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How these notes are coming to exist

It is Fall 2007. QFT classes are being taught at UC Berkeley by Richard
Borcherds (RB), Nicolai Reshetikhin (NR), and Peter Teichner (PT). An-
ton LATEXs these notes in class and edits them later.1 The version you’re
currently reading was compiled October 4, 2014. They should be avail-
able at
http://math.berkeley.edu/~anton/index.php?m1=writings.

– When something doesn’t make sense to me, I mark it with three big,
eye-catching stars [[⋆⋆⋆ like this]]. If you can clear any of these
up for me, let me know.

– If you have notes that I’m missing or if you have a correct/clear
explanation for something which is incorrect/unclear, let me know
(either tell me what you’d like to modify, give me some notes to go
on, or update the tex yourself and send me a copy). Real (mathe-
matical) errors should be fixed because it would be immoral to let
them propagate (er . . . that is, sit there), and typographical errors
hardly take any time to fix, so you shouldn’t be shy about telling me
about them.

1With the exception of NR22, which was done by Chris Schommer-Pries.

1 NR 08-27

Quantum field theory is a very big subject (in both physics and math),
even though it is relatively new (late 50s and 60s). It was designed to
describe the interactions of particles and the structure of the micro-world.
From the beginning, there were some formidable mathematical (and in-
trinsic) problems:

1. renormalization problem

2. perturbation theory

On Tuesdays, Richard Borcherds will have a seminar which will be focused
on these problems, so these things won’t be in this course.
By the 60s and 70s, there were well-developed ways to get around these

things, but there were more and more particles showing up, and they
needed explanation. The main outcome of this was the Standard Model
and Gauge theory. This stuff is very interesting, but we won’t talk about
it.
The goals of this course: Give a mathematical summary of the basic

ideas in classical and quantum field theory. You can’t really talk about
these theories unless you start from classical and quantum mechanics,
so this will be the subject of the first few lectures. Newton did stuff
... 2nd order ODE; variational principals and Lagrangians; Hamiltonian
mechanics (reduce to first order ODEs); Symplectic geometry (M,ω),
C∞(M). The symplectic form induce a Poisson structure {·, ·}. So you
get C∞(M), which is (1) a commutative algebra, (2) a Lie algebra with

{f, g} = (df ∧ dg, ω−1), where ω ∈ ∧2
x T

∗M and ω−1 ∈ ∧2
x TM , and we

have that
{f, gh} = {f, g}h+ {f, h}g.

Such an object is called a Poisson algebra.
How to go from 2nd order to first order, well we have q̈ = F (q), which

can be turned into the system p = q̇ and ṗ = F (q), so we have twice as
many variables.
Physicists would not approve of this approach because it isn’t very

physical.
We have C∞(M) with {·, ·}. We want to deform this algebra in the cat-

egory of associative algebras. That is, we want to find some (associative)

http://math.berkeley.edu/~anton/index.php?m1=writings
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multiplication

f ∗h g = fg +
h

2
{f, g}+O(h2)

This is called deformation quantization. There is a powerful technique
called geometric quantization which Peter will talk about.
This does the classical mechanics to quantum mechanics. Hopefully

we’ll do this in the first two weeks.
What is a classical field theory? It is the same sort of thing, but where

the n-dimensional manifold N (M = T ∗N) is replaced by Γ(E →M) for
some bundle E (which we can’t even say is a manifold).
The real goal of this course is to explain invariants of 3-manifolds and

corresponding conformal field theories (we’ll just focus on Chern-Simons
theory). (Something about affine lie algebras. Lately, there is the theory
of SLE processes which relates this stuff to probability theory. If you have
Brownian motion, you get a random curve you’d like to describe. There
is an analytic technique)
When I started thinking about this course, I realized that Peter is teach-

ing a seminar course, so we’ll try to coordinate (for the first half of the
semester). There will be a certain division of labor. I’ll focus on bosonic
field theories, and Peter will be focusing (at least in the beginning) on
fermionic field theories, which are really important for bosonic field the-
ories (for Chern-Simons theory). There is an infinite-dimensional group
which makes the Lagrangian something. The way people deal with this in
QFT and perturbation theory is known as the theory of Faddeev-Popov
ghosts. These are fields which you don’t see, but they play a certain role.
It is important to have these objects because they give you finite type in-
variants of 3-manifolds. One of the goals of this course is to explain that
there are different points of view on the same thing, and they produce
different kinds of results. Fermionic fields are essential for this part. For
this reason, it is a good idea to go to both classes (at least for the first
half of the semester).
There is a syllabus on my website.
Q: What are the prerequisites? NR: I assume you know differential

