u ∈ Mor(I). Let
p1 :

∏
i∈Ob(I) F (i) → F

(
target(u)

)
be projection onto the target of u and let p2 :

∏
i∈I F (i) → F

(
source(u)

) F (u)
−−→ F (target(u)) be projection to the source followed by

F (u).
3 ⇒ 2 It is enough to observe that an equalizer is a fiber product over a product:

Eq( X
u //

v
// Y ) is the limit of the diagram X

(1,u)
−−→ X × Y

(1,v)
←−− X .

Proposition 3.10. Let T be a topos and F : I → T , then lim←−F is representable.

Proof. Recall that if F : I → T , lim←−F : X 7→ Nat(kX , F ). By the lemma, it is enough
to check that equalizers and products are representable. To check these cases, we can
choose a site C whose category of sheaves is equivalent to T (by definition of a topos,
there is such a site). We define a product

∏
i Fi as U 7→

∏
Fi(U), then we just have to

check that this is a sheaf (this is left as an exercise). Similarly, we can define

Eq
(
F1

f
//

g
// F2

)
(U) = Eq

(
F1(U)

f(U)
//

g(U)
// F2(U)

)

and check that this is a sheaf.

Remark 3.11. The same proof shows that in the category Ĉ of presheaves on C, finite
projective limits are representable. ⋄
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4 Continuous functors between sites

Recall that if we have a map of topoi f : T → T ′, this means that we have functors
f∗ : T → T ′ and f ∗ : T ′ → T , together with an adjunction φ : HomT (f

∗F,G)
∼
−→

HomT ′(F, f∗G), and f ∗ commutes with finite projective limits. That is, the natural
map f ∗(lim←−F ) → lim←−(f

∗F ) is an isomorphism. Heuristically, a “continuous map of
sites” should induce a map of topoi.

Definition 4.1. Let C and C′ be sites. A functor f : C′ → C is continuous if

1. for every X ′ ∈ C′ and every {X ′
i → X ′} ∈ CovC′(X ′), we have {f(X ′

i) →
f(X ′)} ∈ CovC

(
f(X ′)

)
, and

2. f commutes with fiber products when they exist in C′.

⋄

Let T and T ′ be the categories of sheaves of C and C′, respectively. Then given a
continuous functor f , we get a functor f∗ : T → T ′ defined by F 7→

(
X ′ 7→ F (f(X ′))

)
.1

We need to check that this satisfies the sheaf axiom: let {X ′
i → X ′} ∈ CovC′(X ′), then

we have

f∗F (X
′) //

‖

∏
i f∗F (X

′
i)

‖

//
//

∏
i,j f∗F (X

′
i ×X′ X ′

j)

‖

F (f(X ′)) //
∏

i F (f(X
′
i))

//
//

∏
i,j F

(
f(X ′

i)×f(X′) f(X
′
j)
)

where the last vertical equality follows from the fact that the continuous functor f
commutes with projective limits when they exist. The bottom sequence is exact since
F is a sheaf, so the top sequence is also exact. Thus, f∗F is a sheaf.

Example 4.2. Recall the fppf, étale, and Zariski topologies on Sch, then the following

identity functors are continuous: Zariski site
id
−→ étale site

id
−→ fppf site. These induce

functors on topoi SchZar
id∗←− Schet

id∗←− Schfppf . ⋄

Proposition 4.3. Let f : C′ → C be continuous, then the functor f∗ : T → T ′ has a
left adjoint (f ∗, φ).

Proof. Note that f∗ is obtained by restricting the functor f̂∗ : Ĉ
′
→ Ĉ defined by

(C◦ F
−→ Set) 7→ (C′◦ f◦

−→ C◦ F
−→ Set). It is enough to show that f̂∗ has a left adjoint f̂ ∗

because then F 7→ (f̂ ∗F )a is a left adjoint to f∗:

HomT

(
(f̂ ∗F )a, G

)
= HomĈ(f̂

∗F,G) (universal property of −a)

= Hom
Ĉ
′(F, f̂∗G) = HomT ′(F, f∗G).

1If you like to think about topological spaces, you should think of f as the map on open sets (which
pulls open sets back) corresponding to a map of topological spaces. See Example 3.7.
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Let F be a presheaf on C′, and let U ∈ C. Then we define

f̂ ∗F (U) = lim−→
U→f(U ′)

F (U ′).2

It is a messy exercise to check that this gives you an adjoint. [[⋆⋆⋆ it isn’t too
bad]]

So a continuous functor f : C′ → C induces an adjoint pair (f ∗, f∗, φ). Unfor-
tunately, f ∗ need not commute with finite projective limits, as is illustrated by the
following example.

Example 4.4. Let k be a field. Take X = A1
k and Y = Spec k. Consider f : Y →֒ X ,

the inclusion of the origin. Recall that Lis-Et(X) has objects smooth X-schemes and

coverings are étale coverings. Then we get a functor Lis-Et(X)
f
−→ Lis-Et(Y ) given by

(U → X) 7→ (U ×X Y → Y ). This is a continuous functor: if {Ui → U} ∈ Cov(U),
then {Ui×X Y → U×X Y } ∈ Cov(U×X Y ) because the pull-back of an étale morphism
is étale. However, f ∗ does not commute with finite projective limits.

Let OX(U → X) = Γ(U,OU). This is a presheaf on Lis-Et(X), and in fact it is a
representable sheaf, represented by A1

X → X . If you go through the adjunction, you’ll
see that f ∗OX is represented by A1

Y :

Hom(hA1
X
, f∗G) = f∗G(A

1
X) (Yoneda’s Lemma)

= G(A1
Y ). (A1

X ×X Y = A1
Y )

We have that X = Spec k[t]. We have a map ×t : OX → OX which is injective (if
k[t]→ R is flat, then multiplication by t is injective on R, in particular if it is smooth).
When you pull this map back to f ∗OX = OY , we get ×t : OY → OY which is the zero

map because V → Spec k
t=0
−−→ Spec k[t] [[⋆⋆⋆ ]].

So we have that Eq( OX
×t

//

0
// OX ) = {0} by Eq( OY

×t
//

0
// OY ) = OY , so this f ∗

doesn’t commute with projective limits. ⋄

Remark 4.5. This is kind of bad. Why not think about Sch/X with étale topol-
ogy? [[⋆⋆⋆ then something]] If you look at Sch/X with the Zariski topology, then
something behaves badly.

Note that if we look at the Lis-Lis site, then you still have the same problem ... we
didn’t use anything about the coverings being étale. ⋄

2To do this precisely, define a category IU whose objects are pairs
(
U ′, U → f(U ′)

)
and whose

morphisms
(
U ′

1, U → f(U ′

1)
) g
−→

(
U ′

2, U → f(U ′

2)
)
are morphisms g : U ′

2 → U ′

1 in C
′ such that the

diagram
Utt❤❤ **❱❱

f(U ′

2)
f(g)

// f(U ′

1) commutes.

Now define FU : I → Set by
(
U ′, U → f(U ′)

)
7→ F (U ′). Then we have lim

−→
FU := Nat(FU , k−).

Since this is a direct limit of sets, it is represented by a set, and that is the set we want to define
f̂∗F (U) to be.
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Theorem 4.6. If f : C′ → C is continuous and finite projective limits are representable
in C′, then f ∗ commutes with finite projective limits.

Z � � //

  
❅❅❅❅❅❅❅❅ U1

//
//

��

U2

~~⑤⑤⑤⑤⑤⑤⑤

X

The equalizer need not be smooth even if the two maps are smooth.
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5 When f∗ commutes with finite limits

Theorem 5.1. If f : C′ → C is continuous and finite projective limits are representable
in C′, then f ∗ commutes with finite projective limits. In particular, f : T → T ′ is a
morphism of topoi in this case.

Proof. [[⋆⋆⋆ this proof needs to be completed and cleaned up]] By the same argu-
ment used to prove Lemma 3.9, it is enough to show that f ∗ commutes with products
of two sheaves (and thus finite products) and equalizers.

Recall that f ∗F = (f̂ ∗F )a. One can check that −a commutes with finite projective

limits,1 so it is enough to show that f̂ ∗ : Ĉ → Ĉ
′
commutes with finite products and

equalizers.
(Products) If F1, F2 ∈ Ĉ, and U ′ ∈ C′. Recall the definition of f̂ ∗ from the proof of

Proposition 4.3. We have

f̂ ∗(F1 × F2)(U
′)

‖

(f̂ ∗F1 × f̂
∗F2)(U

′)

‖

lim−→
U ′→f(U)

F1(U)× F2(U)

Γ //

(
lim−→
U ′→f(U1)

F1(U1)
)
×

(
lim−→
U ′→f(U2)

F2(U2)
)

where Γ is defined in the obvious way.2 First we check injectivity. If σ =
(
U ′ →

f(U), s1 ∈ F1(U), s2 ∈ F2(U)
)
and τ =

(
U ′ → f(V ), t1 ∈ F1(V ), t2 ∈ F2(V )

)
. If

Γ(σ) = Γ(τ), then there is a diagram

U ′ //

��

f(U1)

��{{✇✇✇✇✇✇✇✇✇

f(U) f(V )

U ′ //

��

f(U2)

��{{✇✇✇✇✇✇✇✇✇

f(U) f(V )

such that s1, t1 have the same image in F (U1) and the images of s2, t2 are the same
in F (U2).[[⋆⋆⋆ if you take a limit over a filtering category, then it commutes with
limits? something is fishy; what is it]] We’d like to say that we can take U1 and U2 to
be the same.

We have the diagram
U3

�� ##●●●●●●●●●

U1

��

U2

{{✇✇✇✇✇✇✇✇✇

U × V

1It doesn’t commute with infinite products, by the way.
2By the universal properties of lim

−→
, it is enough to define a map from each F1(U)×F2(U) to some

F1(U1) and some F2(U2). Take U1 = U2 = U , and then take the obvious projections.
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That is, we can find some U3 so that blah[[⋆⋆⋆ ]]. For surjectivity, you use the
existence of products.

(Equalizers) Say we have F1

h //

g
// F2 , then we are looking at

f̂ ∗Eq
(
F1

h

⇒
g
F2

)
(U ′)

‖

Eq
(
f̂ ∗F1

f̂∗h

⇒
f̂∗g

f̂ ∗F2

)
(U ′)

‖

lim−→
U ′→f(U)

Eq
(
F1(U)

h(U)

⇒
g(U)

F2(U)
)

//

Eq
(

lim−→
U ′→f(U)

F1(U)
f̂∗h(U ′)

⇒
f̂∗g(U ′)

lim−→
U ′→f(U)

F2(U)
)

Same sort of arguments to show that this is a bijection.

There are lots of sites that have the property that finite projective limits exist.

Example 5.2. Sch has finite projective limits (because we have finite products and
fiber products). Thus, all big sites have finite projective limits. ⋄

Example 5.3. The small étale site has finite projective limits. We know how to
produce products and fiber products

Z � � //

  
❅❅❅❅❅❅❅❅ U1

//
//

��

U2

~~⑤⑤⑤⑤⑤⑤⑤

X

The equalizer need not be smooth even if the two maps are smooth, but if the two
maps are étale, then so is the equalizer. ⋄

Example 5.4. If X is a scheme, then we get Xlis-et
ε
−→ Xet is a morphism of topoi, and

ε∗ is exact, so you can compute cohomology in either topos. ⋄

Faithfully flat descent

If Y → X is a morphism of schemes, then we get a functor of points hY : (Sch/X)op →
Set which is a presheaf. The main point is the following.

Theorem 5.5. hY is a sheaf in the fppf topology (and therefore also in the étale topol-
ogy).

By the Yoneda embedding, we have (Sch/X) →֒ (Sch/X)et = XET . We will define
algebraic space to be an object in XET which is more general than a scheme, but in
which you can still do geometry (i.e. where you can redo EGA).
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Definition 5.6. A morphism of schemes f : X → Y is flat if for all x ∈ X the map
OY,f(x) → OX,x is flat. It is faithfully flat if it is flat and surjective. A map of rings
A→ B is faithfully flat if the map of spectra SpecB → SpecA is. ⋄

Key case: Y = A1
Z is flat over X = SpecZ.Then

hY (SpecA) //

‖

hY (SpecB)

‖

//
// hY (SpecB ⊗A B)

‖

A // B
b7→b⊗1

//

b7→1⊗b
// B ⊗A B

If [[⋆⋆⋆ iff?]] A→ B is faithfully flat, then the bottom sequence is exact.
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6 Representable functors are fppf sheaves

The main result for today is Theorem 6.10, that representable functors are sheaves in
the fppf topology.

Recall the following three propositions. The first one is standard, and the other
two are in EGA.

Proposition 6.1. Let A→ B be a ring morphism. Then the following are equivalent.

1. A→ B is faithfully flat.

2. A sequence of A-modules M ′ → M → M ′′ is exact if and only if M ′ ⊗A B →
M ⊗A B → M ′′ ⊗A B is exact.

3. A homomorphism M ′ → M of A-modules is injective if and only if M ′ ⊗A B →
M ⊗A B is injective.

4. B is flat over A and
(
M ⊗A B = 0 =⇒M = 0

)
.

Proposition 6.2 ([EGA, IV.1.10.4]). A flat morphism that is locally of finite presen-
tation is open.

Proposition 6.3 ([EGA, [[⋆⋆⋆ somewhere in IV]]]). If f : X → Y is faithfully flat
and quasi-compact, then a subset U ⊆ Y is open if and only if f−1(U) ⊆ X is open
(i.e. Y has the induced topology).

The following corollary allows us to deal fppf morphisms.

Corollary 6.4. Let f : X → Y be faithfully flat and locally of finite presentation, and
let Y =

⋃
i Ui be a Zariski open covering, with each Ui affine. Then for each i, there is

a Zariski covering f−1(Ui) =
⋃
j Vij with Vij quasi-compact and f(Vij) = Ui.

Proof. Let p ∈ f−1(Ui), and let Wip ⊆ f−1(Ui) be an affine open neighborhood of p.
Given any open affine set Wiq ⊆ f−1(Ui), f(Wiq) is open by proposition 6.2. Since
Ui is affine, it is quasi-compact, so we can choose a finite set {Wiqk}

n
k=1 so that the

f(Wip)∪
⋃
k f(Wiqk) = Ui. Now we can define Vip := Wip∪

⋃
kWiqk . Since Vip is a finite

union of affines, it is quasi-compact. Furthermore, p ∈ Vip, so {Vip}p∈f−1(Ui) covers
f−1(Ui).

[[⋆⋆⋆ a flat morphism satisfying the conclusion of this corollary is said to be
fpqc]]

Proposition 6.5. If f : A→ B is faithfully flat, then the following sequence is exact.

A
f

// B
b7→1⊗b

//

b7→b⊗1
// B ⊗A B
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Proof. We use the following trick. Since B is faithfully flat over A, exactness of the
sequence in question is equivalent to exactness of the sequence obtained by tensoring
with B.

B
b′ 7→1⊗b′

// B ⊗A B
b⊗b′ 7→b⊗1⊗b′

//

b⊗b′ 7→1⊗b⊗b′
// B ⊗A B ⊗A B

The first map is injective because the multiplication map m : B⊗AB → B is a section.
Now we check exactness in the middle: if the two maps from B ⊗A B agree on some
element,

∑
bi⊗ b′i, then we have

∑
bi⊗ 1⊗ b′i =

∑
1⊗ bi⊗ b′i. Applying 1⊗m, we get∑

bi ⊗ b
′
i =

∑
1⊗ bib

′
i = 1 ⊗

∑
i bib

′
i, so the original element

∑
bi ⊗ b

′
i is in the image

of the first map, proving exactness in the middle.

Remark 6.6 (Faithfully flat extensions). We will use the above trick again. The fact
that we could tensor with B and get multiplication, as section of B → B ⊗A B,
effectively makes it so that we can assume we have a section of A → B. Sometimes,
we’ll base extend by an fppf cover and get a section for some map, but to save writing
we’ll say that you can assume the original map has a section. Here is how the above
argument would look:

Base extending by B, we may assume we have a section g of f ; in particular, f is
injective. Let b ∈ B with 1⊗ b = b⊗ 1. Applying fg ⊗ id, we have that b = fg(b), so
b is in the image of f , proving exactness in the middle. ⋄

Corollary 6.7. If V → U is a faithfully flat map of affine schemes, and X is an affine
scheme, then the sequence hX(U)→ hX(V ) ⇒ hX(V ×U V ) is exact.

Proof. Let U = SpecA, V = SpecB, and X = SpecR. By Proposition 6.5, we have
the exact sequence A→ B ⇒ B⊗A B, and we wish to show exactness of the sequence
Hom(R,A)→ Hom(R,B) ⇒ Hom(R,B ⊗A B).

Since A injects into B, two maps from R to A which agree in B are the same. If
f : R → B satisfies 1 ⊗ f(r) = f(r)⊗ 1, then f(r) lies in A, so f is obtained from a
map R→ A.

Lemma 6.8. Let F : Schop → Set be a presheaf satisfying the following conditions.

1. F is a sheaf in the big Zariski topology.

2. If V → U is a faithfully flat morphism of affine schemes, then the sequence
F (U)→ F (V ) ⇒ F (V ×U V ) is exact.

Then F is a sheaf for the fppf topology.

[[⋆⋆⋆ if you remove the word “faithfully” from the second condition, then you
can conclude that F is a sheaf in the fpqc topology]]

Remark 6.9. The following proof also works if you work over some scheme X . ⋄
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Proof of Lemma 6.8. Let {Ui → U} ∈ Covfppf(U), and let V =
∐
Ui, then we have

the diagram
F (U) //

‖

F (V ) //
//

≀
��

F (V ×U V )
≀
��

F (U) //
∏

i F (Ui)
//
//

∏
i,j F (Ui ×U Uj)

where the vertical isomorphisms follow from the fact that F is a Zariski sheaf. Thus,
it is enough to consider coverings consisting of a single morphism {V → U}.

Note: If {Ui → U} ∈ Cov(U) is a finite set of maps with Ui and U affine, then
V =

∐
Ui is also affine. The top sequence is exact by assumption, so the sheaf condition

(exactness of the bottom sequence) is verified.
For a general (single element) fppf covering f : V → U , choose a Zariski cover

V =
⋃
Vi with Vi quasi-compact and f(Vi) = Ui affine (we can do this by Corollary

6.4). Write each Vi =
⋃
a Via as a finite union of affines. Then consider the following

diagram.

F (U)
γ

//

δ
��

F (V ) //
//

ε

��

F (V ×U V )

��∏
i F (Ui)

����

β
//
∏

i

∏
a F (Via)

����

//
//

∏
i

∏
a,b F (Via ×U Vib)

∏
i,j F (Ui ∩ Uj)

α //
∏

i,j

∏
a,b F (Via ∩ Vjb)

h❴

��

✤ // ?>=<89:;x
❴

��

✮ ))

✕ 55 y
❴

��
e❯



✕✕✕✕✕ ✐

��
✮✮✮✮✮

✤ // d
✰ ))✰ ))
✓ 55❘

��

❧

��

c

f = f ′ ✤ // g

The Ui cover U and the Via cover V in the usual Zariski sense. Since F is a Zariski
sheaf, the two vertical columns are exact. For a fixed i, the Via are a finite number
of affines which cover the affine Ui, so by the note, the middle horizontal sequence is
exact. We wish to show that the top sequence is exact.

Since β ◦ δ is injective, we must have that γ is injective. Observe that this shows
that F is separated in the fppf topology. In particular, since {Via ∩Vjb → Ui ∩Uj}a,b ∈
Covfppf(Ui ∩ Uj), α must be injective!

Now we check exactness at F (V ) by a diagram chase, illustrated above.1 Let
x ∈ F (V ) be taken to y ∈ F (V ×U V ) by both maps. Then d must be taken by both
maps to c, so by exactness of the middle row, it comes from some e. Since d is the
image of x, it is taken to some g by both maps. The two images f and f ′ must both be
taken to g; since α is injective, we must have f = f ′. Therefore, e must be the image
of some h ∈ F (U). Since ε is injective and ε(x) = d = ε ◦ γ(h), we get γ(h) = x.

Theorem 6.10. Let X be a scheme. Then hX : Schop → Set is a sheaf for the fppf
topology.

1The starting object is circled. A solid arrow indicates that an object at one end is defined by the
object at the other end. A dotted arrow indicates that commutativity of the diagram forces the two
objects to be related as described. For example, we know (by commutativity of the diagram) that
both horizontal maps take d to c; therefore, by exactness of the middle row, d defines the element e.
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Proof. (Affine case) First assume that X is affine. Combining Lemma 6.8 with Corol-
lary 6.7, we have that hX is a sheaf in the fppf topology.

(General case) Now let X be any scheme. Write X =
⋃
Xi as a union of open

affine subschemes. By Lemma 6.8, it is enough to consider an fppf covering of the form
t : V → U , where U and V are affine.

We have to check the exactness of

hX(U)
α // hX(V ) //

// hX(V ×U V ).

First we do injectivity. Suppose f, g ∈ hX(U) are identified by α. Then we have

V
t // U

f
//

g
// X with ft = gt. In particular, the maps of sets must agree; since t is

surjective, f and g must be set-theoretically equal. Now consider Ui = f−1(Xi) =
g−1(Xi). By the affine case, f |Ui

= g|Ui
scheme-theoretically. Therefore, we get f = g.

Now we check exactness in the middle. We will denote the forgetful functor to

Sch→ Top by | · |. Let f ∈ hX(V ) with fp1 = fp2: V ×U V
p1

//

p2
// V

f
// X . Applying

the forgetful functor, we get the diagram

|V ×U V | //❴❴❴

|p1|

��

|p2|

BB
|V | ×|U | |V |

π1 //

π2
// |V |

|t|   ❇❇❇❇❇❇❇❇

|f |
// |X|

|U |

h

OO

The dashed arrow exists by the universal property of |V |×|U | |V |. For some reason, we
have that |f |π1 = |f |π2 [[⋆⋆⋆ why?]]. If v1 and v2 are two points in V which lie over
the same point in U , then (v1, v2) ∈ |V | ×|U | |V |, and we get f(v1) = |f |π1(v1, v2) =
|f |π2(v1, v2) = f(v2). Thus, we get a well-defined map h : |U | → |X| given by u 7→
f
(
t−1(u)

)
. By Proposition 6.3, the topology on U is induced by t, so h is continuous.

Let Vi = f−1(Xi) and Ui = h−1(Xi). Then Vi → Ui are fppf coverings. By the affine
case, we have (unique) morphisms of schemes hi : Ui → Xi so that f |Vi = hi ◦ t|Vi .
Covering the intersections Xi∩Xj by affines and using the uniqueness, we have that the
hi agree on intersections Ui ∩Uj . Therefore, we get a morphism of schemes h : U → X
so that f = h ◦ t.
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7 Descent

Descent in general

For an object Y (in some category), let C(Y ) be some category associated to Y . For
a morphism f : X → Y , assume we have a pullback functor f ∗ : C(Y ) → C(X). The
question is, “which objects in C(X) come from objects in C(Y ) via f ∗?”

First we do a sanity check: if E ∈ C(X) is to be of the form f ∗D for some D ∈ C(Y ),
then pulling E back along morphisms coequalized by f had better produce isomorphic
results. In particular, f coequalizes the two projections p1, p2 : X ×Y X → X , so there
had better be some isomorphism σ : p∗2E

∼
−→ p∗1E. Moreover, this σ would have to

satisfy the cocycle condition p∗13σ = p∗12σ ◦ p
∗
23σ. The general form of descent theorems

is this: if f is a nice morphism, and E passes the above sanity check, then it is f ∗D
for some D ∈ C(Y ). Here is a more precise formulation.

Definition 7.1. Let D be a category in which fiber products are representable (like
Sch), and let C : Dop → Cat be a lax 2-functor.1 For a morphism g in D, denote Cg

by g∗. Let f : X → Y be a morphism in D. We define the category C(X
f
−→ Y ) as

follows. The objects are pairs (E, σ), where E is in C(X) and σ : p∗2E
∼
−→ p∗1E is an

isomorphism, where p1 and p2 are the projections X ×Y X → X . Furthermore, if p12,
p13, and p23 are the projections X ×Y X ×Y X → X ×Y X , we require the diagram on
the left to commute (the “equalities” are really canonical isomorphisms).

p∗13p
∗
2E

p∗13σ //

qqqqq
qqqqq

p∗13p
∗
1E

▼▼▼▼▼▼
▼▼▼▼▼▼

p∗23p
∗
2E

p∗23σ
&&▼▼▼▼▼▼

p∗12p
∗
1E

p∗23p
∗
1E p∗12p

∗
2E

p∗12σ

88qqqqq

p∗2E
′
p∗2ε //

σ′

��

p∗2E

σ

��

p∗1E
′
p∗1ε // p∗1E

A morphism (E, σ)
ε
−→ (E ′, σ′) is a morphism ε : E → E ′ in C(X) such that the diagram

on the right commutes. We call σ descent data for the object E. ⋄

Remark 7.2. If {Xi → Y } is a set of morphisms, we can define C({Xi → Y }) simi-
larly, but in most of the sites we care about and for most applications, we can always
replace {Xi → Y } by the single morphism X =

∐
Xi → Y . ⋄

Note that if F ∈ C(Y ), then (f ∗F, can) ∈ C(X → Y ), where can is the canonical
isomorphism p∗2f

∗F ∼= (f ◦ p2)∗F = (f ◦ p1)∗F ∼= p∗1f
∗F . That is, the functor f ∗ :

C(Y ) → C(X) factors through C(X → Y ). In general, descent theorems say that if f
is sufficiently nice, then f ∗ : C(Y ) → C(X → Y ) is an equivalence of categories. Here
are some examples of descent theorems.

1That is, if f and g are composable morphisms in D, then we do not require the isomorphism
(fg)∗ ∼= g∗f∗ to be an equality, but we do require that the isomorphism is natural in f and g. Moreover,
we require that the two isomorphisms f∗g∗h∗ ∼= (gf)∗h∗ ∼= (hgf)∗ and f∗g∗h∗ ∼= f∗(hg)∗ ∼= (hgf)∗

agree.
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– (Theorem 7.5) If f : X → Y is a covering in some site C (which has projective
limits), then a sheaf on C/X with descent data is equivalent to a sheaf on C/Y .

– (Proposition 7.3) “Sheaf Hom of fppf sheaves is an fppf sheaf.”[[⋆⋆⋆ this works
in any site]] In particular morphisms between schemes over S can be defined fppf
locally on S.

– (Theorem 7.13) If X → Y is a quasi-compact fppf covering of schemes, then a
quasi-coherent sheaf on X together with descent data is equivalent to a quasi-
coherent sheaf on Y .

– (Theorem 8.2) If g ≥ 2 and X → Y is a quasi-compact fppf covering of schemes,
then a genus g curve over X with descent data is equivalent to a genus g curve
over Y .

Descent for morphisms of sheaves/schemes

The following proposition shows that morphism of schemes over S can be defined locally
over S in the fppf topology. More generally, morphisms of sheaves on S can be defined
locally in the fppf topology.

Proposition 7.3 (“Sheaf Hom is already a sheaf”). Let F and G be fppf sheaves
on a scheme S, let S ′ → S be an fppf cover, and let S ′′ = S ′ ×S S

′. Note that we
have two S-morphism p1, p2 : S ′′ → S ′. If f ′ : F |S′ → G|S′ is a morphism such that
p∗1f

′ = p∗2f
′ : F |S′′ → G|S′′, then f ′ is induced by a unique morphism of fppf sheaves

f : F → G.

[[⋆⋆⋆ this works in any site]]

Proof. For any S-scheme U , let U ′ = U ×S S ′ and U ′′ = U ×S S ′′. Then we get a
diagram

F (U) //

∃!f
��
✤
✤
✤

F (U ′) //
//

f ′

��

F (U ′′)

f ′′=p∗1f=p
∗
2f

��

G(U) // G(U ′) //
// G(U ′′)

?>=<89:;x
❴

��
✤
✤
✤

✤ // y
✲ ((

✑ 66❴

��

z❴

��
a ✤ // b

✳ ((
✏ 66 c

Since S ′ → S is an fppf cover, so is U ′ → U (one of the axioms of a site). Note also
that

U ′ ×U U
′ ∼= U ′ ×U (U ×S S

′) ∼= U ′ ×U S
′ ∼= U ′ ×S′ (S ′ ×S S

′) = U ′ ×S S
′′ = U ′′.

Since F and G are fppf sheaves, the two horizontal sequences are exact. Now a diagram
chase produces f . (See the footnote in lecture 6 for how to read the chase.)

Corollary 7.4. Let X and Y be schemes over S, let S ′ → S be an fppf cover, let
S ′′ = S ′×S S ′, let X ′ = X×S S ′, X ′′ = X×S S ′′, and define Y ′ and Y ′′ similarly. Note
that we have two S-morphism p1, p2 : S ′′ → S ′. If f ′ : X ′ → Y ′ is a morphism such
that p∗1f

′ = p∗2f
′ : X ′′ → Y ′′, then f ′ is induced by a unique S-morphism f : X → Y .



7 Descent 27

Proof. By the Yoneda lemma, it is enough to find a morphism f : hX → hY inducing f ′.
Note that the universal properties of X ′, X ′′, Y ′, and Y ′′, we have that hX |S′ = hX′ |S′,
hX |S′′ = hX′′ |S′′, etc. Now the proposition produces f .

Descent for sheaves in a site

The main point of this section is roughly that “a sheaf on a site can be defined locally
in the topology of that site”.

Let C be a site in which finite projective limits are representable. For any object
X in C, we can form the site C/X (see Example 2.4). Let Sh(X) be the category of
sheaves on C/X . If f : X → Y is morphism in C, then we get an induced morphism
of sites C/Y → C/X , given by (Z → Y ) 7→ (Z ×Y X → X). It is immediate to check
that this induced functor is continuous. By Theorem 5.1, it induces a morphism of
topoi f : Sh(X) → Sh(Y ). For a sheaf E on C/X , f∗E(Z → Y ) = E(Z ×Y X → X).
For a sheaf F on C/Y , f ∗F (Z → X) = limW G(W → Y ), where the limit is taken over
objects W → Y such that the following diagram commutes.

Z //

��

W

��

X // Y

But this system has an initial object,2 namely Z → Y . Thus, f ∗F (Z → X) = F (Z →
Y ), so the functor f ∗ is just given by restriction of the sheaf F .

Theorem 7.5. Let f : X → Y be a covering of Y . Then the functor f ∗ : Sh(Y ) →
Sh(X → Y ), is an equivalence of categories.

Proof. To show that f ∗ is an equivalence, it is enough to show that it is fully faithful
(induces isomorphisms on Hom sets) and is essentially surjective (every isomorphism
class is in the image).

(Full faithfulness) It is enough to construct a left inverse. Given (E, σ) ∈ Sh(X →
Y ), define

h(E, σ) = Eq
( f∗p1∗p

∗
1E ❬❬❬❬❬❬❬❬❬

❬❬❬❬❬❬❬❬❬
f∗E

11❝❝❝❝❝❝❝❝❝❝
--❬❬❬❬❬❬❬❬❬❬ g∗p

∗
1E

f∗p2∗p
∗
2E g∗(σ)

11❝❝❝❝❝❝❝❝❝

)
.

Next we show that h is right adjoint to f ∗. Since f ∗ is left adjoint to f∗, a morphism
f ∗F → E corresponds to a morphism F → f∗E. The condition that F → f∗E equalizes
the two maps above turns out to be equivalent the the condition that the morphism
f ∗F → E is compatible with the descent data. [[⋆⋆⋆ check this some time]]

We get a unit of adjunction, the natural transformation id→ hf ∗. If we can show
that this natural transformation is an isomorphism on each object, then it follows

2Yeah, I know, it looks like you want a terminal object, but you apply G and then take the limit,
and G is contravariant, so what you really want to find is an initial object before you apply G (or a
terminal object after you apply G.
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that hf ∗ is isomorphic to the identity functor. First note that for F ∈ Sh(Y ) and
Z → Y , we get that hf ∗F (Z → Y ) = f ∗F (Z ×Y X → X) = F (Z ×Y X → Y ),
and the morphism from F (Z → Y ) is induced by the Y -morphism Z ×Y X → Z
[[⋆⋆⋆ good way to see this?]]. Thus, we wish to check that the obvious morphism
F (Z → Y ) → F (Z ×Y X → Y ) is the equalizer in question, i.e. that the following
sequence is exact.

F (Z) // f∗f
∗F (Z) //

// g∗g
∗F (Z)

F (Z) // F (Z ×Y X) //
// F (Z ×Y X ×Y X)

(7.6)

But Z×YX → Z is a covering (sinceX → Y is a covering), and (Z×YX)×Z(Z×YX) =
Z ×Y X ×Y X , so the sequence is exact by the sheaf axiom on F .

(Essential surjectivity) Given (E, σ), let F = h(E, σ). We wish to show that
(E, σ) ∼= (f ∗F, can). Since both of these are sheaves on X , it is enough to check
that these sheaves are isomorphic when restricted to some cover W → X .3 Using this,
we will now reduce to the case where f : X → Y has a section.

Base extending by f : X → Y , we change the names of things in the following way.

‘X ’×‘Y ’ ‘X ’

‘p2’

��

‘p1’

��

= (X ×Y X)×Y X

p23

��

p13

��

p12 // X ×Y X

p2

��

p1

��

‘E’, ‘f ’∗‘F ’ ‘X ’

‘f ’

��

= X ×Y X
p1

//

p2

��

X

f

��

E, f ∗F

‘F ’ = ‘h’(‘E’, ‘σ’) ‘Y ’

‘s’

CC

= X
f

//

∆

EE

Y F = h(E, σ)

EX and σ pull back along p1 to give a sheaf on X×Y X with descent data with respect
to p2, and F pulls back along f to give ‘F ’. We have that p∗1(f

∗F ) ∼= p∗2f
∗F = ‘f ’∗‘F ’.

Moreover, commutativity of the following diagram (in which the pairs of vertical arrows
are adjoint functors) tells us that ‘h’(‘E’, ‘σ’) = ‘F ’. This concludes the reduction to
the case where f has a section.

Sh(X ×Y X
p2
−→ X) =Sh(‘X ’

‘f ’
−→ ‘Y ’)

‘h’

��

Sh(X → Y )
p∗1oo

h

��

Sh(X) =Sh(‘Y ’)

p∗2=‘f ’∗

OO

Sh(Y )
f∗

oo

f∗

OO

3For any Z → X and any sheaf G ∈ Sh(X), the sheaf axiom forces G(Z → X) to be the equalizer
of G(Z ×X W → X) ⇒ G(Z ×X W ×X W → X), but these two morphisms factor through W → X ,
so their values are known once we know G restricted to W .
If you feel like we’re assuming the result of the theorem we’re trying to prove, think about it this

way. This statement is saying “it is enough to verify that a morphism of sheaves is an isomorphism by
looking on a basis for the topology”. The theorem is saying “given an open cover, with sheaves defined
on each open set so that the restrictions to the intersections agree compatibly, there is a unique sheaf
on the whole space which restricts to the given sheaves on each of the open sets”.
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In what follows, we suppress the descent data in the notation. We have an isomorphism

E = (sf × 1)∗p∗2E
∼

−−−−−→
(sf×1)∗σ

(sf × 1)∗p∗1E = f ∗s∗E.

X
sf×1

// X ×Y X
p2

//

p1
// X

By the first part of this proof, h is a left inverse to f ∗, so we have that F = hE ∼=
hf ∗s∗E ∼= s∗E. Applying f ∗, we get the isomorphism f ∗F ∼= f ∗s∗E ∼= E, as desired.

Descent for sheaves of modules

[[⋆⋆⋆ Notation. In class, we use f ∗ for what I would usually call f−1, and I don’t
want to use notation different from what we use in class. Unfortunately, for sheaves of
modules, there is a different f ∗, and sometimes the distinction is important. Since I
can’t come up with a good solution, I’m going to use f ∗ to mean f−1 (for all sheaves)
and f ⋆ to mean pullback for sheaves of modules. Let me know if you have a better
solution.]]

Let X and Y be objects in C, and let OX ∈ Sh(X) and OY ∈ Sh(Y ) be sheaves of
rings. For a morphism f : X → Y , assume we also have a morphism of sheaves of rings
f ∗OY → OX . We get that f induces a continuous morphism of sites C/Y → C/X , given
by (Y ′ → Y ) 7→ (X×Y Y ′ → X). Since finite projective limits are representable in C/Y ,
Theorem 5.1 tells us that this induces a morphism of topoi (f∗, f

∗) : Sh(X)→ Sh(Y ).
Note that f∗ is also a morphism of the categories OX -mod→ OY -mod, where OY acts
on f∗F via the map OY → f∗OX . However, f ∗ is not left adjoint to f∗ (it doesn’t even
give a functor the other way). But there is a left adjoint, which we call f ⋆. It is given
by f ⋆G = f ∗G ⊗f∗OY

OX (you have to sheafify after your take the tensor product).
[[⋆⋆⋆ it would be nice to prove that f ⋆ is left adjoint to f∗]]

Xet

f∗
// Yet

f∗
oo

OX -mod
f∗

//

OO

OY -mod
f⋆

oo

OO

Remark 7.7. For regular Zariski sheaves on schemes (or topological spaces for that
matter), if X → Y is an open map, then it is really easy to understand f ∗ and f ⋆.
There is an analogous statement in this situation.

If OX and OY are obtained by restricting some sheaf of rings O on C, f : X → Y
is a morphism in C, G is a sheaf on Y , and U → X is an element of C/X , then
f ∗G(U → X) = lim−→U→V

G(V → Y ) = G(U → Y ). That is, f ∗G is obtained simply
by restricting G to C/X . In particular, f ∗OY = OX . If G is an OY -module, then
f ⋆G = f ∗G ⊗f∗OY

OX = f ∗G is given by restricting G to C/X .
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In some sense, this says that the bigger your site is, the easier it is to understand
f ∗ and f ⋆. In the case of Zariski sheaves on schemes, f ∗ and f ⋆ are hard because most
morphisms between schemes are not open immersions (i.e. f is usually not in C). ⋄

Corollary 7.8. Let C be a site with projective limits, let f : X → Y be a covering,
and let OX ∈ Sh(X) and OY ∈ Sh(Y ) be sheaves of rings, with OX = f ∗OY . Then
f ∗ : OY -mod → OX→Y -mod (interpret this in the obvious way) is an equivalence of
categories.

Proof. The module structure comes along for the ride along f∗, f
∗, and h.

Descent for quasi-coherent sheaves

For any scheme X , define the presheaf OXfppf
on Sch/X by (T → X) 7→ Γ(T,OT ).

Note that OXfppf
is represented by A1

X , so by Theorem 6.10, it is an fppf sheaf. Note
that this is the restriction of the sheaf OSpecZ on Sch.

Given a quasi-coherent sheaf F on X (i.e. in Xzar), we define an OXfppf
-module

Ffppf : Sch/X → Set by (T
h
−→ X) 7→ Γ(T, h⋆F ).

Lemma 7.9. Ffppf is a sheaf in the fppf topology on X.

Proof. We will apply Lemma 6.8. For T
h
−→ X , h⋆F is a (Zariski) sheaf on T , so

Ffppf is a sheaf in the big Zariski topology on X . Next we need to check the sheaf
condition for an fppf cover of the form SpecB → SpecA over X . Since F is quasi-
coherent, h⋆AF is quasi-coherent on SpecA, so it is M̃ for some A-module M ; then
h⋆BF

∼= (B ⊗A M)∼ and h⋆B⊗AB
F ∼= (B ⊗A B ⊗A M)∼. Thus, the sheaf condition is

equivalent to the sequence M // B ⊗AM
//
// B ⊗A B ⊗AM being exact. The proof

of Lemma 6.5 works almost verbatim.

There is a sort of inverse procedure. If F is any sheaf of OXfppf
-modules on

(Sch/X)fppf , then for any X-scheme T → X , we get a sheaf FT (in Tzar) by re-
stricting F to the small Zarliski site of T (an open subset of T is a scheme over X).

Moreover, if we have an X-morphism T ′ g
−→ T , we get a morphism FT → g∗FT ′, given

by

FT (U) = F(U → T )
Fp1
−−→ F(U ×T T

′ → T ′) = g∗FT ′(U).

By the adjunction, this induces a morphism g⋆FT → FT ′. Furthermore, if we have

morphisms T ′′ f
−→ T ′ g

−→ T over X , then Hom(FT , g∗f∗FT ′′) ∼= Hom(g⋆FT , f∗FT ′′) ∼=
Hom(f ⋆g⋆FT ,FT ′′) ∼= Hom((gf)⋆FT ,FT ′′), so for some reason [[⋆⋆⋆ ]] (gf)⋆FT →

FT ′′ is the same as the composition f ⋆g⋆FT
f⋆(−)
−−−→ f ⋆FT ′ → FT ′′.

Remark 7.10. If F is a quasi-coherent sheaf on Xzar, then given morphisms T ′ g
−→

T
h
−→ X we get (Ffppf)T = h⋆F . Then the map g⋆(Ffppf)T → (Ffppf)T ′ is just the

isomorphism g⋆h⋆F ∼= (hg)⋆F . ⋄
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Definition 7.11. Qcoh(Xfppf) is the full subcategory of OXfppf
-mod whose objects

are F such that

1. for all T → X , FT is quasi-coherent, and

2. for all g : T ′ → T , the map g⋆FT → FT ′ is an isomorphism. ⋄

Proposition 7.12. π⋆ : Qcoh(Xzar)→ Qcoh(Xfppf), given by F 7→ Ffppf is an equiv-
alence of categories.

Proof. Define π∗ : Qcoh(Xfppf) → Qcoh(Xzar), sending F to FX . It is clear that
π∗ ◦ π

⋆ = id, and we compute

(π⋆π∗F)(T
h
−→ X) = (h⋆FX)(T )

∼
−→ FT (T ) = F(T

h
−→ X)

where the isomorphism in the middle is because F is in Qcoh(Xfppf).

There is a stronger statement, which is what people properly call descent of quasi-
coherent sheaves. For a morphism f : X → Y of schemes, define Qcoh((X → Y )zar) as
in Definition 7.1, but with all instances of −∗ replaced with −⋆. In other words, it’s
the category of quasi-coherent (Zariski) sheaves E on X together with an isomorphism
p⋆2E
∼= p⋆1E satisfying a cocycle condition (which involves p⋆ij instead of p∗ij).

Theorem 7.13. Let X
f
−→ Y be an fppf cover with f quasi-compact and quasi-separated.

Then f ⋆ : Qcoh(Yzar)→ Qcoh((X
f
−→ Y )zar) is an equivalence of categories.

Proof. The trick is to reinterpret the statement in the fppf site. We identify Qcoh(Yzar)
with Qcoh(Yfppf) as above, and we identify Qcoh((X → Y )zar) with Qcoh(X → Y )
(where the objects are quasi-coherent fppf sheaves with regular descent data). Then

f ⋆ : Qcoh(Yzar)→ Qcoh((X
f
−→ Y )zar) is identified with f ∗ : Qcoh(Yfppf)→ Qcoh(X →

Y ).
By the hypotheses, f∗, p1∗, and p2∗ preserve quasi-coherence [Har77, II.5.8], and all

the pullbacks preserve quasi-coherence as usual. Since kernels of maps of quasi-coherent
sheaves are quasi-coherent, we have that the functor h from the proof of Theorem 7.5
preserves quasi-coherence. Now Theorem 7.5 applies to prove the result.

Remark 7.14. The hypothesis that f is quasi-compact and quasi-separated is actually
unnecessary. Let Y =

⋃
i Yi, with each Yi affine, and let f−1(Yi) =

⋃
j Xij with Xij

quasi-compact and f(Xij) = Yi for each j (we can do this by Corollary 6.4). Then
f |Xij

: Xij → Yi is an fppf cover for each i and j, so the above argument proves
descent for quasi-coherent sheaves [[⋆⋆⋆ how do you see that Xij → Yi are quasi-
separated?]]. Similarly, we can cover Yi∩Yj and Yi∩Yj∩Yk by affine schemes, and cover
their pre-images by quasi-compact schemes so that we get descent for quasi-coherent
sheaves there.

Now given a quasi-coherent sheaf G on X with descent data, we descend G|Xij

to a quasi-coherent sheaf on Yi. The descent data tells us [[⋆⋆⋆ somehow]] that
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the resulting sheaf is independent of j, so we’ll call it Fi. On the affine cover of
the intersections Yi ∩ Yj , Fi and Fj must both restrict to the sheaf same sheaf (the
descended restriction of G), so they are isomorphic, and we get a cocycle condition by
the same sort of argument on the triple intersections. Thus, the Fi glue together to
give a quasi-coherent sheaf F , which pulls back to G. ⋄

Remark 7.15. We can replace “quasi-coherent sheaves” by “quasi-coherent sheaves
of ideals”, “quasi-coherent sheaves of algebras”, or “locally free sheaves”, and the proof
still works. ⋄

Example 7.16 (Descent for closed subschemes). If X is a scheme and I ⊆ OX is a
quasi-coherent sheaf of ideals, then the closed subscheme defined by I is the sheaf given
by T 7→ {g : T → X|the composition I →֒ OX → g∗OT is zero}. Let f : X → Y be a
quasi-compact fppf cover, let F be an fppf sheaf on schemes with a map F → Y , and
assume that Z := F×Y X is the closed subscheme of X defined by some quasi-coherent
sheaf of ideals I ⊆ OX . We wish to show that F is a closed subscheme of Y .

Z
I //

��

·
X

f
��

F // Y

Since p∗2Z and p∗1Z are both isomorphic to (fp1)
∗F , they are the same closed subscheme

of X ×Y X , so we have that p⋆2I = p⋆1I (and we get the cocycle condition similarly).
By descent for quasi-coherent sheaves of ideals, we have that I ∼= f ⋆J for some quasi-
coherent sheaf of ideals J ⊆ OY . Let W ⊆ Y be the closed subscheme defined by
J .

Given g : T → X , the composition J →֒ OY → f∗g∗OT is equal to zero if and
only if the composition f ⋆J = I →֒ f ⋆OY = OX → g∗OT is zero (since the adjunction
f ⋆ ⊢ f∗ is a group isomorphism). Thus, we get that Z ∼= f ∗W . By Exercise 2.4,
Schfppf/hX ∼= Xfppf , so we may think of Z as an fppf sheaf on X , and we may think
of F and W as fppf sheaves on Y . Since f ∗F ∼= Z ∼= f ∗W , descent for sheaves in a site
tells us that F ∼= W . Thus, F is the closed subscheme of Y defined by J . ⋄
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8 Descent for Mg, g ≥ 2

Definition 8.1. For an integer g and a scheme S,Mg(S) is the category whose objects
are smooth proper maps π : C → S all of whose geometric fibers are connected genus
g curves, and whose morphisms are isomorphisms over S.

For a morphism of schemes X → Y , the category Mg(X → Y ) has objects pairs
(CX , σ), where CX ∈ Mg(X) and σ is an isomorphism σ : p∗2CX

∼
−→ p∗1CX , with

the compatibility hexagon like the one in the previous lecture. A morphism in this
category, (C ′

X , σ
′)

ε
−→ (CX , σ) is a morphism ε : C ′

X → CX such that the following
diagram commutes.

p∗2C
′
X

p∗2ε //

σ′

��

p∗2CX

σ

��

p∗1C
′
X

p∗1ε // p∗1CX

⋄

Proposition 8.2. If g ≥ 2 and f : X → Y is a quasi-compact fppf cover, then the pull-

back functor f ∗ :Mg(Y )→Mg(X
f
−→ Y ), given by C 7→ (f ∗C, can), is an equivalence

of categories.

The following lemma is the key. It is the only part of the proof that uses g ≥ 2.

Lemma 8.3. If g ≥ 2, then for any (π : C → S) ∈ Mg(S), Ω
⊗3
C/S is a relatively very

ample sheaf.1

Proof. On fibers, the canonical sheaf is very ample by Riemann-Roch.2 We also have
that H1(C,Ω⊗3

C/S) = 0 [[⋆⋆⋆ somehow]]. By [[⋆⋆⋆ something]] from [Har77, III

§9], we get that Ω⊗3
C/S is relatively very ample.

Proof of Proposition 8.2. We need to show that the pull-back functor is fully faith-
ful and essentially surjective. By Proposition 7.4, morphisms of pull-back curves in
Mg(X → Y ) “glue” to give morphisms of the originals in Mg(Y ), so f ∗ is injective
on Hom sets. Since isomorphisms also glue in the fppf topology, we have that f ∗ is
injective on objects. Thus, f ∗ is fully faithful.

Now we show essential surjectivity. Let (CX , σ) ∈ Mg(X → Y ). By the lemma,
Ω⊗3
CX/X

is relatively very ample. [[⋆⋆⋆ π∗ΩCX/X is a locally free sheaf, and this

construction commutes with base change for some reason . . . where do we use this?]].

1A sheaf E on C is relatively very ample if there is an open cover of S so that E is very ample over
each open set. This means that there is a closed immersion C →֒ P(π∗E) (this is a twisted projective
space over S).

2Let K be the canonical divisor and let l(D) = dimΓ(L(D)). Riemann-Roch for curves states that
l(D)− l(K −D) = degD + 1− g. L(D) is very ample if and only if l(D − P −Q) = l(D)− 2 for all
points P and Q (see [Har77, IV §3]). If degD < 0, then l(D) = 0. Thus, if degD > 2g, L(D) will be
very ample. For g ≥ 2, deg 3K = 6g− 6 > 2g, so the third tensor power of the canonical sheaf is very
ample.



34 8 Descent forMg, g ≥ 2

Let EX = π∗Ω
⊗3
CX/X

. The isomorphism σ induces an isomorphism σE : p∗2EX
∼
−→ p∗1EX .

The cocycle condition on σ induces the cocycle condition for σE .

p∗1EX
∼
←−
σE

p∗2EX

p∗1CX
∼
←−
σ
p∗2CX

// X ×Y X

EX CX //
��

✱✱✱✱✱
		

✒✒✒✒✒
X
��p1

✱✱✱✱✱
		 p2

✒✒✒✒✒

By descent for locally free sheaves (see Remark 7.15), there is a locally free sheaf E
on Y which pulls back to EX . It follows that PE pulls back to PEX . Consider the
following diagram.

p∗1CX = p∗2CX
� � // PEX ×PE PEX //

����

X ×Y X

����

CX
� � //

��

✮✮✮✮✮




✕✕✕✕✕

��
✤
✤
✤ PEX

fppf
qcompact

��

//

·
X

fppf
qcompact
��

C � � //❴❴❴❴❴❴❴❴❴ PE // Y

The closed immersion of CX into PEX is the one induced by Ω⊗3
CX/X

. [[⋆⋆⋆ why

do we get the equality of subschemes p∗1CX = p∗2CX?]] Let ICX
be the quasi-coherent

sheaf of ideals of CX within PEX . The equality of subschemes p∗1CX = p∗2CX induces
an isomorphism σI : p∗2ICX

∼
−→ p∗1ICX

which satisfies the cocycle condition. By descent
for quasi-coherent sheaves of ideals along the quasi-compact fppf cover PEX → PE,
we have that ICX

is the pull-back of some quasi-coherent sheaf of ideals IC on PE.
Let C be the subscheme defined by IC . Then we have that C pulls back to CX . Since
smoothness and properness descend along fppf covers, C → Y is smooth and proper.
For any geometric point y in Y , there is a corresponding geometric point x in X , and
the fiber Cy is equal to the fiber (CX)x, so it is a connected genus g curve.

Remark 8.4. The moral is that when you want to talk about descent of anything, you
do it via descent of quasi-coherent sheaves. The key to this proof was the construction
of a canonical embedding of the curve into some projective space, so that we could use
the quasi-coherent sheaf of ideals.

For g = 0, the anti-canonical sheaf is very ample, so essentially the same proof
works to prove descent for M0. However, for g = 1, there is no canonical projective
embedding, and in fact the descent result doesn’t hold! See Lecture Notes in Mathe-
matics 179, Raynaud, Faisceaux ample. . . . The counterexample has a normal base of
dimension at least 2. ⋄
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9 Separated schemes: a warmup for algebraic spaces

The question for today is, “How can we characterize (separated) schemes among
presheaves on Affzar (of Afffppf)?”

Definition 9.1. Let C be a category, and we have two functors F,G : Cop → Set. A
morphism of functors f : F → G is called relatively representable if for every X ∈ C,
and for every g : hX → G, the fiber product hX ×G F : Cop → Set is representable. ⋄

Remark 9.2. f : hX → G is the same as an element of G(X). ⋄

In our case, take C = Aff.

Definition 9.3. A morphism f : F → G is an affine open (resp. closed) immersion
if (1) f is relatively representable, and (2) for all X ∈ Aff and g : hX → G, the map
F ×G hX → hX is an open (resp. closed) immersion. ⋄

Proposition 9.4. A functor F : Affop → Set is representable by a separated scheme if
and only if the following hold

1. F is a sheaf with respect to the big Zariski topology,

2. the diagonal morphism ∆ : F → F × F is an affine closed immersion, and

3. there exists a family of objects {Xi} in Aff and morphisms πi : hXi
→ F which

are affine open immersions and such that the map of Zariski sheaves
∐

i hXi
→ F

is surjective. (note that this is not the same as a surjection of functors ... things
only have to be locally in the image)

Proof. (=⇒) Say X is separated, and F = hX . (1) is clear. For (2), the important
point is that the Yoneda embedding commutes with products, so hX × hX ∼= hX×X

hP //

��

·
hY

��

hX // hX×X

P
r //

��

·
Y

��

X
∆ // X ×X

(2) is equivalent to saying that r is a closed immersion for all affine Y . Since X is
separated, ∆ is a closed immersion, so r is a closed immersion.

(3) Let X =
⋃
Xi be an open covering by affines, so hXi

→ hX are affine open
immersions.1 We wish to show local surjectivity of

∐
hXi
→ hX . That is, for every

affine Y , and for every element of g ∈ hX(Y ) (which we may think of as a morphism

1We use that X is separated here. Otherwise, hXi
→ hX might not be relatively representable

(e.g. the intersection of two affine open sets may not be affine).
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hY → hX), there is a covering of Y so that g factors through
∐
hXi

. It is clear that we
may take the covering Y =

⋃
g−1(Xi).

hg−1(Xi)

·

gi //

��

hXi

��

hY
g

// hX

∐
hg−1(Xi)

��

∐
gi

//❴❴❴
∐
hXi

��

hY g
// hX

(⇐=) For every i and j, we get

hVij = hXi
×F hXj

��

//

·
hXi

πi

��

hXj

πj
// F

Since πj : hXj
→ F is relatively representable, the fiber product is represented by

some affine Vij. Since πj is an affine open immersion, Vij is an open subset of Xi. So
we have {Xi}, and for every i and j, we have Vij ⊆ Xi, and we have isomorphisms
ϕij : Vij

∼
−→ Vji. We need to have the cocycle condition ϕ′

ijϕ
′
jk = ϕ′

ik, where ϕ
′
ij =

ϕij|Vij∩Vik : Vij ∩ Vik → Vji ∩ Vjk. The cocycle condition (and the fact that ϕ′
ij is well-

defined) is obvious if you look at the functor of points: ϕ′
ij : hXi

×F hXj
×F hXk

→
hXj
×F hXi

×F hXk
just switches factors around.

Thus, we have gluing data to define a scheme X . Let G =
∐

i hXi
. We have that

σ : G→ F is surjective, and we wish to show that F ∼= hX .
We get G×F G ⊆ G×G, so for U ∈ Aff, G(U)×F (U) G(U) ⊆ G(U)×G(U). This

subset is an equivalence relation (it identifies points in the same fiber ofG(U)→ F (U)).
Both hX and F are isomorphic to the sheafification of U 7→ G(U)/ ∼.
[[⋆⋆⋆ why is hX isomorphic to that? some argument follows, but I’m not yet

happy.]] hX is the sheaf associated to the presheaf U 7→ G(U)/ ∼. This induces a map
of presheaves (U 7→ G(U)/ ∼)→ hX , and G→ F factors through it. Suppose we have
s1 : U → Xi and s2 : U → Xj (through Vij) which define the same element of F (U).
Then we have maps

U
s1 //

s2
��

Xi

hi
��

Xj

hj
// X

Example 9.5. [[⋆⋆⋆ this example needs work]] Pn : SpecR 7→ {quotients Rn+1 →
L|L a projective R-module of rank 1}/ ≃, where the isomorphisms are “under R” (if
an isomorphism exists, it is unique). (1) This is clearly a sheaf in Affzar; just look at
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the kernel. (2) ∆ : Pn → Pn × Pn is a closed immersion. To see this, let

P
·

//

��

hSpecR

(L1,L2)
��

Pn // Pn × Pn

we want to show that P is affine closed in SpecR. As a functor on Aff/ SpecR, we
have

P : (SpecR′ f
−→ SpecR) 7→

{
∗ (R′)n+1 βi−→ f ∗Li equal for i = 1, 2 in Pn(R′)

∅ else

Using the proposition: (i) we know that P is a sheaf in the Zariski topology. (ii) choose
an open cover SpecR =

⋃
SpecRi such that both L1 and L2 restricted to Ri are trivial

modules (so L1
∼= L2

∼= Ri).
If L1 and L2 are trivial and ker βi are free, then we claim that P is representable.

Rn+1 β1
//

β2
""❊❊❊❊❊❊❊❊❊ R

��

R

means exactly that ker β1 = ker β2. We want that ker β2 ⊆ Rn+1 β1
−→ R is the zero map.

ker β2 ≃ Rn, with ei 7→ fi.

hP ×hSpecR hSpecRi∩SpecRj
hSpecRi

×hSpecR
hSpecRj

= hSpecRi∩SpecRj

hZi
= Pi //

��

hSpecRi� _

��

P // hSpecR

So Zi in SpecRi is a closed subscheme, and these glue to give you a closed subscheme
Z ⊆ SpecR. By the same argument as before, the functor of points of Z is P .

Finally, we need an open cover. Ui ⊆ Pn is given by R 7→ {Rn+1 ։ L|ei 7→basis for
L}.

Claim. The inclusion Ui →֒ Pn is representable by affine open immersions.

This is clear because this is the complement of the zero locus of something.

Claim. Ui ∼= hAn.
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Rn+1 //

ei

1
""❊❊❊❊❊❊❊❊❊

✆

""❊❊❊❊❊❊

L

≀ ei
��

R

Something equivalent to f0, . . . , f̂i, . . . , fn ∈ R.

K1 → O
n+1
X → L2 → 0

should be zero, then
L−1
2 ⊗K1 → OX

is zero.
(3)

∐
Ui → Pn is surjective (as sheaves).

∐
Ui(SpecR) // Pn(SpecR) ∋ (Rn+1 ։ L)

after possibly replacing SpecR by a covering, this is in the image if and only if some
ei maps to a basis for L. We can write SpecR =

⋃
j SpecRj such that for each j some

ei maps to a basis for L|SpecRj
. ⋄
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10 Properties of Sheaves and Morphisms

The goal of this lecture is to extend properties of objects (resp. morephisms) of a site
to sheaves (resp. morphisms of sheaves) on that site. We will let C be a subcanonical
site (i.e. a site in which representable presheaves are sheaves).

Definition 10.1. A class of objects S ⊆ C is stable if for every covering {Ui → U},
U ∈ S if and only if Ui ∈ S for each i. We call a property P of objects stable if the
class of objects satisfying P is stable. ⋄

Example 10.2. Stable properties in Aff with the Zariski topology: locally noetherian,
reduced, normal, regular, . . . . ⋄

Definition 10.3. Let F : Affop → Set be a separated scheme, and let P be a stable
property of affine schemes. Then we say that F has property P if there exists a covering
{hXi

→ F} (i.e.
∐
hi → F is surjective as a map of sheaves, with hXi

→ F affine open
immersions) with Xi affine such that each Xi has property P. ⋄

Remark 10.4. Exercise: Equivalently, we could require that for every affine covering
{hXi

→ F}, the Xi have P. ⋄

Definition 10.5. A subcategory D ⊆ C is closed1 if

1. D contains all isomorphisms, and

2. for all cartesian diagrams as below, f ∈ D implies that f ′ ∈ D.

U

f ′

��

//

·
V

f
��

X // Y

⋄

Definition 10.6. A subcategory D ⊆ C is local on the base if for all morphisms f :
X → Y in C and all coverings {Yi → Y } ∈ Cov(Y ), f ∈ D if and only if all the maps
fi : X ×Y Yi → Yi are in D. ⋄

Definition 10.7. A subcategory D ⊆ C is stable if it is closed and local on the base. ⋄

Definition 10.8. A subcategory D ⊆ C is local on domain if for all f : X → Y in C

and all {Xi
φi−→ X} ∈ Cov(X), f ∈ D if and only if f ◦ φi ∈ D for all i. ⋄

Definition 10.9. If P is a property of morphisms in C is satisfied by isomorphisms and
closed under composition, then we say that P is closed (resp. local on the base, stable,
local on domain) if the category CP ⊆ C (all objects and morphisms are morphisms
with P) is closed (resp. local on the base, stable, local on domain). ⋄

1[[⋆⋆⋆ AFAIK, this has nothing to do with the other kind of closed categories (the ones with
internal hom functors).]]
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Example 10.10. Let C = Sch with the Zariski topology.
Some stable properties: proper, separated, surjective, quasi-compact, . . . .
Some stable and local on domain properties: locally of finite type, locally of finite

presentation, flat, étale, universally open, locally quasi-finite, smooth, . . . . ⋄

Definition 10.11. A relatively representable morphism of sheaves f : F → G is said
to have a closed property of morphisms P if for every X ∈ C and every morphism
X → G, the pullback F ×G X → X has P. ⋄

[[⋆⋆⋆ say something about Knutson’s S3 properties (being a cover is local on
domain) and talk about properties of non-representable morphisms]]

Definition 10.12. Let P be a stable property of maps in Aff, and let f : F → G be
a relatively representable morphism of sheaves. We say f has property P if for every
affine X ∈ Aff and every map hX → G, the corresponding map hX ×G F → hX has
property P. ⋄

Remark 10.13. Note that the affine notion of properness is not the right one ... for
global notions you have to do things differently. ⋄

Definition 10.14. Let f : F → G be a morphism of separated schemes, and P a
stable and local on domain property of maps in Aff. We say f has property P if for
every pair of affine coverings {Gi → G} and {Fij → F ×G Gi}, the compositions
Fij → F ×G Gi → Gi have property P. (we have to do this because we didn’t assume
f was relatively representable by affines) [[⋆⋆⋆ why do we need to assume F and
G are separated schemes? That is, why do we need ∆F and ∆G to be affine closed
immersions?. . .maybe we need F ×G Gi to be schemes so that they have open affine
covers, so we need F and G to be schemes.]]

Fij ∀
//

P

**
F ×G Gi

//

��

·
Gi

∀
��

F // G

⋄

As we can see, in order to define what it means for a sheaf or morphism of sheaves
to have a property, representability of certian morphisms is important. In particular,
we’ll see that representability of the diagonal morphism of a sheaf is important. This
is because of the following lemma.

Lemma 10.15. Assume C has products and fiber products. A sheaf F on C has rep-
resentable diagonal if and only if all morphisms X → F from objects of C are repre-
sentable (i.e. X1 ×F X2 is an object of C for all objects Xi of C)
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Proof. First assume that ∆F : F → F × F is representable, and let fi : Xi → F be
morphisms, i = 1, 2. Verify that the diagram on the left is cartesian. Since X1 ×X2 is
an object in C and ∆F is representable, X1 ×F X2 is an object in C.

X1 ×F X2
//

��

·
X1 ×X2

f1×f2
��

F
∆F // F × F

•
·

//

��

T

∆T

��

T ×F T //

��

·
T × T

(p1◦f)×(p2◦f)
=g1×g2

��

F
∆F // F × F

Conversely, suppose X1 ×F X2 is in C for any morphisms fi : Xi → F from objects
in C, and let f : T → F × F be a morphism from an object in C. Composing with
the two projections, this f induces two morphisms gi = pi ◦ f : T → F . Note that
f = (g1 × g2) ◦ ∆T . From the diagram on the right, we see that the T ×f,F×F,∆ F ∼=
• ∼= T ×T×T (T ×g1,F,g2 T ), which is an object of C by the hypothesis that T ×g1,F,g2 T
is an object in C and because C has products and fiber products.

Definition 10.16. A stable property P of morphisms is an effective descent class if
the following property holds. For any morphism from a sheaf to an object F → X and
any covering {Xi → X}, if F ×X Xi are objects of C and F ×X Xi → Xi have P, then
F is an object of C (and therefore F → X has P). ⋄

[[⋆⋆⋆ by Example 7.16, closed immersions are an effective descent class in the
fppf topology. Similarly, affine morphisms are an effective descent class. Therefore, so
are open immersions, immersions, quasi-affine maps]]

[[⋆⋆⋆ define what it means for a construction to be local on the base. Any
construction local on the base which is in an effective descent class is effective. In
particular, the following are effective constructions (in the fppf topology, I think):
affine morphisms, reduced subscheme structure on a set, scheme-theoretic closed image,
open complement of a closed subscheme, reduced complement of an open subscheme,
reduction of a scheme]]

[[⋆⋆⋆ Add (sub?)section on (pre-)relations. If R→ U×U belongs to any effective
descent class, then the quotient sheaf F has representable diagonal. If R ⇒ U are
covers, then U → F is a cover.]]

Lemma 10.17 ([EGA, IV.8.14.2]). A morphism of schemes f : X → SpecA is locally
of finite presentation if and only if for every filtering inductive system of A-algebras
{Bi}, the canonical map lim−→hX(SpecBi)→ hX

(
Spec(lim−→Bi)

)
is bijective.

In the case where X = SpecR, finite presentation means that we have a surjection
π : A[x1, . . . , xr] ։ R, and ker π is finitely generated by f1, . . . , fs. We can choose
some Bi which contains the xi. The fi may not be zero, but they are in the limit, so
we can find some Bj and a map R→ Bj so that R→ B factors through Bj .
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Example 10.18. Let B be any A-algebra, and write B =
⋃
Bi, where Bi are finitely

generated over A. Then B = lim−→Bi. The lemma says that lim−→hX(SpecBi)
∼
−→

hX(SpecB).

SpecB

''◆◆◆◆◆◆
// X

SpecBi

∃

::✉
✉

✉
⋄

Definition 10.19. Let f : X → Y be a morphism of schemes. We call f formally
smooth (resp. formally unramified, formally étale) if for every affine Y -scheme Y ′ → Y
and every closed immersion Y ′

0 →֒ Y ′ defined by a nilpotent ideal, the map hX(Y
′)→

hX(Y
′
0) is surjective (resp. injective, bijective). If f is also locally of finite presentation,

then it is smooth (resp. unramified, étale). ⋄

Proposition 10.20. A map of rings A→ B is étale if and only if B is isomorphic to
A[x1, . . . , xn]/(f1, . . . , fm) with n ≤ m such that the unit ideal in B is generated by the
n× n minors of the matrix (∂fi/∂xj).

[[⋆⋆⋆ This proposition says that the definition of étale from [Har77] agrees with
this one. You prove it by looking at some infinitesimal neighborhood of the diagonal.]]

Remark 10.21. The class of étale maps of schemes is the smallest class of maps in
Sch which (i) includes all étale maps of affine schemes, and (ii) is stable and local on

domain in the Zariski topology, and (iii) if {Xi
fi−→ Y } is a collection of morphisms,

then the map X =
∐

iXi → Y is étale if and only if each fi is étale. [[⋆⋆⋆ follows
from local on domain]] ⋄
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11 Algebraic spaces

We replace Aff by Sch, and the Zariski topology is replaced by the étale topology.

Definition 11.1. An algebraic space over S is a functor X : (Sch/S)op → Set such
that

1. X is a sheaf on the big étale topology on S,

2. ∆ : X → X ×S X is representable, and

3. there exists an S-scheme U → S and a surjective étale morphism U → X (sur-
jective as a map of sheaves).1

⋄

Remark 11.2. In the definition of a separated scheme, representablity of ∆ follows
from existence of the covering {hXi

→ F}. You still need the closedness of ∆.
Let U =

∐
Xi, and let R = U ×F U ⊆ U × U . If you require something

something[[⋆⋆⋆ ]], then you get condition 2. ⋄

Remark 11.3. In [Knu71], ∆ is assumed to be quasi-compact. If X is an algebraic
space, we have an étale covering U → X . Let R = U ×X U , then R defines an
equivalence relation on U , so we can take the sheafification of

(
T → U(T )

)
/ ∼, and

we get X back. If you assume ∆ is quasi-compact, then you can start with some
equivalence relation and form an algebraic space this way. ⋄

If you replace étale with Zariski, you get schemes back out of the definition (i.e. you
don’t get anything new). If you use flat topology instead of étale, you don’t get a new
notion. [[⋆⋆⋆ somewhere, you should mention that algebraic spaces are fppf sheaves,
talk about Artin’s fppf slice theorem, and that you don’t get a more general notion by
considering “algebraic spaces in the fppf topology”]]

Example 11.4. (Not necessarily separated) schemes are algebraic spaces. ⋄

Quotients by free actions of finite groups

Let X be a separated scheme over S, and let G be a finite group acting freely on X
over S. The action is an S-morphism G×X → X ×S X , given by (g, x) 7→

(
g(x), x

)
.2

Note that the morphism X ∼= g ×X → X ×X is the diagonal morphism followed by
an isomorphism (g acting on the first factor). Since X is separated, the diagonal map
is a closed immersion. We can encode the statement that the action is free by saying
that the map G × X → X ×S X is a closed immersion (i.e. it is a union of closed
immersions that don’t interfere with each other).

1Étale and surjective are stable properties, so this means that for every scheme V and every
morphism V → X , the fiber product V ×X U is representable (by a scheme), and the morphism of
schemes V ×X U → V is étale and surjective.

2By G×X , we may the disjoint union of |G| copies of X , labeled by elements of G.
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Definition 11.5. [X/G] is the sheafification of the presheaf on (Sch/S)et given by
Z 7→ X(Z)/G. ⋄

Let F = [X/G]. The quotient map X → F is a G-bundle in the following sense. If
Y is some S-scheme, then given a morphism y : Y → F , we can form the pullback.

Py = X ×F Y

��

//

G

��

·
X

��

Y
y

// F

The pull-back Py has a G-action induced by the G-action on X . Moreover, Py(Z) is
either empty or it has a simple transitive G-action. [[⋆⋆⋆ It seems like the G action
should be free over Y (not over S unless Y is separated), but I don’t think it should
be transitive ... maybe it’s transitive on geometric fibers or something]] To see that
the action over Y is free, observe that the map

G× Py //

‖≀

Py ×Y Py
‖≀

G×X ×F Y // X ×F Y ×Y X ×F Y ∼= (X ×S X)×F Y

is the product of a closed immersion and the identity map, so it is a closed immersion.
[[⋆⋆⋆ presumably this works even though the product is over F , which may not be
a scheme]][[⋆⋆⋆ If we were looking at the action over S, it would be the product of
a closed immersion and ∆Y , which may not be a closed immersion.]]

It is an exercise in descent to show that Py is actually represented by a scheme.
[[⋆⋆⋆ I don’t see where there is a descent argument]]

Definition 11.6. A G-torsor over Y is a scheme P [[⋆⋆⋆ it must be a scheme,
yes?]] with a finite étale covering P → Y together with a G-action on P over Y such
that G acts simply transitively on geometric fibers. This last condition is equivalent
to the statement that G× P → P ×Y P , (g, p) 7→

(
g(p), p

)
is an isomorphism.[[⋆⋆⋆

why are these equivalent?]]3 A morphism of G-torsors is a G-equivariant morphism
over Y . The trivial G-torsor is G× Y . ⋄

Lemma 11.7. If Y is a scheme, and P → Y is a G-torsor, then the natural map
[P/G]→ Y is an isomorphism.

So far, we have shown that a morphism y : Y → [G/X ] = F produces a G-
torsor Py → Y and a G-equivariant morphism Py → X . Conversely, given a G-
torsor P → Y and a G-equivariant morphism P → X , we get an induced morphism
Y = [P/G]→ [X/G] = F . These constructions are inverse, so [X/G](Y ) is in bijection
with isomorphism classes of G-torsors over Y with G-equivariant maps to X .

3[[⋆⋆⋆ If we weren’t working in the étale topology, then could we allow G to not be discrete and
get a more general definition?]]
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By the way, given a G-torsor P over Y and a G-equivariant map to X , you get a
closed immersion P →֒ Y ×SX . This is a closed immersion because the action of G on
X is free. [[⋆⋆⋆ I don’t see why this is a closed immersion]] [[⋆⋆⋆ This is where we
use freeness of the G-action on X ; it is important in the proof of the upcoming lemma.
Is this also where we use separatedness of X?]] Two such pairs (torsor, morphism to
X) are isomorphic exactly when they produce the same closed subscheme of Y ×S X .

Remark 11.8. There exist non-quasi-projective schemes and free actions such that
the quotient is not representable by a scheme. However, the following theorem tells us
that the quotient is always an algebraic space. ⋄

Lemma 11.9. F = [X/G] is an algebraic space. [[⋆⋆⋆ later, we’ll prove that if we
have finite stabilizers, then you get an algebraic space]]

Proof. (1) F is defined as a sheafification, so it is a sheaf.
(2) We wish to show that the diagonal is representable. Given a map g : Y →

F ×S F , we form the pull-back.

Z

��

//

·
Y

g

��

F
∆ // F ×S F

Z(T
f
−→ Y ) =

{
∗ f ∗P1 = f ∗P2 ⊆ T ×X

∅ otherwise

We will show that Z is represented by a closed subscheme of Y .4 Note that g is the
same as a choice of two G-torsors over Y , call them P1 and P2. We get associated closed
immersions ji : Pi →֒ Y ×S X . Choose an étale cover Y ′ → Y so that P1 pulls back to
the trivial G-torsor (for example, take Y ′ = P1). Then we have a section s : Y ′ → P ′

1.

Z ′ //

��

·
Y ′

��

y
❴

��

P ′
2
� � // Y ′ ×X j′1

(
s(y)

)

Since Z ′ → Y ′ is a base extension of a closed immersion, it is a closed immersion, so Z ′

is associated to some quasi-coherent sheaf of ideals IZ′ on Y ′. For some reason [[⋆⋆⋆

]], IZ′ comes with descent data, so by descent for quasi-coherent sheaves of ideals,5 it
is the pull-back of some quasi-coherent sheaf of ideals IZ on Y . For some reason, this
is the sheaf of ideals associated to Z [[⋆⋆⋆ why should Z ′ have anything to do with
Z?]]. Thus, Z is a closed subscheme of Y ; in particular, it is a scheme.

(3) Observe that X → F is étale surjective. This is just the fact that for every
y : Y → F , Py is a scheme and Py → Y is étale and surjective (noting also that an
étale surjection of schemes translates into a surjection of sheaves).

Remark 11.10. If you drop the assumption that X is separated, Z is still represented
by a scheme, but the descent is trickier. ⋄

4 We are actually showing that ∆F is a closed immersion, so F will be a separated algebraic space.
5Note that the étale topology is coarser than the fppf topology. i.e. every étale cover is an fppf

cover, so the descent theorem applies.
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A quotient by a non-free action

Let P = P3
C, with coordinates Y0, Y1, Y2, and Y3. [[⋆⋆⋆ where do we use that we are

working over C?]] Consider the conics

C0 : Y0Y1 + Y1Y2 + Y2Y0 = Y3 = 0

C1 : Y0Y1 + Y1Y3 + Y3y0 = Y2 = 0

The points of intersection C0∩C1 are P0 = [1, 0, 0, 0] and P1 = [0, 1, 0, 0]. The involution
σ : (Y0, Y1, Y2, Y3) 7→ (Y1, Y0, Y3, Y2) switches the conics and the two intersection points.

Let Xi be the scheme given by blowing up Ci and the blowing up C1−i. Over
P r {P0, P1}, C0 and C1 don’t intersect, so it doesn’t matter in which order you blow
up. Thus, we get open subsets Ui ⊆ Xi, with U0

∼= U1. Obtain Z by gluing X0 and X1

along U0
∼= U1. Observe that the action of σ lifts to Z. One can check that Z is not

quasi-projective.
Define [Z/σ] as the sheafification of the presheaf on (Sch/ SpecC)et given by Y 7→

Z(Y )/σ. One can check that this sheaf is is not a scheme, but is an algebraic space.
One can also check that [Z/σ] can be obtained in the following way. [[⋆⋆⋆ As far as
I can tell, we don’t check these things.]]

The fixed points of σ lie over points of the form [0, 0, 1,−1], [0, 0, 1, 1], [1, 1, α, α], or
[1,−1, α,−α]. We have an open cover Z = Z1 ∪ Z2, where Z1 is obtained by deleting
points lying over C1 and C2, and let Z2 is the open subset where σ acts freely. One can
show that Z1 is a quasi-projective scheme. By some theorem from invariant theory,
the quotient [Z1/σ] is a scheme. One checks that [Z2/σ] is an algebraic space. Then
[Z/σ] can be obtained by gluing [Z1/σ] to [Z2/σ] along [Z1 ∩ Z2/σ]. [[⋆⋆⋆ Note
that gluing algebraic spaces along isomorphic open sub-algebraic spaces produces an
algebraic space: the sheaf condition is trivial, the representability probably follows
from gluing schemes, and the disjoint union of the two étale covers forms an étale
cover.]]

Quotients by relations

Let U and R be schemes, and let R → U × U be a morphism such that the image of
R(Y )→ U(Y )×U(Y ) is an equivalence relation for every scheme Y . Then define U/R
as the sheafification of the presheaf on Schet given by Y 7→ U(Y )/ ∼R (Y ). This will
sometimes be an algebraic space, as we will see in the next lecture (Proposition 12.11).

Example 11.11. Let U = Spec k[x, y]/(xy), the union of the axes in the affine plane.
There is an involution σ : U → U induced by swapping x and y. Let R be the closed
subscheme of U ×U which is the union of the diagonal and the graph of σ. We’ll show
later (in the proof of Theorem 13.3) that U/R is Spec

(
k[x, y]/(xy)

)σ
= Spec k[x + y],

which is the affine line A1
k. ⋄

Example 11.12. Let U and σ be as in the previous example. Let R = U ⊔ (U r{0}),

and consider R
∆⊔Γ(σ)
−−−−→ U × U , where Γ(σ) is the graph of σ (minus the point at
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the origin). Then U/R is an algebraic space, and U → [U/R] is an étale cover by
Proposition 12.11. Note that the k points of [U/R] are the same as those of A1

R, but
U/R cannot be A1

k because there is no étale cover U → A1
k. In particular, note that

the dimension of the tangent space of U/R at the origin is 2. ⋄
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12 Properties of Algebraic Spaces. Étale Relations.

Today we’ll make precise some definitions of things we saw in the previous lecture.
We’re always working over some base scheme S.

Definition 12.1. Let P be a property of schemes which is stable in the étale topology.
Then an algebraic space X has property P if there exists an étale surjection U → X
where U is a scheme with property P. ⋄

For example, we can talk about algebraic spaces being locally noetherian, reduced,
regular, purely n-dimensional, normal, or pretty much any property of schemes which
is not a global property.

Definition 12.2. Let P be a property of morphisms of schemes which is stable in the
étale topology, and let f : X → Y be a representable morphism of algebraic spaces.
Then f has P if there is an étale cover V → Y such that V ×Y X → V has property
P. ⋄

For example, we can talk about representable morphisms of algebraic spaces being
closed immersions, open immersions, proper, etc.

Definition 12.3. Let P be a property of morphisms of schemes which is stable and
local on domain in the étale topology, and let f : X → Y be a morphism of algebraic
spaces. Then f has P if there exist étale covers v : V → Y and u : U → X such that
the projection U ×Y V → V has P (note that U ×Y V is a scheme by Lemma 10.15).

U ×Y V
P //

��

·
V

v
��

U
u // X

f
// Y

⋄

For example, we can talk about morphisms of algebraic spaces being étale, flat,
smooth, surjective, etc.

Remark 12.4. If f : X → Y is representable and P is stable and local on domain,
then Definitions 12.2 and 12.3 will produce the same notion. To see this, take U =
X ×Y V and apply the following remark. ⋄

Remark 12.5. In the above three definitions, we always say that there exists some
étale cover(s) so that something happens. In fact, this is equivalent to the (apparently
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stronger) statement that for every morphism(s), that thing happens.

U ×X U
′ //

��

U P

et
����

U ′ // X

X ×Y V

f̃P

��

// X

f
��

•

ff▼▼▼▼▼▼
//

f̄
��

X ×Y V ′

f̂

��

ff▼▼▼▼▼

V
et // // Y

• //

ff▼▼▼▼▼▼▼
V ′

ff▼▼▼▼▼▼

•

h

&&

��

// U ×Y V

��

P // V

v et
����

•

dd❏❏❏❏❏❏ h̃ //

��

•

��

dd❏❏❏❏❏❏

U
u et����

U ′ u′ // X
f

// Y

U ′ ×Y V
′

dd❏❏❏❏
ĥ // V ′

v′dd❏❏❏❏❏

In the top left diagram, U has P (a stable property of schemes). Note that U ×X U
′ →

U ′ is an étale surjection. By stability of P (the “stable under base extension” part of
stability), U ×X U ′ has P. Again by stability (the “descends along covers” part), U ′

has P.
In the bottom left diagram f̃ is P (a stable property of morphisms of schemes).

Every square in sight is cartesian (it isn’t important exactly what the bullets are), all
the horizontal maps are étale and surjective. Since P is stable under pull-backs, f̄ is
P. Since P descends along covers, f̂ is also P.

In the right diagram, P is stable and local on domain. All the squares are cartesian
(never mind what the bullets are), all the long vertical maps are étale and surjective.
Since P is local on domain, h is P. Since P is stable under pull-backs, h̃ is P. Since
P descends along covers, ĥ is P. ⋄

Corollary 12.6 (to Remark 12.5). If P is a stable property of objects (resp. stable
property of morphisms, resp. stable local on domain property of morphisms) in the étale
topology on the category of schemes, then P is a stable property of objects (resp. stable
property of morphisms, resp. stable local on domain property of morphisms) in the étale
topology in the category of algebraic spaces.

Proof. This is a straightforward exercise given the remark.

Remark 12.7. In fact, we can make sense of an algebraic space or a morphism of
algebraic spaces having property P even if P is not stable. It is enough for P to
descend along étale covers. In that case, P will descend along étale covers of algebraic
spaces as well.

This definition allows us to talk about an algebraic space being quasi-compact or
a morphism of algebraic spaces being dominant. ⋄

Proposition 12.8. The subcategory AlgSp/S ⊆ (Sch/S)et is closed under finite pro-
jective limits.
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Proof. By Lemma 3.9, it is enough to check that products and fiber products are
representable.

(Products) (Fiber Products)

P //

��

X1

X2

P //

��

X1

��

X2
// X3

Products: Fix étale covers U1 → X1 and U2 → X2. (1) Since products of sheaves
are sheaves, P is a sheaf.

(2) We must check representability of the diagonal. Let Z be a scheme.

(Z ×X1×X1 X1)×Z (Z ×X2×X2 X2) //

��

Z

��

(X1 ×X2) // (X1 ×X2)× (X1 ×X2) ∼= (X1 ×X1)× (X2 ×X2)

Since Z×X1×X1X1 and Z×X2×X2X2 are schemes (since ∆X1 and ∆X2 are representable),
so is the product.

(3) U1 × U2 → X1 ×X2 is an étale surjection.

Fiber Products: (1) Since the product of sheaves over another sheaf is a sheaf, P
is a sheaf. (2) We must check that the diagonal is representable. Let Z be a scheme,
then we wish to show that W in the diagram below is a scheme.

W

��

//

·
Z

��

(X1 ×X3 X2)
·

��

∆ // (X1 ×X3 X2)× (X1 ×X3 X2)

��

(X1 ×X2)
∆ // (X1 ×X2)× (X1 ×X2)

Verify that the bottom square is cartesian; then the outer square is cartesian. By the
case of products, ∆X1×X2 is representable, so W is a scheme.

(3) We have that U1 ×X3 U2 → X1 ×X3 X2 is an étale cover, and U1 ×X3 U2 is a
scheme by Lemma 10.15.

Definition 12.9. If U and R are S-schemes, we say that a morphism R→ U ×S U is
an equivalence pre-relation if for every S-scheme T , the image of R(T ) in U(T )×U(T )
is an equivalence relation.1 We say that an equivalence pre-relation has a property P of
morphisms if the two projection maps R→ U×U ⇒ U have property P. Furthermore,
we say that an equivalence pre-relation is an equivalence relation if for every S-scheme
T , R(T ) → U(T ) × U(T ) is injective. We say that “R ⇒ U is a (pre)-equivalence
relation (with property P)”. ⋄

1[[⋆⋆⋆ Is this acceptable terminology?]]
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Let U/R denote the sheafification of the presheaf on (Sch/S)et given by T 7→
U(T )/ ∼R(T ).

Remark 12.10. Every algebraic space is isomorphic to U/R for some scheme U and
some étale equivalence relation R ⇒ U . To see this, let U → X be some étale cover,
and consider R = U ×X U . This is a scheme by Lemma 10.15. Then the projections
are étale because U → X is étale (the projections are obtained by base extension).
One can check that X ∼= U/R. [[⋆⋆⋆ check this]] ⋄

Proposition 12.11. Let R ⇒ U be an étale equivalence relation, and assume that
R→ U ×U is either quasi-compact or an immersion (closed immersion followed by an
open immersion). Then the quotient X = U/R is an algebraic space.

Proof. (1) As a sheafification, X is a sheaf.
(2) We need to check representability of ∆X . Let Z be a scheme and let z : Z →

X ×X be a morphism, and let P = Z ×X×X X . We wish to show that P is a scheme.
Base Case: Assume z factors through U × U . The bottom square in the left dia-

gram is cartesian (basically by definition of X), and the outer square is cartesian (by
assumption), so the top square is cartesian. Thus, P is a product of schemes over a
scheme, so it is a scheme.

P //

��

Z

z̃
��

R //

��

U × U

��

X
∆ //X ×X

p∗1P
′ = p∗2P

′ // Z ′ ×Z Z ′

����

R //

��

U × U

��

P ′




✕✕✕✕✕✕✕��

✮✮✮✮✮✮✮
::ttttt w′

//

��

Z ′

f
��

z̃′

::ttttt

X
∆ // X ×X

P w
//

::ttttt
Z

z

::tttttt

General Case: We have that U → X is a surjection of étale sheaves, so U × U →
X×X is a surjection of étale sheaves. This means that for any element z ∈ (X×X)(Z),
there is some scheme Z ′ with an étale cover f : Z ′ → Z so that the image z̃ ∈
(X ×X)(Z ′) is in the image of (U × U)(Z ′). In the diagram on the right, all squares
are cartesian except the “left” and the “right” squares. By the base case, P ′ is a
scheme.

Note that any stable property of R → U × U is shared by w′. Note also that
w′ : P ′ → Z ′ comes with descent data relative to the étale surjection Z ′ → Z.

(w′ closed immersion) P ′ is given by a quasi-coherent sheaf of ideals on Z ′ which
descends to Z. Thus, P is a closed subscheme of Z, so it is a scheme.

(w′ open immersion) Since P ′ ⊆ Z ′ is open and f : Z ′ → Z is étale (and so
open), f(P ′) ⊆ Z is open. To show that P = f(P ′), it is enough to show that
P ′′ = f−1

(
f(P ′)

)
. Let p′ ∈ P and y ∈ Z ′ have the same image in Z, then we want

to show that y ∈ P ′′. But we have that
(
f(y), (p′, y)

)
∈ p∗2P

′ = P ×Z (Z ′ ×Z Z ′), so
p2(p

′, y) = y ∈ P ′′. [[⋆⋆⋆ how can this be made clearer?]]
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(w′ immersion) [[⋆⋆⋆ I don’t know. . . somehow P is a scheme]]
(w′ quasi-compact) [[⋆⋆⋆ I don’t know. . . somehow P is a scheme]]
(3) We claim that U → X is an étale surjection. By Lemma 10.15, U → X is

representable. To verify that it is an étale surjection, we need to take a morphism from
a scheme T → X and check that T ×X U → T is an étale surjection. Since U → X is
a surjection of étale sheaves, there is some étale cover T ′ → T so that T ′ → X factors
through U .

•
��⑧⑧⑧

��

// T ×X U

��

��⑧⑧⑧

R //

et

����

U

��

T ′

��⑧⑧⑧
et // // T
��⑧⑧⑧

U // X

In the diagram above, all squares are cartesian except the “top” and “bottom” squares.
Since R→ U is étale surjective (surjective because R contains the diagonal), and étale
surjective is stable, we get that T ×X U → T is étale surjective, as desired.
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13 Affine/(Finite Étale Relation) = Affine, Part I

For the next two lectures, we will fix the following setup. Let U be an affine scheme,
and let R ⇒ U be a finite étale equivalence pre-relation.1 In particular, since R is
finite over an affine scheme, it is affine. Let X = U/R be the quotient sheaf (X is
an algebraic space by Proposition 12.11). We define R′ = Rp2×

U
p1R, noting that R′ is

affine as well.

� Warning 13.1. If the morphism R→ U ×U is not a monomorphism (i.e. if R is
only a pre-relation), then it is not true that R ∼= U ×X U . However, there is still

a canonical morphism r : R→ U ×X U . Let σ : U ×X U → U ×X U be the morphism
which switches the two factors. We will assume that the pre-relation R comes with
a morphism σ : R → R making the diagram on the left cartesian. In general, such
a map need not exist, but in most cases we care about, it is given to us. Note that
pre-composing with σ swaps the two projections p1, p2 : R→ U .

R

r
��

σ //

·
R

r
��

U ×X U σ
∼ // U ×X U

R′

‘p12’

��

‘p23’
//

))❙❙❙❙❙ R
r
��

U ×X U ×X U
p23

//

p12
��
·

U ×X U
p1
��

R
r // U ×X U

p2
// U

Furthermore, we can define p12, p23 : R′ → R as shown in the diagram on the right.
Then we define p13 = p23 ◦ (σ × id) : R ×U R = R′ → R. [[⋆⋆⋆ Something is fishy
here, σ × id : R×p2,U,p1 R→ R ×p1,U,p1 R]] y

Let U = SpecA0, R = SpecA1, and R
′ = SpecA2. Let δi : A1 → A0 (resp. δ′i : A2 →

A1) be the ring morphism corresponding to “projecting out the (i+1)-th component”.

Define the equalizer B = Eq( A0

δ0 //

δ1
// A1 ). Below we have our picture in the category

of commutative rings on the left and the corresponding picture in the category of étale
sheaves on Sch on the right.

CommRing = Affop Schet

exact

A2 A1

δ′0oo
δ′1

oo

δ′2

oo A0

︷ ︸︸ ︷
δ0oo

δ1
oo Boo R′

p23
//

p13 //

p12
// R

p2
//

p1
//

g

99
U

f
// SpecB

A2 A1
δ′1

oo

δ′0oo

not
cart.

A0
δ0oo

A1

δ′2

OO

A0

δ1

OO

δ1
oo

δ0oo Boo

OO

p12

��

σ×id
// R′

p12
��

p23
//

p13
// R

p2
//

p1
��

not
cart.

U

��
σ // R

p2
//

p1
// U // SpecB

1Actually, we really care about the case where R is a relation. The pre-relation approach is
developed because it is interesting that Lemma 13.8 holds in that case. See Example 14.1.
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In the bottom right-hand diagram, we check that the top row is exact (by definition of
R′ and p13)[[⋆⋆⋆ not clear at all when R is a pre-relation]], and that the two squares
on the left (obtained by removing p13 and p1, or p23 and p2) are cartesian: the “top”
square is cartesian by definition of R′, and the “bottom” square can be obtained from
the top square sticking on the cartesian square of dotted arrows in the diagram. Since
Aff is a full subcategory of Schet, it follows that the top row is exact in the diagram on
the left, and the two left-most squares are co-cartesian. Moreover, by the definition of
B, the bottom row of the left-hand diagram is exact.

� Warning 13.2. Schet is a strictly larger than Aff, so exactness of the bottom
row of the diagram on the left does not imply exactness of the bottom row in the

diagram on the right. If that bottom row were exact, then we would have that SpecB
is isomorphic to the quotient sheaf X = U/R. The main theorem of this lecture says
that this happens if R is a relation. y

Theorem 13.3. If U is affine, and R ⇒ U is a finite étale equivalence relation, then
the algebraic space X = U/R is isomorphic to the affine scheme SpecB.

Proof. By Lemmas 13.9 and 13.5, A0 is flat and integral over B. By the going up
theorem, it follows that SpecA0 → SpecB is surjective, so A0 is faithfully flat over B.

R = SpecA1
∼ // SpecA0 ⊗B A0

et //

��

·
SpecA0 = U

f. flat
��

SpecA0
// SpecB

By Lemma 13.11, δ0 ⊗ δ1 : A0 ⊗B A0 → A1 is an isomorphism. Since the projection
maps R → U are étale, we have that SpecA0 ⊗B A0 → SpecA0 is étale. By what
[Vis05] claims is [EGA, IV.2.7.1] [[⋆⋆⋆ but isn’t quite, as far as I can tell]], étale-
ness descends along faithfully flat base extension. Thus, we now know that SpecA0 →
SpecB is an étale surjection.

By Lemma 13.8, the sequence SpecA1
//
// SpecA0

// SpecB is exact as a sequence
of schemes. We’d like to show that it is exact as a sequence of étale sheaves. Let
F be an étale sheaf, and let f : SpecA0 → F be a morphism of étale sheaves which
coequalizes p1 and p2. Then we would like to show that f factors uniquely through
SpecB.

SpecA1

p2
//

p1
// SpecA0

//

f
��

SpecB

∃ unique?
yyt

t
t

t
t

F

F(SpecA1) F(SpecA0)
Fp1
oo

Fp2
oo F(SpecB)oo

By Yoneda’s lemma, we may think of f as an element of F(SpecA0). Since SpecA0 →
SpecB is an étale cover and SpecA1

∼= SpecA0 ⊗B A0 = SpecA0 ×SpecB SpecA0, the
sequence on the right is exact by the sheaf axiom! This says exactly that f factors
uniquely through SpecB. Thus, R //

// U // SpecB is exact as a sequence of étale
sheaves, so B ∼= U/R.
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Lemma 13.4. Let R⇒ U be a finite étale equivalence pre-relation. Then the ranks of
the two projections are equal and locally constant.

Proof. [[⋆⋆⋆ I don’t see what’s happening here. “The rank of an étale map is locally
constant, so it is constant on connected components of U”?]]

Let W (n) ⊆ U be the largest open where p1 : R → U has rank n. Let R′ =
U ×X U ×X U = (U ×X U)×U (U ×X U) = Rp2×

U
p1R.

R′ p23
//

p12
��

·
R

p1
��

R
p2 // U

R′ p13
//

p12
��

·
R

p1
��

R
p1 // U

p−1
2 (W (n)) is the locus where p12 has rank n (by the diagram on the left). By the
diagram on the right, this is also p−1

1 (W (n)). This shows that X =
∐
W (n)/RW (n).

Lemma 13.5. Let A0 and B be as in the setup. Then A0 is integral over B.

Proof. [[⋆⋆⋆ go through this]] Let a ∈ A0. Let Pδ1(T, δ0(a)) = T n − σ1T n−1 + · · ·+
(−1)nσn be the characteristic polynomial of ×δ0(a) : A1 → A1, where A1 is viewed as
an A0-module via δ1.

δ0(Pδ1(T, δ0(a))) = Pδ′2(T, δ
′
0δ0(a)) by the bottom square being cartesian. Also, we

have δ1(Pδ1(T, δ0(a))) = Pδ′2(T, δ
′
1δ0(a)). Since the top row is an equalizer, these two

things are actually equal. Thus, δ0(σi) = δ1(σi) for every i. Thus, σi ∈ B. On the other
hand, by the Cayley-Hamilton Theorem tells us that δ0(a)

n − δ1(σ1)δ0(a)
n−1 + · · · +

(−1)nδ1(σn) = 0 in A1. Since the σi live in B, we get δ0
(
an − σ1an−1 + · · ·+ σn

)
= 0.

since δ0 is étale surjective, it is faithfully flat, so it is injective by Lemma 6.5, so we
get that an − σ1an−1 + · · ·+ σn = 0, so a is integral, as desired.

Lemma 13.6. Let all notation be as in the setup of this lecture. Let x, y ∈ U be
points with the same image in SpecB. Then there exists a z ∈ R with p2(z) = x and
p1(z) = y. That is SpecB is set-theoretically the quotient SpecA0/R.

Proof. [[⋆⋆⋆ go over this]] Suppose not. Well, x and y are prime ideals in A0. Then
we know that x is distinct from δ−1

0 (t) for every t ∈ A1 with δ−1
1 (t) = y. For such a

prime t, δ−1
0 (t) ∩B = δ−1

1 (t) ∩ B = y ∩ B = x ∩B because B is the equalizer.
Since we have an integral morphism of rings, we can apply Cohen-Seidenberg (going

up), which implies that x is not contained in δ−1
0 (t) for every prime t ⊆ A1 with

δ−1
1 (t) = y. By prime avoidance, there is an a ∈ x such that a is not in any δ−1

0 (t)
(there are finitely many t over y because the morphisms A0 → A1 are finite). Then
×δ0(a) : A1 → A1, and we get Nδ1(δ0(a)) = σn. Then δ0(a) is not contained in any of
the t’s, so Nδ1(δ0(a)) 6∈ y. On the other hand,

A1

×δ0(a)
��

∆ // A1

×a
��

A1
∆ // A0
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U →֒ R ⊆ U × U contains the diagonal. The diagram commutes as a diagram of
A0-modules (A1 via δ1). This implies that σn ∈ B ∩ x.