geometry and some symplectic geometry. If you don’t know this stuff,
you can look in a textbook.
We’ll start next lecture with Lagrangian mechanics and then Hamilto-

nian mechanics (that will be this week). Next week, we’ll spend some time

on Hamilton-Jacobi theory. After that, we’ll move on to quantization and
semi-classical analysis. Then we’ll go to classical field theories. Then we’ll
talk about quantum mechanics and quantum field theory. Then symme-
tries (action of the gauge group) with some examples. In about a month
(or a month and a half), we’ll start focusing on Chern-Simons theory.
PT: if you decide to take this class, then register so that we can get a

bigger room.
There will be homework, but it won’t be graded. The office hours are

on Tuesdays by appointment. At the end of the class, we’ll have a mini-
conference. Everybody registered will give a short presentation, and this
will be instead of the final exam.
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1 PT 08-28

There will be notes online. Office hours are Th 2-3:30 in 703. You can
find the website from my site. There are also notes from a previous class
there which are relevant.
Thursday, we’ll be in 939. After that, we’ll see.
This semester seems to be a QFT semester.

1. Kolya’s class MWF 1-2

2. This class TT 11-12:30

3. Richard’s class Tu 1-2

4. Hot topics course on topological conformal field theory. Tu 2-3:30.
This one will be lectures by students.

5. Student seminar W 2-3

6. Topology seminar W 4-5

7. Th 3-4 QFTea

In this course, there will be homework every 2 weeks. This is to keep
you honest. I think I convinced Kolya to do the same. Submit it in groups
of 2-4 students. Find a group of people you like, get together with them
to do the problems, and split up the writing. The homework is optional.
The mini-conference will be the thing that counts for the grade. We’ve
decided that if you give one talk, it can count for both this class and
Kolya’s class. The first homework will be this Thursday.
This course will have three parts.

1. Super mathematics. First super algebra, then super differential
topology, then super geometry. This part should only last two weeks
(this will only be a survey). There is a very good reference (Deligne-
Morgan [DEF+99, Vol. 1, Notes on Supersymmetry]).

2. Fermionic field theory. Kolya is starting with bosonic field theory.
We’ll follow everything he does bosonically and do it fermionically.
This should take four to six weeks.

3. 6-8 weeks left. Kolya will go into Chern-Simons theory etc. and we’ll
go into the relation to algebraic topology.

In case you don’t make it all the way to act 3, I’ll tell you about it today.
Let Man be the category of smooth manifolds with smooth maps. Let

GRing be the category of Z-graded commutative rings. Z-graded means
that R =

⊕
i∈ZR

i as an abelian group, and that Ri ·Rj ⊆ Ri+j . A graded
ring is said to be commutative if for homogeneous elements a, b ∈ R, we
have

b · a = (−1)|a|·|b|a · b.
From now on, when we say ring, we mean Z-graded commutative ring.
Note that this kind of graded commutativity makes sense for Z/2-

graded rings. A Z/2-graded ring with this flavor of commutativity is
called a commutative super algebra.

Definition 1.1. A (generalized) multiplicative cohomology theory1 is a
homotopy functor h∗ : Man◦ → GRing with the Mayer-Vietoris property:
for open subsets U, V ⊆M , there is a long exact sequence

· · · δ−−→ hi(U ∪ V )→ hi(U)⊕ hi(V )→ hi(U ∩ V )
δ−−→ hi+1(U ∪ V )→ · · ·

[[⋆⋆⋆ probably with some naturality condition]] ⋄

This connecting homomorphism δ is part of the data of a cohomology
theory. The Mayer-Vietoris axiom tells you that the ring h∗(M) is com-
putable (modulo knowing the cohomology of a point) since you can break
a manifold up into contractible open sets with contractible intersections
[[⋆⋆⋆ It looks like you don’t even have to know what δ is! So h∗(pt)
really completely determines h∗?]]. h∗(pt) is called the coefficient ring of
the cohomology theory.