So σn ∈ B ∩ x and σn 6∈ B ∩ y, which is a contradiction because B ∩ y = B ∩ x.
�Lemma

Corollary 13.7. SpecB is topologically the quotient SpecA0/R.

Proof. By Lemma 13.5, A0 is integral over B. It follows from the going up theorem
that f : SpecA0 → SpecB is a closed surjective map.2 Therefore, the topology on
SpecB is induced from the topology on SpecA0. Together with Lemma 13.6, we get
the result.

Lemma 13.8. SpecB is scheme theoretically the quotient SpecA0/R. That is, for
any morphism ρ : SpecA0 → T (where T is a scheme) such that ρ ◦ p1 = ρ ◦ p2, there
exists a unique morphism of schemes ρ̄ : SpecB → T such that ρ = ρ̄ ◦ f .

Proof. Let g = f ◦ p1 = f ◦ p2. By the Corollary 13.7, we get a unique continuous map
ρ̄ : SpecB → T . In order to make it into a morphism of schemes, we need a map

ρ̄−1OT

&&▲▲▲▲▲▲▲▲▲▲▲
∃ //❴❴❴❴ OSpecB

��

f∗OSpecA0

����

g∗OSpecA1

The map exists and is unique because B → A0 ⇒ A1 is exact.[[⋆⋆⋆ explain]] Finally,
check that it is local, which we can check on SpecA0.[[⋆⋆⋆ explain]]

Lemma 13.9. Let A0 and B be as in the setup. Then A0 is flat over B.

Proof. We can check flatness locally on B. Thus, we can assume B is local. By what
[Vis05] claims is [EGA, IV.2.7.1] [[⋆⋆⋆ ]], it is enough to check flatness after making
a flat (and therefore faithfully flat, since B is local) base change.

SpecA′
1

��

//
// SpecA′

0
//

��

SpecB′

[[⋆⋆⋆ faithfully?]] flat

��

SpecA1
//
// SpecA0

// SpecB

2Let φ : B → A0 be the ring map corresponding to f . Going up directly tells us that SpecA0 →
SpecB is surjective. Let V (I) ⊆ SpecA0 is a closed set (the set of all primes containing some ideal
I), then observe that A0/I is integral over B/φ−1(I). Applying going up, we see that every prime
containing φ−1(I) is in the image of V (I). On the other hand, the pullback of any prime containing
I contains φ−1(I). Thus, f

(
V (I)

)
= V

(
φ−1(I)

)
, which is closed.
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Thus, we can assume B is local with infinite residue field [[⋆⋆⋆ if the residue field is
k(p), take the separable closure and this extends to an extension of the ring . . . strict
hensilization?]]. This implies that A is semi-local. [[⋆⋆⋆ Lemma 13.6 implies that
A0 is finite over B because A1 is finite over A0 and multiple things over a point in B
differ by things in A1]]

Lemma 13.10. Let B be a local ring with infinite residue field, i : B → A a homomor-
phism of semi-local rings sending mB to the Jacobson radical3 of A. Let M be a free
A-module of rank n, and N ⊆ M a B-submodule which generates M as an A-module.
Then N contains a basis for M as an A-module.

Proof. By Nakayama, replace B by B/m, A by A/r, M by M/rM , and N by N/(N ∩
rM). Now the result is an exercise (it’s a Chinese remainder argument). [[⋆⋆⋆ do
this proof]]

Lemma 13.11. Let B, A0, and A1 be as in the setup. Then δ0 ⊗ δ1 : A0 ⊗B A0 → A1

is an isomorphism.

Proof. [[⋆⋆⋆ do this proof]] Apply Lemma 13.10 to B = B, A = A1,M = A1 (viewed
as an A0-module via δ1), and N = δ0(A0). We need to check that N generates M as an

A0-module, which is the same as checking that A0⊗BA0
δ0⊗δ1−−−→ A1 is surjective. This is

true because we have an equivalence relation. We have that SpecA0 →֒ SpecA0⊗B A0

A0 ⊗B A0
δ0⊗δ1 // A1

A0

a7→a⊗1

OO

δ0

99tttttttttt

SpecA0 → SpecA1 is proper because it is finite ... we get that SpecA0 →֒ SpecA0⊗BA0

is a closed immersion.
Choose a1, . . . , an ∈ A0 so that δ0(ai) are a basis for A1 (as a module over A0 via

δ1), with ε : Zn → A0. i : B →֒ A0.

A2 A1
δ′1

oo

δ′0oo A0
δ0oo

A1 ⊗Z Zn

≀ u2

OO

A0 ⊗Z Zn

u1≀

OO

δ0⊗1
oo

δ1⊗1
oo B ⊗Z Zn

u0≀

OO

i⊗1
oo

A0

OO

B

OO

oo

The ui are what you think they are: u0 = i ⊗ ε, u1 = δ1 ⊗ δ0ε, u2 = δ′2 ⊗ δ
′
0δ0ε. By

construction, u1 is an isomorphism. We threw in a Zn in the bottom, which doesn’t

3The intersection of all maximal ideals.
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affect the fact that the squares are co-cartesian. Thus, u2 is an isomorphism. Both rows
are exact, so it follows that u0 is also an isomorphism. [[⋆⋆⋆ whoa]] A0⊗B A0 → A1

is a surjective map of free modules over A0 of the same rank, so it is an isomorphism.
The bottom square is co-cartesian.
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14 Affine/(Finite Étale Relation) = Affine, Part II

Example 14.1. If U = SpecA and G is a finite group which acts freely on on the right
of U (we need the action to be free to get a relation rather than a pre-relation). Then
RG = U×G→ U×U is given by (u, g) 7→

(
g(u), u

)
. The right action of G on U induces

a left action of G on A: for g ∈ G, the isomorphism − · g−1 : U
∼
−→ U corresponds

to some isomorphism g · − : A
∼
←− A. The two projections R → U correspond to the

two morphisms A→
∏

g∈GA given by a 7→ (ga)g∈G [[⋆⋆⋆ or maybe (g−1a)g∈G]] and

a 7→ (a)g∈G. The equalizer (which we called B) is the ring AG of invariants of A under
the G-action. By the theorem, SpecAG is the sheaf quotient of U by the G-action.

Even if the action of G on U is not free, RG = U ×G→ U ×U is a pre-relation, so
Lemma [[⋆⋆⋆ exact as schemes]] tells us that SpecAG is the categorical quotient of U
by G. That is, SpecAG satisfies the right universal property in the category of schemes
(that any G-invariant morphism from U = SpecA factors through SpecAG). The
interesting thing in the case of a free action is that the morphism SpecA → SpecAG

is étale. ⋄

Corollary 14.2. Let X be an algebraic space with quasi-compact diagonal morphism.
Then there exists a scheme V and a dense open immersion j : V →֒ X (we make sense
of this even though “dominant” is not stable; for any étale morphism from a scheme
Z → X, Z ×X V → Z must be a dominant open immersion).

Proof. Choose an étale cover U → X and set R = U ×X U , so X = U/R. If Ui are
quasi-compact open subschemes which cover U , then we define Ri = R×U×U (Ui×Ui)
and Xi = Ui/Ri. Check that Xi → X are open immersions.1 If we could find dominant
open immersions of schemes Vi → Xi, then they would glue to give a dominant open
immersion V → X . Thus, we have reduced to the case where X is quasi-compact
(quasi-compact is not stable; we just mean that it is étale covered by something quasi-
compact).

We may assume U is quasi-compact. Choose a dense open affine subset W ⊆ U
(note that you can always do this [[⋆⋆⋆ ]]). Then we can get the obvious restriction
RW = R ×U×U (W ×W ). Since ∆X is quasi-compact and U × U → X × X is étale
[[⋆⋆⋆ is ∆X q-compact enough?]], R → U × U is quasi-compact. Since U is quasi-
compact, the projections U×U → U are quasi-compact. Thus, the projections R→ U
are quasi-compact as well as étale, so RW →W are quasi-compact and étale. A quasi-
compact étale map is quasi-finite,2 and there is some kind of semi-continuity result
[[⋆⋆⋆ ]] which tells us that there is a dense open subset W ′ ⊆ W where RW ′ → W
are finite. We may choose W ′ to be affine, so then RW ′ will be affine since it is finite

1Check that Xi(T ) = {f ∈ X(T )|T ×X U → T surjective}. In general, T ×X U → T is étale, so its
image is open in T ; this open subset is T ×X Xi. This shows that Xi → X is an open immersion.

2Quasi-finite means that geometric fibers are finite. Quasi-compact and étale imply finite because
the only étale extensions of an algebraically closed field Ω are disjoints unions of copies of Ω; quasi-
compactness implies that they must be finite disjoint unions.
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over affine. By the theorem, W ′/RW ′ is an affine scheme. Now we have a dominant
open immersion W ′/RW ′ → X .[[⋆⋆⋆ ]]

Example 14.3. Consider C[x, y] with an action of Z/2, given by x, y 7→ −x,−y. If
you take invariants, the invariant ring is generated by x2 = z, y2 = w, xy = u, so it is
C[z, w, u]/(zw = u2). So we get a map U = SpecC[x, y] → SpecC[z, w, u]/(zw = u2)
[[⋆⋆⋆ which is not étale]], so that for any morphism SpecC[x, y] → T which is
Z/2-invariant, it factors uniquely.

Here Z/2 × U → U × U is not a monomorphism. Something is still étale, but not
an equivalence relation. What we’ve constructed here is the quotient in the category
of ringed spaces. ⋄

Remark 14.4. For non-free group actions, the quotient construction does not com-
mute with base change. In the free case, we have

R

����

U

��

U/R

��

U ′/R′oo

��

S S ′oo

If your group has order prime to the residue characteristic, then it still commutes with
base change because invariants is an exact functor and the representation category is
semi-simple. ⋄
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15 Quasi-coherent Sheaves on Algebraic Spaces

I cheated you a while back about descent for quasi-compact mono-morphisms, so I
made it an exercise. Part (c) of that exercise should refer to this class. It is étale
descent for separated quasi-finite morphisms of finite presentation.

The remaining goals for algebraic spaces:

– an algebraic space which is quasi-finite over a scheme is a scheme.

– Chow’s lemma for algebraic spaces.

First we need some theory about quasi-coherent sheaves.

Definition 15.1 (Small étale site on an algebraic space). For an algebraic space X ,
we define Et(X) to be the site whose objects are étale morphisms X ′ → X , where X ′

is a scheme, whose morphisms are X-morphisms, and where a covering of X ′ → X is
a collection {X ′

i → X ′} such that
∐
X ′
i → X ′ is surjective.

We denote the topos associated to this site byXet, and we define the sheafOX(X ′ →
X) = Γ(X ′,OX′) to be the structure sheaf on the site. ⋄

Remark 15.2. Consider the site Ẽt(X), whose objects are étale morphisms X ′ → X ,
where X ′ is just some algebraic space, whose morphisms areX-morphisms, and where a
covering of X ′ → X is a collection {X ′

i → X ′} such that
∐
X ′
i → X ′ is surjective. Note

that Et(X) is a full subsite of Ẽt(X). Since every algebraic space can be étale covered

by a scheme, a sheaf on Ẽt(X) is determined by its values on Et(X) (in particular,

we can extend the structure sheaf to all of Ẽt(X)). Thus, the two sites yield the same
topos, Xet. ⋄

Remark 15.3. Any morphism in Et(X) is étale. Let X ′ and X ′′ be schemes étale
over X , and let U → X be an étale surjection from a scheme. Let U ′ and U ′′ be
obtained by base extension. Then U ′ and U ′′ are étale schemes over a scheme U , so
any morphism U ′′ → U ′ over U must be étale. Since étale-ness is stable in the étale
topology, X ′′ → X ′ is étale.

U ′′

❇❇❇❇

!!❇❇❇
}}④④④④④④④④

// U ′

}}⑤⑤⑤⑤⑤⑤⑤⑤

��

X ′′

!!❉❉❉❉❉❉❉❉
// X ′

��

U

et}}}}⑤⑤⑤⑤⑤⑤⑤⑤

X

⋄

Definition 15.4. An OX -module F is quasi-coherent if

1. for every X ′ → X étale, with X ′ a scheme, the sheaf FX′ (obtained by restricting
to the small Zariski site on X ′) is quasi-coherent, and
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2. for every X-morphism f : X ′′ → X ′ of schemes étale over X , the natural map
f ⋆FX′ → FX′′ is an isomorphism.

A quasi-coherent OX -module F is said to be coherent if FX′ is coherent for each X ′. ⋄

Remark 15.5. The kernel, cokernel, and image of any morphism of quasi-coherent
sheaves on X is quasi-coherent. Any extension of quasi-coherent sheaves is quasi-
coherent. IfX is locally noetherian, then the same is true for coherent sheaves. [[⋆⋆⋆

check this]] ⋄

Lemma 15.6. If X is a scheme, then the category Qcoh(Xet) of quasi-coherent OXet-
modules is equivalent to the category Qcoh(Xzar) of quasi-coherent OXzar-modules.

Proof. Given G ∈ Qcoh(Xzar), we get Gfppf ∈ Qcoh(Xfppf) as in Proposition 7.12.
Note that every quasi-coherent OXfppf

-module is a quasi-coherent OXet-module (we’re
just restricting to a smaller category and a coarser topology), so we get that Gfppf ∈
Qcoh(Xet) (when we restrict to the étale topos, we’ll call the sheaf Get). Conversely,
given G ∈ Qcoh(Xet), we have that GX ∈ Qcoh(Xzar).

For a quasi-coherent Zariski sheaf G, Proposition 7.12 tells us that G ∼= (Get)X .
For a quasi-coherent étale sheaf G, one verifies that G ∼= (GX)et: given an étale map
f : Y → X , (GX)et(Y → X) = Γ(Y, f ⋆GX) ∼= Γ(Y,GY ) = G(Y → X), where the
isomorphism in the middle follows from the fact that f ⋆GX ∼= GY , which follows from
quasi-coherence of G.

Lemma 15.7 (“Quasi-coherence is étale-local”). Let X be an algebraic space and let
U ։ X be an étale cover by a scheme U . Then a sheaf F of OX-modules is quasi-
coherent if and only if the restriction to the small étale site on U , F|U , is quasi-coherent.

Proof. If F is a quasi-coherent OX -module, then F|U is quasi-coherent because for any
étale morphism Y → U , (F|U)Y = FY .

If F|U is quasi-coherent and X → X is étale, with X ′ a scheme, then F|X′×XU is a
quasi-coherent sheaf which is the restriction of F|X′ along the projection map. Since
X ′×XU → X ′ is an étale surjection, and because of Lemma 15.6, Theorem 7.13 tells us
that F|X′ is a quasi-coherent sheaf. In particular, FX′ = (F|X′)X′ is a quasi-coherent
sheaf, and for any X-morphisms of schemes f : X ′′ → X ′ (which is necessarily étale
by Remark 15.3) f ⋆FX′ → FX′′ is an isomorphism.

Pullbacks of quasi-coherent sheaves

Recall the discussion from Lecture 7 in the section about descent for sheaves of modules.
A morphism of algebraic spaces f : X → Y induces a morphism of topoi (f∗, f

∗) :
Xet → Yet and an adjoint pair (f∗, f

⋆) : OX -mod→ OY -mod. If f is étale, then f ∗ and
f ⋆ are given by restricting to the small étale site on X (Remark 7.7).

Lemma 15.8. Let f : X → Y be a morphism of algebraic spaces. If F is a quasi-
coherent OY -module, then f ⋆F is a quasi-coherent OX-module.
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Proof. By Lemma 15.7 we may replace X by an étale cover. Thus, we may assume X
is a scheme. Moreover, if g : Y ′ → Y is an étale cover of Y by a scheme, then we have

X ×Y Y ′

g̃
��

f̃
// Y ′

et g
����

X
f

// Y

Since g is étale, g⋆F is just the restriction of F to the small étale site on Y ′, so it is
quasi-coherent. If we could prove that f̃ ⋆ of a quasi-coherent sheaf is quasi-coherent,
then we would have that f̃ ⋆g⋆F ∼= g̃⋆f ⋆F is quasi-coherent. Since g̃ is an étale cover,
Lemma 15.7 tells us that g̃⋆f ⋆F is quasi-coherent if and only if f ⋆F is quasi-coherent.
Thus, we’ve reduced to the case where X and Y are schemes.

Et(X) Et(Y )oo

Op(X)
?�

OO

Op(Y )
?�

OO

oo

Xet

εX∗

��

fet∗
// Yet

εY ∗

��

f∗etoo

Xzar

ε∗X

OO

fzar∗
// Yzar

ε∗Y

OO

f∗zar

oo

OXet-mod

εX∗

��

fet∗
// OYet-mod

εY ∗

��

f⋆etoo

OXzar-mod

ε⋆X

OO

fzar∗
// OYzar -mod

ε⋆Y

OO

f⋆zar

oo

The diagram on the left is an obviously commutative diagram of continuous1 functors of
sites (all of which have finite projective limits). These functors induce the commutative
diagram of morphisms of topoi in the middle (the inner and outer squares commute).
This gives us the inner commutative square on the right, and the outer commutative
square is obtained by looking at the left adjoints.

So we have ε⋆X ◦f
⋆
zar
∼= f ⋆et ◦ε

⋆
Y . Note that the construction F 7→ Fet is exactly given

by F 7→ ε∗F . By the equivalence of categories in Lemma 15.6, it follows that an étale
sheaf F on Y is quasi-coherent if and only if FY is quasi-coherent and F ∼= ε⋆YFY .
Thus, we have f ⋆etF

∼= f ⋆etε
⋆
YFY

∼= ε⋆X(f
⋆
zarFY ), which is quasi-coherent because we’re

taking the usual scheme pullback followed by ε⋆X , which preserves quasi-coherence.

Remark 15.9. The last part of the proof gives us a recipe for how to compute f ⋆F .
Let V → Y and U → X be étale, and assume we have a factorization

U
f̃

//

et
��

V

et
��

X
f

// Y

The proof shows us that f ⋆etF
∼= ε⋆Y (f

⋆
zarFY ). It follows that (f ⋆F)U = f̃ ⋆zar(FV ).

[[⋆⋆⋆ somehow]]
You can always get a factorization like this (for some V ) after replacing U by an

étale cover; then something about quasi-coherent sheaves behaving nicely with respect
to étale covers gives you (f ⋆F)U . [[⋆⋆⋆ ]] ⋄

1It is clear that these functors take coverings to coverings and commute with fiber products.
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Proposition 15.10. Let f : X → Y be a quasi-compact and quasi-separated2 mor-
phism of algebraic spaces. Then for every quasi-coherent OX-module F , the sheaf of
OY -modules f∗F is quasi-coherent.

Proof. It is étale local on Y , so we may assume Y is an affine scheme. Cover X with
some scheme V so that V → Y is quasi-compact, then choose an affine étale cover U
of V . Then let R = U ×X U ; this is also quasi-compact because we have the following
diagram, and we know that ∆ is quasi-compact (so R→ U ×Y U also is) and U ×Y U
is affine.

R //

��

·
U ×Y U

��

X ∆ // X ×Y X

R //
//

h

%%

U //

g

99X
f

// Y

Let g : U → Y and h : R → Y [[⋆⋆⋆ for some reason, these are both quasi-
compact and quasi-separated . . . it is easy for g, but what about h?]]. Then f∗F =
Eq

(
g∗(F|U) ⇒ h∗(F|R)

)
because U ։ X is a covering (this is the sheaf axiom when

you uncoil it. This is similar to Display 7.6). Thus, it is enough to show that g∗(F|U)
and h∗(F|R) are quasi-coherent because an equalizer of quasi-coherent sheaves is quasi-
coherent. So it is enough to consider the case where both X and Y are schemes. In
that case, the result follows from the usual result for schemes, and the following claim,
which says roughly that fet∗ agrees with fzar∗ for quasi-coherent sheaves.

Claim: if F is a quasi-coherent sheaf on X , then fet∗F ∼= ε⋆Y (fzar∗FX). To see
this, recall that ε⋆Y and εY ∗ are inverses when restricted to the subcategories of quasi-
coherent sheaves, with εX∗F = FX and ε⋆XF = Fet. Then we compute that fet∗F ∼=
ε⋆Y εY ∗fet∗F ∼= ε⋆Y (fzar∗εX∗F) = ε⋆Y (fzar∗FX).

2This means that the diagonal map over Y , X → X ×Y X is quasi-compact.
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16 Relative Spec

Definition 16.1. Let X be an algebraic space (over some scheme S), and let A be
a quasi-coherent sheaf of algebras on X . Then we define Spec

X
A : (Sch/S)op → Set

by T 7→ {(f, ι)|f ∈ X(T ), ι ∈ HomOT -alg(f
⋆A,OT )}. Since f ⋆A and OT are quasi-

coherent, it doesn’t matter if we think of them as Zariski sheaves or étale sheaves when
we talk about ι. Note that we have a “projection” Spec

X
A → X given on the level of

functors of points by forgetting ι. ⋄

The projection Spec
X
A → X is an affine morphism, and every affine morphism is

canonically of this form. [[⋆⋆⋆ I think this should be true]]

Proposition 16.2. Spec
X
A is an algebraic space.

Proof. (1) Spec
X
A is an étale sheaf because X is an étale sheaf and morphisms like

ι can be constructed locally in the étale topology (this is descent for quasi-coherent
sheaves of algebras in the étale topology).

(2) Let’s check that the diagonal is representable. Let T be a scheme, and let
(h, ε) × (h′, ε′) be a morphism from T to Spec

X
A × Spec

X
A. In the diagram below,

we define P ′, T ′, and P so that all squares are cartesian, and we choose the morphism
Spec

X
A → P ′ so that Spec

X
A → X is the canonical projection and Spec

X
A →

Spec
X
A×Spec

X
A is the diagonal. We wish to show that P is a scheme. Note that T ′

is a scheme because ∆X is representable. We will show that P is a closed subscheme
of T ′.

W

%%

r

''

g

&&

(f,ι)

  

P //

��

T ′ s //

��

T

(h,ε)×(h′,ε′)

��

Spec
X
(A) // P ′ //

��

Spec
X
A× Spec

X
A

��

X
∆ // X ×X

As functors, we have that

P ′ :W 7→ {(f, ι1, ι2)|f ∈ X(W ), ιi : f
⋆A → OW} (f1 = f2 = f)

T ′ :W 7→ {g ∈ T (W )|hg = h′g} (f = hg = h′g, ι1 = g⋆ε, ι2 = g⋆ε′)

P :W 7→ {r ∈ T ′(W )|r⋆s⋆ε = r⋆s⋆ε′} (g = sr, f = hg = h′g, ι = g⋆ε = g⋆ε′)

[[⋆⋆⋆ do these need more explanation?]]

Let t = hs = h′s : T ′ → X . The coequalizer of the two maps t⋆A
s⋆ε //

s⋆ε′
// s⋆OT ∼= OT ′ is

of the form OT ′/I for some quasi-coherent sheaf of ideals I. The closed subscheme of
T ′ corresponding to I has functor of points

W 7→ {r ∈ T ′(W )|OT ′ → r∗OW factors through OT ′/I}.
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Since OT ′/I was defined as the coequalizer of s⋆ε and s⋆ε′, this is exactly the functor
of points of P . Thus, P is the closed subscheme of (the scheme) T ′ defined by the
quasi-coherent sheaf of ideals I, so it is a scheme.

(3) Let π : U → X be an étale cover of X . The calculation on the left verifies that
the diagram on the right is cartesian.

(Spec
U
π⋆A)(W ) =

{
(g, ι)|g ∈ U(W ), ι : g⋆π⋆A → OW

}

=
{
(f, ι, g)|g ∈ U(W ), (f, ι) ∈ (Spec

X
A)(W ), f = πg

}

= (U ×X SpecX A)(W )

Spec
U
π⋆A //

π̃

��

·
U

π

��

Spec
X
A // X

On the other hand, Spec
U
π⋆A is the usual relative Spec of the sheaf of algebras π⋆A

on U , so it is a scheme. Since π is an étale surjection, so is π̃.

Lemma 16.3. If g : X → Y is a morphism of algebraic spaces, and A is a quasi-
coherent sheaf of algebras on Y , then X ×Y SpecY A

∼= Spec
X
(g⋆A).

Proof. For a test scheme T , we can compute

(X ×Y SpecY A)(T ) = {(x, f, ι)|x ∈ X(T ), f ∈ Y (T ), f = gx, ι : f ⋆A ∼= x⋆g⋆A → OT}

= {(x, ι)|x ∈ X(T ), ι : x⋆(g⋆A)→ OT}

= (Spec
X
g⋆A)(T )

Example 16.4 (Stein factorization). Let f : X → Y be a separated quasi-compact
morphism of algebraic spaces. We say that f is Stein if the map OY → f∗OX is
an isomorphism. In general, for any quasi-separated quasi-compact morphism X →
Y , there is a factorization X → Z → Y , where X → Z is Stein and Z → Y is
affine. Namely, we can take Z = Spec

Y
(f∗OX) (note that f∗OX is quasi-coherent by

Proposition 15.10).

Z ′
affine

**❯❯❯❯❯❯❯❯❯❯❯

∃!
��
✤
✤
✤

X

44✐✐✐✐✐✐✐✐✐✐✐

**❚❚❚❚❚❚❚❚ Y

Spec
Y
(f∗OX)

44❥❥❥❥❥❥❥❥

[[⋆⋆⋆ I think]] Stein factorization has the following universal property. If X → Z ′ →
Y is any factorization such that Z ′ → Y is affine, then there is a unique arrow Z ′ →
Spec

Y
(f∗OX) making the diagram above commute. In particular, Stein factorization is

unique up to unique isomorphism. ⋄

Remark 16.5. Stein factorization behaves nicely with respect to flat base change.
Let X → Z → Y be the Stein factorization of f : X → Y , let g : Y ′ → Y be a flat
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morphism, and let all the squares in the diagram below be cartesian.

X ′ //

g̃
��

f ′

))
Z ′ //

��

Y ′

g flat
��

X //

f

55Z // Y

By [Har77, III.9.3], we have an isomorphism f ′
∗ÕX′ = f ′

∗g̃
⋆OX ∼= g⋆f∗OX . By Lemma

16.3, we have that Spec(g⋆f∗OX) ∼= SpecY f∗OX ×Y Y
′ = Z ×Y Y ′. Thus, we have that

Z ′ is the Stein factorization of X ′ → Y ′. ⋄

Example 16.6 (Scheme-theoretic image). Let f : X → Y be a quasi-compact im-
mersion of algebraic spaces. Let I = ker(OY → f∗OX). Then we define the scheme-
theoretic image of X in Y to be Spec

Y
(OY /I). ⋄

Example 16.7 (X 7→ Xred). If X is an algebraic space, then we can define NX ⊆ OX
to be the sheaf of locally nilpotent elements. Define Xred = SpecX(OX/NX).

The functor X 7→ Xred is right adjoint to the inclusion of reduced algebraic spaces
into algebraic spaces. ⋄

Example 16.8 (Support of a sheaf). Let F be a [[⋆⋆⋆ quasi-?]]coherent sheaf on
X , and let K = ker

(
OX → HomOX

(F ,F)
)
. Then we define the support of F to be

Supp(F) = Spec
X
(OX/K) (note that K and OX/K are quasi-coherent by Remark

15.5). ⋄

Remark 16.9. [[⋆⋆⋆ should this remark be scrapped?]] Alternatively, if F is co-
herent, we can define support as follows.

Supp(FR) //

����

R

����

Supp(FU)
� � // U

��

X

U = SpecA, M = Γ(U,FU), then Supp(FU) = V (ann(M)). To specify a closed
subspace, it is enough to specify a closed subscheme of each morphism from an affine
U to X in a compatible way. [[⋆⋆⋆ You have to check compatibility . . .maybe this
doesn’t behave well with respect to localization if we only have quasi-coherent . . . this
works for coherent]] If A→ A′ is étale, then there is a natural map ann(M) ⊗A A′ →
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ann(M ⊗A A′), which we wish to check is an isomorphism.

ann(M) //

��

A //

��

HomA(M,M)

��

ann(M ⊗A A
′) // A′ // HomA′(M ⊗A A

′,M ⊗A A
′)

ann(M)⊗A A′ //

≀

OO

A′ //

≀

OO

HomA(M,M)⊗A A′

≀

OO

The bottom sequence is obtained from the top by tensoring with A′. ⋄

Any construction that can be done locally in the étale topology [[⋆⋆⋆ something]].
For example Proj , which we won’t do.



17 Separated, quasi-finite, locally finite type =⇒ quasi-affine 69

17 Separated, quasi-finite, locally finite type =⇒
quasi-affine

Definition 17.1. A morphism f : X → Y is of finite presentation if it is locally of
finite presentation, quasi-compact and quasi-separated (i.e. X → X ×Y X is quasi-
compact). This is local on Y . [[⋆⋆⋆ given the corrected statement of the theorem,
should this definition still be here, or does it just get in the way?]] ⋄

Definition 17.2. A morphism f : X → Y is quasi-finite if it is locally quasi-finite
and quasi-compact. ⋄

Definition 17.3. A morphism f : X → Y is quasi-affine if there exists a factorization
X →֒ W → Y , where X →֒ W is a quasi-compact open immersion and W → Y is
affine. ⋄

Theorem 17.4. Let f : X → Y be a separated, quasi-finite, locally of finite type

morphism of algebraic spaces, and let let X
g
−→ Z = Spec

Y
(f∗OX)

h
−→ Y be the Stein

factorization. Then g is an open immersion. In particular, f is quasi-affine.

Remark 17.5. (David:) It is immediate that g is at least injective, since by (Hartshorne
III.11) a Stein morphism has connected fibers and f is quasi-finite. ⋄

For X and Y schemes, this theorem is [EGA, IV.18.12.12]. This is Deligne’s version
of Zariski’s main theorem (the non-noetherian version). There is also some theorem
by Peskine and Szpirro that goes into the non-noetherian case.

In the course of proving the theorem, we will need to use the following result.

Proposition 17.6 ([EGA, IV.18.12.3]). Let f : U → Y be a morphism of schemes
which is locally of finite type and separated, and let y ∈ Y be a point such that f−1(y)
is discrete and finite. Then there exists an étale morphism Y ′ → Y and a point y′ ∈ Y ′

mapping to y such that U ′ = U ×Y Y ′ = U ′
1 ⊔U

′
2 such that f ′|U ′

1
: U ′

1 → Y ′ is finite and
U ′
2 ∩ f

′−1(y′) = ∅.

In some sense, this is Zariski’s main theorem [[⋆⋆⋆ in what sense?]]. In the
analytic topology, this is probably clear. [[⋆⋆⋆ finite in the analytic topology means
quasi-finite and proper]]

Remark 17.7 (Aside). If Y is noetherian and y ∈ Y , then consider ÔY,y.

Ûy // Spec ÔY,y

Uy,n
?�

OO

// Spec(ÔY,y,mn
Y )

?�

OO

This is how you break of the U ′
1 . . . it is the projective limit of the Uy,ns. You check

that it is open and closed. This is some fancy version of Hensel’s lemma. If you haven’t
seen this kind of thing before, just think about the complete case. ⋄
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Proof of Theorem 17.4. The proof is done in a series of steps.
Step 1: Reduce to Y affine. Let Y ′ → Y be an étale cover of Y by a scheme, and

let Y ′′ → Y ′ be an inclusion of an affine open subscheme. Then we get the following
diagram (all squares are cartesian).

X ′′ g′′
//

��

Z ′′ //

��

Y ′′
� _

��

X ′ g′
//

��

Z ′ //

��

Y ′

et
����

X
g

// Z // Y

By Remark 16.5, Z ′ and Z ′′ are the Stein factorizations of X ′ → Y ′ and X ′′ → Y ′′

respectively. Assume the theorem is true when Y is an affine scheme. Then we have
that g′′ is an open immersion for every open affine Y ′′ in Y ′. Since being an open
immersion is stable (local on the base) in the Zariski topology, we have that g′ is an
open immersion. Finally, open immersions descend along étale surjections [[⋆⋆⋆

where do we prove this?]], so g is an open immersion.
Step 2a: Invoke [EGA, IV.18.12.3]. Choose an étale cover U → X with U a scheme

so that U → Y is separated, quasi-finite, and locally of finite type. Then in particular,
U is quasi-compact, so we can cover it by a finite number of affine open sets. Thus, we
may assume U itself is affine. In particular, U → Y is of finite type. Applying [EGA,
IV.18.12.3], for any point y ∈ Y , we get an étale morphism Y ′ → Y and a point y′ ∈ Y
mapping to y such that U ′ = U ×Y Y ′ = U ′

1 ⊔ U
′
2, with U ′

1 finite over Y ′ and U ′
2 not

intersecting the fiber of y′. Note that by taking an affine open neighborhood of y′ in
Y ′, we can replace Y ′ by an affine scheme, in which case U ′ is also an affine scheme.

Define X ′
1 to be U ′

1/(U
′
1 ×X U

′
1) and define X ′

2 to be U ′
2/(U

′
2 ×X U

′
2).

Step 2b: X ′
1 is a scheme and X ′

1 → X ′ is a closed immersion. Note that the projec-
tions U ′

1 ×Y ′ U ′
1 ⇒ U ′

1 are finite because U ′
1 → Y ′ is finite, and the projections are

pullbacks of this morphism.

U ′ ×X′ U ′ //

��

U ′
1 ×Y ′ U ′

1

��

//
// U ′

1

X ′ ∆ // X ′ ×Y ′ X ′

Since X → Y is separated, X → X ×Y X is a closed immersion, so X ′ → X ′ ×Y ′ X ′

is a closed immersion, so it is finite. It follows that U ′
1 ×X′ U ′

1 → U ′
1 ×Y ′ U ′

1 is finite,
so the two projections U ′

1 ×X′ U ′
1 ⇒ U ′

1 are finite. [[⋆⋆⋆ for some reason, this is an
étale equivalence relation]] By Theorem 13.3, we have that X ′

1 is an affine scheme.
To see that X ′

1 → X ′ is a closed immersion, let T be a scheme with a morphism to
X ′. We are trying to show that T ×X′ X ′

1 → T is a closed immersion. But T ×X′ X ′
1 is

the image of the morphism g in the diagram on the left, so it is enough to show that
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g is closed.

U ′
1 ×X′ T

��

//

g

))
T ×X′ X ′

1
//

��

T

��

U ′
1

// X ′
1

// X ′

U ′
1 ×X′ T

g

))

��

� � // U ′
1 ×Y ′ T

finite
//

��

T

X ′ � � //X ′ ×Y ′ X ′

Looking at the diagram on the right, we see that U ′
1 ×X′ T → U ′

1 ×Y ′ T is a closed
immersion because X ′ → X ′ ×Y ′ X ′ is, and we see that U ′

1 ×Y ′ T → T is finite (and
therefore closed) because U ′

1 → Y ′ is finite. Thus, g is closed, so T ×X′ X ′
1 → T is a

closed immersion.
Thus, we have shown that X ′ = X ′

1 ⊔ X
′
2, with X ′

2 ×Y ′ y′ = ∅. Since Stein
factorization is stable under flat base change, we have that Z ′ = Z ×Y Y ′ = Z ′

1 ⊔ Z
′
2,

where Z ′
i is the stein factorization of X ′

i → Y ′.
Step 3: X → Z is étale. Being étale is local on Z in the étale topology. So for each

z ∈ Z, it is enough to find an étale morphism Z ′ → Z (covering a neighborhood of
z) so that X ×Z Z ′ → Z ′ is étale at every point in Z ′ lying over z. For z ∈ Z, let
y ∈ Y be the image of z. Applying Step 2, we find an étale morphism Y ′ → Y such
that X ′ = X ′

1 ⊔ X
′
2, with X ′

1 affine and X ′
2 ×Y ′ y′ = ∅. Thus, it is enough to show

that X ′
1 → Z ′

1 is étale. But X ′
1 → Y ′ is a separated, quasi-finite, locally of finite

type morphism of schemes, so [EGA, IV.18.12.12] tells us that X ′
1 → Z ′

1 is an open
immersion, so it is étale.

Step 4: Reduce to Y = Z. It is straightforward to check that X → Z is separated,
quasi-finite, and of finite type, so we’ll skip that.1 [[⋆⋆⋆ I haven’t checked it]]

Step 5: X → Z is a monomorphism. Since X → Z is Stein, it is its own Stein
factorization. Applying Step 2, we see that for any point z ∈ Z, there is an étale cover
of a neighborhood of z, Z ′ → Z, which can be taken to be affine, so that we get the
diagram on the left below. Replacing Z ′ by the connected component containing z′,
we get that X ′

2 = ∅ (otherwise Z ′ would be disconnected, as we saw at the end of Step
2b), so X ′ = X ′

1. Thus, we have that X ′ → Z ′ is finite and an open immersion, so it
is an isomorphism.

X ′
1 ⊔X

′
1

//

��

Z ′

��

z′❴

��
X // Z z

T ′
a′ //

b′
//

��

X ′ ∼ //

��

Z ′

��

T
a //

b
// X // Z

Next we check that X → Z is a monomorphism. To do this, let a, b : T → X be two
morphisms from some scheme T so that the compositions with X → Z are equal. For
any point z ∈ Z, we can find a Z ′ → Z so that X ′ ∼

−→ Z ′. It follows that a′ = b′. Since
being equal is local in the étale topology, we get that a = b, as desired.

1By the way, if we had started with the assumption that X → Y is locally of finite presentation, we
would not get that X → Z is locally of finite presentation. Finite type is really the right hypothesis.
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Now we have that X → Z is an étale monomorphism. Let W ⊆ Z be the (open)
image of X , then we claim that X ∼= W (which would prove that X → Z is an open
immersion). To see this, observe that X and W have isomorphic presentations as
algebraic spaces.

U ×W U //
// U //W

U ×X U

‖≀

//
// U // X

The vertical isomorphism on the left follows from the fact that X →W is a monomor-
phism.

Corollary 17.8. Let f : X → Y be a separated locally quasi-finite, locally of finite
type morphism, with Y a scheme. Then X is a scheme.

Proof. Let π : U → X be an étale cover by a scheme, and let R = U ×X U . Let
Y =

⋃
Yi be an affine open cover of Y , and let (f ◦π)−1(Yi) =

⋃
j Uij be an affine open

cover of the pre-image of Yi. Now we have that Xij = Uij/Rij is an open subspace of
X .

Rij

����

//

·
R

����

Uij
� � open

//

��

U

��

Xij := Uij/Rij
// X

Note that Xij → Y is quasi-compact for each i and j, and it is still separated, locally
quasi-finite, and locally of finite type. In particular, it is quasi-finite, so Theorem 17.4
tells us that the morphisms Xij → Y are quasi-affine. That is, we have factorizations
Xij → Wij → Y , where Xij → Wij is are open immersions and Wij → Y are affine.
Since the Wij are affine over a scheme, they are schemes. Since the Xij are open
subspaces of schemes, they are schemes. Thus, X has an open cover by schemes, so it
is a scheme.

� Warning 17.9 (Conrad, de Jong, Osserman, and Vakil). Even if X and Y are
noetherian, Z may not be. Let k be a field, and let E to be a genus 1 curve over

k. Let N be a degree zero line bundle on E which is not torsion, and let P be a line
bundle of degree at least 3. [[⋆⋆⋆ V means some symmetric algebra]]

X = T ×E V(N)

��

� � // V(P )×E V(N) = V(P ⊕N)

ss❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤

E

where T = V(P )−{0}. X = Spec
E
(
⊕

n∈Z,m≥0N
m⊗P n). First we claim that Γ(X,OX)

is not noetherian. Γ(X,OX) =
⊕

n∈Z,m≥0 Γ(E,N
m ⊗ P n) = R. H0(E,Nm ⊗ P n) 6= 0
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if and only if (1) n > 0 or (2) m = n = 0. R has generators like in the picture[[⋆⋆⋆

]]. It has a maximal ideal m generated by the stuff above the line. This ideal is not
finitely generated! But we claim that this ring is quasi-affine.

SpecR

++❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲

X

��

55❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥� � // V(M)

T

π

��

= Spec
⊕

n≥0 Γ(E, P
⊗n)r {0} �

�
// A = Spec

⊕
n≥0 Γ(E, P

⊗n)

E

��

= Proj
⊕

n≥0 Γ(E, P
⊗n)

Spec k

Let M on A be a coherent sheaf restricting to π∗N . Some things here are open immer-
sions. X is open in V(M), and V(M) is affine. The Stein factorization goes through
SpecR. y
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18 Chow’s Lemma.

Today we’ll prove Chow’s lemma for algebraic spaces. In the interest of time, we’ll
cheat by quoting the following big theorem from scheme theory, and showing that it
works for algebraic spaces.

Theorem 18.1 ([RG71, 5.2.2]). Let X be a quasi-compact and quasi-separated scheme,
U ⊆ P a quasi-compact open subscheme of a scheme P , and f : X → P a morphism
of schemes of finite presentation which is flat over U . Then there exists a blow-up
P ′ → P supported on P r U such that the strict transform of X, X ′ → P ′, is flat.

The strict transform X ′ is the scheme-theoretic closure of the pre-image of U (i.e. of
the morphismX×PU →֒ X×PP ′). Note that strict transform makes sense for algebraic
spaces as well.

Proof when X is an algebraic space. Let X̃ → X be an étale cover, with X̃ a quasi-
compact separated P -scheme. Let P ′ → P be a blow-up supported on P r U , and let
X̃ ′ be the strict transform of X̃ .

X̃ ×P U //

��

X̃ ×P P ′

et
��

X ×P U //X ×P P ′

X̃ ′

��

//

·
X ′

��

// P ′

��

X̃ // X // P

The diagram on the left is cartesian (simply by abstract non-sense). Scheme-theoretic
closure commutes with étale base change [[⋆⋆⋆ basically because quasi-coherent
sheaves of ideals pull back, right?]], so the strict transform X̃ is isomorphic to the
product of the strict transform X ′ with X̃ over X . That is, the left square of the right
diagram is cartesian. Now applying the theorem in the case of schemes, we get that
X̃ ′ → P ′ is flat. But flatness is étale local and X̃ ′ → X ′ is an étale cover, so X ′ → P ′

is flat, as desired.

Theorem 18.2 (Chow’s Lemma). Let S be a quasi-compact scheme and X a separated
algebraic space of finite presentation over S (in particular, X is quasi-compact). Then
there exists a proper birational S-morphism from a scheme X ′ → X with X ′ quasi-
projective over S.

Note that proper is a stable property morphisms (by what [Vis05] claims is [EGA,
IV.2.7.1]), so it makes sense for a morphism from a scheme to an algebraic space to
be proper. The map is birational in the sense of Remark 12.7 (birationality descends
along étale covers).

Proof. By Corollary 14.2, we may choose a dense open subspace U ⊆ X with U a
scheme. By Chow’s lemma for schemes, we may assume U is quasi-projective over
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S (maybe by shrinking) [[⋆⋆⋆ why is U → S quasi-compact?]]. Thus, we have
immersions U →֒ X and U →֒ PnS, so we get an immersion U →֒ PnS ×S X .

U� _

��

� r

$$❏❏❏❏❏❏❏❏❏❏

X ′ // X1
strict

trans
//

π′flat
��

X0

π

��

� � cl // PnS ×S X
·

��

// X

��

P ′ blow
up

// P � � cl // PnS // S

Let X0 be the scheme-theoretic closure of U in X ×S PnS, and let P be the scheme-
theoretic closure of U in PnS. Since PnS ×S X → X is proper and closed immersions
are proper, X0 → X is a proper birational map (birational because X0 and X are
both birational to U). Moreover, note that P → S is projective. Both X0 and P are
birationally equivalent to U , so π is birational. Since π is an isomorphism on the image
of U , it is flat there, so we may apply Theorem 18.1 to get a blow-up P ′ → P supported
on PrU so that the strict transform X1 ofX0 is flat over P

′. Note that X1 → X0×P P ′

is a closed immersion, so it is proper, and X0 ×P P ′ → X0 is proper (because P ′ → P
is proper), so X1 → X0 is proper, so X1 → X is proper and birational.

On the pre-image of U , π′ is the same as π (an isomorphism). Since π′ is flat, the
fibers of X1 over P ′ are all zero-dimensional, so they are all finite (since X1 → P ′

is of finite presentation[[⋆⋆⋆ ]]). By Corollary 17.8, X1 is a scheme. By Chow’s
lemma for schemes, [[⋆⋆⋆ have we verified the hypotheses?]] There is some scheme
X ′ quasi-projective over S, with X ′ → X1 proper birational. Then note that X ′ → X
is also proper birational.

Remark 18.3. You can get away without applying Chow’s lemma for schemes a sec-
ond time. Blow-ups are projective (since they are defined as Proj of a sheaf of graded
algebras), so P ′ → S is projective. We have that π′ : X1 → P ′ is flat and birational.
One can check that this implies that π′ is an open immersion, so it is quasi-projective.
Thus, we could have actually taken X ′ = X1. ⋄

What you can prove for schemes which are not quasi-projective always involves
using Chow’s lemma to reduce to the quasi-projective case. This kind of shows that
everything you can do for schemes, you can do for algebraic spaces.
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The next results will take a couple of lectures.

Theorem 19.1. Let f : X → Y be a proper morphism of locally noetherian algebraic
spaces, and let F be a coherent sheaf on X. Then Rqf∗F is a coherent OY -module for
all q ≥ 0.

Remark 19.2. Working man’s definition of proper: Let Y = SpecA with A noethe-
rian. Then X → SpecA is proper if the following. By Chow’s lemma, we can choose
X ′ → X proper birational surjection so that X ′ → SpecA is projective [[⋆⋆⋆ proper
+ birational implies surjective?]]. [[⋆⋆⋆ something for every choice of X ′]] Then the
theorem roughly says that Hq(X,F ) are finitely generated A-modules. ⋄

Something about pullback commuting with finite projective limits wasn’t justified.
here is a main point. [[⋆⋆⋆ what?]]

Lemma 19.3. Let F : A → B be an additive functor between abelian categories which
admits an exact left adjoint. Then F takes injective objects to injective objects.

Proof. Let I ∈ A be injective, let 0 → M → N be exact in A, and let G : B → A
be the left adjoint of F . To prove that F (I) is injective, we must show that given a
morphism M → F (I), we can find the dashed arrow in the diagram.

0 //M //

��

N

||③
③

③
③

F (I)

adjunction
←−−−−−→

0 // G(M) //

��

G(N)

zzt
t

t
t

t

I

Since G is exact, the top row of the diagram on the right is exact. Since I is injective,
the dashed arrow exists.

Let X be an algebraic space, and let U → X be an étale surjection, with U a
scheme. For every point u ∈ U , we choose a separable closure of the residue field
k(u) →֒ k(u), and let u : (Spec k(u))et → Xet be the corresponding point. Since all
étale covers of a separably closed field are trivial, the topos (Spec k(u))et is the point
topos (as a category, it is Set), so u is a point of the topos Xet. The following lemma
roughly says that a sheaf injects into the product of its stalks at these separable points.

Lemma 19.4. Let X be an algebraic space, and let U → X be an étale cover by a
scheme. For any sheaf F ∈ Xet, one gets an injective map of sheaves F →

∏
u∈U u∗u

∗F .

Proof. Let (V → X) ∈ Et(X) and α1, α2 ∈ F (V ) which map the same element in the
product

∏
u u∗u

∗F . Then we want to show that they are equal.
It is enough to show that if α1, α2 ∈ F (X), then stuff . . . , that is, we may assume

V = X for some reason. Moreover, we can assume X is a scheme.[[⋆⋆⋆ how do we
make these reductions?]]
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u∗u
∗F (V ) = u∗F (V ×X Spec k(u)). This is the sheaf associated to the presheaf

where we compute lim−→W
F (W ), where the limit is over W such that

V ×X Spec k(u) = Spec k(u) //

$$■■■■■■■■■■
W

��

X

So for every u ∈ U , there exists an étale morphism Wu → X whose image contains
the image of u such that α1|Wu = α2|Wu . That means that

∐
Wu → X is an étale

surjection and α1 = α2 when restricted to the cover
∐
Wu. That means that they are

equal because F is a sheaf.

Lemma 19.5. Let X be an algebraic space, and let Λ be a sheaf of rings in Xet. Then
the category Λ-mod has enough injectives.

This is really true much more generally by the way. There will be enough injectives
whenever there are “enough points” in the sense of Lemma 19.4.

Proof. If F is a Λ-module, then u∗F is a u∗Λ-module. We know that the category of
modules over a ring has enough injectives, so choose an embedding u∗F →֒ Iu where
Iu is an injective u∗Λ-module. Then we have F →֒

∏
u u∗u

∗F →֒
∏

u u∗Iu. Built into
the definition of a morphism of topoi is that u∗ is exact, so Lemma 19.3 tells us that
u∗Iu is injective, and an arbitrary product of injective objects is injective.

The key point to the next theorem will be that if X is an affine scheme, and F is
a quasi-coherent sheaf in Xet, then H

q(Xet, F ) = 0 for q > 0. This is good to prove if
you’re bored with the lectures.