Example 1.2. Singular cohomology H∗(X) =
⊕

i∈ZH
i(X) with cup

product. This H is the letter for ordinary cohomology. The coefficient
ring is Z concentrated in degree zero. ⋄

1These days, you just say “cohomology theory”, leaving off the word “generalized”.
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Remark 1.3. Why restrict to manifolds? Don’t you usually define co-
homology on arbitrary topological spaces? Somehow, the definition of a
topological space is way too general; it was really defined for analysis.
In topology, we usually restrict to CW-complexes by imposing the weak
homotopy axiom: if f : X → Y induces isomorphisms on all homotopy
groups with all base points (i.e. is a weak homotopy equivalence), we re-
quire that h∗(f) : h∗(X)→ h∗(Y ) be an isomorphism. For any topological
space X , there is a CW-complex X ′ = |S·X | with a map to X which is
a weak homotopy equivalence. This tells you that you can’t see anything
with homotopy groups which doesn’t show up in CW-complexes. Note,
by the way, that π∗ is not a cohomology theory because there is no Mayer-
Vietoris sequence, so homotopy groups are not (yet) easily computable.
By the weak homotopy axiom, hif : hiX ′ ∼−→ hiX is an isomorphism, so
you may as well study cohomology of CW-complexes.
There is a beautiful fact that any smooth manifold has the structure

of a CW-complex. Finally, if you have a CW-complex which is finite-
dimensional and countable, then you can thicken it and get a manifold.
So in this class, we’ll only talk about manifolds. ⋄

Okay, now we have one of the definitions. The next one will take the
rest of the class. But first, some examples.
1900s, Poicaré, Lefschetz. The usual H∗. I hope you’ve all learned how

wonderful the usual cohomology is; its is a wonderful tool.
1950s. Grothendieck, Atiyah-Hirzebruch. K∗. This was the first theory

which didn’t satisfy the dimension axiom: K∗(pt) = Z[u, u−1] with u of
degree 2. This is very geometric: you start with vector bundles modulo
stable isomorphisms. Maybe the surprising thing is that this satisfies MV.
You can prove more things with this, like find the number of independent
vector fields on a sphere. Division algebras over R have dimension 1, 2, 4,
or 8. Atiyah-Singer index theorem. This got people excited about other
cohomology theories.
1990s. Hopkins-Miller, Lurie. TMF ∗ (topological modular forms) is the

universal elliptic cohomology theory. Hopkins-Miller proved that TMF ∗

exists and Lurie constructed it. None of it is published, but Lurie’s stuff
is coming out slowly. Why “elliptic”? There is a relationship between
cohomology theories and formal groups (which we won’t explain). Let’s
say R is your favorite ring (to be the coefficient ring), then if you have a

formal group law on R, then you can construct a cohomology theory so
that the formal group has to do with CP∞. If you take the additive group
law (a + b), you get the usual thing; if you take ab, you get K-theory; if
you take the group law of an elliptic curve, then you get some “elliptic
cohomology theory”. Since there are many elliptic curves, there are many
elliptic cohomology theories. TMF is tricky to construct because there
is no universal elliptic curve (so you can’t just use the construction); you
have to deal with stacky stuff.
What are the applications of TMF ? There is a beautiful open question.

If you have a manifold, say RPn, then we know that we can embed it into
R2n, but what is the minimal k so that there is an embedding RPn →֒ Rk.
(Ralph Cohen did the case of an immersion instead of an embedding).
For many n it is known using H∗, K∗ and TMF ∗. The other thing that
TMF gives us is that it allows us to understand the homotopy groups of
spheres up to 60. In particular, it allows you to detect Lie groups. The
real exciting application is not yet worked out: it has to do with the index
theorem on loop space. Witten has a Dirac operator on loops space, and
it’s index is an element in TMF ∗(pt). The index theorem for loop space
would be nice, but we’re missing the analytic side, so the theorem cannot
yet be formulated.
By the way TMF ∗(pt) is completely known (unlike the stable homotopy

groups of a point).
If the picture relating this stuff to QFTs is right, then you can use all

this machinery to describe QFTs.