Higher Direct Images of Proper Maps

Lemma 19.6. Let f : X → Y be a morphism of topoi and assume that AbX and AbY
have enough injectives (this always holds, actually). Then there is a spectral sequence
Ep,q

2 = Hp(Y,Rqf∗F )⇒ Hp+q(X,F ) for all F ∈ AbX .

Proof. Rqf∗ is the q-th derived functor of f∗ : AbX → AbY , and H
p is the p-th derived

functor of the global sections functor. Observe that we have a factorization as shown,
and f∗ takes injective objects to injective objects (Lemma 19.3).

AbX
f∗

//

Γ(X,−) ##●●●●●●●● AbY

Γ(Y,−)
��

Ab

There is a very general theorem (the Grothendieck spectral sequence, [Lan02, XX.9.6])
that says that whenever you have a factorization G ◦ F of a functor so that F takes
injective objects to G-acyclic objects, then you get a spectral sequence RpG(RqF ) ⇒
Rp+q(G ◦ F ).
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Lemma 19.7. Let f : X → Y be an affine morphism of algebraic spaces. Then for
any quasi-coherent sheaf F on X and q > 0 we have that Rqf∗F = 0, where we think
of f∗ : AbXet → AbYet.

Proof. Given q > 0, consider the following statments.

(∗)q For every affine morphism f : X → Y of algebraic spaces and F quasi-coherent
on X , Rsf∗F = 0 for all 1 ≤ s ≤ q.

(∗)′q For every affine scheme X and every F quasi-coherent on X , Hs(Xet, F ) = 0 for
1 ≤ s ≤ q.

We claim that (∗)′q implies (∗)q. This is because Rsf∗F is the sheaf associated to the
presheaf (Y ′ → Y ) 7→ Hs(X ×Y Y ′, F |X×Y Y ′) [[⋆⋆⋆ exercise]]. Thus it is enough to
consider the case when Y is affine, so (∗)′q ⇒ (∗)q.

Now we prove that (∗)′q holds by induction on q. For q = 1, we are looking at
H1(Xet, F ) = Ext1(OX , F ) with F quasi-coherent and X an affine scheme. You can
think of the elements as isomorphism classes of extensions of OX -modules

0→ F → E → OX → 0.

The point is that Hom(OX ,−) ∼= Γ(X,−), so they give the same derived functors
(whether you compute in OX -mod or in Ab). Now the result is clear because F
and OX are quasi-coherent, so E is quasi-coherent. By the equivalence of categories
Qcoh(Xzar) ∼= Qcoh(Xet), we know that all such sequences are split because we can
compute the Zariski cohomology to be zero.

So we’ve proven (∗)′1, and therefore (∗)1. Now assume (∗)q. This implies that
for every affine morphism f : X → Y and every F quasi-coherent on X , we have
an inclusion Hq+1(Y, f∗F ) →֒ Hq+1(X,F ). To see this, look at the spectral sequence
Es,t

2 = Hs(Y,Rtf∗F )⇒ Hs+t(X,F ).

t

s
Hq+1(Y, f∗F )

H0(Y,Rq+1f∗F )

0

∗ · · · ∗0

...

q

q + 1

0 · · · q q + 1

OO

//

There is a natural map Hq+1(Y, f∗F ) → Hq+1(x, F ), and the kernel is the stuff killed
of as you run the spectral sequence. But you can see that you aren’t killing anything
off because of all the zeros.
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Now we’d like to show that (∗)q ⇒ (∗)′q+1. Take a class α ∈ Hq+1(Xet, F ). We’d
like to say that it is zero. To compute, we take an injective resolution, take global
sections and then take cohomology. There exists an étale surjection g : U → X with
U an affine scheme such that α 7→ 0 ∈ Hq+1(Uet, F ) [[⋆⋆⋆ This is because we have
a resolution of sheaves!]]. F 7→ I·. α̃ ∈ Γ(X, Iq+1) locally because this is a resolution.

Now consider the sequence

0→ F → g∗g
∗F → Q→ 0.

Then we get a long exact sequence

Hq(X,Q)︸ ︷︷ ︸
=0 by (∗)′q

→ Hq+1(X,F )→ Hq+1(X, g∗g
∗F ) →֒ Hq+1(U, g∗F )

and α 7→ 0 in Hq+1(U, g∗F ), so it is zero.

Lemma 19.8. Let X be a scheme, and let ε : Xet → Xzar be the natural morphism of
topoi (coming from the inclusion of sites). Then for every quasi-coherent sheaf F on
Xet we have Rqε∗F = 0 for all q > 0.

Proof. Rqε∗F is the étale sheaf associated to the presheaf on Xzar given by U 7→
Hq(Uet, F ). It is enough to check on affine open subsets, and there they are zero.

Lemma 19.9. Let X be a quasi-compact separated algebraic space. Then Qcoh(X)
has enough injectives and for every injective I ∈ Qcoh(X), we have Hq(X, I) = 0 for
q > 0.

Proof. Let π : U → X be a quasi-compact étale surjection with U a disjoint union
of affine schemes. By the case of schemes, Qcoh(U) (we can be ambiguous about the
topology because they are equivalent) has enough injectives, and for injective IU ∈
Qcoh(U), π∗IU is injective in Qcoh(X) (since π∗ has an exact left adjoint).

So for any F ∈ Qcoh(X), choose an injection π∗F →֒ IU , with IU ∈ Qcoh(U)
injective. Then you get

F →֒ π∗π
∗ →֒ π∗IU

In fact, by taking F to be injective, we see that any injective in Qcoh(X) is a direct
summand of π∗IU for some injective IU ∈ Qcoh(U)

So to prove the second statement, it is enough to note that for an injective I ∈
Qcoh(U), Hq(X, π∗I) = Hq(Uet, I) = Hq(Uzar, I) = 0. The first equality is because we
have a spectral sequence Ep,q

2 = Hp(X,Rqπ∗I)⇒ Hp+q(U, I). All of the Rqπ∗I = 0 for
q > 0 are zero because X is separated, so π : U → X is an affine morphism.

Lemma 19.10. Let f : X → Y be a quasi-compact and separated morphism of al-
gebraic spaces. Then for every quasi-coherent F on X, the sheaves Rqf∗F are quasi-
coherent on Y .
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Proof. We’re looking at the sheaf associated to the presheaf (Y ′ → Y ) 7→ Hq(X ×Y
Y ′, F ). To check quasi-coherence, we can look étale locally on Y , so we can assume Y
is an affine scheme. So Qcoh(X) has enough injectives. If F happens to be injective
in Qcoh(X), the Hq(X ×Y Y

′, F ) are zero. Thus, to compute the cohomology, we can
choose an injective resolution over X and push it forward. But we know that push-
forwards of quasi-coherent sheaves are quasi-coherent. Choose an injective resolution
F → I· in Qcoh(X). Then Rqf∗F = Hq(f∗I

0 → f∗I
1 → · · · ).

Theorem 19.11. If f : X → Y is a proper morphism of locally noetherian algebraic
spaces and F is coherent on X, then Rqf∗F are coherent on Y .

Recall that for now proper just means that [[⋆⋆⋆ ]]

Proof. Coherence is local on Y , so we can assume Y is an affine scheme. Thus, there
exists a proper birational morphism X ′ → X so that X ′ → Y is projective.

Next we need that for every integral closed subspace of X , there is a coherent sheaf
supported on it.

Coherence of higher direct images

Last time I said that you can think of H1 as extensions. That’s true, but it is better
to start the induction at q = 0, where the statement is vacuous.

(∗)0 ⇒ (∗)′1. Choose α ∈ H1(X,F ). By the same reason as last time, there exists
an affine étale morphism p : U → X such that α 7→ 0 in H1(U, p∗F ). Now consider

0→ F → p∗p
∗F → Q→ 0

which gives us

H0(X, p∗p
∗F ) ։ H0(X,Q)→ H1(X,F )

α7→0
−−→ H1(X, p∗p

∗F )︸ ︷︷ ︸
→֒H1(U,p∗F )

The descent is hidden in the (obvious) statement that global sections are the same in
the Zariski and étale topologies.

Theorem 19.12. Let f : X → Y be a proper morphism of locally noetherian algebraic
spaces and F a coherent sheaf on X. Then Rqf∗F is a coherent OY -module for every
q ≥ 0.

We use the working definition of properness.

Proof. Reduce to the case Y is affine.
Devissage is on the homework: X a noetherian locally separated algebraic space,

and let K = CohOX . Let K ′ ⊆ K be a subcategory such that

1. 0 ∈ K ′
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2. for every exact sequence 0→ A′ → A→ A′′ → 0 in K, if two out of three are in
K ′, then so is the third.

3. If A1 ⊕ A2 ∈ K ′, then A1, A2 ∈ K ′.

4. for every reduced and irreducible closed subspace Z ⊆ X , there exists a G ∈ K ′

sith SuppG = Z.

Then K ′ = K. Integral means reduced and irreducible [[⋆⋆⋆ Ogus: well, we had
that weird example where we have two tangent directions on the line ... that is integral,
but doesn’t feel like it should be]]

Take K ′ ⊆ CohX to be the subcategory of coherent sheaves for which the theorem
holds. (1) zero is in there, (2) use the long exact sequence, (3) cohomology is the direct
sum, and we must check (4).

Remark 19.13. [[⋆⋆⋆ strengthening of the theorem as follows]] X separated of
finite type algebraic space over a noetherian affine scheme Y [[⋆⋆⋆ let’s change it
to over a field]], then there exists d such that for every sheaf F on X , Hq(X,F ) = 0
for q ≥ 0. Do this by taking a dense open which is a scheme and do some kind of
devissage. The d is not the dimension in general. ⋄

Check (4). Let Z ⊆ X . We can choose π birational proper surjective by Chow’s
lemma.

Z ′
U

πU
  ❇❇❇❇❇❇❇❇
Z ′ � � closed//

  
❆❆❆❆❆❆❆❆ PnZ

��

U // Z � � //

��

X

}}⑤⑤⑤⑤⑤⑤⑤⑤

Y

Let L = OZ′(1). For m ≫ 0, π∗π∗L
⊗m → L⊗m is surjective [[⋆⋆⋆ you don’t need

this surjectivity]] and T qπ∗L
⊗m = 0 for q > 0. To check these, it is enough to find

U → Z, with πU : Z ′
U → U [[⋆⋆⋆ use Serre’s vanishing theorem]]. This implies

that Hp(Z, π∗L
⊗m) = Hp(Z ′, L⊗m) because we have the spectral sequence Ep,q

2 =
Hp(Z,Rqπ∗L

⊗m)⇒ Hp+q(Z ′, L⊗m), and we have that Ep,q
2 = 0 for q > 0. This proves

that Hp(Z, π∗L
⊗m) are finite type Γ(Y,OY )-modules. So π∗L

⊗m ∈ K ′. We still need
to show that Supp π∗L

⊗m = Z.
The support is defined by the ideal of sections which annihilate that module. Sup-

pose f ∈ OZ(U) annihilates π∗L⊗m. Then we claim that f = 0. To see this, choose a
dense open U0 ⊆ U such that Z ′

U0 → U0 is an isomorphism. The restriction of π∗L
⊗m

to U0 is a locally free sheaf of non-zero rank, so f 7→ 0 ∈ OZ(U0). But then f = 0
because U is reduced.

Note that we produced for any reduced subspace a sheaf with that support. We
didn’t need irreducible.

Next week, we’ll define stacks. Now we’ll define a proper morphism.
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Underlying topological space of an algebraic space

There is a topological space associated to an algebraic space. Let X be an algebraic
space over a scheme S. A point of X is a monomorphism i : Spec k → X with k
a field. You shouldn’t confuse this with a geometric point (where we take k to be a
separably closed field), this is just a monomorphism of sheaves. If we take k to be
separably closed field, it usually won’t be a monomorphism of sheaves! You could drop
the monomorphism assumption if you change the equivalence relation to say there is a
third thing they map to. [[⋆⋆⋆ this definition would make some things easier]]

Example 40.14. Let X be a scheme. If we have any morphism Spec k → X , this
gives a point x ∈ X and embedding k(x) →֒ k. That is, the morphism always factors
through Spec k(x). Given an inclusion of fields k →֒ k′, when is Spec k′ → Spec k a
monomorphism? If and only if k → k′ is an isomorphism [[⋆⋆⋆ exercise in Galois
theory]] What about inseparable extensions? To be a monomorphism, it must be a
monomorphism after base change. Look at k′ → k′ ⊗k k′.

Consider k(t) and k(t1/p), then we have k(x) → k(t)[x, y]/(xp = yp = 1) =
k(x)[u]/(up = 0) with u = x− y. We get two maps k(x)[u]/(up = 0)→ k(x)[u]/(up =
0), given by u 7→ u and u 7→ 0, which induce the same map. Therefore, it isn’t a
monomorphism. ⋄

We say that i1 : Spec k1 → X is equivalent to i2 : Spec k2 → X if there exists a
diagram

Spec k1
σ
∼

//

i1
��

Spec k2

i2
xxrrrrrrrrrrr

X

Then we take |X| to be the set of points modulo equivalence. If Y ⊆ X is a closed
subspace, then you get an inclusion |Y | ⊆ |X|, and we define the topology on |X| by
declaring these subsets to be closed.

Key point: |X| is functorial inX . This is not clear. If we haveX → Y and Spec k →
X a monomorphism, there is no reason Spec k → Y should be a monomorphism. The
following lemma gives it to us. One then checks that the map is continuous.

Lemma 40.15. Let f : Spec k → Y be a map of algebraic spaces with k a field.
Then there exists a unique (up the equivalence relation) point i : Spec k′ → Y and
factorization

f : Spec k
g
−→ Spec k′

i
−→ Y

Proof. This is annoyingly subtle. How do you know there are any points in Y at all.
You know there is a dense open which has points, but blah.

First note that we can assume Y is quasi-compact: Take any étale cover U → Y ,
then take a point in Uk and see where it goes in U , and take a quasi-compact open
subset of U and quotient by the relation. Choose U → Y an étale surjection with U
a quasi-compact scheme. Let Zp be the disjoint union of spectra of residue fields of
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images of Spec k ×Y U → U . Since U is quasi-compact and étale, the first is a finite
union of points. Similarly, let Rp be the disjoint union of spectra of residue fields of
images of Spec k ×Y (U ×Y U) ⇒ U ×Y U . Then we see that Rp = Z1 ×U,p1 (U ×Y U).
So Rp is a finite étale equivalence relation on Zp (in fact, it is the induced relation).
Thus, the quotient Zp/Rp, which is a scheme. We get a monomorphism Zp/Rp →֒ Y ,
and my construction we get a flat surjection Spec k → Zp/Rp, so Zp/Rp is a spectrum
of a field.

f : X → Y is proper if it is of finite type, separated, and universally closed (i.e. for
every Y ′ → Y , the map |Y ×Y Y ′| → |Y ′| is a closed map). Check from the definition
that this agrees with the working definition:

Lemma 40.16. If X → Y is separated of finite presentation and X ′ → X is a proper
representable surjection, then X → Y is proper if and only if X ′ → Y is proper.

If X is given to you as a functor, the only way to check properness is with the
valuative criterion.
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21 Fibered categories

A very good reference for this upcoming stuff is [Vis05]. Vistoli does more than we
will.

The impression is that a lot of people got lost in the details of algebraic spaces.
That’s ok, because we’re about to do it all over again (in some sense).

algebraic spaces Artin stacks
a sheaf X a stack in groupoids X
∆X representable by schemes ∆X representable by algebraic spaces
étale surjection from a scheme smooth surjection from an algebraic space

Note that the smooth surjection from an algebraic space may as well be from a scheme
since any algebraic space is smoothly covered by a scheme.

Let’s say we want to study genus g curves. Then we’d like to say there is a functor
Mg : Sch

op → Cat, given by S 7→ Mg(S), whose objects are proper smooth morphisms
B → S whose geometric fibers are connected genus g curves and whose morphisms are
S-isomorphisms. However, the pullback functors f ∗ :Mg(S)→Mg(S

′) associated to
morphisms f : S ′ → S do not behave nicely with respect to composition. We have that
(fg)∗ is canonically isomorphic to g∗f ∗, but not equal to it. That is,Mg : Sch

op → Cat

is a lax 2-functor. To get a better understanding of such things, we need to build up
some machinery. [[⋆⋆⋆ maybe this is worth shortening since it gets repeated]] The
problem is that we do not have a canonical choice for the pullback of a curve along a
morphism.

Sometimes people say that a stack is is a “category-valued functor”, but that isn’t
right because it is really a category-valued lax 2-functor. [[⋆⋆⋆ or something like
that]]

Definition 21.1. Let C be any category. Then a category over C is a category F with
a functor p : F → C. ⋄

Example 21.2. Let C = Sch. Then we define Mg to be the category whose objects
are pairs (S,B/S) where S is a scheme and B → S is a proper smooth morphism whose
geometric fibers are connected genus g curves. The morphisms (S ′, B′/S ′)→ (S,B/S)
are cartesian diagrams

B′

��

f̃
//

·
B

��

S ′ f
// S

The functor p :Mg → Sch is given by (S,B/S) 7→ S. ⋄

Definition 21.3. Let p : F → C be a category over C. An arrow φ : ξ → η in
F is called cartesian if for any ψ : ζ → η and for any h : p(ζ) → p(ξ) such that
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p(ψ) = p(φ) ◦ h, there exists a unique θ : ζ → ξ so that ψ = φ ◦ θ.

ζ
❴

��

∃!θ ((◗◗◗◗◗ ∀ψ

((ξ
❴

��

φ
// η

❴

��

p(ζ)

∀h ''PPPPPP p(ψ)

((

p(ξ)
p(φ)

// p(η)

In this case, ξ is called a pullback of η to p(ξ). ⋄

Definition 21.4. let p : F → C be a category over C, and let U ∈ C. We define the
fiber F(U) to be the sub-category of F whose objects are ξ ∈ F such that p(ξ) = U
and whose morphisms are φ : ξ′ → ξ in F such that p(φ) = idU . That is, F(U) is the
subcategory of F whose objects lie over U and whose morphisms lie over idU . ⋄

Definition 21.5. A fibered category over C is a category over C p : F → C such that
for every arrow f : U → V in C and every ξ ∈ F(V ), there exists η ∈ F(U) and a
cartesian arrow φ : η → ξ with p(φ) = f . ⋄

Remark 21.6. A fibered category over C is a category over C in which pullbacks
always exist. It is an easy exercise to check that different pullbacks are unique up to
unique isomorphism. ⋄

Example 21.7. Mg is a fibered category over Sch. In fact, every arrow in Mg is
cartesian. [[⋆⋆⋆ expand?]] ⋄

Example 21.8 (“representable fibered categories”). Let C be a category and let X ∈
C. Then C/X is a fibered category over C in which every arrow is cartesian. To see
this, let Y ′′, Y ′, and Y be objects over X , let φ and ψ be X-morphisms, and let h be
a morphism such that ψ = φ ◦ h.

(Y ′′ → X)
❴

��

**❱❱❱
ψ

++

(Y ′ → X)
❴

��

φ
// (Y → X)

❴

��

Y ′′

h ++❲❲❲❲❲❲❲❲❲❲❲❲❲ ψ

++Y ′
φ

// Y

Y ′′ h //

ψ

##●●●●●●●

��
✹✹✹✹✹✹✹✹✹✹✹✹✹ Y ′

φ

||①①①①①①①

��☛☛☛☛☛☛☛☛☛☛☛☛

Y

��

X

Then h is an X-morphism (the outer triangle on the right is composed of three com-
mutative triangles, so it is commutative), and the only X-morphism from Y ′′ to Y ′

which “projects” to h when you forget about the maps to X is h itself. ⋄

In the next lecture, we’ll prove an analogue of Yoneda’s lemma for fibered categories,
which will say roughly that the construction above gives a fully faithful embedding of
C into the category of fibered categories over C.
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Definition 21.9. Let F and G be fibered categories over C. Then a morphism of
fibered categories f : F → G is a functor such that

1. pG ◦ f = pF (actual equality!)

2. f sends cartesian arrows to cartesian arrows. ⋄

Remark 21.10. One can restrict a morphism of fibered categories to the fibers. If
ξ ∈ F , with pF(ξ) = U , then pG(f(ξ)) = pF(U) = U , and if φ : ξ′ → ξ is a morphism
in F(U), then pG(f(φ)) = pF(φ) = idU . ⋄

Why can you actually demand equality in the first condition? Let M1,1 be the
category of pairs (S,E/S), where E is an elliptic curve over S. Then we have a functor
J : M1,1 → M1,1 given by (S,E/S) 7→ (S, Jac(E)/S). Note that the equality is
strict. It just so happens that J is isomorphic to the identity functor. [[⋆⋆⋆ I don’t
understand what this paragraph is doing.]]

Definition 21.11. If g, g′ : F → G are two morphisms of fibered categories, then a
base-preserving natural transformation α : g → g′ is a natural transformation such
that for every ξ ∈ F , the arrow αξ : g(ξ) → g′(ξ) projects to the identity in C.
That is, a base-preserving natural transformation is one which restricts to a natural
transformation on each fiber. Define the category HOMC(F ,G), whose objects are
morphisms of fibered categories, and whose morphisms are base-preserving natural
transformations. ⋄

Remark 21.12. The composition of two morphisms of fibered categories is a mor-
phism of fibered categories, and the composition of two base-preserving natural trans-
formations (in either way)1 is a base-preserving natural transformation. Thus, we have
the 2-category of fibered categories over C. ⋄

Definition 21.13. A morphism of fibered categories f : F → G is an equivalence
if there exists a morphisms g : G → F such that f ◦ g ∼= idG in HOMC(G,G) and
g ◦ f ∼= idF in HOMC(F ,F). That is, both compositions should be identities up to
2-morphisms. ⋄

Next we will prove that equivalences of fibered categories “can be checked on fibers”
(Proposition 21.15). First we’ll need to prove the following lemma.

Lemma 21.14. Let f : F → G be a morphism of fibered categories such that for every
U ∈ C, the functor fU : F(U)→ G(U) is fully faithful. Then f is fully faithful.

1There are two ways to compose natural transformations: (1) if F,G,H : C→ D are functors and
η : F → G and τ : G→ H are natural transformations, then τ ·η : F → H is a natural transformation,
and (2) if F,G : C→ D and F ′, G′ : D→ E are functors, and η : F → G and η′ : F ′ → G′ are natural
transformations, then η′ ◦ η : F ′ ◦ F → G′ ◦ G is a natural transformation. A 2-category must have
two such flavors of composition of 2-morphisms. See Appendix A5.
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Proof. Given x, y ∈ F and an arrow φ : f(x) → f(y), we wish to show that there
exists a unique arrow ψ : x → y such that f(ψ) = φ. Let U = pF(x) = pG(f(x)),
V = pF(y) = pG(f(y)), and let φ̄ = pF(φ) : U → V .

x
ψ

  ❅
❅

❅
❅

χ
��

ỹ
❴

��

∃h

cart // y
❴

��

U
φ̄

//idU
''

V

f(x)

∃!ε
��
✤
✤
✤

φ

""❊❊❊❊❊❊❊❊

f(ỹ)
f(h)

//

❴

��

f(y)
❴

��

U
φ̄

//idU
''

V

Since F is a fibered category, there is some cartesian arrow h : ỹ → y lying over φ̄.
Since f is a morphism of fibered categories, we have that f(h) is cartesian. Thus, there
is a unique ε with pG(ε) = idU which makes the top triangle on the right commute.
Since fU is fully faithful, ε = f(χ) for a unique morphism χ : x→ ỹ, with pF(χ) = idU .
Then we can take ψ = h ◦ χ.

Finally, one checks uniqueness. Let ψ′ : x→ y, with f(ψ′) = φ. Then by cartesian-
ness of h, we get some map χ′ : x → ỹ so that pF(χ

′) = idU and ψ′ = h ◦ χ′. Since
φ = f(ψ′) = f(h) ◦ f(χ′), cartesian-ness of f(h) tells us that f(χ′) = ε. Since fU is
fully faithful, this implies that χ′ = χ, so ψ′ = ψ.

Proposition 21.15. Let f : F → G be a morphism of fibered categories. Then f is an
equivalence of fibered categories if and only if for every object U ∈ C, the restriction
fU : F(U)→ G(U) is an equivalence of categories in the usual sense.

Proof. (⇒) Let g : G → F be an inverse for f , so we have base-preserving natural
isomorphisms f ◦ g ∼= idG and g ◦ f ∼= idF . These restrict to isomorphisms fU ◦ gU ∼=
idG(U) and gU ◦ fU ∼= idF(U).

(⇐) We need to find some g : G → F such that f ◦ g ∼= idG and g ◦ f ∼= idF . For
every U ∈ C, we have a functor gU and natural isomorphisms αU : idG → fUgU and
βU : gUfU → idF .

For an object y ∈ G, define g(y) := gpG(y)(y). By Lemma 21.14, f is fully faithful,
so for any arrow φ : y → y′ in G, there exists a unique arrow g(φ) : g(y)→ g(y′) such
that the following diagram commutes. That is, there is a unique arrow g(φ) so that
f(g(φ)) = α(y′) ◦ φ ◦ α(y)−1.

y
φ

//

α(y) ≀
��

y′

α(y′)≀
��

f(g(y))
f(g(φ))

// f(g(y′))

Note that g respects identity arrows and composition, so it is a functor (though we
still don’t know that it sends cartesian arrows to cartesian arrows). By the way we
have defined g, the αU glue together to give us a (base-preserving) natural isomorphism



88 21 Fibered categories

α : idG → f ◦ g. Given any x ∈ F , this gives us an isomorphism α(f(x)) : f(x) →
f
(
g(f(x))

)
with pG

(
α(f(x))

)
= idpG(f(x)). By full faithfulness of f , α(f(x)) = f(β(x))

for some unique isomorphism β(x) : x → g(f(x)) with pF(β(x)) = idpF (x). Since f(β)
is a natural transformation, β : idF → g◦f is a natural transformation (base-preserving
by construction). Thus, g is an inverse to f .

Finally, we must check that g is a morphism of fibered categories (i.e. that it takes
cartesian arrows to cartesian arrows). Let φ : y → y′ be a cartesian arrow in G, let
ψ : z → g(y′), and let h : pF(z)→ pF(g(y)) such that pF(ψ) = pF(g(φ)) ◦ h. We’d like
to show that we can fill in the dashed arrow on the left uniquely.

y
φ

//

α(y′)≀

��

y′

α(y)≀

��

z❴

��

))❙❙❙❙❙ ψ

**

f(z)
❴

��

**❚❚❚❚ f(ψ)
**

g(y)
❴

��

φ
// g(y′)

❴

��

f(g(y))
❴

��

f(g(φ))
// f(g(y′))

❴

��

pF(z)

h
))❙❙❙❙❙❙ pF(ψ)

++

pG(f(z))

f(h) **❚❚❚❚❚❚❚ pG(f(ψ))

**

pF(g(y))
pF(φ)

// pF(g(y
′)) pG(y)

pG(f(φ))
// pG(y

′)

idC +3

f
+3

Applying f the the diagram on the left, we get the diagram on the right. Since φ is
cartesian, there is a unique way to fill in the dashed arrow in the diagram on the right.
Since f is fully faithful, there is a unique way to fill in the dashed arrow in the diagram
on the left.
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22 The 2-Yoneda lemma

Theorem 22.1 (2-Yoneda Lemma). Let p : F → C be a fibered category, and let
X ∈ C. Then the “evaluation” functor eX : HOMC(C/X,F) → F(X), given by (f :
C/X → F) 7→ f(idX), is an equivalence of categories.

Proof. We need to find a quasi-inverse η : F(X)→ HOMC(C/X,F). Given x ∈ F(X),
we need to define a morphism of fibered categories ηx : C/X → F . Given φ : Y → X ,
choose a cartesian arrow φ∗x→ x over φ. Then we define ηx(φ) to be φ∗x. This defines
ηx on objects. Given an X-morphism ε : Y ′ → Y , we should get ηx(ε) : φ

′∗x → φ∗x,
and we do.

φ′∗x
❴

��

∃! ((PPP φ′∗

''
φ∗x

❴

��

φ∗
// x❴

��

Y ′

ε ((❘❘❘❘❘❘❘❘ φ′

((
Y

p(φ)
// X

The uniqueness of the dashed arrow implies that ηx respects composition and identities.
Note that ηx is a morphism of fibered categories (it respects the projections and sends
cartesian arrows to cartesian arrows [[⋆⋆⋆ we didn’t really check this]]). [[⋆⋆⋆ we
still didn’t say what η does to arrows.]]

Now we’ll check that these functors are inverses. Consider

F(X)
η

// HOMC(C/X,F)
eX // F(X)

x ✤ // ηx
✤ // ηx(idX) = (idX)

∗x ∼= x

The unique isomorphism id∗ x ∼= x exists because x
id
−→ x is a pullback along idX . Since

the behavior of η on morphisms was determined using a universal property, it is easy
to check that eX ◦ η is isomorphic to the identity on morphisms as well.

Now the other direction.

HOMC(C/X,F)
eX // F(X)

η
// HOMC(C/X,F)

f ✤ // f(idX)
✤ // η(f(idX))

The morphism η(f(idX)) is given by (φ : Y → X) 7→ φ∗f(idX). So we want a natural
isomorphism f(φ) ∼= φ∗f(idX). Since idX : X → X is the initial object in C/X ,
there exists a unique morphism φ→ idX , and this is a cartesian arrow (just like every
other arrow in C/X). We know that f takes cartesian arrows to cartesian arrows, so
f(φ)→ f(idX) is cartesian, and we also have that φ∗f(idX)→ f(idX) is also a cartesian
arrow (by construction), so there is a unique isomorphism f(φ)→ φ∗f(idX).
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Presheaves and categories fibered in sets

Definition 22.2. Let F : Cop → Set be a functor. Then define p : F fib → C to be
a fibered category whose objects are pairs (U, x) with U ∈ C and x ∈ F (U). The
morphisms (U ′, x′) → (U, x) are morphisms f : U ′ → U such that Ff(x) = x′ in
F (U ′). The projection is (U, x) 7→ U . ⋄

We can check that F fib → C is a fibered category.

x′′❴

��

''P
P

P

''
x′❴

��

// x❴

��

U ′′

h ''PPPPPP
''

U ′
f

// U

If Ff(x) = x′ and
(
F (f ◦ h))(x) = x′′, then Fh(x′) = x′′ by the axioms of a presheaf.

One can picture the fibered category F fib as an object for every section of F , with
morphisms given by reversing the restriction maps. In particular, the pullback of an
object along an arrow is unique (it is given by restriction).

Example 22.3. Let C be the category x
α // y

β
// z γ

yy
(identity morphisms not

drawn), and let F : Cop → Set be given by F (x) = {a, b, c}, F (y) = {d, e}, F (z) =
{f, g, h}, with Fα(d, e) = (b, c), Fβ(f, g, h) = (d, d, e), and F (f, g, h) = (g, h, h). Then
F fib looks like this.

a d //

((PPPPPP f

b

66♥♥♥♥♥♥ e
((◗◗◗◗◗◗ g

jj

c

66♠♠♠♠♠♠ h

jj

ll

x α // y
β

// z γ
yy

Note that every arrow is cartesian, cartesian arrows are unique, and the only morphisms
in the fibers are identity morphisms (remember that morphisms in the fiber must lie
over the identity morphism). ⋄

Example 22.4. hfibX = C/X . ⋄

Definition 22.5. A category is called a set if it is a small category in which all mor-
phisms are identity morphisms. Note that any set can be interpreted as a category in
this way. ⋄

Remark 22.6. A category C is equivalent to a set if and only if for every pair of
objects x, y ∈ C, HomC(x, y) is either empty or consists of a single isomorphism. Such
a category is called a discrete groupoid. To show that a groupoid is discrete, it is
enough to show that no objects have non-identity automorphisms. ⋄
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Definition 22.7. A category fibered in sets over C is a fibered category p : F → C

such that for every U ∈ C, the category F (U) is a set. ⋄

Note that for a presheaf F , F fib is fibered in sets (its fiber over U is the set F (U)).

Lemma 22.8. Let G→ C be a fibered category and F → C a category fibered in sets.
Then HOMC(G,F ) is a set.

Proof. We have to check that the only morphisms are identity morphisms. Let f, g :
G→ F be two morphisms of fibered categories and let α : f → g be a base preserving
natural transformation. That means that for every y ∈ G, we have a map αy : f(y)→
g(y) in F (pG(y)), which only has identity morphisms. This implies that f(y) = g(y)
and αy = id.

Corollary 22.9. IfX, Y ∈ C, then HOMC(C/X,C/Y )
∼
−→ (C/Y )(X), which has objects

X → Y and Y -morphisms which project to the identity arrow (so they must be identity
maps), so it is just the set HomC(X, Y ).

Proposition 22.10. The functor (presheaves)→ (categories fibered in sets) given by
F 7→ F fib is an equivalence of categories.

Proof. This is obvious. Here is the inverse:
Given a category fibered in sets F → C, define a presheaf F∗ : Cop → Set by

U 7→ HOMC(C/U,F) ∼= F(U) (this is actually a bijection of sets). Given w : V → U

and ρ : C/U → F , define F∗w(ρ) to be the composite C/V
w
−→ C/U

ρ
−→ F .
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People like to think of fibered categories F → C as functors Cop → Cat, with U 7→
F(U), but this is really not correct. If F were a functor, then a morphism f : V → U
would induce a functor Ff : F(U) → F(V ), and it doesn’t. We’d like to say that for
an object u ∈ F(U), we should define Ff(u) as “the” pullback f ∗u along f , but this
requires us to choose a cartesian arrow lying over f , and there may be many of them.

To fix this problem, we can add some information. A cleavage of a fibered category
is a choice of cartesian arrow for each arrow in C and each object in the fiber of its
target. Given a fibered category and a cleavage, a morphism f : V → U induces
a functor Ff = f ∗ : F(U) → F(V ), but all is not well. The identity morphism
idU : U → U does not necessarily produce the identity functor (though this can be
fixed by insisting that the cartesian arrow over an identity arrow is an identity arrow),
and the functor (f ◦ g)∗ does not necessarily equal the composite g∗ ◦ f ∗ (i.e. your
choices of cartesian arrows don’t compose well). A splitting is a cleavage which doesn’t
have these problems.

Definition 23.1. Let F → C be a fibered category. A splitting of F is a subcategory
K ⊆ F such that the following conditions hold.

1. every arrow in K is cartesian,

2. K contains all objects, and

3. for every f : V → U in C and x ∈ F (U), there is a unique y → x over f in K.

A split fibered category is a fibered category together with a splitting. ⋄

Lemma 23.2. The category of split fibered categories over C (in which morphisms
respect splittings) is equivalent to the category Fun(Cop,Cat).

Proof. By the discussion preceding the definition, a fibered category with a splitting
defines a functor Cop → Cat. Conversely, if F : Cop → Cat is a functor, then we can
define F fib to be the fibered category whose objects are pairs (U, γ) where U ∈ C and
γ ∈ F (U), in which a morphism (V, δ) → (U, γ) is a pair (g, α), where g : V → U
is a morphism in C and α : δ → Fg(γ) is a morphism in F (V ). The composition

(W, ε)
(h,β)
−−−→ (V, δ)

(g,α)
−−−→ (U, γ) is taken to be

(
g ◦ h, Fh(α) ◦ β

)
.

Let K be the subcategory of arrows of the form (g, id), where g is a morphism

in C. Let’s check that the arrows of K are cartesian. Let W
h
−→ V

g
−→ U be an

arrow in C, let γ ∈ F (U), and let ε ∈ F (W ), with (g ◦ h, α) : (W, ε) → (U, γ)
(the first part must be g ◦ h if the arrow is to lie over g ◦ h). Then we wish to
show that there is an unique arrow (W, ε)→

(
V, Fg(γ)

)
lying over h which composes

with (g, idFg(γ)) to give (g ◦ h, α). Well, since the arrow must lie over h, it must
be of the form (h, β) for some β : F (g ◦ h)(γ) → ε in F (W ). But then we have
(g ◦ h, α) = (g, id) ◦ (h, β) = (g ◦ h, Fh(id) ◦ β) = (g ◦ h, β), so we must have β = α.
This shows that F fib is a fibered category and K is a splitting.
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We omit the discussion of how these constructions behave on morphisms and the
proof that they are indeed inverses.

Remark 23.3. If F : Cop → Set is a presheaf, we can think of it as a functor to Cat.
In this case F fib is exactly the fibered category defined in Definition 22.2, so there is
no conflict in the notation. ⋄

Remark 23.4. Similarly, we could show that the category of fibered categories with
cleavage (in which morphisms respect cleavage) is equivalent to the category of lax
2-functors Cop → Cat. ⋄

The following example illustrates that splittings need not exist in general, but
Theorem 23.6 tells us that every fibered category is equivalent to one with a splitting.

Example 23.5. A group G can be thought of as a category with one object, whose
morphisms are the elements of G (with composition given by multiplication). If G and
H are groups, then a functor p : G→ H is the same thing as a homomorphism.

Note that p : G → H a fibered category if and only if p is surjective: every arrow
in G is cartesian (see diagram below), and you need to find an arrow (element) in G
lying over every arrow (element) in H .

∗G❴

��

g−1
1 g3

((◗◗◗ g1

((
∗G❴

��

g3
// ∗G❴

��

∗H
h2

((◗◗◗◗◗◗ h1

((
∗H h3

// ∗H

(2) If p is surjective, then a splitting of p : G → H is a section s : H → G
of p which is a group homomorphism (the “homomorphism” part follows from the
subcategory condition). Such a section may not exist in general. ⋄

Theorem 23.6. Let F → C be a fibered category. Then there exists a (canonical!)
split fibered category (F̃ ,K) and an equivalence F̃ → F .

Proof. Take the F̃ to be the fibered category associated to the functor Cop → Cat given
by U 7→ HOMC(C/U,F) (as constructed in the proof of Lemma 23.2. An object in F̃ is
of the form (U, γ), with γ ∈ HOMC(C/U,F), and a morphism (V, δ)→ (U, γ) is a pair
(g, α) where g : V → U and α : δ → γ ◦ g̃ is a base-preserving natural transformation
(g̃ : C/V → C/U is the morphism of fibered categories associated to g).

(g : V → U) ✖

%%

g
// idU ✖

$$

C/U γ

##

idV
✎

//

✻

44

C/V

g̃ 22

δ

22 F γ(g)
γ(g)

// γ(idU)

δ(idV )
α(idV )

77♥♥♥♥

α

KS
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We define e : F̃ → F by e(U, γ) = γ(idU : U → U), and e(g, α) = γ(g) ◦ α(idV ).
This is a morphism of fibered categories. It is easy to see that the fibers F̃(U) are
HOMC(C/U,F) and that e restricts to the evaluation map on fibers. By the 2-Yoneda
lemma, e is an equivalence on each fiber. By Proposition 21.15, e is an equivalence of
fibered categories.

� Warning 23.7. You may be thinking to yourself, “every fibered category is
equivalent to a split fibered category, and split fibered categories are equivalent

to functors Cop → Cat, so the category of fibered categories over C is equivalent to
the category Fun(Cop,Cat).” This is WRONG! The category of fibered categories is
not equivalent to the category of split fibered categories. It is true that every fibered
category is equivalent to split fibered category, but a morphism of fibered categories
need not respect the splitting. That is, Fun(Cop,Cat) injects into the category of fibered
categories over C, and the injection is faithful and essentially surjective, but is is not
fully faithful ; there are extra morphisms. y

Example 23.8. Consider the fibered category G = Z/4 → Z/2 = H . Just for fun,
let’s calculate G̃. First we need to calculate the fibered category H/∗H → H , which

is pretty easy; there are two elements, x0 = id : ∗H
0
−→ ∗H and x1 : ∗H

1
−→ ∗H , and the

morphisms are pretty straightforward too. It is pictured on the left. The morphism
x1 → x0 should be labeled 1, but we call it 1−1 for ease of reference.

x00
66

1

yy

H/∗H
(∗H ,f1)

//

(∗H ,f3)
// ∗G

0
##

2
99

1
{{

3
ee

G

x10
66

1−1

dd

H ∗H0
44

1
jj

idH // ∗H0
44

1
jj

The objects of G̃ are pairs (U, γ), where U = ∗H and γ ∈ HOMH(H/∗H , G). There
are two such objects, (∗H , fi), where fi sends the morphism 1 to the morphism i
(then it must send 1−1 to 4 − i); since fi must be base-preserving, i may be 1 or
3. The morphisms in the fiber G̃(∗H) are base-preserving natural transformations
η : (∗H , fi) → (∗H , fj). Such a transformation consists of two maps, η0 and η1, such
that η0 + j = η1 + i.

fi(x0)
η0

//

fi(1)
��

fj(x0)

fj(1)

��

fi(x1)
η1

// fj(x1)

=

∗G
η0

//

i

��

∗G

j

��

∗G
η1

// ∗G

Moreover, the condition “base-preserving” forces η0 and η1 to be 0 or 2. If η0 = k and
η1 = l, then we will write the morphism (0, η) in G̃ as kl.
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The morphism 1 : ∗H → ∗H induces the automorphism of H/∗H which switches x0
and x1. In particular, pre-composing with this automorphism switches f1 and f3. If
η : fi → fj ◦ 1̃ has η0 = k+ i and η1 = l− i, then we write the morphism (1, η) in G̃ as
kl (this weird notation will make the composition and evaluation more transparent).

(∗H , f1)
00 ��22 && 31�� 13xx

^^

33

^^

11

11

zz

33

zz

G̃
e // ∗G

0
##

2
99

1
{{

3
ee

G

(∗H , f3)
00 BB22 88 13\\ 31ff

20

@@

02

@@

$$

20

$$

02

H ∗H0
44

1
jj

idH // ∗H0
44

1
jj

The morphisms in G̃ compose by adding modulo 4 (in the obvious way). The evaluation
map e sends ij to i.

The upshot is that if you choose a splitting, you really have no idea what’s going
on. ⋄
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24 Stacks

Let C be a site. For simplicity, assume that coproducts are representable in C (so we
can always replace coverings by a single map) [[⋆⋆⋆ does that follow from the axioms
of a site that a coproduct of maps in a cover is a cover?]] Let F be a fibered category
over C. Choosing some cleavage of F (one always exists by the axiom of choice), we get
a lax 2-functor F : Cop → Cat. For a morphism q : V → U in C, we define F(U → V )
as in Definition 7.1.

Definition 24.1. A fibered category F is a stack over C if for every covering q : V → U
in C, the functor F(U) → F(V → U), given by u 7→ (q∗u, can), is an equivalence of
categories. ⋄

Remark 24.2. For a morphism q : V → U , the category F(V → U) depends on the
choice of cleavage of F , but it turns out that they are all equivalent. If you like, you
can define a stacks independent of cleavage in the following way. For a fibered category
F → C, and a morphism q : V → U , define Fc(V → U) as the category of commuting
diagrams in F like in the picture below; all arrows are cartesian, lying over the indicated
arrows in C, σ is an isomorphism (as are the arrows in the fiber over V ×U V ×U V which
are pullbacks of σ), and the “equalities” are the canonical isomorphisms (e.g. p∗23p

∗
1
∼=

p∗12p
∗
1; if your cleavage is a splitting, these are actual equalitites). The dotted arrows

are dotted to make the picture look less cluttered.

◦ 23 //

��
❄❄❄❄ ◦

σ≀

��

2
❖❖❖❖❖

''❖❖❖❖❖❖❖
◦

13
22

⑧⑧⑧⑧
⑧⑧⑧⑧

��

◦

23

$$

F

��

◦
13

,,
❄❄❄❄

❄❄❄❄ ◦

12

::

��⑧⑧⑧⑧

◦ 12 // ◦

1♦♦♦♦♦

x♦♦♦♦♦♦♦

77

C V ×U V ×U V
p23

//
p13 //

p12
// V ×U V

p2
//

p1
// V

That is, Fc(V → U) is the category of all x ∈ F(V ) with all isomorphisms between
the pullbacks along the two projections, and all pullbacks along the other projections
which satisfy the cocycle condition. A choice of cleavage picks out some full subcate-
gory (which we called F(V → U)) of Fc(V → U) which contains at least one element
from each isomorphism class. This inclusion is fully faithful and essentially surjec-
tive (because any two pullbacks of an object are canonically isomorphic), so it is an
equivalence.
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For an object U ∈ C, define Fc(U) to be the category of diagrams

◦ 23 //

��
❄❄❄❄ ◦

σ≀

��

2
❖❖❖❖❖

''❖❖❖❖❖❖❖
◦

13
22

⑧⑧⑧⑧
⑧⑧⑧⑧

��

◦

23

$$

F

��

◦
13

,,
❄❄❄❄

❄❄❄❄ ◦

12

::

��⑧⑧⑧⑧

◦ 12 // ◦

1♦♦♦♦♦

x♦♦♦♦♦♦♦

77

C V ×U V ×U V
p23

//
p13 //

p12
// V ×U V

p2
//

p1
// V // U

u//

Note that this category depends on the morphism V → U . Fc(U) is the category
of all u ∈ F(U), all pullbacks x ∈ F(V ), all isomorphic pairs of pullbacks along the
two projections, and all pullbacks along the other projections which satisfy the cocycle
condition. A choice of cleavage picks out some full subcategory (isomorphic to F(U))
with at least one element in each isomorphism class. In particular Fc(U) is equivalent
to F(U), so it is independent (up to equivalence) of the morphism V → U .

Now F is a stack if the functor Fc(U) → Fc(V → U), given by forgetting u, is an
equivalence. ⋄

Example 24.3 (Stacks generalize sheaves). If F : Cop → Set is a presheaf, then when
is F fib is a stack? Recall that objects in F fib are pairs (U, x), where x ∈ F (U), and
morphisms (U ′, x′) → (U, x) are morphisms f : U ′ → U with Ff(x) = x′. Thus, we
have that F fib(V → U) = {(V, y)|Fp2(y) = Fp1(y) in F (V ×U V )}, and the pullback
functor F fib(U) → F fib(f : V → U) is given by (U, x) 7→

(
V, Ff(x)

)
. This is an

equivalence if and only if F (U) = F fib(U) equalizes the two restrictions F (V ) ⇒

F (V ×U V ). That is, F
fib is a stack if and only if F is a sheaf. ⋄

Example 24.4. When we proved descent for Qcoh and Mg (with g ≥ 2 or g = 0)
in the fppf topology on Sch, we described Qcoh and Mg as lax 2-functors from Schop

to Cat (i.e. we implicitly chose cleavages). Now we can reinterpret Theorem 7.13 and
Proposition 8.2 as saying that Qcoh and Mg (with g ≥ 2 or g = 0) are stacks in the
fppf topology on Sch. ⋄

Remark 24.5. For g = 1, we didn’t prove a descent theorem for Mg. If we modify
the definition of Mg to have objects (S, C/S), where C is a genus g curve over S,
where C is allowed to be an algebraic space (i.e. doesn’t have to be a scheme), then
descent is almost a tautology. [[⋆⋆⋆ I don’t see this tautology yet]] If S = Spec k,
then such a C is actually a scheme (Problem set 5, problem 3). ⋄

Definition 24.6. Let F be a fibered category with some choice of cleavage, and let
x, y ∈ F(U). The presheaf Hom(x, y) : (C/U)op → Set is defined by (f : V → U) 7→
HomF(V )(f

∗x, f ∗y), and if g : W → V is a morphism over U , the restriction map is
given by

HomF(V )(f
∗x, f ∗y)

g∗

−→ HomF(W )(g
∗f ∗x, g∗f ∗y) ∼=

can
HomF(W )

(
(fg)∗x, (fg)∗y

)
.
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Because we define restriction in this way, Hom(x, y) respects composition on the nose,
even if the cleavage you choose is not a splitting. Moreover, different cleavages give
canonically isomorphic presheaves. ⋄

Lemma 24.7. The following are equivalent.

1. For all U ∈ C and all x, y ∈ F(U), Hom(x, y) is a sheaf.

2. For every covering V → U , F(U)→ F(V → U) is fully faithful.

Proof. Observation: Let f : V → U be a covering, and let g = fp1 = fp2 : V ×U V →
U . Then consider the following sequence.

Hom(x, y)(U)
‖

// Hom(x, y)(V )
‖

//
// Hom(x, y)(V ×U V )

‖

HomF(U)(x, y) // HomF(V )(f
∗x, f ∗y) //

// HomF(V ×UV )(g
∗x, g∗y)

An element φ ∈ Hom(x, y)(V ) whose restrictions along the two projections are equal is
exactly a morphism (f ∗x, can)→ (f ∗y, can) in F(V → U) (after unraveling the funny
definition of restriction). Thus, exactness of the above sequence (the sheaf axiom
on Hom(x, y) with respect to the cover V → U) is equivalent to full faithfulness of
F(U)→ F(V → U).

(1⇒ 2) This follows immediately from the observation above.
(2⇒ 1) Let x, y ∈ F(U), let W → U and f : V → U be objects in C/U , and let

W → V be a covering over U . Then we want to verify the sheaf axiom for Hom(x, y)
with respect to the coverW → V . But this is exactly the sheaf axiom for Hom(f ∗x, f ∗y)
with respect to the cover W → V in C/V . By the observation, this is equivalent to full
faithfulness of F(V )→ F(W → V ), which is given to us by (2).

Thus, we may reformulate the stack condition as the following conditions.

1. For every U ∈ C and every x, y ∈ F(U), Hom(x, y) is a sheaf. That is, given two
objects in the fiber over U and a locally defined morphisms which should glue,
do glue.

2. (Effectivity of descent) Objects in F can be defined locally. That is, given a cover
V → U in C, F(U)→ F(V → U) is essentially surjective.

Definition 24.8. A fibered category F → C is a prestack if for every U ∈ C and every
x, y ∈ F(U), Hom(x, y) is a sheaf. ⋄

Remark 24.9. The terminology is unfortunate because “prestack” is not the gener-
alization of “presheaf”; it is the generalization of “separated presheaf”. The general-
ization of “presheaf” is “fibered category”. ⋄
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25 Groupoids. Stackification.

Definition 25.1. A groupoid is a category where all morphisms are isomorphisms. ⋄

We’ll give some examples of groupoids in a moment, but first consider the following
definition.

Definition 25.2. Let C be a category. We define a groupoid object in C to be a 7-tuple
X· = (X0, X1, s, t, i, ε,m), where X0 (objects) and X1 (morphisms) are objects in C,
with morphisms s, t : X1 → X0 (source and target), ε : X0 → X1 (identity map),
i : X1 → X1 (inverse), and m : X1 ×s,X0,t X1 → X1 (composition), subject to the
following relations.

X0
ε //

ε

��

id

!!❇❇❇❇❇❇❇❇ X1

t
��

X1 s
// X0

X1
i //

id
��

X1

s

��

i

}}⑤⑤⑤⑤⑤⑤⑤⑤

X1 t
// X1

X1

s

��

X1 ×s,X0,t X1
p1

oo
p2

//

m

��

X1

t
��

X0 X1
soo t // X0

(inverse) (identity)

X1

s

��

i×id
// X1 ×s,X0,t X1

m

��

X1

t
��

id×i
oo

X0
ε // X1 X0

εoo

X0 ×id,X0,t X1

ε×id

��

X1 X1 ×s,X0,id X0

id×ε

��

X1 ×s,X0,t X1
m //X1 X1 ×s,X0,t X1

moo

(associativity)

X1 ×s,X0,t X1 ×s,X0,t X1
m×id

//

m×id
��

X1 ×s,X0,t X1

m

��

X1 ×s,X0,t X1
m // X1

A groupoid in spaces is a groupoid in the category of algebraic spaces (over some scheme
S). ⋄

Remark 25.3. A (small) groupoid is the same thing as a groupoid object in Set. ⋄

Example 25.4. A group G, thought of as a category, is a groupoid. An equivalence
relation R ⊆ X ×X on a set X can be thought of as a groupoid.

G R ⊆ X ×X
X0, X1 {∗G}, {g ∈ G} X,R
s, t G→ ∗ p2, p1 : R→ X
ε identity element : ∗ → G ∆ : X → R
i inverse : G→ G “flip” : R→ R

m multiplication : G×G→ G X×X×X ⊇ R ×p2,X,p1 R
p13
−−→ R ⊆ X×X
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In the case of the equivalence relation, the existence of the maps ε, i, and m exactly
states that R is reflexive, symmetric, and transitive, respectively. In general, a groupoid

X· is an equivalence relation if and only if X1
s×t
−−→ X0 ×X0 is an inclusion. ⋄

Note that X· is a groupoid object if and only if for every object U ∈ C, the 7-tuple

X·(U) =
(
X0(U), X1(U), s(U), t(U), i(U), ε(U), m(U)

)
is naturally a groupoid. That

is, a groupoid object X· is the same as a functor Cop → Gpoid whose “object functor”
is X0 and whose “arrow functor” is X1.

Definition 25.5. Let X· be a groupoid object in C. Then [X·]ps is the (split) fibered
category over C associated to the functor X· : Cop → Gpoid. ⋄

Lemma 25.6. If C is a category with a subcanonical topology (representable functors
are sheaves), then [X·]ps is a prestack.

Proof. Let U ∈ C, and let x, y ∈ X0(U). We have that U , X0, and X1 are sheaves on
C, so they are sheaves on C/U (by restriction), so the fibered product P is a sheaf on
C/U . For an object (f : T → U) ∈ C/U , we can compute P (T → U) explicitly.

P //

��

·
X1

s×t
��

U
x×y

//X0 ×X0

P (T
f
−→ U) = {α ∈ X1(T )|x ◦ f = s ◦ α, y ◦ f = t ◦ α}

= {α ∈ X1(T )|f ∗x = s(α), f ∗y = t(α)}
= {α ∈ HomX·(T )(f

∗x, f ∗y)}

= Hom(x, y)(T
f
−→ U)

Thus, Hom(x, y) = P is a sheaf on C/U , so [X·]ps is a prestack.

Example 25.7 ([X·]ps need not be a stack). If X1 = R ⇒ X = X0 is an étale equiv-
alence relation, then X·(U) has objects x ∈ X(U) and Hom(x, y) is one point if x ∼ y
and empty otherwise. It follows that the map X·(U)→ X(U)/R(U) is an equivalence
of categories (the second category is the set of connected components of X·(U)). Thus,
[X·]ps is equivalent to the presheaf X/R. Since X/R is not a sheaf in general, [X·]ps
need not be a stack. ⋄

This is not so good, because we want to get the algebraic space quotient X/R, which
you only get after sheafifying the presheaf quotient. For this, we need the following
proposition, which tells us that we can “stackify” a prestack.

Proposition 25.8 (Stackification). Let C be a site with coproducts, and let p : F → C

be a prestack. Then there exists a morphism of prestacks ι : F → F̃ with F̃ a stack,

such that for every stack G, the functor HOM(F̃ ,G)
ι∗
−→ HOM(F ,G) is an equivalence

of categories.

Remark 25.9. This characterizes F̃ and ι : F → F̃ uniquely up to an isomorphism
which is unique up to unique isomorphism of morphisms of stacks. ⋄
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Proof. Choose a cleavage for F and define F̃ as follows. The objects of F̃ are triples
(π : V → U, x, σ) where π : V → U is a covering and (x, σ) ∈ F(V → U). A morphism
(π : V → U, x, σ)→ (V ′ → U ′, x′, σ′) is a pair (f, f̃), where f : U → U ′ is a morphism
in C and f̃ : p∗(π, x, σ)→ q∗g∗(π′, x′, σ′) is a morphism in F(V ×U ′ V ′ → U).1

V ×U ′ V ′ q
//

p

��

U ×U ′ V ′ g
//

��

V ′

π′

��

V
π // U

f
// U ′

x❴

��

∃!α ))❙❙❙ φ

))(pFφ)
∗x′

❴

��

// x′❴

��

U

id ))❙❙❙❙❙❙❙❙❙ pFφ

))
U

pFφ
// U ′

The functor ι : F → F̃ sends an object x ∈ F(U) to (id : U → U, x, can) and a
morphism φ : x → x′ to (pFφ, α), where α is the dashed arrow in the diagram on the
right.

We’ll omit the verification that this works. You have effectivity of descent basically
for free.[[⋆⋆⋆ I’d like to work it out]]

Definition 25.10. [X·] is the stackification of [X·]ps. ⋄

Remark 25.11. From the proof, we see that ι is fully faithful. This is analogous to
the fact that the morphism from a separated presheaf to its sheafification is injective.
One can prove a similar theorem which says that you can stackify a fibered category,
but then ι will not be fully faithful. [[⋆⋆⋆ does the same construction work for
fibered categories, or do you have to pre-stackify before you stackify, like we had to do
for sheaves?]] ⋄

Lemma 25.12. If F is a prestack in sets (resp. groupoids), then F̃ is (equivalent to)
a stack in sets (resp. groupoids).

Proof. First let F be a prestack in sets. Let U ∈ C, let x̃ = (π : V → U, x, σ), x̃′ =
(π′ : V ′ → U, x′, σ′) ∈ F̃(U). Then we have that

HomF̃(U)(x̃, x̃
′) = HomF(V ×UV ′→U)(p

∗x̃, q∗x̃′) ⊆ HomF(V ×UV ′)(p
∗x̃, q∗x̃′).

Since F(V ×U V ) is a set, there is at most one element in the right hand side. In
general, if an isomorphism in F(V ×U V → U) respects some descent data, so does its
inverse. Thus, the one element of HomF̃(U)(x̃, x̃

′), if it exists, is an isomorphism. Thus,

F̃ is a stack in discrete groupoids, so it is equivalent to a stack in sets.
Similarly, if F is a prestack in groupoids, then all elements of HomF̃(U)(x̃, x̃

′) are

isomorphisms, so F̃ is a stack in groupoids.

1Intuitively, f̃ should be a morphism from (π, x, σ) to g∗(π′, x′, σ′), but to make sense of such
a morphism you need to take the common refinement of V → U and U ×U ′ V ′ → U , which is
V ×U (U ×U ′ V ′) = V ×U ′ V ′.
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Corollary 25.13. If F is a separated presheaf on C and F̃ is the sheafification of F ,

then (F̃ )fib ∼= F̃ fib.

Proof. Since F fib is fibered in sets, F̃ fib is also fibered in sets, so it is Rfib for some
sheaf R (by Proposition 22.10). Then for any sheaf G, we have the following natural
bijection.

Hom(R,G) = HOM(Rfib, Gfib) = HOM(F̃ fib, Gfib)
∼
−→ HOM(F fib, Gfib) = Hom(F,G)

But the unique sheaf R which satisfies such a natural bijection is the sheafification F̃ .

Thus, we have that (F̃ )fib ∼= F̃ fib.

Example 25.14 (Example 25.7 continued). Let R ⊆ X × X be an étale equivalence
relation on an algebraic space X . We have shown that [X/R]ps is equivalent to the
fibered category associated to the presheaf X/R. By the corollary, the stack [X/R] is
equivalent to the fibered category associated to the algebraic space quotient X/R. ⋄
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26 Quotients by group actions

The construction of the stackification of a prestack is difficult to work with. Corollary
25.13 tells us how to deal with the stackification of a prestack in sets, but we want to
understand other stackifications. In practice, you guess what the stackification is, and
then use the following lemma.

Lemma 26.1. Let F → C be a prestack, let ρ : F → G be a morphism to a stack, and
assume that

1. for every U ∈ C, the functor F(U)→ G(U) is fully faithful, and

2. for every U ∈ C and every x ∈ G(U), there exists a covering V → U and
y ∈ F(V ) with a cartesian arrow ρ(y)→ x over V → U .

Then the functor ρ̃ : F̃ → G is an equivalence.

Proof. (Essential surjectivity) Condition (1) implies ρ is fully faithful by Lemma 21.14.
Given x ∈ G(U), condition (2) produces some cover π : V → U and some y ∈ F(V )
with ρ(y) = π∗x. Since π∗x comes with descent data with respect to π and since ρ is
fully faithful, we get descent data for y. Together with this descent data, y gives an
element of F̃ which maps to x.

(Full faithfulness) By Lemma 21.14, it is enough to check full faithfulness on fibers.
Given x, z ∈ F̃(U), we can represent them as elements ξ, ζ ∈ F(V → U) for some cover
V → U (take a common refinement if necessary). Then we have that HomF(U)(x, z) =
HomF(V→U)(ξ, ζ),

1. By condition (1), HomF(V→U)(ξ, ζ) ∼= HomG(V→U)

(
ρ(ξ), ρ(ζ)

)
.

The sheaf axiom for Hom tells us that HomG(V→U)

(
ρ(ξ), ρ(ζ)

)
∼= HomG(U)

(
ρ̃(x), ρ̃(z)

)
.

Thus, the composition HomF̃(U)(x, z)→ HomG(U)

(
ρ̃(x), ρ̃(z)

)
is a bijection.

Let C = Sch/S with the étale topology, let Y → S be an algebraic space, and let
G be a group space over S acting on Y . Then we get the groupoid below, from which
we form the pre-stack [Y·]ps, which gives us the stack [Y·].

Y0 = Y, Y1 = Y ×G
s : Y ×G→ Y, (y, g) 7→ y ε : Y → Y ×G, y 7→ (y, e)
t : Y ×G→ Y, (y, g) 7→ gy i : Y ×G→ Y ×G, (y, g) 7→ (gy, g−1)
m : (Y ×G)×s,Y,t (Y ×G)→ Y ×G,

(
(gy, h), (y, g)

)
7→ (y, hg)

We’d like to get our hands on the stack [Y·], but we don’t want to deal with the
stackification construction, so we guess the answer and use the lemma above.

Definition 26.2. Let G be a group object in a site C (in which finite projective limits
are representable), let X be an object in C, and let P ∈ C/X have a G-action over X .
We say that P is a G-torsor over X if it is locally trivial (i.e. if there exists a cover
X ′ → X so that X ′ ×X P ∼= X ′ ×G). [[⋆⋆⋆ Is this the right definition? everybody
keeps saying the words “acts transitively” on something]] ⋄

1Ok, so we should really replace V by V ×U V , but that is confusing.
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Definition 26.3. If G is a group space and Y is an algebraic space with a G-action,
then [Y/G] is defined to be the fibered category whose objects (over a scheme U) are

diagrams U ← P
ρ
−→ Y , where P → U is a G-torsor (which may be an algebraic space))

and ρ : P → Y is a G-equivariant morphism, and whose morphisms are diagrams as
below, where f̃ : P ′ → P is G-equivariant.

U ′

f

��

P ′oo

f̃
��

ρ′

''❖❖❖❖❖❖

Y

U Poo
ρ

77♦♦♦♦♦♦

Note that G-equivariance of f̃ implies that the square is cartesian. In particular, the
fibers of [Y/G] are groupoids. ⋄

Proposition 26.4. If the diagonal morphism G → G × G belongs to an effective
descent class (e.g. if G is a scheme), then [Y/G] is a stack.

Proof. [[⋆⋆⋆ this proof is quick, does it need to be expanded?]] First note that if
G→ G×G is in some effective descent class, then for anyG-torsor P → U , P → P×UP
belongs to the same effective descent class. To see this, let U ′ → U be an étale cover
of U , over which P becomes trival. Then observe that that the diagram below consists
of two cartesian squares.

U ′

��

U ′ ×G

��

oo
idU′ ×∆G

// U ′ ×G×G

��

∼= (U ′ ×G)×U ′ (U ′ ×G)

U Poo ∆ // P ×U P

Now let U ′ → U be an étale cover, and let U ′ ← P ′ ρ′

−→ Y be an element of [Y/G](U ′)
together with descent data for the morphism U ′ → U . By descent for algebraic spaces
(Theorem A4.3), P ′ is the pull-back of an algebraic space P over U . Moreover, we get
the descent of all the diagrams that make P ′ a G-torsor, so P is a G-torsor over U .
Finally, since hY is a sheaf on AlgSp with the étale topology, we get a G-equivariant
morphism P → Y .

Proposition 26.5. [Y·] ∼= [Y/G].

Proof. We define a morphism of fibered categories [Y·]ps → [Y/G] by sending y ∈ Y (U)
to the trivial torsor U × G → U with the G-equivariant morphism U × G → Y given
by (u, g) 7→ gy. We see that [Y·]ps(U)→ [Y/G](U) is fully faithful with essential image
equal to the subcategory of diagrams U ← P → Y where P is a trivial torsor [[⋆⋆⋆

exercise]]. Since any torsor is étale locally trivial, Lemma 26.1 says that the induced
map [Y·]→ [Y/G] is an isomorphism.
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Example 26.6. Let Y be a scheme and let G be a finite group which acts freely on Y .
Then [Y/G] (the stack quotient) is isomorphic to Y/G (the algebraic space quotient).
Define a map σ : [Y/G]→ Y/G as follows. If U is a scheme and P is a G-torsor over U
with P → Y G-equivariant, then we get a map U = P/G→ Y/G, and this is natural
in P and U , so it gives us a map σ. To go in the other direction, if we have U → Y/G,
then we get a G-torsor U ×Y/G Y over Y with a G-equivariant projection to Y . That

is, Y/G← Y
id
−→ Y is an object in [Y/G](Y/G). ⋄

Example 26.7. The non-free actions are more interesting. If Y = X , with the trivial
G-action, then we call [Y/G] the classifying stack BXG. ⋄

A while back, we proved that if C is a category, then presheaves on C are equivalent
to categories fibered in sets. If F is any fibered category over C in groupoids, you can
define F̄ to be the presheaf given by U 7→ {iso-classes in F(U)}. There is a morphism
of fibered categories F → F̄ [[⋆⋆⋆ ]]. When is this an equivalence? Given two
objects, there must exist at most one arrow between them in F(U) (i.e. F is discrete).
That is, there are no non-trivial automorphisms.

Example 26.8. In the case of U ← P
ρ
−→ Y , we need to check that there are no non-

trivial automorphisms α : P → P such that ρ ◦ α = ρ. To check that α must be the
identity, we can replace U by a cover and assume P is trivial; choose a section s : U →
P . Then α(s) = gs for some g ∈ G(U). Then we get ρ(s) = ρα(s) = ρ(gs) = gρ(s).
But G acts freely on Y (U), so we get that g = id. ⋄
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Definition 27.1 (Coproducts). If C is a site and {Xi}i∈I are fibered categories over
C, then we define

∐
Xi to be a fibered category with objects (i ∈ I, x ∈ Xi), and

Hom
(
(j, y ∈ Xj), (i, x ∈ Xi)

)
=

{
∅ i 6= j

HomXi
(y, x) else

. Note that if all the Xi are

stacks (resp. stacks fibered in groupoids), then so is the coproduct. ⋄

Definition 27.2 (Fiber Products). If Z
F
−→ Y

G
←− X is a diagram of fibered categories

over C, then define X ×YZ to be the fibered category over C whose objects are 4-tuples
(U, x, z, η), where U ∈ C, x ∈ X (U), z ∈ Z(U), and η : Fz

∼
−→ Gx is an isomorphism in

Y(U). A morphism (U ′, x′, z′, η′)→ (U, x, z, η) is a pair of morphisms χ : x′ → x in X
and ζ : z′ → z in Z lying over the same morphism U ′ → U in C, so that the following
diagram in Y commutes.

Fz′
η′

//

Fζ
��

Gx′

Gχ
��

Fz
η

// Gx ⋄

One can check that if X , Y , and Z are stacks (resp. stacks in groupoids), then so
is X ×Y Z.[[⋆⋆⋆ exercise]]

We saw in Lemma A5.11 that fiber products exist in the category of categories.
One can see that the fibered product defined above has the property that for any
fibered category F over C, the functor HOMC(F ,X ×YZ)→ HOMC(F ,X )×HOMC(F ,Y)

HOMC(F ,Z) is an equivalence of categories, and that this functor being an equivalence
of categories is exactly the condition that X ×Y Z is the fibered product in the sense
of Definition A5.8. That is, fiber products are representable in the 2-category of stacks
over C.

Example 27.3. Let f : X → Y be a morphism of fibered categories, then we can form
X ×Y X , and we get the diagonal ∆X : X → X ×Y X , given by x 7→ (x, x, idf(x)). ⋄

The basic model for the rest of the course are things of the form [X·], in which all the
fibers are groupoids. From now on, “stack” will mean “stack in groupoids”

unless otherwise stated.

Remark 27.4. Being a category fibered in groupoids is equivalent to all arrows being
cartesian. Suppose f : V → U , with z → u over f . There is some cartesian arrow
f ∗u→ u, and z → u factors through it by the cartesian property. Since the fiber over
V is a groupoid, we get that z ∼= f ∗u, so z → u is cartesian.

Conversely, if every arrow is cartesian, then any arrow in the fiber is a pullback
along the identity morphism, so it is isomorphic to the identity pullback (i.e. it is an
isomorphism; in fact, any pullback along an isomorphism is an isomorphism). ⋄
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Remark 27.5. Every base-preserving functor to a category fibered in groupoids takes
cartesian arrows to cartesian arrows, so it is a morphism of fibered categories. ⋄

Notation: All morphisms in fibers are now isomorphisms, so instead of Hom(x, y)
(see Definition 24.6) we’ll write Isom(x, y).

Example 27.6. Let X be a stack in groupoids over C, and U and V be object in
C (which are sheaves), and let u ∈ X (U), v ∈ X (V ). By the 2-Yoneda lemma, we
may think of these as morphisms u : U → X and v : V → X (where we interpret
U and V as their associated fibered categories, C/U and C/V ). If pU : U × V → U
and pV : U × V → V are the projections, then we see that U ×X V = Isom(p∗Uu, p

∗
V v)

(we can think of this as a fibered category over C/(U × V ), which is fibered over C,
so we can think of Isom(p∗Uu, p

∗
V v) as fibered over C) [[⋆⋆⋆ does this need to be

expanded?]]. As usual, this is independent of cleavage up to equivalence.
Note that

1. U ×X V is fibered in sets (because it is the sheaf Isom(p∗Uu, p
∗
V v)).

2. U ×X V → U × V need not be a monomorphism. That is, given g : T → U × V ,
there may be more than one isomorphism between g∗p∗Uu and g∗p∗V v in the fiber
X (T ). ⋄

Definition 27.7. A stack is representable if it is equivalent to an algebraic space. A
morphism of stacks f : X → Y is representable if for every scheme U over S and every
u : U → Y , the fiber product U ×Y X is representable. ⋄

Definition 27.8. Let P be an (étale) stable property of morphisms of algebraic spaces.
Then a representable morphism of stacks f : X → Y has P if for every scheme U over
S and u : U → Y , the map U ×Y X → U has P. ⋄

Example 27.9. surjective, universally open (or closed), separated, quasi-compact, lo-
cally of finite type, flat, smooth, etc. ⋄

Definition 27.10. A stack in groupoids X over (Sch/S)et is algebraic if the following
hold.

1. ∆ : X → X ×S X is representable. [[⋆⋆⋆ does this imply that X is a stack
in groupoids? probly not; it’s just that groupoids are the next level up from sets
. . . next would be simplicial objects with no homotopy higher than 2?]]

2. There exists a scheme X over S and a smooth surjection X → X . This makes
sense because condition (1) implies that any morphism from a scheme to X is
representable.

⋄
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Remark 27.11. This definition of representability of a morphism of stacks is unfor-
tunate. It really should say “X → Y is representable if for every algebraic space U
and every u : U → Y , the fiber product U ×Y X is equivalent to an algebraic space”.
Consider the following variations of condition (2) in the definition above.

1. ∆ : X → X ×S X is representable,

2. for every scheme U , and every x, y ∈ X (U), Isom(x, y) is an algebraic space,

3. for every scheme U , every u : U → X is representable,

4. for every algebraic space U , every u : U → X is representable.

We saw in Example 27.6 that (2) is equivalent to (3), and (1) implies (3) (the proof of
Lemma 10.15 works). To see that (3) implies (1), observe that for a morphism from
a scheme f × g : T → X × X , we have that T ×X×X X ∼= (T ×f,X,g T ) ×T×T T . It is
clear that (4) implies (3). Under certain circumstances [[⋆⋆⋆ which are?]], we will
see that (3) implies (4). ⋄
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Lemma 28.1. Let f : X → X be a representable morphism from a stack to an algebraic
space. Then X is an algebraic space.

Proof. First we check that X is equivalent to a sheaf (i.e. that it is fibered in discrete
groupoids). To do this, it is enough to show that there are no non-identity automor-
phisms in the fibers of X . Let x ∈ X (T ) for some scheme T , thought of as a morphism
x : T → X .

(1) Let F : (Sch/S)op be the presheaf given by (T → X) 7→ {isomorphism classes
in X (T )}. Then X → F fib is an equivalence. That is, X (T ) → π0

(
X (T )

)
is an

equivalence of categories ([[⋆⋆⋆ exercise]] it is enough to check that objects of X (T )
have no non-trivial automorphisms). To see this, let x ∈ X (T ), then we have

(x, id, id) ∈ X ×X T //

��

T

f(x)
��

X // X

An automorphism of x gives an automorphism of (x, id, id), which can’t happen because
the product is an algebraic space (so fibered in sets).

(2) Check that F is an algebraic space. It is a sheaf for free.
(a) F → F ×X F is representable (by schemes). Let T → F × F be a morphism

from a scheme, then T ×F×F F ∼= (F ×X T ) ×(F×XT )×T (F×XT ) T , so it is a scheme
(because F ×X T is an algebraic space, so its diagonal is representable). This implies
that F → F × F is representable [[⋆⋆⋆ as in appendix]]

(b) Let U → X be an étale cover by a scheme, let V = F ×X U (which is an
algebraic space), and let V ′ → V be an étale cover by a scheme. Then V ′ → F is an
étale cover.

Corollary 28.2. If X is an algebraic stack, then any morphism x : X → X from an
algebraic space is representable.

Proof. Let T be a scheme with a morphism to X .

PU //

��

U

��

P //

��

X

��

T // X

We see that P → X is representable (for any U , PU is an algebraic space because it is
U ×X T ), so P is an algebraic space by the lemma.
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Example 28.3. This is a main source of algebraic stacks. Let Y/S be an algebraic
space, and let G/S be a smooth group scheme. Then X = [Y/G] is an algebraic stack.

Recall that [Y/G](T → S) is the groupoid of diagrams T
GT←−− P

ρ
−→ Y , where P → T

is a G-torsor and P → Y is G-equivariant.

Proof. Representability of the diagonal: consider

Isom
(
(P1, ρ1), (P2, ρ2)

)
//

��

T

(P1,ρ1)×(P2,ρ2)

��

X ∆ // X × X

P1

��

ρ1

''PPPPPPPPPPPPPPP

P2 ρ2
//

~~⑥⑥⑥⑥⑥⑥⑥⑥
Y

T

I : (Sch/T )op → Set is given by (T ′ → T ) 7→ {σ : P1,T ′

∼
−→ P2,T ′ such that ρ1 = ρ2 ◦ σ}.

To show that I is an algebraic space, it is enough to consider the case where there exist
sections s1 : T → Pi (because we can work étale locally, and torsors are locally trivial).

We see that I ⊆ GT . GT is in bijection with isomorphisms σ : P1 → P2, given by
σ 7→ the unique g such that σ(s1) = gs2. We have

I

��

//

·
Y

��

GT

��

// Y × Y

T

g 7→
(
ρ1(s1), gρ2(s2)

)

(Aside: If Y is separated, then I is a closed subscheme of GT . If G was affine, we’d
get descent for schemes, so I would be a scheme.)

Smooth cover: Y → [Y/G].What does Y represent? If T → [Y/G], what does
it mean for the map to factor through Y ? It is the same as choosing a section T →
T ×[Y/G]Y . Thus, Y represents the functor of triples (P, ρ, s), where s is a trivialization
of the torsor P . ⋄

⋄

Example 28.4. If Y = Spec k and G is a smooth group scheme, then the universal
torsor is Spec k → [Spec k/G], which looks kind of boring, but thats what it is. ⋄

Example 28.5 (Weighted projective stack). Let α0, . . . , αn ∈ Z. Then we define the
weighted projective stack P̃(α0, . . . , αn) = [(An+1r{0})/Gm], where the action is given
by u · (x0, . . . , xn) = (uα0x0, . . . , u

αnxn). ⋄
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Application toM1,1. Recall that objects ofM1,1 are pairs (S, E // S
uu

) and mor-
phisms are cartesian diagrams.

E ′

��

// E

��

S ′ //

HH

S

VV

Goal: see this in a weighted projective stack (in fact,M1,1
∼= P̃(4, 6) over Z[1/6]).

Let’s start with Y : (Sch/Z[1/6])op → Set, given by S 7→ {(E/S, e, b : OS
∼
−→

ωE/S)}/ ∼=, where ωE/S = f∗Ω
1
E/S (this is locally free of rank 1 and commutes with

arbitrary base change), and where an isomorphism of elliptic curves σ : E
∼
−→ E ′

induces an isomorphism f∗(σ) : ωE/S
∼
−→ ωE′/S, and we only allow the isomorphisms

which work well with b and b′. In fact, we could make a category, but it turns out that
that category is equivalent to this set.

As a stack,M1,1 should be Y/Gm because b is unique up to the action of Gm.

Proposition 28.6. Y is represented by Y ′ = SpecZ[1/6][g2, g3][1/∆] ⊆ A2
Z[1/6], where

∆ = g32 − 27g23.

The action of Gm is given by g2 7→ u4g2, g3 7→ u6g3. We’ll see thatM1,1 = [Y/Gm].

Proof. (This is in [Har77]) Define E ′ // Y ′
e
tt

by (2y)2 = 4x3−g2x−g3, with b′ = −dx/2y
giving us an isomorphism OY ′

∼
−→ f∗Ω

1
E′/Y ′. So this gives us a morphism of functors

Y ′ → Y . To check that it is an isomorphism, we need to show that for every scheme
S = SpecA (we can assume affine because we could define it as a stack and check
sheafy, so we can work locally) and (E, e, b) ∈ Y (S), there exists a unique g2, g3 such
that (E, e, b) is given by (E ′, e′, b′)(g2,g3).

We have E // SpecA
e

uu
. Let ÔE,e = lim←−OE/I

n
e
∼= A[[T ]]. Choose T such that

b = (1+higher terms) · dT ; this choice is unique up to T 7→ T+higher terms. We
have that f∗Ine is locally free of rank n for n ≥ 2. Shrink a little to make it free
for n = 2. Choose a basis 1, x for f∗I2e so that x = 1

T 2 (1+higher), and choose a
basis 1, x, y for f∗I3e so that y = 1

T 3 (1+higher). Then you get that you can write
y2+a1xy+a3y = x3+a2x

2+a4x+a6. Exercise: There is a unique choice of y such that
a1 = a3 = 0 and a unique choice of x so that a2 = 0. Thus, we get y2 = x3 + a4x+ a6.
Let g2 = −4a4 and g3 = −4a6.

It remains to see what the action is. Let u ∈ Gm(A) = A×. Then T is replaced by
uT , x gets replaced by u−2x, and y gets replaced by u−3y. So g2 gets replaced by u4g2
and g3 gets replaced by u6g3.

Upshot: M1,1
∼= [Y/Gm].
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Recall that last time we saw that M1,1 was algebraic over Z[1/6]. We did this by
finding some open subset U ⊆ A2 which was invariant under the (4, 6) Gm action on
A2. And we saw that M1,1

∼= [U/Gm]. In general, you don’t have such a delicate
analysis, but this is the way to show algebraicity. You use the Hiblert scheme or the
Quot functor.

Aside on the Quot functor. (Grothendieck, Seminars Boubaki, 1960/61, no. 221)
Let f : X → S be a separated morphism of finite presentation. Let L be relatively
ample on X , and let P ∈ Q[z] (the Hilbert polynomial). Also, fix a quasi-coherent
sheaf F on X . Then we can define QuotP (F/X/S) : (Sch/S)op → Set by (S ′ → S) 7→{
FS′ ։ G|FS′ the pullback of F to XS′ = X×SS ′, G quasi-coherent and locally finitely

presented (basically coherent), G has support proper over S ′, and for every s′ ∈ S ′, the
Hilbert polynomial (makes sense because may as well replace X by the support[[⋆⋆⋆

I missed some stuff]]) of GS′ = G|XS′ is equal to P
}
/ ∼=, where isomorphism is

FS′ // //

!! !!❇❇❇❇❇❇❇❇ G1

≀ f
��

G2

Such an iso is unique if it exists because of surjectivity.

Theorem 29.1 (Grothendieck). If F is locally finitely presented, QuotP (F/X/S) is a
quasi-projective S-scheme (projective if X → S is proper).

In fact, you get a nice projective embedding into a Grassmanian.

Remark 29.2. If F = OX , then QuotP (F/X/S) is usually written HilbPX/S, the
Hilbert scheme. ⋄

Example 29.3 (Hartshorne’s comment). Suppose F =
⊕
OX , then we can take G to

be a quotient of any one of them, so it looks like we’ll get an infinite disjoint union.
Maybe the theorem only holds if F is locally finitely presented. ⋄

Remark 29.4. If f : X → S is locally finitely presented and separated morphism of
algebraic spaces, and F is quasi-coherent on X , then we can still define Quot(F/X/S).
The ample part is only used for the Hilbert polynomial part. This is an algebraic space
and is quasi-proper (satisfies the valuative criterion, but may not be finite something
[[⋆⋆⋆ ]]) if X → S is proper. ⋄

Example 29.5. If g ≥ 2, thenMg is algebraic. The idea is the same as forM1,1. Put
some extra structure to get something representable by a scheme and then quotient out
the extra structure. If (π : C → S) ∈Mg(S), then one can show (by Riemann-Roch)

– (Ω1
C/S)

⊗3 is relatively very ample.
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– VC = π∗(Ω
1
C/S)

⊗3 has rank 5(g − 1).

– π∗(Ω
1
C/S)

⊗n has rank (2n− 1)(g − 1) for n ≥ 3.

This stuff implies that for all s ∈ S, the Hilbert polynomial of Cs is P = (6z − 1)(g −
1) (here L = (Ω1

C/S)
⊗3) because n = 3z. You have to compute the dimension of

H0(L⊗m) = (6m− 1)(g − 1).
Let M̃g be the functor Schop → Set given by S 7→ {(C/S, σ : P5g−6) ∼

−→ PVC)}/ ∼=,
where (C1, σ1) ∼= (C2, σ2) if there is an isomorphism i : C1

∼
−→ C2 over S such that

P5g−6 σ1 //

σ2
##●●●●●●●●●● PVC1

i
��

C1
? _oo

i

��

PVC2 C2
? _oo

There is at most one such isomorphism because some stuff has to respect embeddings.
Concretely, they are equivalent if the images of the curves in P5g−6 are equal.

Thus, we see that we get a subfunctor j : M̃g →֒ Hilb
(6z−1)(g−1)
P5g−6 . Let P = (6z −

1)(g − 1).

Lemma 29.6. Let X →֒ P5g−6 (a morphism over S) be an S-valued point of HilbPP5g−6.
Then the set of points s ∈ S for which Xs is a smooth genus g curve is an open set.
This lemma is true without anything about 5g − 6; genus is constant in a flat family.

Proof. (1) the condition that X → S is smooth is open in S. After some reduction,
you can assume S and X are noetherian, so the set of points where stuff is not smooth
is closed, and X → S is proper, so the image in S is closed.

(2) the semi-continuity theorem implies that the set of points where the fiber is
geometrically connected is open.

Now after shrinking on S, we can assume X → S is smooth proper with fibers
geometrically connected.

(3) Xs smooth geometrically connected and the Hilbert polynomial is (6z−1)(g−1)
implies that Xs is a genus g curve. ⋄

[[⋆⋆⋆ Hartshorne: you need that some embedding is given by the tri-canonical
system, so it looks like M̃g is a closed subset of this open thing]]

Corollary 29.7. M̃g is represented by an open subscheme of HilbPP5g−6.

To be corrected
Then we want to say thatMg

∼= [M̃g/PGL5g−6] (quotient out by the choice of the
isomorphism σ). We have a map M̃g →Mg, given by (C, σ) 7→ C. By uniqueness of
isomorphisms, this gives a morphism of fibered categories. This induces a morphism
of fibered categories

[M̃g/PGL5g−6]
ps →Mg. (∗)

Lemma 29.8. This map induces an isomorphism [M̃g/PGL5g−6]
∼
−→Mg.
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Proof. It is enough to show that (∗) is fully faithful, because it is clear that every point
is locally in the image (we can always locally choose a basis for the locally free sheaf).
Equivalently, given (C1, σ1) and (C2, σ2) in M̃g(S) and an isomorphism ι : C1 → C2,
there is a unique h ∈ PGL5g−6(S) such that

P5g−6

h
��

σ1 // PVC1

≀ ι

��

P5g−6 σ2 // PVC2

and we see that there is no choice for h, it has to be the composition. ⋄

⋄

Definition 29.9. An algebraic stack X over S is Deligne-Mumford if there exists an
étale surjection U → X with U a scheme. (sometimes people require the diagonal to
be finite). ⋄

Remark 29.10. M1,1 and Mg are Deligne-Mumford. The way we’ve done things,
it looks like it might be hard to show this. We’ll see that an algebraic stack X is
Deligne-Mumford if and only if “objects have no infinitesimal automorphisms”. It is a
purely deformation-theoretic thing. For theMg andM1,1 cases, this will follow from
the fact that H0(C, T ) = 0. ⋄

Corrected proof thatMg is algebraic.
It is still correct thatMg is represented by a locally closed subscheme of the Hilbert

scheme, but this is hard (it requires knowledge of the relative Picard functor)[[⋆⋆⋆

there are some diagrams about this in Ed’s notes, but I don’t understand them]]. The
following argument will bypass this.

Let S be a fixed base scheme. Let X be quasi-projective, flat, and finitely presented
over S, and let Y be quasi-projective and finitely presented over S. We define the
functor Hom(X, Y ) : (Sch/S)op → Set by (S ′ → S) 7→ HomS′(XS′, YS′).

Proposition 29.11. Hom(X, Y ) is a scheme.

Proof. To give an element of HomS′(XS′, YS′), it is enough to give its graph (a sub-
scheme of XS′ ×S′ YS′ = (X ×S Y )S′), so we get a morphism Hom(X, Y )→ HilbX×SY ,
given by (f : XS′ → YS′) 7→ Γf ⊆ (X ×S Y )S′. Note that Γf is proper and flat over the
base since X is projective and flat [[⋆⋆⋆ ]], so Γf is a point of the Hilbert scheme.
Also, Y is [[⋆⋆⋆ something]]

Claim: This identifies Hom(X, Y ) with an open subscheme of HilbX×SY . To see
this, stare that the following diagram.

Γ � � //

((◗◗◗◗◗◗◗◗◗◗◗◗◗◗◗ (X ×S Y )×S HilbX×SY
//

��

X ×S HilbX×SY

tt✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐

HilbX×SY



29 Hilb and Quot 115

[[⋆⋆⋆ I haven’t thought about this yet.]]

Lemma 29.12. Let f : Γ → X be a morphism of proper, flat, finitely presented S-
schemes. Then there is an open set U ⊆ S so that a morphism S ′ → S factors through
U if and only if ΓS′ → XS′ is an isomorphism.

Proof. There is a fiber-wise criterion for being étale [EGA, IV.17.8.2], which implies
that if γ ∈ Γ is a point with image s ∈ S, then ΓS → XS is étale at γ if and only
Γ→ X is étale at γ.

Let Z ⊆ Γ be the closed subset where f is not étale, and replace S by the com-
plement of the (closed) image of Z in S (Γ is proper over the base). This reduces to
the case where f is proper and étale (and therefore finite étale). Such a morphism
has a rank, which we want to be 1. Let W ⊆ X be the open and closed [[⋆⋆⋆ ]]
subset where rk(f∗OΓ) > 1, and take U to be the complement of the image of W in S.

�Lemma

DefineM′
g to be the category of pairs (C, τ), where π : C → S is a genus g curve

over S and τ : O5(g−1)
S

∼
−→ VC = π∗(Ω

1
C/S)

⊗3 is an isomorphism; the morphisms are

what you expect. Define a morphism M′
g → HilbP5g−6 by taking (C, τ) to the closed

subscheme of P5g−6
S corresponding to the closed immersion jτ : C

can
−֒→ PVC

Pτ
−→
∼

P5g−6
S ,

or
(
C, (Ω1

C/S)
⊗3) →֒

(
PVC ,OPVC (1)

) τ
−→

(
P5g−6
S ,O(1)

)
[[⋆⋆⋆ I don’t think this is

clearer]]
Given π : C → S, what is {τ : O5g−5

S

∼
−→ VC}? It is close to {(j, ι)|j : C →֒ P5g−6, ι :

j⋆O(1)
∼
−→ (Ω1

C/S)
⊗3}. In fact, there is a map τ 7→ (jτ , can). You can go in the other

direction: given (j, ι), you get a map by the adjunction

O5g−5
X

//

��

π∗j
∗OP5g−6(1)

ι

��

VC = π∗(Ω
1
C/S)

⊗3

Let T be the total space of the Gm-torsor of isomorphisms, and let Φ be the fiber
product shown (Φ classifies (C/S, j, ι))

Φ //

��

·
Hom(CU , T )

��

U id// Hom(CU , CU)

T // CU
� � jU //

��

P5g−6
U

zz✉✉✉✉✉✉✉✉✉✉

Φ // U ⊆ HilbP5g−6

More precisely, Φ is the functor S 7→ {(C/S, j : C →֒ P5g−6, ι : j⋆O(1)
∼
−→ (Ω1

C/S)
⊗3)}

and U is the funct S 7→ (C/S, j).
To getMg: M′

g has an action ofGL5g−5. Say g ∈ GL5g−5, then we define g·(C/S, τ :

O5g−5
S

∼
−→ VC) = (C/S, τ · g : O5g−5

S
∼
−→ VC)
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[[⋆⋆⋆ the following stuff needs to go somewhere]]
If C is a site and F is a fibered category over C, then a global section of F is, for

each object X ∈ C, an element αX ∈ F (X) such that for every morphism f : X → Y in
C, we have f ∗αY ∼= αX . Two such choices α and α′ are considered the same if αX and
α′
X are isomorphic in the fiber F (X) for every X . In the case where C = Sch/X (or

any other site with a final object) for some scheme X and F is a sheaf on X , this really
corresponds to a section of F over X since all the others can be obtained by pullback.
The set of global sections of F on C will be denoted Γ(C, F ) or Γ(T, F ), where T is the
topos of C. To see that this is independent of the site (for F a sheaf), just note that
Γ(C, F ) = HomT(∗, F ), where ∗ is the punctual sheaf (terminal object in T). [[⋆⋆⋆

how to do this if F a fibered category? I guess define T as the 2-category of fibered
categories over C, then Γ(T, F ) is parametrized by isoclasses of HOM(∗, F )]]

Define cohomology. First prove that the category Ab(C) of sheaves of abelian groups
on C has enough injectives [[⋆⋆⋆ The topos has to have “enough points” and not all
Topoi do have enough points. See Lemmas 19.4 and 19.5. Deligne has some criteria for
when a topos has enough points in [SGA, 4.VI.9]. See [SGA, 4.IV.7] for a topos with
no points]]. Given a sheaf of abelian groups µ, take an injective resolution 0→ µ→ I·.
Then H i(C, µ) is defined to be the i-th homology of the complex Γ(C, I·).

[[⋆⋆⋆ /stuff]]

Definition 30.1. Let C be a site, let µ be a sheaf of groups on C, let P → X be a
morphism from a sheaf P on C to an object X ∈ C, and assume µ acts on P over X .
We say P is a µ-torsor over X if there is a cover Z → X in C and a µ-equivariant
isomorphism of sheaves Z ×X P ∼= Z × µ. We call X × µ the trivial µ-torsor. [[⋆⋆⋆

It’s okay that we insisted torsors be algebraic spaces before by Corollary 30.9. We used
descent for algebraic spaces in the proof of Prop 26.4, but we could have just as easily
used descent for torsors (which follows almost immediately from decent for sheaves)
together with that corollary.]]

A morphism of µ-torsors (P ′ → X ′)
(f,f̄)
−−→ (P → X) is a morphism f̄ : X ′ → X and

a µ-equivariant morphism f : P ′ → P such that the following square commutes.

P ′ f
//

��

P

��

X ′ f̄
// X

The category of µ-torsors is denoted Tors(µ). ⋄

Remark 30.2 (An alternative definition). Let µ is a sheaf of abelian groups on X
(i.e. on C/X), and let P be a sheaf on X with an action of µ. Then P is a µ-torsor if
and only if there is some cover Z → X so that P |Z ∼= µ|Z as sheaves on Z.

To see that these definitions are equivalent, use Exercise 4.2: the category of sheaves
on C with a morphism to X is equivalent the category of sheaves on C/X .
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Incidently, this allows us to define a tosor on a site. If µ is a sheaf of abelian groups
on C and P is a sheaf on C with a µ action, P is a µ-torsor if for every object X , P |X
is a µ|X-torsor. This is equivalent to an element of Γ(C,Tors(µ)). ⋄

Note that Tors(µ) is fibered over C. A torsor P → X lies over the object X and
the pullback of a torsor is a torsor.

Lemma 30.3. The category Tors(µ) is a stack over C.

Proof. This follows almost immediately from descent for sheaves (Theorem 7.5). If
P ′ → Z is a µ-torsor with descent data with respect to the cover Z → X , then the
theorem tells us that there is a unique sheaf P over X whose pullback is P ′. The
theorem also descends the action of µ on P ′ to an action of µ on P (note that the
pullback of µ to Z is just the restriction of µ to the site C/Z). [[⋆⋆⋆ does this need
to be clearer?]]

The following lemma shows that it is a stack in groupoids.

Lemma 30.4. Any morphism of torsors over an object X is an isomorphism.

Proof. First note that any morphism of trivial torsors is an isomorphism. If f : X×µ→
X ×µ is a morphism over X , then for a test object T ∈ C, we have a µ(T )-equivariant
map X(T ) × µ(T ) → X(T ) × µ(T ) over X(T ), which is automatically a bijection.
Thus, f is an isomorphism.

Let f : P → P ′ be a morphism of µ-torsors over X (i.e. f̄ = idX). Then there
is some cover Z → X so that both P and P ′ are trivial over Z. Now we have that
fZ : PZ → P ′

Z is a morphism of trivial torsors, so it is an isomorphism. It follows that
f is an isomorphism (the descent data on fZ induces descent data for the inverse of
fZ , which descends to an inverse of f).

Corollary 30.5. Let f : P → X be a µ-torsor. A section s : X → P of f induces an
isomorphism of torsors P ∼= X × µ (a trivialization of P ).

Proof. We get a morphism X × µ → P over X given by (h, g) 7→ s(h) · g. By the
previous lemma, this is an isomorphism.

Proposition 30.6 (Another alternative definition of torsors). Let µ be a sheaf of
abelian groups on a site C, and let P → X be a morphism from a sheaf P to an object
X. Then P is a µ-torsor if and only if

1. there exists a cover g : Z → X which factors through P , and

2. µ(T ) acts simply transitively on the fibers of P (T ) → X(T ) whenever P (T ) is
non-empty.
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Proof. (⇒) Assume P → X is a µ-torsor. Then condition (1) follows immediately. (2)
Let f : T → X be an element of X(T ). A lifting f̃ : T → P is equivalent to a section
of the torsor T ×X P → T .

T ×X P //

��

P

��

T
f

//

f̃
::✈✈✈✈✈✈

II

✮
✤ ✕

X

If P (T ) is non-empty, then we have some section s : T → T ×X P . By Corollary 30.5,
we get that T ×X P → T is the trivial torsor, isomorphic to T × µ→ T . A section of
T ×µ→ T is equivalent to an element of µ(T ). Since µ(T ) acts simply transitively on
itself, we get that it acts simply transitively on the inverse image of f in P (T ).

(⇐) Let g̃ : Z → P be the factorization of the cover g : Z → X . There is a
bijection between such factorizations and sections of Z ×X P → Z. Let s be the
section corresponding to g̃. Define h(T ) : Z(T )×µ(T )→ Z(T )×X(T )P (T ) by (z,m) 7→(
z, s(z) ·m

)
. It is clear that this defines a µ-equivariant morphism h of sheaves over Z.

Since µ(T ) acts transitively on P (T ) over X(T ), h(T ) is always a bijection (if P (T ) is
empty, then Z(T ) is empty, so h(T ) is still a bijection). Thus, h is an isomorphism, so
P is a µ-torsor.

Theorem 30.7. If µ is a sheaf of abelian groups, there is an natural bijection between
isomorphism classes of µ-torsors over X and H1(C/X, µ). [[⋆⋆⋆ more generally, I
think this proof should show that H1(C, µ) ∼= Γ(C,Tors(µ))]]

Proof.
(
H1(C/X, µ) → {µ-torsors}

)
Let µ → I be an injection into an injective sheaf

of abelian groups and let K be the cokernel sheaf. Then we have an exact sequence

0→ µ→ I
d
−→ K → 0

and an element of H1(C/X, µ) is represented by some element α ∈ (I/µ)(X). Given
such an element, define Pα : Cop → Set by T 7→

{(
x ∈ X(T ), s ∈ I(T )

) ∣∣ ds = x∗α
}
.

This presheaf comes with a projection map to X . Thinking of it as a presheaf on C/X ,
we see that it is a sheaf because it is the following fibered product.

Pα //

��

·
∗

α
��

I
d // I/µ

There is an obvious action of µ on Pα over X (given by addition in the second coordi-
nate). Finally, we need to show that Pα is locally the trivial torsor. Since d is surjective
as a morphism of sheaves, there is some cover f : Z → X so that f ∗α ∈ K(Z) is di
for some i ∈ I(Z). The calculation on the right verifies that the diagram on the left is
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cartesian.

Z × µ

��

// P

��

Z // X

(Z ×X P )(T ) = {(z, x, s)|ds = x∗α, fz = x}
= {(z, s)|ds = z∗f ∗α = z∗(di)}
= {(z, s)|s− z∗i ∈ µ(T )}
∼= (Z × µ)(T )

Note that for the third equality we’re using the fact that the kernel presheaf is the
same as the kernel sheaf.

P is independent of the choice of representative in H1(C/X, µ). Assume α, α′ ∈
K(X) represent the same cohomology class, with γ ∈ I(X) and dγ = α′ − α. Then
we get a morphism of torsors Pα → Pα′, given by (x, s) 7→ (x, s+ γ). By Lemma 30.4,
this is an isomorphism.

Moreover, Pα is independent of the choice of injective resolution of µ. Let J· be
another injective sheaf with an injection µ → J with cokernel R, and let α ∈ K and
β ∈ R represent the same cohomology class. By the usual arguments with injective
resolutions, there is is a morphism of complexes I· → J· inducing the identity on
homology. Changing β to another representative in the same cohomology class, we
may assume this map of complexes sends α to β. This induces a morphism Pα → Pβ,
which must be an isomorphism by Lemma 30.4.(
{µ-torsors} → H1(C/X, µ)

)
Given a µ-torsor P → X , let f : Z → X be a cover

over which P is trivial. That is, the sheaves Z × µ and Z ×X P are isomorphic.
That is, the sheaves µ|Z and P |Z are isomorphic. Note that we have a canonical map
P → f∗(P |Z); explicitly, for an object T over X , the map P (T → X)→ f∗(P |Z)(T →
X) = P (T ×X Z → Z) is induced by the projection map T ×X Z → T . Since
T ×X Z → T is a cover, the sheaf axiom on P tells us that this map is an injection.
Similarly, we have an injection µ → f∗(µ|Z). Let I be an injective sheaf of abelian
groups such that there is an injection f∗(µ|Z) →֒ I. Then we have the following
diagram (the rows are not exact).

0 // P � � // f∗(P |Z)

≀
��

0 // µ �
�

// f∗(µ|Z)
� � // I // // I/µ // 0

Since Z×X P → Z is a trivial µ-torsor, it has a section. That is, P (Z) has an element.
Let β ∈ (I/µ)(Z) be the image of this point. The claim is that β is the pullback of a
point α ∈ (I/µ)(X) along f . [[⋆⋆⋆ I want to try to prove this with the sheaf axiom
on I/µ (really on f∗µ/µ), but I can’t get my hands around the point β to check that
p∗2β = p∗1β.]]

[[⋆⋆⋆ show that these two procedures are inverse]]

[[⋆⋆⋆ Before, we always took torsors to be algebraic spaces. The following lemma
says that that was ok.]]
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Lemma 30.8. If X is a scheme and G is a group scheme over X (i.e. a group object
in Sch/X),1 then any G-torsor P → X is an algebraic space. Furthermore, any stable
property (in the same topology which makes P a torsor) of the diagonal map G →
G×X G is inherited by the diagonal P → P ×X P .

Proof. Let P → X be a G-torsor. Then P is already a sheaf. To check representability
of the diagonal P → P × P , it is enough to check representability of P → P ×X P by
Lemma A4.1, so let T → P ×X P be a morphism from a scheme given by p1 × p2 and
let Z be the fiber product as shown in the diagram on the left.

Z //

��

T

p1×p2
��

P
∆ // P ×X P

Z //

��

T

p1×idT ×p2×idT
��

P ×X T
∆ // (P ×X T )×X (P ×X T )

Note that Z is then also the fiber product shown in the diagram the right. Since
P ×X T → T has a section (p1× idT , for example), it is the trivial G-torsor G×X T , so
it is a scheme. Thus, Z is a fiber product of schemes over a scheme, so it is a scheme.

Let f : U → X be a cover of X so that P ×X U ∼= G ×X U . Then the projection
G×X U ∼= P ×X U → P is an étale cover of P by a scheme.

Finally, if ∆ : G → G ×X G has some stable property, then we have the following
diagram. It is easy to verify that the squares are cartesian and that the double headded
arrows are covers.

(P ×X U)×U (P ×X U)

����

∼ // (G×X U)×U (G×X U)

��

P ×X U

44❥❥❥❥❥

����

∼ // G×X U

��

44❥❥❥❥❥

P ×X P G×X G

P

44❥❥❥❥❥❥❥❥❥ G

44❥❥❥❥❥❥❥❥❥

Any stable property of the diagonal of G pulls up, over, and down to a property of the
diagonal of P .

Corollary 30.9. If X is a scheme over S and G is a group scheme over S, then any G-
torsor P → X is an algebraic space. Furthermore, any stable property of G→ G×S G
is inherited by P → P ×X P .

Proof. A G-torsor P → X is the same thing as a (G ×S X)-torsor over X , where
G ×S X is thought of a a group scheme over X . [[⋆⋆⋆ put insightful remark here
to make this really clear]] Any stable property of ∆G,S : G → G ×S G is inherited by
∆G×SX,X = ∆G,S × idX : G×S X → (G×S X)×X (G×S X) = (G×S G)×S X .

1A group object in Sch/X is not the same as a group scheme with a morphism to X . One of them
has group structure morphism G×G→ G, and the other has G×X G→ G. If you like, the fibers of
a group object G→ X in Sch/X are groups.
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Remark 30.10. [[⋆⋆⋆ I don’t know where we’ll want this, but it will be somewhere]]
If G → S is locally of finite type, then G → G ×S G is of finite type. “This takes an
argument, but we won’t give it here”. Thus, if G is, say, a smooth group scheme over
S, then all G-torsors P → X are algebraic spaces with finite type diagonal. ⋄
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31 Gerbes

It may look like everything is a quotient of a variety by some group action, but this is
not the case. Gerbes are the next examples of stacks.

Definition 31.1. Let µ be a sheaf of abelian groups on a site C. A µ-gerbe is a stack
in groupoids F over C and for each x ∈ F an isomorphism ιx : µ

∼
−→ Autx such that

1. locally there is an object in F (i.e. for any object X ∈ C, there is a cover X ′ → X
such that F(X ′) is non-empty),

2. any two objects of F are locally isomorphic, and

3. for any morphism y → x in F(U) (automatically an isomorphism since F is
fibered in groupoids), the diagram on the left commutes.

µ
ιy

��⑧⑧⑧⑧⑧⑧ ιx

��
❄❄❄❄❄❄

Autx
∼ // Auty

µ
ιx

��⑧⑧⑧⑧⑧⑧ ι′
f(x)

!!❉❉❉❉❉❉❉

Autx
∼ // Autf(x)

A morphism of µ-gerbes is a morphism of stacks f : F → F ′ such that the diagram on
the right commutes. ⋄

Remark 31.2. We could make the above definition for a sheaf of (not necessarily
abelian) groups µ. However, if f : x → y is a morphism in the gerbe (over some S,
say) and g ∈ µ(S), then condition (3) implies that the following diagram commutes.

x
g

//

f

��

x

f

��
y

g
// y

On the other hand, we could take y = x, so f is some other element of µ(S). Then
commutativity of the diagram gives us that fg = gf , so µ is abelian. ⋄

Lemma 31.3. Any morphism of µ-gerbes f : G1 → G2 is an equivalence.

Proof. (Full faithfulness) By Lemma 21.14 it is enough to check full faithfulness on
fibers. We want the natural map IsomG1

(x, y) → IsomG2

(
f(x), f(y)

)
to be an isomor-

phism for every pair x, y ∈ G1(U). Since G1 and G2 are µ-gerbes, both of these Isom
sheaves are µ-torsors (Auty

∼= µ ∼= Autf(y) acts on the right), and the morphism is
µ-equivariant (because f is a morphism of gerbes), so it must be an isomorphism by
Lemma 31.3.

(Essential surjectivity) First recall that taking pullbacks along morphisms com-
mutes with f (this is just because a morphism of fibered categories sends cartesian ar-
rows to cartesian arrows). Given any object x ∈ G2(U), there is some cover h : V → U
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such that G1(V ) is non-empty; let y ∈ G1(V ). Since any two objects in G2 are locally
isomorphic, we may assume that f(y) ∼= h∗x (possibly replacing V by a further cover).
Then we have that f(p∗i y)

∼= p∗ih
∗x, where pi : V ×U V → V are the projections. Since

hp1 = hp2, we have that p∗2h
∗x ∼= p∗1h

∗x. By full faithfulness, we have an isomorphism
σ : p∗2y

∼
−→ p∗1y. Similarly, we see that σ satisfies the usual cocycle condition. Since G1

is a stack, there is an object z ∈ G1(S) such that y ∼= h∗z. Note that f(z) is specified
by the same descent data as x, so since G2 is a stack, we have that x ∼= f(z).

Lemma 31.4 (The fundamental example). If µ is a sheaf of abelian groups on a site
C, then the automorphism sheaf of a µ-torsor P → X is naturally isomorphic to µ. In
particular, Tors(µ) is a µ-gerbe over C.

Proof. If f : X×µ→ X×µ is an automorphism of the trivial torsor over X , then for a
test object T ∈ C, we have a µ(T )-equivariant map X(T )×µ(T )→ X(T )×µ(T ) over
X(T ). Such a map is given by addition of an element of µ(T ). Thus, the automorphism
sheaf of the trivial torsor is naturally isomorphic to µ.

It follows that the automorphism sheaf AutP is locally isomorphic to µ, and the
naturality of this isomorphism implies that it comes with descent data. By descent for
sheaves, we see that AutP is naturally isomorphic to µ.

Remark 31.5. Let F is a µ-gerbe with a global section α. For any object y ∈ F(U),
consider the sheaf Isom(αU , y) on U . Note that there is a right action of Auty

∼=
µ. Since F is a gerbe, there is some cover h : V → U so that αV and h∗y are
isomorphic. Such an isomorphism induces an isomorphism of sheaves Isom(αU , y)×U
V = Isom(αV , h

∗y) ∼= V × µ. Thus, Isom(αU , y) is a µ-torsor over U . We get a
morphism of gerbes F → Tors(µ) sending y ∈ F(U) to the torsor Isom(αU , y) → U .
By Lemma 31.3, this is an equivalence of gerbes.

Since every gerbe locally has a section, we may think of a µ-gerbe as a fibered
category which is locally equivalent to the category of µ-torsors. Therefore, we refer
to Tors(µ) as the trivial µ-torsor. ⋄

Next we’ll show that µ-gerbes on a site C are parameterized by H2(C, µ). But first,
we need the following lemma.

Lemma 31.6. If µ is an injective sheaf of abelian groups over a site C/X, then any
µ-gerbe G is trivial (i.e. G(X) 6= ∅). [[⋆⋆⋆ I don’t see how to make this lemma work
on a site without a terminal object]]

Proof. We may assume G has a splitting. Choose a cover f : Z → X so that G(Z)
is non-empty. Let z ∈ G(Z). Consider the functor F : (C/X)op → Set given by
(h : V → X) 7→ {(v, ι)|v ∈ G(V ), ι : p∗Zz

∼
−→ p∗V v in G(Z ×X V )}/ ∼, where (v1, ι1) ∼

(v2, ι1) if there exists δ : s2 → s1 in G(V ) such that ι1 = p∗V δ ◦ ι2. Note that if such
a δ exists, then it is unique: if δ, δ′ : v2 → v1 with p∗V δ = ι1ι

−1
2 = p∗V δ

′, then we
have that δ′δ−1 ∈ HomG(V )(v1, v1) ∼= µ(V ) restricts to the trivial element p∗V δ

′p∗V δ
−1 ∈
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HomG(Z×XV )(p
∗
V v1, p

∗
V v1)

∼= µ(Z ×X V ), but Z ×X V → V is a cover, so by the sheaf
axiom on µ, we get δ = δ′.

Z ×X V

pZ

��

pV // V

h

��

Z
f

// X

p∗Zz

z
��

p∗V v2 v2//

p∗V v1 v1//

ι2 66♠♠

ι1
((◗◗ δ

��
p∗V δ��

It suffices to show that F (idX) 6= ∅. We will do this by showing that F is a torsor
under an acyclic sheaf.

First we must show that F is a sheaf. Let V ′ → V be a cover, and let V ′′ = V ′×V V ′.
(Injectivity) Let (v1, ι1), (v2, ι2) ∈ F (V ) have the same image in F (V ′). Then there
is some δ′ : v′2 → v′1 in G(V ′) such that ι′1 = p∗V ′δ′ ◦ ι′1. By the uniqueness of δ, we
have that p∗2δ

′ = p∗1δ
′. Since G is a (pre)stack, we get that δ′ is the pullback of some

δ : v2 → v1 in G(V ) such that ι1 = p∗V δ ◦ ι2. (Exactness in the middle) Similarly, if
(v′, ι′) ∈ F (V ′) such that there is some δ′′ : p∗2v

′ → p∗1v
′ in G(V ′′) with p∗1ι

′ = p∗V ′′δ′′◦p∗2ι
′.

The uniqueness of δ implies the usual cocycle condition. Since G is a stack, we get that
(v′, ι′) is the pullback of some (v, ι) ∈ F (V ).

Next observe that we have an action of f∗µ on F . Given an element (v, ι) ∈
F (V ), an element g ∈ f∗µ(V ) = µ(Z ×X V ) ∼= HomG(Z×XV )(p

∗
V v, p

∗
V v) acts by g ·

(v, ι) = (v, g ◦ ι). Note that the stabilizer of (v, ι) is exactly the image of µ(V ) in
f∗µ(V ). That is, (v, g ◦ ι) ∼ (v, ι) exactly when g ∈ f∗µ(V ) = µ(Z ×X V ) is the
restriction of an element of µ(V ). Also note that the action of f∗µ(V ) on F (V ) is
transitive if: given any pair (v1, ι1), (v2, ι2) ∈ F (V ), we have the isomorphism ι1ι

−1
2 :

p∗V v2
∼
−→ p∗V v1, so we may always represent an element of F (V ) as (v0, ι), where v0 ∈

G(V ) is fixed; now transitivity follows immediately from the isomorphism f∗µ(V ) ∼=
HomG(Z×XV )(p

∗
V v0, p

∗
V v0). Finally, there is some cover Y → Z so that F (Y ) is non-

empty (G is a gerbe, so p∗1z and p∗2z must be isomorphic over some cover), so F is a
f∗µ/µ-torsor (Proposition 30.6).

Since µ is injective, Hom(−, µ) is exact. Also, f ∗ is exact because it commutes with
finite projective limits [[⋆⋆⋆ here we’re using that f ∗ : O-mod → f ∗O-mod is left
adjoint to f∗ and commutes with finite projective limits, and that f ∗Z = Z (constant
sheaf)]], so Hom(−, f∗µ) ∼= Hom(f ∗−, µ) is exact, so f∗µ is injective. It follows that
f∗µ/µ is acyclic. By Theorem 30.7, any torsor under an acyclic sheaf is trivial, so F
has a global section.

Theorem 31.7. Let µ be a sheaf of abelian groups on a site C. There is a bijection
between isomorphism (equivalence) classes of µ-gerbes over C and H2(C, µ).

Proof.
(
H2(C, µ) → {µ-gerbes}

)
Choose an injective resolution µ → I·, where the

I i are sheaves of abelian groups on C. Let K = ker(I2 → I3), so we have the exact
sequence of sheaves

0→ µ
j
−→ I0

d0−→ I1
d1−→ K → 0.
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Let α ∈ Γ(C, K) represent a class in H2(C, µ). Define Gα as the category with objects
pairs (V, γ), where V ∈ C and γ ∈ I1(V ) with d1γ = αV , and a morphism (V ′, γ′) →
(V, γ) is anX-morphism g : V ′ → V and an element σ ∈ I0(V ) such that d0σ = g∗γ−γ′.

Claim. Gα is a stack.

Proof. First we check that Gα is a prestack. Given V ∈ C and γ1, γ2 ∈ I1(V ), we have
that Isom

(
(V, γ1), (V, γ2)

)
= {σ ∈ I0|d0(σ) = γ2− γ1} is a sheaf on V because it is the

following fibered product of sheaves on V .

Isom(γ1, γ2)

��

//

·
∗

γ1−γ2
��

I0|V
d0 // I1|V

The hard part is to check effectivity of descent. Let h : V → U be a cover in C.
An object in Gα(V → U) is of the form (γ, σ) where γ ∈ I1(V ) (with d1γ = αV ) and
σ ∈ I0(V ×U V ) such that dσ = p∗2γ−p

∗
1γ and p∗13σ = p∗12σ+p

∗
23σ. Given such an object,

we want to find (ε, δ) with ε ∈ I1(U) and δ ∈ I0(V ) with dε = αU , d0δ = h∗ε− γ and
dσ = p∗2d0δ − p

∗
1d0δ (compatibility of descent data).

p∗2γ
dσ //

p∗2d0δ

��

p∗1γ

p∗1d0δ

��

p∗2h
∗ε = p∗1h

∗ε

Note that for any morphism f : T → U , we can pull the descent data (γ, σ) back to
V ×U T to get an object (γT , σT ) in Gα(hT : V ×U T → T ). Define F : (C/U)op → Set

by

T 7→
{
(f, εT , δT )

∣∣ f ∈ U(T ), εT ∈ I1(T ), δT ∈ I0(V ×U,f T ),
dεT = αT , d0δT = h∗T εT − γT , and dσT = p∗2d0δT − p

∗
1d0δT

}
.

[[⋆⋆⋆ It is enough to specify δT satisfying the condition dσT = p∗1d
0δT − p∗2d

0δT ,
because then it follows from the definition of σ and the sheaf condition on I0 that
d0δT + γT is the restriction of some εT satisfying dεT = αT . I think F is a sheaf by the
same sort of fiber product trick]]

For an element λ ∈ I0(T ), we define λ · (f, εT , δT ) = (f, εT + dλ, δ+ h∗Tλ), so F has
an action of I0 over U .

[[⋆⋆⋆ This paragraph is the one I’m confused about]] In fact, F is an I0-torsor
over U . To see this, it is enough to show that I0(T ) acts simply transitively on F (T )
when F (T ) is non-empty. Given (ε, δ) and (ε′, δ′), we’d like to find a λ so that λ·(ε, δ) =
(ε′, δ′). If such a λ exists, we have h∗Tλ = δ′− δ, so λ is unique (h∗T is injective because
hT is a cover and I0 is a sheaf). We know that (p∗2 − p

∗
1)
(
d(δ − δ′)

)
= dσT − dσT = 0,

but this doesn’t show that (p∗2 − p
∗
1)(δ − δ

′) = 0. [[⋆⋆⋆ now what?]]
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But I0-torsors are parameterized by H1(C/U, I0), which is trivial because I0 is
injective. Thus, F is the trivial torsor; in particular, it has a global section. This
proves effectivity of descent. �Claim

In fact, Gα is a µ-gerbe:

1. it is étale locally non-empty (because d1 is a surjective map of étale sheaves),

2. any two objects are locally isomorphic (use the resolution to see this [[⋆⋆⋆ ]]),

3. we will see compatibility of the ια later. Aut(ε,δ) = {δ
′|dδ′ = 0} ∼= µ.

Gα is independent of the choice of representative within the cohomology class. If
α, α′ ∈ K represent the same cohomology class, with dγ0 = α′ − α, then we get a map
Gα → Gα′ , given by (V, γ) 7→ (V, γ+ γ0) (note that dγ = α, so d(γ+ γ0) = α+α′−α =
α′). By the lemma, the two gerbes are isomorphic.
Gα is independent of the choice of resolution. To see this, let J· be another res-

olution of µ. Let αI ∈ ker(I2 → I3) and αJ ∈ ker(J2 → J3) represent the same
cohomology class. Then we get a morphism of complexes I· → J· inducing the iden-
tity on cohomology (by the usual arguments with injective resolutions). Changing αJ
to something within the same class (so not changing GαJ

), we may assume that the
map I2 → J2 maps αI to αJ . From the definition of Gα, this induces a morphism
GαI
→ GαJ

, which must be an isomorphism by the lemma.
(
{µ-gerbes} → H2(C, µ)

)
Let G be a µ-gerbe. Include µ into an injective abelian

sheaf µ →֒ I. Define G ×µ I to be the stack associated to the prestack whose objects
are objects in G and morphisms are elements of HomG(x, y)×

µ I = HomG(x, y)× I/ ∼,
where (g ◦ ζ, ι) ∼ (ζ, ι−g) for g ∈ µ. Define composition as (ζ, i)◦ (ε, j) = (ζ ◦ ε, i+ j).
To check that this is well defined, let g, g′ ∈ µ. Then we have

(gζ, i) ◦ (g′ε, j) = (gζg′ε, i+ j) (definition)

= (gg′ζε, i+ j) (gerbe axiom 3)

=
(
(g + g′)ζε, i+ j

)
(that’s how group actions work)

∼ (ζε, i+ j − g − g′) = (ζ, i− g) ◦ (ε, j − g′)

Anyway, we get that G×µ I is an I-gerbe. Since I is injective, G×µ I is trivial, so there
is some section s0 ∈ (G ×µ I)(X). Moreover, we have a map j : G → G ×µ I. Define
Ps0 : (Sch/X)op → Set by (V → X) 7→ {(s ∈ G(V ), ι : j(x)

∼
−→ s0 in G×µ I(V ))}. Then

P is an I/µ-torsor. From the short exact sequence

0→ µ→ I → I/µ→ 0

we get a map ∂ : H1(X, I/µ)→ H2(X, µ). You have the map G 7→ ∂(Ps0) (recall that
I/µ-torsors are parameterized by H1(XET , I/µ)).

Exercise: Show that this is inverse to the map H2(XET , µ)→ {µ-gerbes} from last
time. [[⋆⋆⋆ ]]
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Remark 31.8 (Aside on non-abelian cohomology). We have only defined cohomology
for sheaves of abelian groups, but suppose that for a non-abelian sheaf of groups µ, we
define H1(C/X, µ) to be the isomorphism classes of µ-torsors. Note that H1(C/X, µ)
no longer has a group structure, but it is a pointed set (the distinguished element is
the trivial torsor). Suppose you have an exact sequence of sheaves of groups

1→ G1 → G2 → G3 → 1

in which G1 is abelian, but G2 and G3 need not be abelian. Then we expect an exact
sequence

H1(C/X,G1)→ H1(C/X,G2)→ H1(C/X,G3)
∂
−→ H2(C/X,G1).

A G1-torsor P → X is taken to the G2-torsor P×
G1G2 := P×G2/ ∼, where (pg1, g2) ∼

(p, g1g2) for g1 ∈ G1. Similarly, we see how to take a G2-torsor to a G3-torsor.[[⋆⋆⋆

is it easy to see exactness?]]
The boundary map ∂ is more interesting. Let P → X be a G3-torsor. From this

we want to obtain a G1-gerbe. Define ∂P to be the category (fibered over C/X) whose
objects are triples (V, P̃ , ι), where V → X is an object over X , P̃ → V is a G2-
torsor, and ι : P̃ ×G2 G3 → P is a G3-equivariant morphism over V → X . A morphism
(V ′, P̃ ′, ι′)→ (V, P̃ , ι) is a G2-equivariant morphism f : P̃ ′ → P̃ such that the following
diagram commutes.

P̃ ′ ×G2 G3

��

f×G2G3
''❖❖❖❖❖❖❖❖
ι′ // P

��

P̃ ×G2 G3

ι

??⑧⑧⑧⑧⑧⑧

��

V ′

f̄
''❖❖❖❖❖❖❖❖❖❖❖❖❖ // X

V

??⑧⑧⑧⑧⑧⑧⑧

[[⋆⋆⋆ check that this is a stack]] It is clear that if P is trivial over V → X , then
∂P (V ) is non-empty. Similarly, it is clear that any two objects are locally isomorphic.

Given an automorphism f of such a (V, P̃ , ι), we have that f is an automorphism
of P̃ , so it is given by an element of G2, and f ×G2 G3 = id. It follows that the image
of f (as an element of G2) is trivial in G3, so f is given by an element of G1. It is clear
that this isomorphism Aut(V,P̃ ,ι)

∼= G1 is natural.
[[⋆⋆⋆ how to check exactness]]
Upshot: Consider the sequence

1→ Gm → GLn → PGLn → 1

Then we have an exact sequence

H1(C/X,GLn)→ H1(C/X, PGLn)→ H2(C/X,Gm) =: Br′(X).
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An element of H1(C/X,GLn) is the same as a vector bundle on X . One direction: if
E is a vector bundle, then the corresponding GLn-torsor is Isom

(
End (OnX), End (E)

)
.

Anyway, we get a map
⋃
n{PGLn-torsors}/(End E ∼ 0) →֒ H2(X,Gm). ⋄

Proposition 31.9. Let G be a smooth (commutative) group scheme over a scheme X.
Then any G-gerbe G [[⋆⋆⋆ in any topology?]] is algebraic.

Proof. (Representability of the diagonal) Let T be a scheme

Isom(s1, s2) //

��

T

(s1,s2)

��

G ∆ // G × G

Isom(s1, s2) is a G-torsor, so by Lemma 30.9 it is an algebraic space.
(Smooth cover) Find X ′ → X étale so that G(X ′) is non-empty, and let s′ be an

object.
X ′

��

[X ′/G] = BX′G = G ×X X
′ //

��

X ′

et
��

s′pp

G // X

To check that the map X ′ → [X/G] is smooth, check that for any T and let P be a
G-torsor.

Z //

��

X ′

��

Z ′ //

��

::ttttt
GX′

��

::tttt

T
P // [X ′/G]

T ′ //

::ttttt
X

P0

::tttt
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32 Properties of algebraic stacks

Properties of algebraic stacks over S.
By a presentation of an algebraic stack S, we mean a smooth surjective morphism

X → X , with X an algebraic space.
Let P be a property of algebraic spaces over S which is local in the smooth topology

(if X ′ → X is a smooth cover, then X has P if and only if X ′ has P), then an algebraic
stack X over S has P if there exists a presentation X → X where X has P.

Example 32.1. Locally noetherian, reduced, normal, regular, characteristic p, etc. ⋄

This is coarser than étale locally (e.g. dimension is no good)

Remark 32.2. If an algebraic stack has P, then for every presentation X ′ → X , X ′

has P.
X ×X X

′ //

��

X P

��

X ′ // X

All morphisms are smooth surjections, so we can push P around like we did before. ⋄

Definition 32.3. X over S is quasi-compact if there exists a presentation X → X
with X quasi-compact. ⋄

Definition 32.4. Say X is an algebraic stack over S. An open (resp. closed, resp. lo-
cally closed) substack of X is a fully faithful substack Y ⊆ X such that Y → X is
representable by an open (resp. closed, resp. locally closed) immersion. ⋄

Lemma 32.5. Let Y → X be a representable morphism of stacks with X algebraic.
Then Y is algebraic.

Aside: Mg,n →Mg is representable because for any T ,

C ×T · · · ×T C ⊇ U

��

// T

��

Mg,n
//Mg

Then you get thatMg,n is algebraic.

Proof. Claim: ∆ : Y → Y ×X Y is representable.

P //

��

T

��

Y // Y ×X Y

P //

��

T

��

Y ×X T
∆ // (Y ×X T )×T (Y ×X T )

so P is a scheme.
For the smooth surjection, choose a presentation X → X , then let Y = Y ×X X ,

which is an algebraic space which smoothly surjects onto Y .
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Lemma 32.6. Let Z
g
−→ Y

f
←− X be a diagram of algebraic stacks. Then the stack

X ×Y Z is algebraic.

Proof. Representability of the diagonal:

I = Isom
(
(x1, z1, ι1), (x2, z2, ι2)

)
//

��

T

(x1,z1,ι1)×(x2,z2,ι2)

��

X ×Y Z // (X ×Y Z)× (X ×Y Z)

Where xi ∈ X (T ), zi ∈ Z(T ) and ιi : f(xi)
∼
−→ g(zi). An isomorphism between two

such collections of data is a pair (ρx, ρz) : (x1, z1, ι1)→ (x2, z2, ι2), where ρx : x1
∼
−→ x2

in X (T ) and ρz : z1
∼
−→ z2 in Z(T ) such that

f(x1)
ρx

//

ι1
��

f(x2)

ι2
��

g(z1)
ρz

// g(z2)

So we see that I is the equalizer of IsomX (x1, x2)× IsomZ(z1, z2) ⇒ Isom(f(x1), g(z2))
Smooth surjection. Choose a presentation Y → Y and choose Z → YZ be a smooth

surjection[[⋆⋆⋆ I didn’t quite catch how you get this]].

X

��

X

��

YX

��

??⑧⑧⑧

Z ′ sm // Z // Y

Z ′ ×Z YZ = Z

??⑧⑧⑧
// YZ //

??⑧⑧⑧
Y

??⑧⑧⑧

Then Z ×Y X → Z ×Y X is a smooth surjection.

Let P be a property of morphisms of algebraic spaces which is local on source and
target in the smooth topology.

X ′′ f ′
//

f ′′ !!❈❈❈❈❈❈❈❈ X ′ //

��

·
X

f
��

Y ′ q
// Y

If q and p ar smooth surjections then f has P if and only if f ′′ has P.
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Definition 32.7. A morphisms of algebraic stacks f : X → Y has P if there exists a
diagram

X ′ P ′
//

f ′ !!❇❇❇❇❇❇❇❇ X ′ //

��

X

f
��

Y
Q

// Y

P ′, Q presentations, then f ′ has P. ⋄

So we can talk about surjective, universally open, locally of finite presentation
(resp. type), flat, smooth.
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33 X Deligne-Mumford ⇔ ∆X formally unramified

Recall that if P is a property of morphisms of algebraic spaces which is local on source
and target in the smooth topology, then we say that a morphism f : X → Y of algebraic
stacks has P if there is a commutative diagram

X ′ H //

f ′ !!❇❇❇❇❇❇❇❇ X ′ //

��

·
X

f
��

Y
Q

// Y

where H and Q are presentations an f ′ has P.

Remark 33.1. If f has P, then for every diagram of the form above, f ′ has P. ⋄

Definition 33.2. A morphism of algebraic stacks f : X → Y is quasi-compact if for
every quasi-compact scheme Y and morphism Y → Y (need not be smooth), the fiber
product Y ×Y X is quasi-compact. ⋄

Then finite presentation (resp. type) means locally of finite presentation (resp. type)
and quasi-compact.

Definition 33.3. An algebraic stack X is Deligne-Mumford if there exists an étale
surjection X → X with X an algebraic space. ⋄

Theorem 33.4. Let X be an algebraic stack over S. Then X is Deligne-Mumford if
and only if ∆ : X → X ×S X is formally unramified.

Remark 33.5. We have to say what unramified means for a morphism of algebraic
spaces (since ∆ is representable). We say that a morphism of algebraic spaces g : Z →
W is formally unramified if for every closed immersion T0 →֒ T of affine schemes[[⋆⋆⋆

its weird that you have to use affine schemes . . . what is the weird example with a
non-affine scheme that goes wrong?]] defined by a nilpotent ideal, the map Z(T ) →
Z(T0)×W (T0) W (T ) is injective.

T0 //

��

T

��

Z //

∃≤1
>>⑥

⑥
⑥

⑥
W

you also see that it is enough to check on ideals which square to zero.
Unramified means locally of finite presentation [[⋆⋆⋆ type?]] and formally un-

ramified. I think we can do the theorem with only formally unramified.
The key point is that g formally unramified is equivalent to saying that g∗Ω1

W/S →

Ω1
Z/S [[⋆⋆⋆ i.e. Ω1

Z/W = 0]] is surjective, which is what we’ll use in the proof. ⋄
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Note that this makes it easy to check thatMg, for example, is Deligne-Mumford.
Consider

Isom(C1, C2) //

��

S

(C1,C2)

��

Mg
∆ //Mg ×Mg

T0
ι0//

� _

��

Isom(C1, C2)

��

T //

∃≤1

88rrrrrr
S

[[⋆⋆⋆ other picture]] We have to check that Isom(C1, C2)→ S is formally unramified,
so draw the picture on the right. We need to show that if σ : C1,T → C1,T is an
automorphism reducing to the identity over T0 then σ ∼= id. First of all, it is enough
to consider T0 →֒ T defined by a square zero ideal J ⊆ OT .

It follows from stuff about gerbes that H0(C1,T , TC1,T0
/T0 ⊗OT0

J) is naturally in
bijection with the group of automorphisms reducing to the identity. [[⋆⋆⋆ magic?]]

Using g ≥ 2, we see that H0(C1,T , TC1,T0
/T0⊗OT0

J) = 0. [[⋆⋆⋆ Ω1 is ample, which
implies that TC1/T0 is negative, so it has no global sections.]]

Proof of Theorem. DM ⇒ ∆ formally unramified. Let X → X be an étale surjection.
Then we have

X ×X X //

��

·
X ×S X

��

X ∆ // X ×S X

(1) ∆ is formally unramified if and only if X ×X X → X ×S X is formally unramified.
This is because of the usual diagram; checking unramified, we can replace things by
étale covers. Check that X ×X X → X ×S X

p1−→ X is étale (it is a base change of
X → X , which is étale).

X ×X X // X ×S X
p1

//X

T0

OO

// T

OO ::✈✈✈✈✈✈✈✈✈✈✈

ff▼ ▼
▼ ▼ ▼ ▼

we need to check at most 1 dashed arrow, but then just look at the outer square, where
you get the result you want because X ×X X → X is étale.

∆ formally unramified ⇒ DM . Let k be a field and let y : Spec k → X . Then
we need to find an étale morphism U → X with U an algebraic space such that
U ×X ,y Spec k is non-empty. Then take the disjoint union over all points and that will
be an étale cover.

Idea: start with some X → X which is smooth. We’d like to take a slice of X
which étale covers X . (1) Construct an étale morphism f : X → X ×S An

S which
factors X → X . This is where formally unramified is used. (2) find appropriate
E ⊆ An

S étale over S. Take U = f−1(X ×S E), then U → X ×S E and X ×S E → X
are étale.
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(1) Let X → X be a smooth surjection. Need to define Ω1
X/X .

Z ′ = Z ×X Z

��

//
// Z

p2
//

p1
��

·
X

��

Z = X ×X X
//
// X // X

We see that Ω1
Z/X comes with descent data relative to p2 : Z → X (because both

pullbacks are the sheaf of differentials of Z ′ over X ×X X). We define Ω1
X/X to be the

descended sheaf.
Remark: Note that you can also define Ω1

X/X as the conormal sheaf ofX → X×XX ,
also by descent theory.

There is a map Ω1
X/S → Ω1

X/X because of the remark above and the diagram below.

X
∆ //

∆′
$$■■■■■■■■■■ X ×X X

��

∆∗I

X ×S X ∆∗π∗J

Lemma 33.6. This map Ω1
X/S → Ω1

X/X is surjective. (in general, Ω1
X/X need not be

locally generated by differentials of functions.)

Proof. We check that the pullback to Z is surjective.

Z //

��

·
X ×X

��

X ∆ // X ×X

and Z → X × X is formally unramified (because ∆ is). So we have that p∗1Ω
1
X/S ⊕

p∗2Ω
1
X/S → Ω1

Z/S is surjective. Set Ω1
p1

= coker(p∗1Ω
1
X/S → Ω1

Z/S) = Ω1
Z/X = p∗2Ω

1
X/X .

Z
p2 //

p1
��

X

��

X // X

So p∗2Ω
1
X/S → p∗2Ω

1
X/X is surjective, and this is exactly the map we were considering

[[⋆⋆⋆ exercise]]. �Lemma

So we have the following diagram. We may assume X is a scheme.

x′ ✤ // x

Xy
//

��

X

��

Spec k
y

// X
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In a neighborhood of x, there exist f1, . . . , fr ∈ OX such that images of df1, . . . , dfr
form a basis for the sheaf Ω1

X/X (it is a locally free sheaf; choose fi such that dfi map

to a basis for Ω1
X/X (x), then they form a basis because locally free). This gives a map

to affine space.

X
f
//

��

X ×S Ar
S

zz✉✉✉✉✉✉✉✉✉

X

Lemma 33.7. f is étale.

Proof. If X were a scheme, this would be [EGA, IV.17.11.1]. To reduce to this case,
make a base change

X
f

//

��

Ar
X

~~⑤⑤⑤⑤⑤⑤⑤
XW

rr

fW
// Ar

W
rr

X W

fW is étale by EGA. �Lemma

Recall that we are trying to prove that if X /S is an algebraic stack, then X is
Deligne-Mumford if and only if ∆ : X → X ×S X is formally unramified. Last time we
did⇒. For the other direction, let k be a field and let y : Spec k → X be a point. Then
we want to produce an étale U → X so that Uy 6= ∅. Last time we took a smooth
presentation X → X and we factored this map through an étale map π : X → X×SAr

S

(this is where we used formally unramified).
Claim: there exists a subscheme E ⊆ Ar

S which is étale over S such that if U =
π−1(X×SE), Uy 6= ∅. Then we have a composition of étale morphisms U → X×SE →
X , so it is étale.

Let k0 be the residue field of the image of Spec k in S and let ks0 be a separable closure
of k0. Consider the morphism πy : X×X ,y Spec k = Xy → Ar

k = (X ×S Ar)×X ,y Spec k.
This is étale, so it has open image, so it contains D(F ), where F ∈ k[x1, . . . , xr]. Since
ks0 is infinite, there exist z1, . . . , zr ∈ ks0 such that F (z) 6= 0. This implies that there
exists a closed point Q ∈ Ar

k0
with κ(Q) finite separable over k0 such that Q is in the
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image of πy composed with Ar
k → Ar

k0
.[[⋆⋆⋆ ]]

∅ 6= Zy
� � //

&&▼▼▼▼▼▼▼▼▼▼
Xy

&&◆◆◆◆◆◆◆◆◆◆◆◆
� � // X

��

X0 ×k0 Q
� � //

��

X ×S Ar
S

��

X0
� � //

��

X

��

Spec k0
� � // S

So we need to lift (extend, spread) Q ⊆ Ar
k0

to a subscheme E ⊆ Ar
S which is étale

over S.
We can assume Q is a closed point because . . . oh, it’s not important.

Lemma 33.8. Let A be a ring, let x ∈ SpecA be a closed point, and let k(x)→ k′ be
a finite étale map of algebras. Then there exists a morphism SpecA′ → SpecA which
is finite étale over its image such that A′ ⊗A k(x) ∼= k′.

Proof. Can assume k′ is a field (it is a finite product of separable field extensions). So
k′ = k(x)[t]/p(t), where p(t) is monic. Let p̃(t) ∈ A[t] be a monic lifting of p(t), and
consider B = A[t]/p̃(t). Then B is a finite flat A-algebra (because monic). To check
étaleness at points, it is enough to check the fibers.

SpecB

g

��

SpecA

The above is étale at points lying over x. Let Z ⊆ SpecB be the closed set where
this morphism is not étale. Then SpecB ×SpecA g(Z)

c → SpecA is finite étale over its
image.

For a non-closed point, apply the lemma to OS,Spec k0. This gives you a finite étale
SpecA′ → SpecOS,Spec k0 (local ring, so it’s image is everything) and then “spread
out”.

This completes the proof of the whole theorem.

Remark 33.9 (Characterization of Ω1 [[⋆⋆⋆ Random thing that should go somewhere]]).
Let T0 ⊆ T be a subscheme of an affine scheme defined by some nilpotent [[⋆⋆⋆

square-zero?]] ideal I, let f : Z → W be a morphism of schemes, and consider the
following diagram.

T0� _
I
��

x0 // Z

f
��

T

>>⑥
⑥

⑥
⑥

//W
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The set of dashed arrows is a Hom(x∗0W
1
Z/W , I)-torsor. This characterizes Ω

1
Z/W .

⋄

Artin’s Theorem

Example 33.10. Say X/S is an algebraic space and G/S is a smooth group scheme
acting freely on X . Then the quotient [X/G] is an algebraic space [[⋆⋆⋆ explain]].
This is not clear because it only comes with a smooth covering. ⋄

Corollary 33.11. Let X be an algebraic stack over S. Then the following are equiva-
lent.

1. X is an algebraic space,

2. for every x ∈ X , Autx = {id}.

Proof. (1 ⇒ 2) is clear. (2 ⇒ 1) Let’s check that ∆ is formally unramified. This is
clear because doing something, we get a non-trivial automorphism of x1.

T0
� � //

��

T

��ww♦ ♦ ♦ ♦ ♦ ♦ ♦

Isom(x1, x2)

��

// Z

(x1,x2)

��

X // X ×S X

So there exists an étale cover X → X . Also, 2 implies that ∆ : X → X × X is
a monomorphism, which implies that X ∼= |X | (the sheaf of isomorphism classes of
things in the fibers). Thus, we can assume X = F is a sheaf, and it has an étale cover
X → F . The remaining point is that F → F×F is representable (by algebraic spaces);
we have to check representability by schemes. Let T be a scheme.

∆−1(T )

��

� � // T

��

F // F × F

where ∆−1(T ) →֒ T is separated and quasi-finite (the fibers are empty or one point),
so scheme.

This should make you happy. Usually when we have moduli, they are presented as
something with a group action.
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Example 33.12. Bµp over the field Fp. Recall that µp = ker(Gm → Gm; u 7→ up).
We see that Bµp = [Gm/Gm], where the action is u ∗ v = upv. So Bµp is an Artin
(algebraic) stack, but it is not Deligne-Mumford in general.

µp

��

not
unram.

// SpecFp

(p1,p2)

��

Bµp // Bµp × Bµp

you can’t make an étale cover. ⋄
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35 The Lisse-étale site on an algebraic stack

Quasi-coherent sheaves. We have to define a good topology on a stack where the
sheaves will live. Let X be an algebraic stack over S, then we want a good topos of
sheaves on X .

– étale. This is OK for Deligne-Mumford stacks (and is clearly the good topology).
In general, if X is an algebraic stack, you might try to take objects to be Y → X
representable étale morphisms of algebraic stacks. Then any morphism between
two such things something. Morphisms are X -morphisms. This gives a site, but
it doesn’t have enough sheaves.

Let k = k and let G/k be a connected smooth group scheme (like G = Gm). Then
BG has no non-trivial (non-identity) étale covers. Reason: assume Y → BG is
étale, then

Y //

et
��

Y

et
��

Spec k // BG

Then Y =
∐

Spec k with an action of G. Since G is connected, this is the trivial
action. This implies that Y is a disjoint union of copies of BG.

– flat site (fppf). This is OK, but not great. It is bad for differential geometry.

– lisse-étale, which has its own problems, but it is the best we can do.

Definition 35.1. Let X be an algebraic stack over S. The lisse-étale site Lis-Et(X )
of X has objects smooth morphisms u : U → X with U an algebraic space (notation:
we will denote such an object by (U, u)) and morphisms (U, u)→ (V, v) are pairs (f, f ♭)
where f : U → V is an S-morphism and f ♭ : u → v is an (automatically cartesian)

arrow in X over f . A collection {(Ui, ui)
(fi,f♭i )−−−→ (V, v)} is a covering if

∐
Ui → V

is étale surjective. Let Xlis-et be the associated topos. We define the structure sheaf
OXlis-et

to be (U, u) 7→ Γ(Uet,OUet). ⋄

Remark 35.2. Concretely, to give a sheaf F in this site is equivalent to a sheaf F(U,u)

on the étale site Uet for every object (U, u) ∈ Lis-Et(X ) and transition maps (don’t have
to be isomorphisms) φf : f

−1F(V,v) → F(U,u) for every morphism (f, f ♭) : (U, u)→ (V, v)
compatible with composition (φgf = φf ◦ f−1φg) [[⋆⋆⋆ I think we have to require
that when f is étale, φf is an isomorphism. This is to verify the sheaf condition on the
lisse-étale sheaf you build from such data]].

[[⋆⋆⋆ write out the verification better]] Given a sheaf F ∈ Xlis-et, we define F(U,u)

to be the restriction of F to the small étale site of U . It is easy to see that the sheaf
condition on F implies the sheaf condition on F(U,u). For a morphism f ♭ : u → v
(which projects to f : U → V ), we get a morphism f−1F(V,v) → F(U,u) by the universal
property of limits (you have to remember the definition of f−1); since this is defined
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by a universal property, it probably automatically plays well with composition. Note
that if f is étale, then this map is an isomorphism (because the directed system over
which you take a limit has a terminal object).

Conversely, if you have the data, define F (U, u) := F(U,u)(idU) and observe that
the φf give you restriction maps. The sheaf axiom follows from the fact that φf is an
isomorphism when f is étale. [[⋆⋆⋆ complete this]] ⋄

Remark 35.3. If X is an algebraic space, then this is as close to the étale topology
as you can get: the inclusion Et(X ) →֒ Lis-Et(X ) is continuous and Et(X ) has finite
projective limits, so we get a morphism of topoi ε : Xlis-et → Xet. Note that ε∗ is exact:
ε∗F = F(X ,idX ) is exact because do something on each étale something [[⋆⋆⋆ ]]. ⋄

It might be true that the Lisse-Lisse site gives you the same topos (even though it
looks like it should give a smaller topos) because every smooth morphism étale locally
has a section. I dunno.

Example 35.4. Lis-Et(M1,1) has objects pairs (U,EU) where U is an algebraic space
and EU is an elliptic curve over U such that EU : U → M1,1 is smooth [[⋆⋆⋆ how
should I think about this condition?]]. Morphisms incorporate the automorphisms: a
morphism (U,EU)→ (V,EV ) is a cartesian diagram

EU

��

f♭
// EV

��

U
f

//

eU

II

V

eV

UU

You have choices for f ♭.
What is an example of a sheaf? If (U,EU) is an object, define ωU = e∗Ω1

EU/U
(e is

the section U → EU), which is a locally free sheaf of rank 1 on Uet. We have a cartesian
diagram as above. Then we get f ∗e∗VΩ

1
EV /V

∼= e∗UΩ
1
EU/U

[[⋆⋆⋆ here upper f ∗ means

f−1; note that Ω1
EU/U

= f ♭∗Ω1
EV /V

]] so we get a sheaf ω ∈ M1,1,lis-et. This would work
even in the big fppf site.

Note that this is an OM1,1-module. ⋄

Definition 35.5. A sheaf F of OX -modules is quasi-coherent if each F(U,u) is quasi-
coherent and for every morphism (f, f ♭) : (U, u)→ (V, v), the map f ⋆F(V,v) → F(U,u) is
an isomorphism. ⋄

If F(V,v) is a sheaf of ideals and f is not flat, then f ∗F(V,v) need not be a sheaf of
ideals . . . we’ll take care of this later.

Remark 35.6. We can also talk about locally free sheaves of finite rank (each F(U,u)

should be locally free of finite rank). In the locally noetherian case, we can talk
about coherent sheaves. If X is an algebraic space, a sheaf F of OXlis-et

-modules is
quasi-coherent if and only if FX = ε∗F is quasi-coherent and the adjunction map
ε∗FX = ε∗ε∗F → F is an isomorphism. [[⋆⋆⋆ this gives an equivalence of categories
of quasi-coherent sheaves?]] ⋄
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Example 35.7. Let k be a field, and let G be a smooth group scheme over k. Then
Qcoh(BG) ∼= Repk(G).

F Spec k
fg

// Spec k, Fk-vector space

��

BG,Fquasi-coherent sheaf

for every g ∈ G(k), you get a map fg (something about the ♭s). Thus, we get an action
of G(k) on F . Exercise to check that this actually defines an equivalence of categories.

What is H0(BG,F)? Spec k → BG is a smooth surjection, so H0(BG,F) →֒ F .

Spec k

��

T //

et locally
<<①①①①①①①①①
BG

It turns out that H0(BG,F) ∼= FG. This can be generalized to X = [Y/G] over any
base S where quasi-coherent sheaves become G-linearized and . . . ⋄

Functoriality: If f : X → Y is a morphism of algebraic stacks, we have no hope
of getting a morphism of topoi [[⋆⋆⋆ we saw this for schemes?]]. We want adjoint
functors f∗ : Xlis-et → Ylis-et and f

−1 : Ylis-et → Xlis-et. f
−1 is not exact, so this is not a

morphism of topoi.
If f is representable, then we have a continuous map Lis-Et(Y)→ Lis-Et(X ) given

by (U
u
−→ Y) 7→ (U ×Y X → X ). To get the functors f∗ and f

−1, there are two options:
(1) note that in the definition of the lisse-étale site, we could have taken mor-

phisms from stacks instead of from algebraic spaces. Define L̃is-Et(X ) to have objects
representable smooth morphisms U → X and morphisms are

U
f

//

��
❅❅❅❅❅❅❅❅ U ′

~~⑥⑥⑥⑥⑥⑥⑥⑥

X

f♭ /7❢❢❢❢❢❢❢❢❢❢
❢❢❢❢❢❢❢❢❢❢

Then check that this gives you the same topos.
(2) First define f−1 on representable sheaves. If y : Y → Y is smooth and u :

U → Y , then h(Y,y)(U, u) = Homlis−et(Y)

(
(U, u), (Y, y)

)
. Then f−1(h(Y,y))(U → X ) ={

U

u
��

// Y

y

��

X // Y

;C⑦⑦⑦⑦
⑦⑦⑦⑦

}
. Then define (f∗F )(Y

y
−→ Y) = HomYlis-et

(h(Y,y), f∗F ) = HomXlis-et
(f−1h(Y,y), F ) =

Γ(Xlis-et|f−1(Y,y), F )
Recall that if T is a topos and G ∈ T , then we can define T/G, which turns out

to be a topos. For G ∈ Ylis-et, define (f̂−1G)(U
u
−→ X ) to be the limit over I(U,u), the
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category of diagrams
U

u
��

// V

v
��

X // Y

;C⑦⑦⑦⑦
⑦⑦⑦⑦

of G(V, v). Then f−1G is the sheaf associated to the presheaf f̂−1G.

Remark 35.8. I(U,u) is not filtering, which is what ruins the exactness of f−1. ⋄

Remark 35.9. There is a natural map f−1OYlis-et
→ OXlis-et

. So we can define f ∗G =
f−1G⊗f−1OY

lis-et

OXlis-et
for an OY -module G. ⋄

Proposition 35.10. Let G be a quasi-coherent sheaf on Y. Then f ∗G is also quasi-
coherent.

Proof. Note that f ∗G = (f̂−1G ⊗f−1OY
OX )

a because they have the same universal

property . . . use the adjunction. We need to compute limI(U,u)
(f̃ ∗GV )(U). Define I (U,u)

to be the poset whose elements are (g : U → V ) ∈ I(U,u) where we say that (g : U →
V ) ≥ (g′ : U → V ′) if there exists a V → V ′ in I(U,u).

The category I(U,u) is almost filtering; we just squash multiple arrows together.
We have a surjection I(U,u) → I(U,u). The claim is that

I(U,u)

""❋❋❋❋❋❋❋❋

f̃∗GV // Γ(U,OU)-mod

I(U,u)

88qqqqqq
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36 Quasi-coherent sheaves on algebraic stacks

Recall that last time we defined the lisse-étale topos Lis-Et(X ) for an algebraic stack
X . We started proving the following.

Proposition 36.1. If f : X → Y is a morphism of algebraic stacks and G is a quasi-
coherent sheaf on Y, then f ⋆G is quasi-coherent on X .

Proof. f ⋆G is the sheaf associated to the presheaf (U → X ) 7→ limI(U,u)
g⋆GV (U). The

objects of I(U,u) are diagrams

U
g

//

u
��

V

v
��

X
f

// Y

g♭ ;C⑦⑦⑦⑦
⑦⑦⑦⑦

and morphisms V → V ′ are diagrams

V ′

π
��

v′

��

U

u
��

g
//

g′
>>⑥⑥⑥⑥⑥⑥⑥⑥
V

v
��

X // Y

>F✝✝✝ ✝✝✝

>F
✆✆✆

✆✆✆

(1) all morphisms in the limit are isomorphisms: g⋆GV = g′⋆π⋆GV
∼
−→ g′⋆GV ′ .

If I(U,u) were filtering, this would imply that for any object DV0 the map g⋆GV0 →
limI(U,u)

g⋆GV is an isomorphism.

Example 36.2. Say V is a vector space and let α be an automorphism. Then the

limit of the diagram V
α //

id
// V is V/(α(v)− v) ⋄

The claim is that the functor F : I(U,u) → Ab given by DV 7→ g⋆GV (U) factors
though I(U,u) whose objects are the same as the objects of I(U,u) and where all the mor-
phisms have been crushed together (so there is either one morphism or no morphisms
between two objects).

If the claim holds, then limI(U,u)
F = limI(U,u)

F where F : I (U,u) → Ab is the

factorization.
HomAb(limI(U,u)

F,M) = Hom
Ab

I(U,u) (F,M) = Hom
AbI

(F ,M).
Proof of claim:

V

����

U

��

g1
>>⑦⑦⑦⑦⑦⑦⑦⑦ g2 // V2

��

X // Y
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We want the following arrows to be equal

g∗1p
∗
1GV2

((◗◗◗◗◗◗

g⋆2GV2

6v 66♠♠♠♠♠♠

(h ((◗◗◗◗◗◗◗ g∗1GV1

g∗1p
∗
2GV2

66♠♠♠♠♠♠♠

Z //

��

·
V1

��

U
2 //

g1

''

??⑧⑧⑧⑧⑧⑧⑧⑧
V2

∆ // V2 ×Y V2

g∗2GV2
//
// g∗2∆

∗GV2×YV2 = g∗1(p1, p2)
∗GV2×YV2

// g∗1GV1 . So we need to show that

the two maps g∗2GV2
//
// g∗2∆

∗GV2×YV2 are equal and we have φ∆ : g∗2∆
∗GV2×YV2

∼
−→

g∗2GV2 (because G quasi-coherent), and the compositions are the identity, so the two
maps must be equal.

Remark 36.3. In the locally noetherian case, we see that f ⋆ takes coherent sheaves
to coherent sheaves. ⋄

Proposition 36.4. Let f : X → Y be a quasi-compact and quasi-separated (∆ : X →
X ×Y X is quasi-compact) morphism, and let F be quasi-coherent on X . Then f∗F is
quasi-coherent on Y.

Proof. Reduction to the case when Y = Y is a quasi-compact algebraic space.
Let Y → Y be a smooth morphism. Then we defined F (Y ) = Γ(X |f−1Y , F ).

Lemma 36.5. Let π : Z → X be a smooth representable morphism and let F a sheaf
on Xlis-et. Then Γ(X |Z , F ) = Γ(Zlis-et, π

⋆F ). Here X |Z is what? Z is a sheaf (hZ) on
Xlis-et [[⋆⋆⋆ object are triangles U → Z → X with 2-morphism]]. On the right side,
you have an inclusion Lis-Et(Z)→ Lis-Et(X )

The site Lis-Et(X )|Z has objects (U, z : U → Z) such that U is an algebraic
space and π ◦ z : U → X is smooth (this is bigger than Lis-Et(Z). The morphisms
(U ′, z′)→ (U, z) are triangles

U ′ f
//

z′   ❇❇❇❇❇❇❇❇ U ′

z
��

Z

KS

Then X |Z is the topos associated to Lis-Et(X )|Z .
So there is a natural map Γ(X |Z , F ) → Γ(Z, F ), which we want to check is a

bijection.

Proof. This is a bijection because if Z → Z is a smooth surjection, then étale locally
any morphism U → Z factors through Z.

Z

��

αZ

U u
//

ũ

??⑧⑧⑧⑧⑧⑧⑧⑧
Z
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If ũ exists, then you have to choose ũ∗αZ . This guy doesn’t depend on the choice of
lifting. If ũ1, ũ2 : U → Z are two liftings, then we have

Z ×Z Z

����

U

γ
::✈✈✈✈✈✈✈✈✈

$$■■■■■■■■■■ Z

��

Z

Then we have that ũ∗1αZ = γ∗p∗1αZ = γ∗αZ×ZZ . That shows that the map is surjective
and it also shows that it is injective because of something [[⋆⋆⋆ ]]

Let’s finish the reduction to the case of a quasi-compact Y . We know that if Y → Y ,
then (f∗F )Y = (fY ∗F |X×YX )Y with fY : X ×Y Y → Y . Then we still have to check
something cartesian.

Y

��

Y ×Y Y
′p1

oo

p2
��

Γg
// Y ′

id
zz✈✈✈✈✈✈✈✈✈✈

Y Y ′oo

g∗(f∗F )Y = Γ∗
gp

∗
1(f∗F )Y

∼
−→ Γ∗

g(f∗F )Y×YY ′ → (f∗F )Y ′ want to be an isomorphism.
Γ∗
gp

∗
2(f∗F )Y ′ = (f∗F )Y ′ and the first guy maps to the third guy isomorphically and the

second guy is equal to the last guy.
Upshot: Enough to consider Y a quasi-compact scheme
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37 Push-forward of Quasi-coherent sheaves

Recall that we’re trying to prove

Proposition 37.1. Let f : X → Y be a quasi-compact and quasi-separated morphism
of algebraic stacks, and let F be quasi-coherent on X . Then f∗F is quasi-coherent on
Y.

Last time we reduced to the case where Y = Y is a quasi-compact scheme.
Choose a presentation X

p
−→ X such that X → Y is quasi-compact and quasi-

separated. Let X ′ = X ×X X . Then

X ×X X
qcmpt

//

��

X ×Y X

��

qcmpt
// Y

X ∆ // X ×Y X

(g : X → Y ) so η : X ′ → Y is also quasi-compact. Choose an étale surjection W → X ′

from a scheme so that h : W → Y is quasi-compact and quasi-separated (we could
take it to be a disjoint union of affines). Then (f∗F )|Y = ker( g∗FX

//
// h∗FW ) =

ker( g∗FX
//
// η∗FX′ ) (η∗FX′ →֒ h∗FW ). This is because (f∗F )(Y ) = Γ(Xlis-et, F ) =

Eq( Γ(X,FX)
//
// Γ(X ′, FX′ ) by some stuff we did last time (nontrivial).

So (f∗F )Y is quasi-coherent.

W̃ //
//

��

X̃

��

// X ′ f ′
//

t
��

Y ′

s sm
��

W //
// X // X

f
// Y

Then want the map s∗(f∗F )Y → (f ′
∗t

∗F )Y ′ to be an isomorphism. We are using the
lemma from last time that something in the restricted topos is the same as something
else [[⋆⋆⋆ ]]. This follows because the formation of f∗F for f a quasi-compact
quasi-separated morphism of schemes commutes with flat base change.

This concludes the proof of the proposition.

Example 37.2. Let X = BG over a field k. Then Qcoh(X ) ∼= Rep(G) and the functor
Γ(X , F ) = FG. More generally, suppose H ⊆ G is a normal closed subgroup scheme
with quotient Q. Then we get a map f : BG → BQ. If you have a G-torsor P over
some scheme, then you take P ×G Q (product with Q and quotient by the diagonal
action of G). Then we have

Qcoh(BG)
∼ //

f∗
��

Rep(G)

��

M❴

��

Qcoh(BQ)
∼ // Rep(Q) MH

⋄
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� Warning 37.3 (Advertisement for derived categories and cohomological descent).
We can define Rif∗F for some quasi-compact quasi-separated morphism f : X →

Y , but you have to be very careful. You’d like to say that f∗ of an injective is injective
(or acyclic, something in abelian groups [[⋆⋆⋆ ]]), which uses that f ∗ is exact.

Given X
f
−→ Y

g
−→ Z, we want a spectral sequence Ep,q

2 = Rpg∗R
qf∗F ⇒ Rp+q(gf)∗F .

This is the Leray spectral sequence, and you really need that f∗ of an injective is acyclic,
for which you want an exact left adjoint. Things will still work out for quasi-coherent
stuff, but not for sheaves of abelian groups in general. Because of these difficulties,
we’ll postpone this discussion.

We have something Ep,q
2 = Hp(Q,Hq(H,M))⇒ Hp+q(G,M). y
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38 Keel-Mori

Coarse moduli spaces

Since the first day, we’ve talked about the j-invariantM1,1 → A1
j . (1) This is universal

for maps to schemes in the sense that for anyM1,1 → Z, there is a unique factorization
through A1

j . (2) if k is an algebraically closed field, then |M1,1(k)|
∼
−→ A1

j (k).
In general, the analogue of A1

j will be called a coarse moduli space.
Say S is a scheme and X is an algebraic stack over S [[⋆⋆⋆ why not any stack?

something about relative coarse moduli spaces]] with finite diagonal. Recall that ∆ :
X → X ×S X is finite if for any (x1, x2) : T → X ×S X , Isom(x1, x2)→ T is finite (in
particular, Isom(x1, x2) is a scheme). Quasi-finite is not enough, but maybe you can
relax this slightly to say that the Autx are finite.

All the hypothesis in the paragraph above should go below the definition.

Definition 38.1. A coarse moduli space for X over S is a morphism π : X → X where
X is an algebraic space over S such that

1. π is universal for morphisms to algebraic spaces:

2. if k is algbraically closed, then the map |X (k)| → X(k) is bijective. ⋄

Remark 38.2. π : X → X is unique up to unique isomorphism (you only need prop-
erty 1 for this). ⋄

Theorem 38.3 (Keil-Mori (1997 in annals), Conrad (in his web page)). With the
above assumptions, there exists a coarse moduli space π : X → X (X need not be
Deligne-Mumford). Additionally,

1. X is separated over S and if S is locally noetherian, then X is locally of finite
type over S.

2. π is proper (we haven’t defined this yet)

3. if X ′ → X is a flat morphism of algebraic spaces, then X ′ = X ×X X ′ → X ′ is
a coarse moduli space for X ′.

This theorem was folklore for a long time, then it was written without proof in
places. Keil and Mori proved it in the noetherian case. Usually, once you prove
something in the noetherian case, you can get it in general, but there is no reason for
that to be true here because of the following warning.

� Warning 38.4. The formation of coarse moduli space does not commute with
arbitrary base change, only with flat base change. y
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What if you drop the finiteness assumption on the diagonal. You have to throw out
condition (2) [[⋆⋆⋆ for some reason]]. For example, it seems like the coarse moduli
space for [A1

k/Gm] should be Spec k. This satisfies condition (1), but the proof breaks
horribly.

We’ll give the proof in the locally noetherian case. The proof in general is along
the same lines, but more technical.

Idea: start with your stack X . First (we’ll do it last) go to the case where there
exists a quasi-finite flat surjection U → X . This isn’t too bad (in [SGA, III]). The really
subtle step is to then go to the case where you have a finite flat surjection U → X . Back
when we talked about Stein factorization, we had some sort of argument like if we have
U → X quasi-finite, you pick a point x ∈ X and you can find an étale neighborhood
V su that P

∐
U → V is quasi-finite and finitely presented over V . Then we reduce to

the case where there exists a finite flat surjection SpecA1 → X (in [SGA, III]). This
case, we’ve essentially done. Many of the technical lemmas are also in [SGA, III].

What does it mean to be proper?

Definition 38.5. If f : X → Y is a morphism from an algebraic stack to a scheme,
then f is closed if for every closed substack Z ⊆ X , the image of Z in Y is closed. By
the image, we mean take all the field-valued points in Z and they give you field-valued
points in Y , and that set is the image; equivalently, cover Z by a scheme and look at
the image in Y . A morphism of algebraic stacks f : X → Y is universally closed if
for every morphism Y → Y with Y a scheme, the morphism X ×Y Y → Y is closed.
f : X → Y is proper if it is separated (diagonal is proper [[⋆⋆⋆ does this actually
make sense?]]), finite type, and universally closed. ⋄

If π : X → X is a coarse moduli space and π is proper, then π−1 : OpenSet(X)→
OpenSubstack(X ) is bijective. Reason: say U ⊆ X is an open substack, then the claim
is that π(U) is open in X and π−1(π(U)) = U . Complement of U : take a presentation
p : X̃ → X , then

Ũ ′

����

� � // X̃ ′

����

Z̃ ′? _oo

����

Ũ � � //

��

X̃

p

��

Z̃? _oo

��

U � � //

��

X

��

Z? _oo

��

U // X Z? _oo

where Z is the complement of U with the reduced structure. Formation of maximal
reduced subscheme commutes with smooth base change, so Z descends. π proper so
π(Z) ⊆ X is closed. The claim is that π−1(π(Z))red = Z. This is because |X (k)| →
X(k) is bijective. Ũ is an algebraic space because U → X is representable.

In some sense, the coarse moduli space is a universal homeomorphism.
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Proof: I

S is a scheme and X is an algebraic stack over S which is locally of finite presentation
(forgot this last time, but it should be there) with finite diagonal.

Theorem 38.6. There exists a coarse moduli space over S π : X → X so that all that
stuff from last time [[⋆⋆⋆ ]]. Additionally,

1. X is separated over S and locally of finite type if S is locally noetherian.

2. π is proper. (i.e. that bijection of opens)

3. if X ′ → X is flat, then X ′ = X ×X X ′ → X ′ is a coarse moduli space.

The typed up note for this are online. We only give the proof in the locally noethe-
rian case.

In the example [A1/Gm], something doesn’t work. For BG, we have that BG →
Spec k is a coarse moduli space (because you only do the testing on algebraically closed
fields), but without these special properties. Is there an example where the coarse
moduli space doesn’t exist.

In general, if you have a quotient [X/G], the ring of invariants should be the coarse
moduli space, but it might be infinitely generated or something else bad.

Remark 38.7 (Theorem is Zariski local on X ). If X =
⋃
Xi where each Xi is open in

X and each Xi has a coarse moduli space Xi → Xi as in theorem (with the properties),
then X also has a coarse moduli space as in theorem. To see that, take the Xi and

Xi ∩ Xj
� � //

� _

��

##❍❍❍❍❍❍❍❍❍
Xj

��

Xij
� � //

� _

��

Xj

Xi // Xi

Xi //

��

Xi

��

��

X //

!!❇❇❇❇❇❇❇❇ X

∃!
��
✤
✤
✤

Y

Then you glue to get X → X . Then we check that property (on the right). Now check
the other properties [[⋆⋆⋆ ]].

Note that this argument doesn’t work in the étale topology; there is no reason to
expect Xi → X to be étale in that case. ⋄

Thus, we can assume S is a noetherian affine scheme.
Special case 1: assume there exists a faithfully flat surjection SpecA1 → X . Since

the diagonal is finite, SpecA1 ×X SpecA1 = SpecA2 is affine (since finite over affine).
If you look at the proof from lecture 13 and change étale to flat in some places, then
something. You’re really using that this is really a groupoid. Set A0 = Eq(A1 ⇒ A2),
then
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(a) A0 → A1 is finite and integral. This implies that A0 is of finite type over S
[AM69, 7.8].

(b) The topological space | SpecA0| is the topological quotient of | SpecA1| by the
equivalence relation defined by | SpecA2| → | SpecA1 × SpecA1|.

(c) π : X → SpecA0 is universal for maps to schemes [[⋆⋆⋆ X is presented by
SpecA2 ⇒ SpecA1, so the map π is induced by the fact that SpecA1 → SpecA0

coequalizes those arrows]]. We showed that SpecA0 is the quotient in the category
of ringed spaces of SpecA1 by SpecA2. This implies that π∗OX |(SpecA0)et =
OSpecA0 . Just look at maps to A1. This is a general thing if you look at coarse
moduli space and push forward the sturcture sheaf you get the structure sheaf.

We need to check that π is universal for maps to algebraic spaces. So take an algebraic
space Y . Then the sequence

Y (A0)→ Y (A1) ⇒ Y (A2)

should be exact.
Fix an étale surjection U → Y with U a scheme and set R = U ×Y U .
I guess we need to prove something first. The claim is that Hom(X , Y ) = Eq

(
Y (A1) ⇒

Y (A2)
)

SpecA2

����

SpecA1

��

X //

$$■■■■■■■■■■ F

��

Y

This would be clear if something [[⋆⋆⋆ ]] is étale cover. We need to prove that Y
is a sheaf with respect to the fppf topology. [[⋆⋆⋆ what?]] F is the presheaf of
isomorphism classes in the fibers of X , so Hom(X , Y ) = Hom(F, Y ).

We should also correct the theorem. In the definition of coarse moduli space, the
universal property should be for morphisms to quasi-separated algebraic spaces. The
proof doesn’t work for general algebraic spaces; you’ll see the reason.

Theorem 38.8. Let X be a quasi-separated algebraic space over S. Then X is a sheaf
with respect to the fppf topology on Sch/S.

Proof. Let X be the sheaf (in the fppf topology) associated to X and let q : X → X
be the natural map of presheaves. First note that X is a separated presheaf, which is
equivalent to injectivity of q: If s1, s2 ∈ X(U), then Z = U ×(s1,s2),X×X,∆X is a scheme
(because diagonal is representable).
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Surjectivity: say s ∈ X(U). By injectivity, to show that s is in the image of
X , we may replace U by an open cover. Thus, we can assume U is quasi-compact.
Now we can write X =

⋃
Xi where each Xi is quasi-compact. Now let X i be the

fppf sheaf associated to Xi. It is an exercise to check that X(U) = lim←−Xi(U) and

X(U) = lim←−X i(U) because U is quasi-compact.
So we may assume X is quasi-compact. Let X0 → X be an étale sujection with

X0 quasi-compact scheme. The claim is that X0 ×X,s U (X0 = X0 and U = U) is a
scheme which is étale and quasi-compact over U . This would do it because lifting to
X0 is even better than lifting to X .

The quasi-compact is there to be able to do descent theory for quasi-affine maps:
an étale and quasi-compact map is quasi-affine. We may then work fppf locally on U .
Thus, we can assume there exists an s̃ ∈ X(U) with q(s̃) = s. Then by injectivity,
X0 ×X,s U = X0 ×X,s̃ U , which is étale over U (because X0 is étale over U) and it is
quasi-compact because

X0 ×X U

��

// X0 ×S U //

��

U

X
∆ // X ×X

Now let’s go back to the sequence

Y (A0)
j
−→ Y (A1) ⇒ Y (A2).

Let’s do injectivity of the first map. As before, U → Y is an étale surjection from
a scheme. Let η1, η2 ∈ Y (A0) such taht j(η1) = j(η2). First point: we can replace
SpecA0 by an étale cover A0 → R0.

Y (A0)

��

// Y (A1)

��

//
// Y (A2)

��

Y (R0)

����

// Y (R0 ⊗A0 A1)

����

//
// Y (T0 ⊗A0 A2)

����

Y (R0⊗
A0

R0) // Y (R0⊗
A0

A1)⊗
A1

Y (R0⊗
A0

A1)
//
// Y (R0⊗

A0

A2)⊗
A2

Y (R0⊗
A0

A2)

[[⋆⋆⋆ what do those tensor products over A1 and A2 mean?]] Let R = U ×Y U ⊆
U × U . We want to show that (η̃1, η̃2) ∈ R(A0). Because of the universal property for
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schemes, we have exactness of the right column.

(η̃1, η̃2) ∈
❴

��

R(A0)

��

U(A1)× U(A1)

����

R(A1)

����

? _oo

U(A2)× U(A2) R(A2)? _oo

Now exactness in the middle:

SpecA2
//
// SpecA1

//

η

**SpecA0
//❴❴❴ Y

η the map SpecA1 → Y . We can work fppf locally on SpecA0. We can even assume A0

is strictly henselian local ring (maybe works??). Choose a point x : Spec k → SpecA0

where k is separably closed. Then let Ix be the category of all étale maps U → SpecA0

which x factors through. Then OSpecA0,x = limIx Γ(U,OU). Properties:

1. OSpecA0,x is local

2. If R → k where R is strictly henselian and local and SpecOSpecA0,x → k, then
there is a unique morphism OSpecA0,x → R.

SpecA2
//
// SpecA1

// SpecA0
// Y

∏
SpecRi

OO

// SpecOSpecA0,x

OO

Then SpecRi → X faithfully flat surjective and X → SpecOSpecA0,x. Something about
if coarse moduli space then doesn’t matter which flat surjection. Reduce to the case
when A0 strictly henselian local rings.

Proof: II

SpecA2
//
// SpecA1

// X //

η
,,SpecA0
//❴❴❴ Y

Recall that we have a stack X and a finite flat SpecA1 → X and SpecA2 =
SpecA1×X SpecA1. We also have SpecA0, which is the invariants. We fix a morphism
η : X → Y and we’d like to show there is a unique SpecA0 → Y . Here, Y is a
quasi-separated algebraic space. Last time we proved uniqueness.

Theorem 38.9. Let X be of finite type over S with finite diagonal. Assume there is a
finite flat surjection U → X with U a scheme and such that for all x ∈ U the finite set
s(t−1(x)) is contained in an affine. Then there is an open covering X =

⋃
Xi such that

each Xi admits a finite flat covering by an affine scheme. Here s, t : R = U ×X U ⇒ U .
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We’ll prove this in a bit, but first let’s use it to see existance of the map SpecA0 →
Y .

Remark 38.10. This implies that there is a universal map to schemes X → X .
Namely, you take the universal thing for each Xi and glue. Another way to think
of it: X is the quotient of U by R in the category of ringed spaces. ⋄

Given U → Y étale quasi-compact (reduce to the case Y is quasi-compact), we
make the fiber product

XR

����

// Q′

����

// R

����

V

et qcmpt

��

fin flat // XU

��

,,// Q

��

// U

��

SpecA2
//
// SpecA1

// X //

η
,,SpecA0
//❴❴❴ Y

Find Q and Q′ by theorem. V → SpecA1 étale and quasi-compact implies it is quasi-
affine which implies that any finite set of points is contained in an affine.

To show: Q→ SpecA0 is étale surjective and Q
′ → Q×SpecA0Q is an isomorphism.

Then Q′ ⇒ Q is an algebraic space presentation for SpecA0. Then you get your arrow
SpecA0 → Y . In fact, if Q→ SpecA0 is étale, then it follows that Q′ → Q×SpecA0 Q
is an isomorphism: Q′ → Q×SpecA0Q is also étale because Q′ → Q and the projections
are étale. Then it is enough to check that for every algebraically closed k, the map
Q′(k)→ Q(k)×(SpecA0)(k)Q(k) is bijective (this is a property of étale morphisms [SGA,
I.5.7]). But we know thatQ′(k) = |X (k)|×Y (k)R(k) = |X (k)|×Y (k)U(k)×Y (k)U(k), and
we have that Q(k)×(SpecA0)(k)Q(k) = (|X (k)|×Y (k)U(k))×(SpecA0)(k)=|X (k)| (|X (k)|×Y (k)

U(k)), which is equal to the previous guy.
Surjectivity of Q→ SpecA0 is clear [[⋆⋆⋆ ]], so we just need to check it is étale.
Q→ SpecA0 is of finite type, so it is enough to check that it is formally étale. This

can be checked after base change along flat morphisms SpecA′
0 → SpecA0. Check that

everything commutes with finite flat base change on A0. (We’re using the noetherian
hypothesis of Q and SpecA0 over S.)

Upshot: it is enough to consider the case when A0 is complete and local with
algebraically closed residue field.

Now we have SpecA1 → SpecA0 is finite, so A1 is also complete with algebraically
closed residue field. Each something of A1 surjects onto SpecA0, so it surjects onto X .
Thus, we may assume A1 is complete local and A0 → A1 induces an isomorphism on
residue fields.

SpecA1
// X // SpecA0



38 Keel-Mori 155

So we have

∐
Spec k

id //
� _

��

Spec k
� _

��

Spec k
� _

��

u // U

��∐
SpecA

(i)
2 = SpecA2

//
// SpecA1

//

η

22

∃!

55❥❥❥❥❥❥❥❥❥❥
SpecA0

∃!

<<②②②②②②②②②②
Y

Let u ∈ U(k) be a lifting of η|Spec k. Something about a map fromA2 to U , so something.
Now we are in the situation

XU

��

// Q

��

//

·
U

��

SpecA2
//
// SpecA1

// X // SpecA0
// Y

Theorem 38.11. X /S finite type finite diagonal, with U → X finite flat surjection
such that for all x ∈ U the orbit s(t1(x)) is contained in an affine. Then there is a
cover X =

⋃
Xi such that each Xi admit a finite flat surjection from an affine scheme.

Let X (n) ⊆ X be substack such that T → X factors through X (n) if and only if
T ×X U → T has rank n. We see that X =

∐
X (n). Now we can assume that U → X

has constant rank.

R = U ×X U
s //

t
// U . A subset F ⊆ U is invariant if for all x ∈ F and y ∈ R such

that t(y) = x we have that s(y) ∈ F .

Example 38.12. If X = [U/G] then R = U × G ⇒ U . In this case, F is invariant if
it really is invariant under the group action. ⋄

Lemma 38.13. Let F ⊆ U be a subset. then F inv = s(t−1(F )) is invariant.

We’ll omit the proof (it isn’t hard).
Note: if Z1 ⊆ Z2 ⊆ U and Z2 is invariant, then Z inv

1 ⊆ Z2. [[⋆⋆⋆ better:
Z inv

2 = Z2]]
Say W ⊆ U is an open subset with complement F . Then the saturation of W is

defined to be W ′ = U r F inv ⊆ W . Note that this is the maximal invariant subset of
W .

Idea: if W ⊆ U is invariant and W ⊆ X is its image (T → X factors through W if
and only if W ×X T → T is surjective), then W ×X U =W .

We have to show that we can cover U by invariant affine opens. That is, we need
to show that for every x ∈ U , there is an invariant affine open W ⊆ U containing x.
Then the image will be an open substack of X which admits a finite flat covering by
an affine.

Why is the original problem not easy: take an affine W around x and look at its
image. Well, then the map W to its image is not finite.
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Let V ⊆ U be any affine containing s(t−1(x)). Then we can take V ′ ⊆ V , in which
we can find a D(f) in there (with f ∈ Γ(V,OV ), and we end up with s(t−1(x)) ⊆
D(f)′ ⊆ D(f) ⊆ V ′ ⊆ V . The claim is that W = D(f)′ is affine. It will turn out that
D(f)′ = D(f ·NormS(t

∗f))
Z(f) := V ′ rD(f). s, t : V ′ ×X V

′ → V ′, and t−1(Z(f)) is the set of points where
t∗f is zero. By the way, if h : Y → X is finite (flat), then h∗OY is a locally free sheaf
of algebras of finite rank. If α ∈ h∗OY , then Normh(α) ∈ OX is det(α).

We’ve now prove the existence of the coarse moduli space when you have a finite
flat covering by a scheme.

Next time:

Theorem 38.14. X /S finite type finite diagonal. Then there is an algebraic stack
W/S and surjective separated étale morphism W → X which is representable by
schemes and admits a finite flat surjection Z →W so that Z has good proerties.

The idea is to start with X , find a W → X étale which has a coarse space W .
Then hope thatW×XW has a coarse space R and that R ⇒ U is an étale equivalence
relation. Then we can define the coarse space X as the quotient.

Proof: III

Recall that we have X an algebraic stack of finite type with finite diagonal over an
noetherian affine base S. The goal is to get a coarse space X → X with a bunch of
properties. So far, we’ve done this if X admits a finite flat surjection from a quasi-
projective scheme.

We need three theorems.

Theorem 38.15 (A, Zariski’s main theorem for stacks?). Assume X admits a quasi-
finite flat surjection U → X with U a quasi-projective S-scheme. Then there is an
algebraic stack W over S and a surjective separated étale morphism π : W → X
which is representable by schemes (for T a scheme, W×X T is a scheme) and a closed
immersion Z ⊆ U ×X W such that Z →W is a finite flat surjection and such that

1. for every quasi-compact open substack W ′ ⊆ W, the preimage Z ′ ⊆ Z is quasi-
projective over S, and

2. for every algebraically closed field k and w ∈ W(k), then AutW(k)(w)→ AutX (k)(π(w))
is an isomorphism (it is always an injection by representability of π).

If X is quasi-compact, we get that W has a coarse moduli space W , and W ×X W
will also have a coarse moduli space R, and we’d like to show that R⇒ W is an étale
equivalence relation. The second condition is what will force R to be étale.

Theorem 38.16 (B). Let Y ′ → Y be a separated representable étale and quasi-compact
morphism of algebraic stacks of finite type over S with finite diagonals. Assume there is
a finite flat covering U → Y with U/S quasi-projective and for every algebraically closed
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field k and y′ ∈ Y ′(k) mapping to y ∈ Y(k), the map AutY ′(k)(y
′) → AutY(k)(y) is an

isomorphism. Then Y ′ admits a finite flat covering U ′ → Y ′ with U ′/S quasi-projective
and the map on coarse spaces Y ′ → Y is étale.

This, together with the first theorem will say thatW×X W has a coarse space and
the projections R ⇒W are étale.

Theorem 38.17 (C). Let X /S be an algebraic stack locally of finite type with finite
diagonal. Then there is an open covering X =

⋃
Xi such that each Xi admits a quasi-

finite flat surjection Ui → Xi with Ui/S quasi-projective. (If X is DM, then you could
replace “flat” by étale.)

Now we start with a general X . Apply Theorem C to reduce to the case where you
have a quasi-finite flat surjection. Then we get R ⇒ W an étale equivalence relation
and we win.

Let’s start with theorem A.

Proof of Theorem A. Let H (for Hilbert) be the stack over S whose objects are triples
(T, x, Z) such that T is an S-scheme, x ∈ X (T ), and Z ⊆ T×x,XU is a closed subscheme
(because it is quasi-finite, this is a quasi-finite separated T -scheme, so it is quasi-affine)
flat over T . There is a natural forgetful map H → X given by (T, x, Z) 7→ (T, x) and
we have that

HilbT×XU
·

//

��

H

��

T // X

This implies that H is an algebraic stack with finite diagonal. Maybe a better notation
for H would be HilbU/X .

DefineW ′ ⊆ H to be the maximal open substack where H → X is étale. In general
if you have a finite type morphism of schemes, the locus where the morphism is étale
is an open set. You can do the same thing here.

HT

��

//H

��

T ′ //
// T

sm // X

Define IX , the inertia stack, to be

IX //

��

X

∆
��

X ∆ // X ×X

Autx //

��

IX

��

T
x // X
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An automorphism in IX is a pair of automorphisms in X . Now define I ′X = IX ×X W ′.
Then we have that

IW ′

��
✶✶✶✶✶✶
j

// I ′X

��✎✎✎✎✎✎

W ′

Lemma 38.18. j is an open and closed immersion.

Proof. IW ′ and I ′X are both finite over W ′. The map j is also a monomorphism since
W ′ → X is representable.

Aut(x,Z) //

��

Autx

yyttttttttttt

T
(x,Z)

//W ′

To prove the lemma, it is enough to show that j is étale. For this, look at the following
picture.

IW ′

��

et // I ′X
//

��

W

∆
�� ##●●●●●●●●●●

W ′ et //

et
!!❈❈❈❈❈❈❈❈❈ K //

��

W ×W

et
��

X

∆zz✈✈✈✈✈✈✈✈✈

X ∆ // X × X

Aside: if k = k̄, x ∈ X (k), Z ⊆ U×X ,xk, then Aut(x, Z) is the set of automorphisms
σ : x→ x in X (k) such that σ : U ×X ,x k → U ×X ,x k is an automorphism over Z.

Let I ′′X ⊆ I ′X be the complement of IW ′, and let W ⊆W ′ be the complement of the
image of I ′′X in W ′. Here we use the fact that I ′X is proper over W ′ and so I ′′X is also
proper over W ′. The claim is that W works.

Z � � //

$$■■■■■■■■■■ U ×X W

��

W

We still need to show that W → X is surjective. Let k be an algebraically closed field
and fix x ∈ X (k). Consider w ∈ H(k) corresponding to

U ×X Spec k id //

((❘❘❘❘❘❘❘❘❘❘❘❘❘
U ×X ,x Spec k

��

Spec k
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we have to show that something lies in the étale locus. Something about the identity
not working for a quasi -finite morphism. Let V → X be a smooth surjection, and
assume that x comes from a point v : Spec k → V (since k = k̄). Then we have

HilbP/V̂ ⊔(else)

w ∈ HilbU×XSpec k
� � //

��

HilbU×XV
//

��

H

��

Spec k
v // V // X

We can replaced V by a completion (strict hensilization) at v. Now look at U ×X V̂ =
P ⊔Q where P → V̂ is finite and Q has empty closed fiber. Something with that top
Hilb because of Hilbert polynomial considerations. Moreover, that Hilb is V̂ ⊔ (rest),
and our point lies in V̂ , which proves the result.

Outline proof of Theorem B. π : Y ′ → Y representable étale quasi-compact and U →
Y finite flat with U/S quasi-projective, and for all y′ ∈ Y ′(k), the map Aut(y′) →
Aut(π(y′)) is an isomorphism.

(a) Y ′ admits a finite flat surjection U ′ → Y ′ with U ′/S quasi-projective. To see
this,

U ′ //

��

Y ′

��

U // Y

U ′ → U étale quasi-compact so quasi-affine and quasi-affine over quasi-projective (U)
is quasi-projective. [[⋆⋆⋆ ]]

(b) Y ′ → Y is étale. Idea of proof: you certainly have finite type since we’re in the
noetherian case, so it is enough to check formally étale. Now we need to write down
what the complete local rings of Y ′ and Y look like at a point. Fix y ∈ Y (k) with k
algebraically closed, and fix a lifting u ∈ U(k) of y, and let y′ ∈ Y ′(k) mapping to y.
It takes a little argument, but you can find u′ ∈ U ′(k) mapping to u. Take ÔshY,y (sh
means strict hensilization; else think closed point and completion at local rings), it is
Eq(ÔshU,u ⇒

∏
ξ∈R(k),s(ξ)=u=t(ξ) Ô

sh
R,ξ) with R = U×YU . And we get ÔshY,y′ = Eq(ÔshU ′,u′ ⇒∏

ξ′∈R′(k),s(ξ′)=u=t(ξ′) Ô
sh
R′,ξ′). The map between them is induced by maps on the terms in

the equalizers, the map ÔshU,y → Ô
sh
U ′,y′ is an isomorphism and something on the product

terms. We want that {ξ′ ∈ R′(k)|s(ξ′) = t(ξ′) = u′} → {ξ ∈ R(k)|s(ξ) = t(ξ) = u} to
be bijective. The first set is in bijection with AutY ′(y′) and the second is in bijection
with AutY(y).
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Proof: IV

Recall that we have an Artin stack X /S of finite type with finite diagonal (and we
were doing the case where S is noetherian). We sketched how to construct a coarse
moduli space.

Theorem 38.19 (C). X =
⋃
Xi with each Xi admitting a quasi-finite flat covering.

This is the only theorem we haven’t talked about . . . it is a slice argument in [SGA,
3] and we’ve done something similar earlier.

Then take a really nice étale cover W of X which has a coarse space, and show that
W ×X W has a coarse space which is an étale equivalence relation.

Today we’ll talk more about the construction of the coarse space.

Theorem 38.20. Let X /S finite type with finite diagonal and assume X is Deligne-
Mumford. Then for every geometric point x : Spec k → X (k separably closed), there
exists an étale neighborhood X ′ → X of the image of x in the coarse space X such
that X ×X X ′ ∼= [U/Γx] where U is a finite X ′-scheme and Γx = AutX (k)(x). This is
why people say DM stacks are like orbifolds . . . they locally look like the quotient by the
stabilizer group at that point.

Proof. We can assume X is quasi-compact (everything is local on the coares space,
and if the coarse space is quasi-compact, then so is X ). Choose an étale quasi-compact
surjection U → X . Then U → X is quasi-finite, separated, and of finite type, so we
can choose a base change X ′ → X an étale neighborhood of x (this includes a lifting of
x to X ′) such that U ×X X ′ = P ⊔T such that P → X ′ is finite and T ×X′ Spec k = ∅.

Replace X by X ′. Replacing X by the image of P , we can assume there is a finite
étale covering P → X → X . X → X is proper surjective and P → X is proper, thne
P → X is proper (finite for some reason [[⋆⋆⋆ P → X ′ is finite]]). The lemma for

schemes: Z1
f
−→ Z2

Z
−→3 with g separated and surjective and gf proper, then f is proper.

∐
P i
x

//

��

Xsh

��

// SpecOshX,x

��

P // X // X

with P i
x strictly hensilian and local. So after further replacing X by an étale covering,

we can assume that we only get one Px := P ×X SpecOshX,x which is strictly hensilian
and local. ∐

Γ Px = Rx
//
// Px // Xsh // SpecOshX,x

Looking at just closed points, a closed point in Rx is an automorphism of a point in
Px. You see the group structure from the groupoid structure.

The group structure on Γx. We have

(∐

Γx

Px
)
×p2,Px,p1

(∐

Γx

Px
)
→

(∐

Γx

Px
)
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The second projection Rx
p2−→ Px defines an action of Γx on Px which doesn’t have to

act trivially.
So we see that [Px/Γx] = Xsh → SpecOshX,x. Something is obtained by some limit,

so somehow you get the theorem.

Remark 38.21. If X → X is étale, then étale locally on X (with notation as above),
X = X × BΓ for some finite group Γ. If the map Xsh → SpecOshX,x is étale, then
Px → SpecOshX,x is an isomorphism (something about strictly hensilian local rings) so
the two projections must be equal. ⋄

Example 38.22. M1,1,S, then the coarse space is A1
j,S (even if 6 is not invertible).

Note that we haven’t actually shown yet thatM1,1,S has finite diagonal, so we don’t yet
know that the coarse space exists. Let’s first show finite diagonal. Take elliptic curves
with some level structure, then it will be finite flat overM1,1,S. In the case when 3 ∈ O×

S

(then take the open subset where 2 is invertible and glue), V = Spec
S
(OS[µ, ω][1/(µ3−

1)]/(ω2 + ω + 1)). This classifies elliptic curves E with an isomorphism σ : (Z/3)2
∼
−→

E[3] (the 3-torsion of E). The universal curve over it is X3 + Y 3 +Z3 = 3µXY Z, and
the basis for the 3-torsion is p = [1, 0,−1], q = [−1, ω, 0].

We have V → M1,1,S = [V/GL2(F3)]. Now we clearly have finite diagonal. This
implies that the coarse space M1,1,S is relative spectrum over S of the GL2(F3)-
invariants in OV . I think its pretty hard to show that this is A1

j,S (by the way,

j =
(
3µ(µ3 − 23)/(µ3 − 1)

)3
). Let’s do it another way.

Consider the case when S = Spec k. Then π :M1,1,k → M1,1,k and we have a map
j :M1,1,k → A1

k, so we get a map h : M1,1,k → A1
k. We want h to be an isomorphism.

We know thatM1,1,k is a geometrically normal curve because you are taking invariants
of a smooth curve by a finite group étale locally, so the quotient is normal. h induces
a bijection on Ω-valued points for every algebraically closed field Ω. That implies that
h is an isomorphism.

Again. (something about coarse spaces commuting with flat base change. You can
see that M1,1,k is proper over A1 because V is finite over the line. We know that j and
π are proper, π is surjective, which implies that h is proper, and for some reason finite.
Since coarse spaces commute with flat base change, we can assume k = k̄.

Something is bad

k(j1/p)[ε]/εp //

��

k(j1/p)

��

k(j1/p) // k(j)

[[⋆⋆⋆ somebody should explain this to me]]
Now take the case where we have an artinian local ring R with residue field k and

let S = SpecR. Say J ⊆ R is a square zero ideal which is annihilated by the maximal
ideal of R, and say R0 = R/J . Then we have overM1,1,R

J ⊗OM1,1,k
→ OM1,1,R

→ OM1,1,R0
→ 0
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But we get exactness on the left by tensoring the following with OM1,1,R

0→ J → R→ R0 → 0

Now on A1
R we get a sequence

0→ J ⊗k j∗OM1,1,k
→ j∗OM1,1,R

→ j∗OM1,1,R0

0 // J ⊗k j∗OM1,1,k
// j∗OM1,1,R

// j∗OM1,1,R0

0 // J ⊗OA1
k

OO

// OA1
R

OO

// OA1
R0

// 0

By induction we can assume the outer two are isos so the middle one is an iso.
In general to check that OA1

j,S
→ j∗OM1,1,S

is an isomorphism reduce to the case of

artinian local.
⋄

Mg also has finite diagonal. If R is a complete discrete valuation ring and C1, C2 ∈
Mg(R), then any isomorphism ση : C1,η

∼
−→ C2,η (η the generic point) over Spec k

extends uniquely to an isomorphism C1
∼
−→ C2. One way to do this is to say C1 is the

minimal regular model of the generic guy.
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42 Cohomological descent

The next two lectures address the following question: given a stack X and a sheaf
F on X , how does one compute compute H·(X , F )? More generally, we’d like to
compute Rif∗. The idea is basically that of Čech cohomology: the cohomology of X
is computable from the cohomology of a cover of X together with the cohomologies of
intersections, triple intersections, etc.

Definition 42.1. The simplicial category ∆̃ is the category of finite ordered sets with
(weakly) order-preserving maps. This is equivalent to the category whose objects are
[n] = {0, 1, · · · , n} with n ≥ −1 ([−1] = ∅). Then there are i + 1 special order-
preserving maps [i] → [i + 1] and i special maps [i + 1] → [i]. [[⋆⋆⋆ these should
be called dj and δj , and should be explained. check out the standard notation for
simplicial objects. The point is that these maps generate ∆̃ with some relations (which
should be written here)]]

We define ∆ ⊆ ∆̃ be the full subcategory of non-empty sets, and define ∆+ ⊆ ∆ to
be the subcategory with the same objects as ∆, but only injective maps.

Let C be a category. A simplicial object in C is a functor ∆op → C. ⋄

Given an algebraic stack X , there is a presentation X → X . Define Xi = X ×X

· · · ×X X (i+ 1 times). There are i + 1 obvious projections Xi → Xi−1 and i obvious
morphisms Xi−1 → Xi (given by repeating one of the factors), and these satisfy the
usual relations. Thus, we have a simplicial algebraic space X·

We want to compute H·(X , F ) in terms of H·(Xi, FXi
). We need a supped up

version of Čech cohomology. This is Cohomological descent, which you should think of
as Čech cohomology on steroids.

We can talk about AlgSp/X , where objects are arrows v : V → X and morphisms
are morphisms over X (up to 2-isomorphism). Then Xi(T → X ) = Hom(T,X)[i] (i+1
maps from T to X over X ). Then it is clear that if we have an order-preserving map
[i] → [j], then we get a map Xj(T → X )→ Xi(T → X ). These simplicial objects are
very complicated.

Each Xi has an étale topos, and we’d like to package them all together.

Definition 42.2. Let D be a category. A D-topos is a functor p : T→ D such that

1. T is fibered and cofibered over D (Top → Dop is fibered),

2. for all d ∈ D, the fiber Td is a topos,

3. for each m : d′ → d in D, Td′
m∗

**
Td

m∗

kk , there is a morphism of topoi f : Td → Td′

such that m∗ = f∗ and m∗ = f ∗. [[⋆⋆⋆ this makes me uncomfortable . . . it
seems like p must be a split fibered cofibered category for this definition to make
sense]]
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The total topos of a D-topos is Tot (T) = HOMD(D,T), the category whose objects are
data ({Fd}, {φ♯}) where Fd ∈ Td and for every φ : d → d′, we have φ♯ : φ∗Fd′ → Fd
which are compatible [[⋆⋆⋆ write compatibility condition]]. [[⋆⋆⋆ how to prove
that the total topos is actually a topos? If Td is the topos of some site Cd, then Tot (T)
should be the topos on some site C fibered over D whose fibers are Cd]] ⋄

[[⋆⋆⋆ define quasi-coherent sheaves on the total topos here]]
Roughly, a D-topos is a functor T : Dop → Topoi with d 7→ Td [[⋆⋆⋆ if we require

the spitting, then this is exactly what a D-topos is]]. We see that X·et : ∆op → Topoi,
given by [i] 7→ Xi,et, is a ∆-topos.

Example 42.3. For X·et, the total topos consists of data ({Fi}, {φ♯σ}), where Fi ∈
Xi,et and for every σ : [i]→ [j] (order preserving), we get a map X(σ) : Xj → Xi, and
we want X(σ)∗Fi → Fj in a compatible way. ⋄

Now we want to compute the cohomology of the simplicial topos and relate it to
the cohomology of the stack. How do you compute the cohomology of a ∆-topos (or
∆+-topos)?

Say we have a ∆̃-topos; let T· be associated ∆-topos.

T2︸ ︷︷ ︸
T·

❴ *4· · · T1
px +3 T0

//
tt

T∅

Let εi : Ti → T∅. There is a morphism of topoi ε· : Tot(T·)→ T∅ with ε·({Fi}, φ♯σ) :=
Eq(ε0∗F0 ⇒ ε1∗F1), and ε

∗G = ({εn∗G}, can). [[⋆⋆⋆ how does one check the adjunc-
tion?]]

Let X be a scheme and let X· → X be a flat surjection. Then we have X̃· : ∆̃op →

Sch, with X̃∅ = X .

Example 42.4. We could define T· to be the ∆-topos (Ti = Xi,et) and T∅ = Set

(point topos). Here, ε∗ : T· → ∗ is the global section functor. [[⋆⋆⋆ this isn’t
clear]] ⋄

If we want to compute cohomology, we need to know how to compute Riε∗F· (we
want to push forward a sheaf on the total topos to T∅).

The “standard reference” is [SGA, 4 1/2], which is based on some lectures of Deligne,
which the author didn’t understand. The idea isn’t too bad.

So F· ∈ Tot(T·) and we’re trying to compute pushforward. If you like, think of
the case where the target is a point and we’re trying to compute global sections.

Remark 42.5 (Aside). [[⋆⋆⋆ This remark should appear earlier]] We started with
a stack X with a presentation X· and a quasi-coherent sheaf F . Then you get a

simplicial sheaf F· on X·. Later, we’ll prove that H·(X ,F) = H·(Tot(X·et, F·
)
(this

should properly be called “cohomological descent”) [[⋆⋆⋆ I don’t think we actually
prove this. Find a ref]]. You should view this as some kind of derived version of Čech
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cohomology (note that working with the total topos makes it so that you don’t have
to worry about taking affine covers or whatever).

For every smooth V → X , we have the (quasi-coherent) restriction FV ∈ Vet and
for every morphism g : U → V over X (with 2-isomorphism), we have an isomorphism
g∗FV

∼
−→ FU . This gives us the F·. ⋄

We need to understand injectives in Tot(T·). The answer: for every injective

I· ∈ Ab
(
Tot(T·)

)
, the sheaf Ii is injective in Ab(Ti) for all i. ε∗I

q−iso
−−−→ ε0∗I0 → ε1∗I1 →

ε2∗I2 → · · · where the maps are
∑

(−1)idi as in usual Čech cohomology.

How to compute ε∗F·: choose an injective resolution F· → I·· , so we have

F2

F1

OO

// I01 //

OO

I11 //

OO

I21 //

OO

F0

OO

// I00
//

OO

I10
//

OO

I20
//

OO

ε∗I
0
1

//

OO

ε∗I
1
1

//

OO

ε∗I
2
1

//

OO

ε∗I
0
0

//

OO

ε∗I
1
0

//

OO

ε∗I
2
0

//

OO

K0 //
?�

OO

K1 //
?�

OO

K2
?�

OO

//

the vertical maps are alternating sums of the di. We’re supposed to apply ε∗ to the
whole complex (without the left column) and get the kernels K·. We claim that the
columns are exact after applying ε∗. We have a quasi-isomorphism K· → Tot(ε∗I·),
given by

ε∗I
0
0

// ε∗I
1
0 ⊕ ε∗I

0
1

// · · ·

K0
?�

OO

// K1

OO

//

The upshow is that you can forget about the mysterious equalizer, you’re just comput-
ing the total cohomology of the bicomplex.

Riε∗F = Hi
(
Tot(ε∗I·· )

)
. Whenever you have a bicomplex, you get a filtration Fil·

on Tot(ε∗I
·
·).

Filk =
⊕

i+j=n,j≥k

ε∗I
i
j ⊆

⊕

i+j=n

ε∗I
i
j

You allow things that don’t go too far vertical. Whenever you have a filtration, you
have some spectral sequence which relates the cohomology of the filtered pieces to the
cohomology of the whole thing. [Lan02, XX.9.3]

The claim is that Filk/F ilk+1 = I·k . You find that there is a spectral sequence
Ep,q

1 = Rqεp∗Fp ⇒ Rp+qε∗F . Note that the first thing is some cohomlogy on one of the
spaces.
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More Cohomological Descent

Recall the setup. We have T·
ε
−→ T∅, and we want to compute Riε∗F·.

If I ∈ Ab(T·), then (1) each Ik ∈ Ab(Tk) is injective, and (2) ε∗I (concentrated in

degree zero) is quasi-isomorphic to ε0∗I0 → ε1∗I1 → · · · , so there is no higher cohomology.
By Lang, we have Epq

1 = Rqεp∗Fp ⇒ Rp+qε∗F .

Example 42.6 (Čech cohomology). What happens in the Čech cohomology situation.
Let X be a quasi-compact separated scheme, and let X =

⋃
Ui a finite covering with

each Ui affine. Let F be quasi-coherent on X . Then the simplicial scheme we get is∐
Ui → X . The next step is

∐
Ui ∩ Uj , then triple intersections (allowing i = j, by

the way; this is how you get the sections); call this thing U·. We’re supposed to have
a spectral sequence Epq

1 = Hq(
∐

i0...ip
Ui0...ip ,F)⇒ Hp+q(U·F). The picture is

[[⋆⋆⋆ pictures]]
For q > 0, the whole thing is zero because you have an affine scheme. The bottom

row is the Čech complex, except for this i < j issue. You get the complex by taking
alternating sums. This simplicial abelian group (of 0th cohomologies) can be handled
in 2 ways; one of them (the normalized complex) is the usual Čech complex, and the
other is what we have. There is some result that says that they are the same thing
(give the same cohomlogy). ⋄

Let’s say why injective objects look like what we’ve claimed they are. If you have
an abelian sheaf in Ab(T·). Then for every n, we have a restriction map rn : Ab(T·)→
Ab(Tn). This is an exact functor (this is how you define exact sequences in Ab(T·).
It has a right adjoint en : Ab(Tn) → Ab(T·), given by (enF )k =

∏
ρ∈Hom∆([k],[n]) ρ∗F

(ρ gives a map Tn → Tk). Any functor with an exact left adjoint takes injectives to
injectives, so en does so. Thus, en of an injective is injective.

Given F· ∈ Ab(T·), choose for every n and inclusion Fn →֒ In where In ∈ Ab(Tn)
is injective. Then F· →֒

∏
n en(fn(F·)) →֒

∏
n en(In). A corollary of this is that every

injective sheaf in Ab(T·) is a direct summand of a sheaf of the form
∏

n en(In), with
the In injective for each n.

ρ∗ takes injectives to injectives (because exact left adjoint). Thus, each en(In) is
injective at each level, and since each injective is a summand of one of these, we’ve
checked the first point. Also, it is possible to show this by showing that rn has an
exact left adjoint, so it takes injectives to injectives.

To check the second point for a direct sum, it is equivalent to check it for each
summand. To check that ε0∗I0 → ε1∗I1 → · · · has no higher cohomology, it is enough to
consider I· =

∏
n en(In). Let Tn : ∆ → Ab be given by [p] 7→

∏
Hom∆([p],[n])Z. Let T̃n

be the associated total complex. In this case, the sequence with the εi∗s is (ε
n
∗In)⊗Z T̃ ;

you first push down to [n] and then push down to ∅. But T̃n is a complex of abelian
groups, it computes cellular homology of the standard n-simplex, which is zero, so the
tensor product is isomorphic to εn∗In.

Let’s now take X to be an algebraic stack. Let X → X be a smooth surjection
with X and algebraic space. Then we get X·, which is a simplicial algebraic space.
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Now you have to be a little careful. Remember we’re thinking about Xlis-et. We’d
like to say we get an augmentation X·lis-et → Xlis-et, but the lisse-étale topos is not
functorial; for example ∆ : X → X ×X X doesn’t give a morphism of topoi. However,
we do get X+

·lis-et → Xlis-et (the + means restrict to ∆+); somehow all these maps are

smooth, so we’re ok. We also have morphisms of topoiX+

·lis-et → X+

·et and X·et → X+

·et.
A sheaf of OX·-modules in X·et (for each i, the sheaf on Xi is an OXi

-modules in a

compatible way) is quasi-coherent if each Fi on Xi is quasi-coherent and the transition
maps X(σ)⋆Fi → Fj is an isomorphism for every σ a morphism in ∆. Similarly, we
can talk about quasi-coherent sheaves on the other topoi.

Theorem 42.7. Qcoh(X+

·lis-et), Qcoh(X ), Qcoh(X
+

·et), and Qcoh(X·et) are all equiva-

lent (by the maps above), and the map Qcoh(X ) → Qcoh(X·et) is the natural restric-
tion.

Note that at least for this subject, you don’t need to worry about the degeneracy
maps.

The good statement is that there is an equivalence of derived categories D+
qcoh(X )→

D+
qco(X·et). Concretely, you can always choose presentations

X·
f· //

��

Y·
��

X
f

// Y

D(X·et)
≀

��

Rf·∗ // D(Y·et)
≀

��

D+
qcoh(X )

Rf∗
// D+

qcoh(Y)

The upshot is (cohomological descent) that you can compute the cohomology of a stack
by a spectral sequence Epq

1 = Hq(Xp, F |Xp) ⇒ Hp+q(X , F ). This is the general tool
for computing cohomology of artin stacks.

Example 42.8. Let X = BkG (let’s say G is a finite group). Then we have

G×G ❴*4 G +3 Spec k // BkG

Map(G×G,F ) Map(G,F )❴jt Fks

(and the other arrows). If F is a sheaf on BG (i.e. a representation of G), then
we get the second row. That bottom row is the standard complex computing group
cohomology. The derived functors of invariants are computed by this second row. ⋄

So cohomology of a stack is a mixture of group cohomology and regular old coho-
mology.

Example 42.9 (special case). Take G = Z/p and k = Fp. Then H i(G, k) ∼= Fp for
each i ≥ 0. So we see that H∗(BG,OBG) is unbounded. ⋄
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Definition 42.10. Let X be a Deligne-Mumford stack over some noetherian S with
finite diagonal. We call X tame if for every algebraically closed field k and x ∈ X (k),
the order of AutX (k)(x) is invertible in k. ⋄

Think ofM1,1 outside of characteristic 2 and 3.
In this case, look at the coarse space π : X → X .

Proposition 42.11. For any quasi-coherent sheaf F on X , Riπ∗F = 0 for i > 0

Corollary 42.12. Hp(X ,F) = Hp(X, π∗F).

In particular, for an algebraic space, there is an integer so that cohomology vanishes
after a certain point [[⋆⋆⋆ we proved it by taking a dense open scheme and do some
kind of induction. . . there should be some assumption like finite type over a field]]

Proof of Proposition. The result is étale local on X . We can assume X = [U/Γ] where
U → X is finite and Γ is the stabilizer group of some point. The assumption that it
is tame means that Γ has order which is invertible in X (again taking an étale map if
needed). Then a quasi-coherent sheaf on X is the same thing as an OU -module F with
a lifting of the Γ action to F .

We have (M,action) 7→MΓ, which is an A-module. So we’re really just computing
group cohomology. But group cohomology over a field where the order of the group is
invertible is zero for higher stuff. 1

|Γ|

∑
γ∈Γ γ is a projector from M to MΓ.

Often when you do algebraic geometry, you’ll see stamements like “quotient singu-
larities are as good as smooth”. Quotient singularity means you’re locally the quotient
of a smooth thing by a finite group. If X has quotient singularities, it means that it
looks like the coarse space of a smooth DM stack. It is clear that the coarse space
of a smooth DM stack has only quotient singularities. If you have only quotient sin-
gularities and you’re over Q, then there is some DM stack whose coarse space is the
thing you started with. You can prove lots of things about X from its coarse space. In
characteristic p, this is unknown; bummer.

The problem is: given an X/k with k even algebraically closed of characteristic p,
with quotient singularities, produce a smooth DM stack with X as its coarse space.
This would be very interesting if somebody solves it.
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44 Brauer Groups and Gabber’s Theorem

Today let’s go back to gerbes.
Brauer groups and quotient stacks. Let X be a scheme. An Azumaya algebra on X

is a locally free sheaf of (non-commutative) OX-algebras A of finite rank such that étale
locally on X , A ∼= End(V) for some vector bundle V on X (this implies that the center
is OX). A ∼= A′ if there exist vector bundles V and V ′ such that A ⊗OX

End(V) ∼=
A′⊗OX

EndV ′. Giving a group structure of tensor product over OX , we get the Brauer
group Br(X).

If you have an Azumaya algebra A of rank n2 (n is the rank of that local vector
bundle), then you can define PA = Isom(A,Mn×n(OX)). This is a functor on X-
schemes, it gives you (Sch/X)op → Set, given by (f : T → X) 7→ the set of isomorphism
f ∗A

∼
−→Mn×n(OT ). This PA is a PGLn-torsor (the Scholem-Noether theorem tells you

that all the automorphisms of Mn×n are given by conjugation by some matrix). From
a PGLn-torsor, we get the sequence

1→ Gm → GLn → PGLn → 1

from which we get a boundary map H1(X,PGLn)→ H2(X,Gm). This sends a torsor
to the stack [PA/GLn], which is Gm-gerbe. In fact, this map lands in the torsion part
of H2(X,Gm). The reason is

1 // Gm
// GLn // PGLn // 1

1 // µn //?�

OO

SLn //
?�

OO

PGLn // 1

So the map factors through H2(X, µn) which is torsion.
We get a map Br(X) → H2(X,Gm)tors =: Br′(X) (cohomological Brauer group)

given by A 7→ [PA/GLn]. We should check that this is well-defined and a homomor-
phism, but we won’t. It is not too hard to check that this is injective. Under some
circumstances, there is no torsion [[⋆⋆⋆ normal and something?]]

Theorem 44.1 (Gabber). If X has an ample sheaf (a little more general than quasi-
projective), then this map is an isomorphism.

Consider the piece of the long exact sequence

H1(X,GLn)→ H1(X,PGLn)→ H2(X,Gm)

The first map is V 7→ PEnd(V). From that we see that the kernel of the second map
consists of [[⋆⋆⋆ ]], which is the statement of injectivity of the map Br(X)→ Br′(X)
(you also have to say that if two Azumaya algebras are equivalent, then the torsors PA

are isomorphic: if A and A′ with PA
∼= PA′, then we look at P−1

A ∧ PA′ and somehow
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show that A ≃ A′; this shouldn’t be hard). The second map is PA 7→ GA.

GA

��

T
f

//

f̃
>>⑥⑥⑥⑥⑥⑥⑥⑥
X

GA(T ) is the category of pairs (VT , ι) with VT a locally free rank n on T and ι : f ∗ ∼
−→

End(VT ). This is a Gm-gerbe.
This means that there is a tautological locally free sheaf of rank n on this gerbe.

GA comes equipped with a canonical locally free sheaf VA. To give a locally free sheaf
on a stack is to give a locally free sheaf for every morphism in and for every diagram,
an isomorphism of the two pull-backs. So take VT ; if you have a morphism T → T ′,
then you automatically get an isomorphism between VT and the pullback of VT ′.

Let G → X be a Gm-gerbe, and let F be a quasi-coherent sheaf on G.

Proposition 44.2. F has a canonical decomposition F ∼=
⊕

n∈ZF
(n).

If f : T → G, then you get a sheaf FT := f ∗F . This sheaf has an action of
Autf = Gm, given by u ∈ Gm acts by the 2-morphism given by µ over idT : T → T

over G. Then we get a decomposition FT ∼=
⊕

n∈ZF
(n)
T , with u ∈ Gm acts on F (n)

T by
multiplication by un.

Definition 44.3. A twisted sheaf on G (the standard terminology is “a G-twisted sheaf
on X”) is a quasi-coherent sheaf F such that F = F (1). You should really specify the
character . . . since we’re working with Gm, we have the canonical character (1). ⋄

Remark 44.4. VA on GA is twisted. Because we defined the action as just multipli-
cation. ⋄

Proposition 44.5. Let α ∈ H2(X,Gm) with associated gerbe π : Gα → X. Then
α ∈ Br(X) ⊆ H2(X,Gm) if and only if Gα admits a twisted locally free sheaf.

Reason: (⇒) is already done by remark. (⇐) if F1 = F (n)
1 and F2 = F (m)

2 , then
F1 ⊗ F2 = (F ⊗ F)(n+m) (if u acts by un and um, then it acts on the tensor product
by un+m). Also, F = F (0) if and only if π∗π∗F → F is an isomorphism (so the ones
that are untwisted are just the sheaves on X).

Say V on G is twisted. Then V ⊗ V̌ = (V ⊗ V̌)(0) (because u acts my multiplication
by the inverse on V̌), so π∗End(V) = A is a locally free sheaf on OX-algebras on X of
finite rank. You check that if the gerbe is trival, then this gives you endomorphisms of
the vector bundle, so this is an Azumaya algebra. You go through the definitions and
check that GA ∼= Gα.

Remark 44.6 (Aside). Given an A, you get End(VA) ∼= π∗A as part of the data. If
you start with π : GA → X , then you check that π∗End(VA) ∼= A. ⋄
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To understand this theorem of Gabber, the best thing to do is read de Jong’s proof.
Idea of Gabber’s Theorem:

- Gabber’s thesis is the case where X is affine. If you search for Gabber on MathSciNet,
then there aren’t many choices, so you should find it easily.
- Given X quasi-projective over S and α ∈ H2(X,Gm)tors you get Gα → X . Zariski
locally on X there is a twisted vector bundle on Gα (by the affine case). We want to
piece them together to get a global twisted sheaf. The proof of this is on deJong’s web
page. We don’t have time to do that.

Another way to think about this problem. What does it mean to have such a vector
bundle.

Definition 44.7. A stack X over S is a quotient stack if X ∼= [Z/G] where Z is an
algebraic space over S and G ⊆ GLn,S is a subgroup scheme flat over S. ⋄

Proposition 44.8. The following are equivalent for a stack X .

1. X is a quotient stack.

2. there is a vector bundle V on X so that for every point x : Spec k → X , the
action of the group scheme Autx on the fiber Vx is faithful.

Restatement: if α ∈ H2(X,Gm), then α ∈ Br(X) if and only if the gerbe Gα is a
quotient stack. A twisted sheaf is an example of something where the automorphism
group acts faithfully: Vx =

⊕
V(ai)
x and the gcd(ai) = 1. Certainly a twisted sheaf

gives such a vector bundle, but the other direction is also true.
The issue then is whether something is a quotient stack or not.

Theorem 44.9. Let k be a field, and let X over k be a smooth Deligne-Mumford
stack with finite diagonal, and generic stabilizer is trivial (there is an open set with no
stabilizer). Then X is a quotient stack.

This doesn’t treat the problem because for a gerbe you often don’t have a generic
stabilizer.

Idea of proof: you want to produce a vector bundle and there is not much you can
do. Let’s look at the case where k is characteristic zero and algebraically closed. Let
TX be the dual of Ω1

X . We claim first that it satisfies this proposition. You have the
coarse space X → X . Then we have

[U/Γ]

��

// X

��

X ′ // X

where Γ is the stabilizer group of a point x ∈ X . Û = Spec k[[t1, . . . , tr]] has an
action of Γ on it. TX ,Û ′

x
= m/m2. How do you get a decomposition when you have a

smooth thing: look at ÔU,x → ÔU,x/m2 and find a section for m/m2. Since we are in
characteristic zero, something is semi-simple representation of Γ. So you get k[[m/m2]]
and something is trival because the action is fiathful.
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Appendix

[[⋆⋆⋆ This is where I’ll put stuff that I’d like written down, but is too long-winded
to insert elsewhere without disturbing the flow of ideas.]] [[⋆⋆⋆ I guess I’ll also put
common arguments here if they don’t fit well elsewhere. . . I’d really rather this kind of
thing be in the main text]]

A1 Verification of the adjunctions f ∗ ⊢ f∗ and f ⋆ ⊢ f∗

I feel like maybe these calculations should be done out. [[⋆⋆⋆ which way is that
adjunction symbol supposed to be written?]]

A2 Extending properties

If C is a site in which coproducts exist, then we can replace the topology on C by the
finest topology which produces the same topos. Then any cover can be replaced by a
big coproduct. [[⋆⋆⋆ and the explanation]]

[[⋆⋆⋆ do the following]] P (objects) descends along covers, is stable; P (mor-
phisms) descends along covers, is stable, is local on domain. These should probably be
done in the manner of lecture 10. Note in particular that the axioms of a Grothendieck
topology imply that “is a cover” is stable.

Let C be a full subcategory of D0. Then define what it means for X ∈ D0 to be
C-representable and what it means for a morphism in D0 to be C-representable.

If P is a stable property of morphisms, a representable morphism f : F → G in D0

has P if for every morphism X → G with X ∈ C, F ×GX → X (which is a morphism
in C since f is representable) has P. In particular, since “is a cover” is stable, we now
know when a representable morphism in D is a cover.

A3 Effective Descent Classes

Let C be a site. [[⋆⋆⋆ I think]] A property P of morphisms in C is an effective
descent class if for any P morphism F → T from a sheaf F on C to an object T ∈ C

(in the sense of A2), we get that F ∈ C.
For example, “closed immersion” is an effective descent class in Schfppf .
[[⋆⋆⋆ I’d like to have a long list of effective descent classes in Sch?? here]]

– closed immersion

– open immersion

– quasi-affine
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A4 Descent for Algebraic Spaces

Lemma A4.1. Let F : Cop → Set be a presheaf on a category C in which fiber products
are representable, and let F → U be a morphism from F to an object in C (thought of
as a presheaf via the Yoneda embedding). Then the diagonal morphism F → F × F is
representable if and only if the diagonal morphism F → F ×U F is representable.

Proof. (⇒) Let T ∈ C and let T → F ×U F be a morphism. By composing with
the canonical morphism F ×U F → F × F , we get a morphism T → F × F . Then
T ×F×UF,∆ F = T ×F×F,∆ F is a sheaf by the hypothesis that ∆ : F → F × F is
representable.

(⇐) Let T ∈ C and let T → F × F be a morphism. In the diagram below, verify
that all squares are cartesian.

T ×F×F,∆ F //

��

T ×U×U,∆ U //

��

T

��

F
∆ // F ×U F

� � //

��

F × F

��

U
∆ // U × U

Since fiber products are representable in C, we have that T ×U×U,∆ U is in C, so
T ×F×F,∆ F is in C by the hypothesis that F → F ×U F is representable.

Definition A4.2. For a scheme U , let AlgSpnice(U) be the category of algebraic F over
U whose diagonal morphism F → F ×U F belongs to some effective descent class. ⋄

Supposedly, F → F ×U F almost always belongs to some effective descent class. In
particular, the diagonal is almost always quasi-affine. [[⋆⋆⋆ I guess]]

Theorem A4.3. If V → U is an étale cover of schemes, then the pullback functor
AlgSpnice(U)→ AlgSpnice(V → U) is an equivalence of categories.

Proof. In light of Theorem 7.5 (descent for sheaves in a site) and Exercise 2.4 (the
topos of C/X is equivalent to the category of morphism to X in the topos of C), it
is enough to prove that if F is a sheaf with a morphism to U , and X = F ×U V is
an algebraic space (whose diagonal is in some effective descent class), then F is an
algebraic space (whose diagonal is in some effective descent class)

(1) F is an étale sheaf already.
(2) By the lemma, it is enough to show that F → F ×U F is representable. Let

T → F ×U F be a a morphism from a scheme, and let P = T ×F×UF F . Define T ′ and
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P ′ so that all the squares in the following diagram are cartesian.

P ′

��

//

''❖❖❖❖❖❖❖❖ T ′

��

''❖❖❖❖❖❖❖❖

P //

��

T

��

X //

��

''❖❖❖❖❖❖❖❖ X ×V X

��

''❖❖❖❖

F

��

// F ×U F

��

V

''❖❖❖❖❖❖❖❖ V

''❖❖❖❖❖❖❖❖

U U

All the down-right arrows in the diagram are étale surjections. Since T ′ = T ×U V ,
T ′ is a scheme. By the hypothesis that X is an algebraic space, P ′ is a scheme, and
P ′ → T ′ belongs to the effective descent class that X → X ×V X is in, so P is a
scheme.

(3) If W → X is an étale cover of X , then W → X → F is an étale cover of F .

A5 2-Categories

[[⋆⋆⋆ this is where I’ll put relevant stuff about 2-categories. Watch out, I make
most of this stuff up, but hopefully the obvious definitions are the right
ones.]]

[[⋆⋆⋆ definitions about 2-categories go here. It may or not be worth it to talk
about non-strict 2-categories]]

Definition A5.1. A strict 2-category C is a category in which the Hom sets are cat-
egories. The morphisms in Hom sets are called 2-morphisms. If f, g, h ∈ HomC(A,B),

and f
η
=⇒ g

τ
=⇒ h are two 2-morphisms, then we denote the composition by τ ·η : f ⇒ h.

This is referred to as vertical composition. Additionally, we require that there is
an associative horizontal composition: if f, g ∈ HomC(A,B) with η : f ⇒ g and
f ′, g′ ∈ HomC(B,C) with η

′ : f ′ ⇒ g′, then we get a 2-morphism η′ ◦ η : f ′ ◦ f ⇒ g′ ◦ g.
Finally, we impose the following compatibility relation: if f, g, h ∈ HomC(A,B),

f ′, g′, h′ ∈ HomC(B,C), with f
η
=⇒ g

τ
=⇒ h and f ′ η′

=⇒ g′
τ ′
=⇒ h′, then (τ ′ ◦ τ) · (η′ ◦ η) =

(τ ′ · η′) ◦ (τ · η).

A

f

��

g //

h

BBB

f ′

��

g′ //

h′

BBC
η
��

τ
��

η′

��

τ ′
��

That is, we require the diagram above to be an unambiguous 2-morphism f ′ ◦ f ⇒
h′ ◦ h. ⋄
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Example A5.2. The category Cat is a 2-category in which the objects are categories,
the 1-morphisms are functors, and the 2-morphisms are natural transformations. ⋄

Example A5.3. Just as any set can be thought of as a category in which all mor-
phisms are identities, any category can be thought of as a 2-category in which all
2-morphisms are identities. ⋄

Commutative diagrams in 2-categories look like hallow 2-dimensional polytopes,
with 1-morphisms along the edges and 2-morphisms along the faces. Since these are
hard to draw, I’ll draw them by cutting them open and saying that the 2-morphism
represented by one half is equal to the 2-morphism represented by the other half (if
your 2-morphisms are not isomorphisms, then you have to be careful about where you
cut, but we will not have such troubles).

Definition A5.4. Let C and D be 2-categories, then a lax 2-functor F : C → D

associates to each object A ∈ C an object FA ∈ D, to each morphism f : A → B in

C a morphism Ff : FA → FC in D, and to each pair of morphisms A
f
−→ B

g
−→ C

in C a 2-morphism Fg,f : Fg ◦ Ff ⇒ F (gf) such that for every triple of morphisms

A
f
−→ B

g
−→ C

h
−→ D in C, we have that Fh,gf · (idh ◦Fg,f) = Fhg,f · (Fh,g ◦ idf).

B
g

// C
h

  
❅❅❅❅❅❅❅❅

A
hgf

//

gf

AA

f
??⑦⑦⑦⑦⑦⑦⑦⑦

D

Fg,f 
� ✣
✣✣

✣
✣ ✣✣

✣

Fh,gf

�� ✣
✣✣
✣

✣✣
✣✣ =

B
g

//

hg

..

C
h

  
❅❅❅❅❅❅❅❅

A
hgf

//

f
??⑦⑦⑦⑦⑦⑦⑦⑦

D

Fg,f��
✦✦✦✦

✦✦✦✦

Fh,gf

��
✥✥

✥✥

✥✥
✥✥

⋄

Definition A5.5. Let F,G : C → D be lax 2-functors, then a lax natural trans-
formation η : F → G consists of a 1-morphism ηA : FA → GA for each A ∈ C

and a 2-isomorphism ηf : Gf ◦ ηA ⇒ ηB ◦ Ff for each f : A → B in C so that

for any pair of morphisms A
f
−→ B

g
−→ C in C, we have that ηgf · (Gg,f ◦ idηA) =

(idηC ◦Fg,f) · (ηg ◦ idFf ◦ idF (gf)) · (ηf ◦ idF (gf)).

FA
ηA //

F (gf)

��

GA

G(gf)

��

Gf

##●●●●●●●●

GB

Gg{{✇✇✇✇✇✇✇✇

FC ηC
// GC

Gg,f
px ✐✐✐✐✐✐✐✐✐✐✐✐

ηgf

s{ ♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥

♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥ =

FA
Ff

##●●●●●●●●
ηA //

F (gf)

��

GA
Gf

##●●●●●●●●

FB

Fg{{✇✇✇✇✇✇✇✇

ηB // GB

Gg{{✇✇✇✇✇✇✇✇

FC ηC
// GC

Fg,ft| ♣♣♣♣♣♣
♣♣♣♣♣♣

ηft| rrrrrrrrr

rrrrrrrrr

ηg

t| ♣♣♣♣♣♣♣♣♣♣♣♣♣♣

♣♣♣♣♣♣♣♣♣♣♣♣♣♣

If η, τ : F → G are lax natural transformations, a morphism between them α : η → τ
is a 2-morphism αA : ηA ⇒ τA for each A ∈ C such that τf · (idGf ◦αA) = (αB ◦ idFf) ·ηf
for each f : A→ B in C. This makes the set of lax natural transformations from F to
G into a category, which we’ll denote NAT(F,G). A natural transformation η : F → G
is a natural equivalence if there is a τ : G → F such that η ◦ τ ∼= idG in NAT(G,G)
and τ ◦ η ∼= idF in NAT(F, F ). ⋄
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Definition A5.6. If C is a 2-category and X ∈ C, hX : C → Cat is the functor given
by Y 7→ HomC(Y,X). A lax 2-functor F : C → Cat is representable if is naturally
equivalent to a functor of the form hX for some X ∈ C. ⋄

Theorem A5.7 (2-Yoneda Lemma). If F : Cop → Cat is a lax 2-functor and X ∈ C,
then the “evaluation functor” eX : NAT(hX , F ) → F (X), given by η 7→ ηX(idX) ∈
F (X) and (α : η → τ) 7→ αidX (which is a morphism in F (X)), is an equivalence of
categories, natural in F and X.

Proof. We need to construct an inverse functor η : F (X) → NAT(hX , F ). Given
a ∈ F (X), we define ηa : hX → F by ηaY : hX(Y ) ∋ f 7→ Ff(a) ∈ F (Y ) for each
Y ∈ C. If g : Z → Y is a morphism in C and f : Y → X is a morphism in C, then we
define ηag (f) : Fg(Ff(a)) = Fg(ηaY (f)) → ηaZ(fg) = F (gf)(a) to be Fg,f(a). One can
check that this is a lax natural transformation.

One can check that a morphism in FX yields a morphism of lax natural transfor-
mations and that η is inverse to eX [[⋆⋆⋆ I think the easiest way to do this is to
check that η is fully faithful and essentially surjective]].

Definition A5.8 (Limits). If I and C are 2-categories and F : I → C is a lax 2-functor,
then we define lim←−F : Cop → Cat to be the functor X 7→ NAT(kX , F ), where kX is
the functor which sends all objects, morphisms, and 2-morphisms of I to X , idX , and
the identity 2-morphism of idX , respectively. Similarly, we define lim−→F : Cop → Cat by
X 7→ NAT(F, kX). ⋄

Example A5.9. Taking I = (· ⇒ ·), a set, or (· → · ← ·) (with no non-identity
2-morphisms), we get equalizers, products, and fiber products, respectively. ⋄

[[⋆⋆⋆ I think the proof of Lemma 3.9 carries over to give the following result]]

Lemma A5.10. Let C be a 2-category, then the following are equivalent.

1. Projective limits (resp. finite projective limits) in C are representable.

2. Products (resp. finite products) and equalizers are representable.

3. Products and fiber products (resp. finite products and fiber products) are repre-
sentable.

Lemma A5.11. Finite projective limits are representable in Cat.

Proof. Since Cat has a terminal object (an object that represents the 2-functor which
sends every object to the trivial category and all (2-)morphisms to identities), it is
enough to show that fiber products are representable.

Let F (· → · ← ·) = C1
a
−→ C2

b
←− C3 be a diagram of categories. Define C1 ×C2 C3

to have objects triples (x1, x3, σ) where xi ∈ Ci and σ : a(x1)
∼
−→ b(x3). A morphism
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(x′1, x
′
3, σ

′) → (x1, x3, σ) is a pair of morphisms fi : x
′
i → xi such that the diagram on

the left commutes.

a(x′1)
a(f1)

//

σ′

��

a(x1)

σ

��

b(x′3)
b(f3)

// b(x3)

C1 ×C2 C3
x3 //

x1
��

C3

b
��

C1 a
// C2

σ

v~ ttttttttt

ttttttttt

C1 ×C2 C3 comes with the obvious maps to C1 and C3, and a 2-isomorphism σ (the
union of all the σ’s) between bx3 and ax1.

Given a category D, the category NAT(kD, F ), which consists of triples (g1 : D →
C1, g3 : D → C3, η : bg3

∼
−→ ag1), is obviously equivalent (in fact, isomorphic) to the

category HomCat(D,C1 ×C2
C3). Thus, C1 ×C2

C3 represents the fiber product.
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E Exercises and solutions

Exercise set 1

Exercise 1.1. If you have never done so, prove Yoneda’s lemma: The association
X → hX defines a fully faithful functor from C to the category of functors C→ Set.

Solution. Before we prove the theorem, let’s state it slightly more generality.

Theorem (Yoneda’s Lemma). For any functor F : C◦ → Set, there is a natural
bijection Nat(hX , F ) ∼= F (X). In particular, taking F = hY , we see that the functor
h− : C→ Fun(C◦, Set) is a fully faithful embedding of categories.

Proof. Given η ∈ Nat(hX , F ), we have η(X) : Hom(X,X) → F (X), so we get an
element a = η(X)(idX) ∈ F (X). Conversely, given a ∈ F (X), we define a natural
transformation η by taking f ∈ hX(Y ) = Hom(Y,X) to η(Y )(f) := (Ff)(a). Check
that these are inverses, and that the bijection is natural in F and X . The following
diagram should help:

idX❴

��

Hom(X,X)

−◦f
��

F (X)

Ff
��

Hom(Y,X)
η(Y )

// F (Y )

a❴

��

f ✤ // (Ff)(a)

[[⋆⋆⋆ maybe this should be done in two steps: (1) We say a functor G : C◦ → Set has
a universal point y ∈ G(Y ) for some object Y if for any x ∈ G(X), there is a unique
morphism f : X → Y such that Gf(y) = x. If y ∈ G(Y ) is a universal point, then for
any functor F , Nat(G,F ) ∼= F (Y ). (2) hX has the universal point idX ∈ hX(X)]]

Exercise 1.2. (a) Let n ≥ 1 be an integer and let GLn : Sch◦ → Set be the functor
sending a scheme Y to the set GLn

(
Γ(Y,OY )

)
. Prove that GLn is a representable

functor.
(b) Let X represent GLn. Prove that the group structure on GLn

(
Γ(Y,OY )

)
induces

morphisms
m : X ×X → X, i : X → X, e : SpecZ→ X

such that the following diagrams commute:

SpecZ×X
e×id

//

❖❖❖❖❖❖❖❖❖❖❖❖

❖❖❖❖❖❖❖❖❖❖❖❖
X ×X

m
��

X

X × SpecZ
id×e

//

❖❖❖❖❖❖❖❖❖❖❖❖

❖❖❖❖❖❖❖❖❖❖❖❖
X ×X

m
��

X

X ×X ×X
m×id

//

id×m
��

X ×X

m
��

X ×X m // X

X
i×id

//

��

X ×X

m
��

SpecZ e // X

X
id×i

//

��

X ×X

m
��

SpecZ e // X



E Exercises and solutions 179

Solution. (a) Let Z = Spec
(
Z[x11, . . . , xnn, y]/(1 − y detX)

)
, where X is the matrix

with (i, j)-th entry xij . The claim is that Z represents GLn. To see this, note that

HomSch(Y, Z) ∼= HomRing

(Z[x11, . . . , xnn, y]
(1− y detX)

,Γ(Y,OY )
)
∼= GLn

(
Γ(Y,OY )

)
.

(b) The functor GLn(−) factors through Gp, so GLn(−) ≃ Hom(−, X) is a group
object in the category Fun(Sch◦, Set), i.e. it has maps like m, i, and e, satisfying the
diagrams above, with SpecZ replaced by the final object, Hom(−, SpecZ). Since the
Yoneda embedding is a fully faithful, we have that X is a group object in Sch, as
desired.

Exercise 1.3. (a) Let Anr{0} : Sch◦ → Set be the functor sending a scheme Y to the
set of n-tuples (y1, . . . , yn) of sections yi ∈ Γ(Y,OY ) such that for every point y ∈ Y
the images of the yi in k(y) are not all zero. Show that An r {0} is representable.
(b) Let (Anr{0})/Gm : Sch◦ → Set be the functor sending a scheme Y to the quotient
of the set (An r {0})(Y ) by the equivalence relation (y1, . . . , yn) ∼ (y′1, . . . , y

′
n) if there

exists a unit u ∈ Γ(Y,O×
Y ) such that yj = uy′j for all j. Show that (An r {0})/Gm is

not representable.

Solution. (a) Something like “an open subfunctor of a representable functor is rep-
resentable”. You can check explicitly that this is represented by the open subscheme
of An obtained by removing the closure of the point (x1, . . . , xn) (note that this point
isn’t closed!).

(b) Call the functor in question F . A representable functor is a sheaf on the Zariski
site because morphisms glue and morphisms which agree locally agree globally. We
will show that F is not representable by showing it is not a sheaf.

Let k be a field, and let U = Spec k[x] and V = Spec k[1/x] be the usual open sets
in P1

k. We have that Γ(P1
k,OP1

k
) = k, so F (P1

k) = (kn r {0})/k×. We have sections
[x : 1 : · · · : 1] ∈ F (U) and [1 : 1/x : · · · : 1/x] ∈ F (V ) which are not restrictions of
global sections on P1

k (because every global section can be represented by an n-tuple
in k). However, on the intersection Spec k[x, 1/x], the two sections agree. Therefore,
F is not a sheaf, so it is not representable.

Ishai’s solution (sketch): Anr{0} is the functor Y 7→ {OnY ։ L, ϕ : L ∼= OY }. The
functor F is Y 7→ {OnY ։ L, with L ∼= OY , but you don’t care how}. Since there are
sheaves which are locally trivial but not globally trivial, this functor is not a sheaf.
The sheafification is represented by Pn−1, and it is Y 7→ {OnY ։ L, with L invertible}
. . . this approach is discussed in Hartshorne’s section on morphisms to projective space.

Exercise 1.4. Let Top be the category of topological spaces with morphisms being
continuous maps. Let F : Top◦ → Set be the functor sending a topological space S to
the collection F (S) of all its open sets.
(a) Endow {0, 1} with the coarsest topology in which the subset {1} ⊂ {0, 1} is closed.
Show that the open sets in this topology are ∅, {0}, and {0, 1}.
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(b) Show that {0, 1} with the above topology represents F .
(c) Let HausTop ⊆ Top denote the full subcategory of Hausdorff topological spaces.
Show that the restriction F |HausTop : HausTop

◦ → Set is not representable.

Solution. (a) ∅ and {0, 1} will be open in any topology, and {0} must be open for {1}
to be closed, so these three sets must be open. On the other hand, these three sets
form a topology, so this is the coarsest such topology.

(b) Given any continuous map f : S → {0, 1}, we get an open set f−1(0) ⊆ S.
Conversely, given any open set U ⊆ S, the function fU given by fU(U) = 0 and
fU(SrU) = 1 is continuous, so F (S) ∼= Hom(S, {0, 1}). It wasn’t specified what F did
on morphisms, but the most obvious thing is to pull back open sets along morphisms,
as is done by Hom(−, {0, 1}).

(c) Assume FHausTop is represented by a Hausdorff space X . Since the 1-point
Hausdorff space ∗ has two open sets, |Hom(∗, X)| = |X| = 2. Since X is Hausdorff, it
must be a 2-point set with the discrete topology. Let I be the unit interval, then there
are only two elements of Hom(I,X) since I is connected, but I has an uncountable
number of open sets, a contradiction. Thus, FHausTop is not representable.

Exercise 1.5. Another proof thatM1,1 is not representable.
(a) Let k be a field and k →֒ k an algebraic closure. Show that if F is a representable
functor then the map F (Spec k)→ F (Spec k̄) is injective.
(b) Let D > 1 be an integer. Show that the two elliptic curves over Q

E1 : y
2 = x3 + x, E2 : y

2 = x3 +Dx

are isomorphic over Q, but not over Q. From this and (a), conclude that the functor
M1,1 defined in class is not representable.

Solution. (a) Let f : Spec k̄ → Spec k be the obvious map. Assume F ≃ Hom(−, X)
and that g, h : Spec k → X are two morphisms such that g ◦f = h◦f , i.e. two elements
of F (Spec k) that map to the same element of F (Spec k̄). Let SpecR be an open affine
neighborhood of the image of g ◦ f = h ◦ f . Then the images of g and h lie in SpecR,

and we have that f ♯ ◦ g♯ = f ♯ ◦h♯ : R→ k
f♯

−֒→ k̄. Since f ♯ is an injection, we must have
that g♯ = h♯, so g = h. Thus, F (Spec k)→ F (Spec k̄) is injective.

(b) If D is a fourth power, then you can do some change of coordinate operations
to show that E1

∼= E2. Since everything is a fourth power in Q, the two are isomorphic
over Q.

Something shows that they are not isomorphic over Q, like looking at torsion points,
perhaps after reducing at some prime dividing D.

Exercise set 2

Exercise 2.1. For a set S, let Aut(S) denote the group of bijections S → S. An
action of a group G on S is defined to be a homomorphism G → Aut(S). Let G be a
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group and define BG to be the category with one object ∗ and with Hom(∗, ∗) = G.
(a) Show that if F is a presheaf on BG then F (∗) admits a natural action of G.
(b) Show that the induced functor (presheaves on BG) → (sets with G-action), given
by F 7→ F (∗), is an equivalence of categories.

Exercise 2.2. (a)
(b)
(c)
(d)

Exercise 2.3. (a)
(b)
(c)
(d)

Exercise 2.4. Let C be a site with associated topos T, and let X ∈ C be an object.
Assume that the functor of points hX is a sheaf.
(a) Show that the topology on C induces a topology on C/X.
(b) Show that the category of sheaves on C/X is equivalent to T/hX . In particular,
T/hX is a topos.
(c) Define j∗ : T→ T/hX by sending F to F ×hX with the projection to hX . Show that
j∗ commutes with finite projective limits and has a right adjoint j∗, given by (j∗G)(Y ) =
HomT/hX (h

a
Y × hX , G). In particular, there is a morphism of topoi j : T/hX → T.

Solution. (a) Let C be a site, let D be category, and let F : D→ C be a functor which
respects fiber products, then we can declare {Yi → Y } to be a covering of an object
Y ∈ D if {FYi → FY } is a covering of the object FY ∈ C. It is immediate to verify
that this satisfies the axioms of a Grothendieck topology. In our case, we take F to be
the forgetful functor C/X → C.

(b) Given a sheaf F : C◦ → Set, with a morphism of sheaves η : F → hX , we can
define a sheaf F̃ on C/X by (f : U → X) 7→ η(U)−1(f). To make sense of this, note
that η(U) : F (U) → hX(U), and f ∈ hX(U), so F̃ (f : U → X) is a subset of F (U).
One can then check that F̃ is a presheaf (functor) and satisfies the sheaf axiom.

Conversely, if G : (C/X)◦ → Set is a sheaf on C/X , then we can define a sheaf
G′ : C→ Set by U 7→

∐
f∈hX(U)G(f : U → X), with the natural projection to hX(U).

Again, one checks that G′ is a sheaf and G′ → hX is a morphism of sheaves.
I’ve swept it under the rug, but you can define what these two operations do to mor-

phisms of sheaves (it is the obvious thing), and they are inverse (up to isomorphism),
so we get the desired equivalence of categories.

(c) Note that for an object (G → hX) ∈ T/hX and a sheaf F ∈ T, we have that
HomT/hX (G → hX , j

∗F ) = HomT(G,F ). That is, j∗ is right adjoint to the forgetful
functor C/X → C, so it commutes with all projective limits.

[[⋆⋆⋆ prove that j∗ is right adjoint to j∗]]
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Exercise set 3

Exercise 3.1. For a scheme S letM0(S) denote the category whose objects are smooth
proper morphisms C → S all of whose geometric fibers are smooth connected curves of
genus 0. For an fppf and quasi-compact cover X → Y define the categoryM0(X → Y )
as in class. Show that the pullback functor M0(Y ) →M0(X → Y ) is an equivalence
of categories (hint: consider the dual of the canonical sheaf).

Solution. The dual of the canonical bundle is a functorial choice of relatively very
ample sheaf. Then the proof of descent forMg (g ≥ 2) works word for word.

Exercise 3.2. Let f : X → Y be a faithfully flat morphism of locally noetherian
schemes.
(a) Show that a quasi-coherent sheaf F on Y is coherent if and only if f ⋆F on X is
coherent.
(b) Show that a quasi-coherent sheaf F on Y is locally free of finite rank if and only if
f ⋆F is locally free of finite rank.
(c) Prove that the pullback functor Qcoh(Y ) → Qcoh(X → Y ) identifies the category
of coherent (resp. locally free of finite rank) sheaves on Y with the fully subcategory of
Qcoh(X → Y ) consisting of pairs (EX , σ), where EX is coherent (resp. locally free of
finite rank).

Solution. Being coherent (resp. locally free of finite rank) is local, so we may take open
affines V = SpecA ⊆ Y and U = SpecB ⊆ f−1(V ) ⊆ X .

If F is coherent (resp. locally free of finite rank), then it is M̃ for some A-module
M which is finitely generated (resp. free of finite rank). Then it is clear that f ⋆F =
(M ⊗A B)∼ is coherent (resp. locally free of finite rank).

If F = M̃ is quasi-coherent on V , and f ⋆F = (M ⊗A B)∼ is coherent (resp. locally
free of finite rank) on U . Then M ⊗A B is finitely generated (resp. free of finite rank).
Let {

∑
jmij ⊗ bij}i be a finite (resp. finite free) set of generators for M ⊗A B. It is

enough to check locally that M is finitely generated [[⋆⋆⋆ is this true? No! Take
the k[x]-module M =

⊕
a∈k k[x]/(x − a) for some k = k̄]] (resp. free of finite rank

(Ex. II.5.7)). Let p ∈ SpecA and let P ∈ SpecB lie over p. Then BP is faithfully flat
over Ap [[⋆⋆⋆ is this true?]].Thus, we may assume that B is faithfully flat over A.

(coherence) The map AN → M , given by 1ij 7→ mij is surjective after tensoring
with B, so it is surjective, so M is finitely generated over A.

(loc. free)
(c) Let P be any property of quasi-coherent sheaves so that for any fppf cover f ,

F has P if and only if f ⋆F does.
A P sheaf on Y pulls back to some EX which is P on X . Conversely, assume EX

is P. By the equivalence of categories, it is f ⋆F for some F on Y . Then F (the image
of EX under the equivalence) is also P.

Exercise 3.3. For a scheme Y let Aff(Y ) denote the category whose objects are affine
Y -schemes and whose morphisms are Y -morphisms. For a morphism of schemes X →
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Y let Aff(X → Y ) denote the category whose objects are pairs (ZX , σ), where ZX ∈
Aff(X) and

σ : ZX ×X,pr1 (X ×Y X)→ (X ×Y X)×pr2,X ZX

is an isomorphism of X×Y X-schemes satisfying a cocycle condition on X×Y X×Y X.
(a) Write out precisely the cocycle condition in this case.
(b) Prove that if X → Y is a quasi-compact fppf cover then the pullback functor
Aff(Y )→ Aff(X → Y ) is an equivalence of categories.

Solution. (a) To save ink, we use the usual notation: write ZX×X,pr1 (X×X) as p∗1ZX ,
and similarly define p∗2ZX . Then σ is an isomorphism p∗1ZX → p∗2ZX . The cocycle
condition is that following diagram must commute.

p∗13p
∗
1ZX

p∗13σ //

♦♦♦♦♦♦
♦♦♦♦♦♦

p∗13p
∗
2ZX

❖❖❖❖❖❖
❖❖❖❖❖❖

p∗12p
∗
1ZX

p∗12σ
''❖❖❖❖❖❖

p∗23p
∗
2ZX

p∗12p
∗
2ZX p∗23p

∗
1ZX

p∗23σ

77♦♦♦♦♦♦

(b) An affine X-scheme is Spec A for some quasi-coherent sheaf of OX -algebras A.
Use descent for quasi-coherent sheaves of algebras.

(4) Let B be a base scheme, d ≥ 1 an integer, and fix a projective B-scheme P
with an ample line bundle L. For a B-scheme Y , let Mg(P, d)(Y ) denote the
category whose objects are pairs (C, f), where C → Y is an object ofMg(Y ) and
f : C → P is a morphism such that the restriction of f ∗L to each geometric fiber
of C → Y is an ample sheaf of degree d. A morphism (C ′, f ′) → (C, f) is a
morphism ε : C ′ → C inMg(Y ) (so an isomorphism C ′ → C over Y ) such that
f ◦ ε = f ′.

(4a) For a morphism of schemes X → Y define the categoryMg(P, d)(X → Y ).

Objects inMg(P, d)(X → Y ) are pairs
(
(C, f), σ

)
, where (C, f) ∈Mg(P, d)(X)

and σ is an isomorphism p∗2(C, f)
∼
−→ p∗1(C, f) satisfying the usual cocycle condi-

tion. A morphism
(
(C, f), σ

)
→

(
(C ′, f ′), σ′

)
is a morphism ε : (C, f)→ (C ′, f ′)

such that the following diagram commutes.

p∗2(C, f)

σ

��

p∗2ε // p∗2(C
′, f ′)

σ′

��

p∗1(C, f)
p∗1ε // p∗1(C

′, f ′)

(4b) Prove that for an fppf quasi-compact cover X → Y pullback defines an equivalence
Mg(P, d)(Y )→Mg(P, d)(X → Y ).

If f ∗L some fixed tensor power of it had to be relatively very ample, then the
proof of descent forMg would carry over.
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Exercise set 4

Exercise set 5

Exercise set 6

Exercise set 7
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[FGI+05] Barbara Fantechi, Lothar Göttsche, Luc Illusie, Steven L. Kleiman, Nitin
Nitsure, and Angelo Vistoli. Fundamental algebraic geometry, volume 123
of Mathematical Surveys and Monographs. American Mathematical Society,
Providence, RI, 2005. Grothendieck’s FGA explained.

[EGA] Alexander Grothendieck and Jean-Alexandre-Eugène Dieudonné. Éléments
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