Definition 1.4. Let X be a manifold, d = 0, 1, 2 and n ∈ Z. Then
QFTn

d|1(X) are supersymmetric QFTs of dimension d|1 and degree n
over X . ⋄

We don’t know how to do this for d > 2. Here, d|1 is the super-
dimension of the world-sheet Σd|1.
One reason that this class will be so different from physics classes is

that we’ll actually give a definition, but it will be done by sucking as
much intuition from the physicists and turning it into a definition.
Physicists would never look at d = 0, d = 1 is quantum mechanics,

d = 2 is the first interesting case, and they really want to study 4|16-
dimensional world-sheets. Even through we’re learning a lot from physics,
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we’re focusing on different things (we’re not trying to understand the real
world, like they are).
For d = 0, QFTn

d|1(X) is a set, for d = 1, it’s a category, and for d = 2,
its a 2-category. QFTn

d|1 is actually a (contravariant) functor.

Theorem 1.5 (Conjecture?).

d QFTn
d|1(X) QFTn

d|1[X ]

0 Ωnclosed(X) Hn
dR(X)

1 super vector bundles on πTX
with Quillen connection?

Kn(X)

2 something new TMF ∗(X)?

You might know that [Y,X ] are homotopy classes of maps from Y to
X , so it is Map(Y,X)/ ≃. If you have any contravariant functor, you
can make the same definition. QFTn

d|1[X ] is QFTn
d|1(X)/concordance. It

will be an exercise that two closed forms differ by an exact form if and
only if there is a closed form on X × I which restricts to the two forms
at the ends. By definition of concordance, QFTn

d|1[X ] is automatically a
homotopy functor.
If you leave out supersymmetry (the |1), then you still get a beautiful

definition, but the third column is all zeros.
The whole third act of the class is a joint project with Stephan Stolz

(at Notre Dame, Indiana).

1 RB 08-28

This won’t really be a seminar, it will be a short course on quantum
field theory for mathematicians. Aim of the course: give mathematical
answers to the following questions

1. What is a QFT? There are many incompatible answers.

2. How do you construct them? Nobody knows how to construct them
non-perturbatively, so we’ll do everything perturbatively. What is a
Feynman measure? It is easy to prove they don’t exist.

3. What is renormalization and reregularization?

4. What is gauge-invariance? Anomalies.

In the first seminar, we’ll try to give a quick survey without proofs.
Recall what a classical field theory is. There are two basic ingredients

for classical field theory.

1. Fiber bundle.

2. a Lagrangian.

A fiber bundle is locally (on M) something of the form F ×M →M . We
call M the base space and F the fiber., so we have a copy of F sitting
over every point in M .
A classical field is a section of the fiber bundle. In the case of a product,

this is just a function M → F .

Example 1.1. Classical mechanics is a (trivial) field theory. Take M =
R (thought of as time) and F is configuration space, which is typically
a finite-dimensional manifold (the possible positions of some mechanical
system). The fields are maps from R (time) to the configuration space
F . ⋄

Example 1.2. Statistical field theory. Take M = space (say R3) and
F = R (say). Then a field is a real function on R3 ⋄
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Example 1.3. Quantum field theory. Take M = spacetime (some
Lorentzian manifold, usually flat Minkowski space R1,3). Unfortunately,
one of the major unsolved problems in physics is whether it is R3,1 or
R1,3. Take F = R for a Hermitian scalar field. In this case, a classical
field is just a real function on R1,3. ⋄

In more complicated classical field theories, you could take F = SU(3)
(which underlies quantum chromodynamics). Most of the problems of
field theory show up in the simple case where you take F = R.

Remark 1.4. More generally, instead of taking total space to be F ×
M →M , you take some twisted version of it (a more general fiber bundle
E →M , which locally looks like F ×M →M). Physicists almost always
take the fiber bundle to be a product. ⋄

The next ingredient is a Lagrangian.

Example 1.5. Take statistical field theory. L(φ) =
∑

i

(
∂φ
∂xi

)2
+m2φ2+

λφ4. Here φ is a field (e.g. a real-valued function). This Lagrangian is
a function from L : Fields×Base space→ R, but it isn’t any old function;
it is sort of local. L depends only on φ and its derivatives at the point
x ∈ M . This means that L is a function on the Jet space of the fiber
bundle. ⋄

A jet space is just the set of pairs (φ, x) ∈ (functions×M), where we
identify (φ1, x) with (φ2, x) if φ1 and φ2 agree to all orders at the point
x (i.e. all their derivatives agree). There are also finite order jet spaces
where you only look at a finite number of derivatives (identify (φ1, x) with
(φ2, x) if all derivatives to third order are the same). Finite jet spaces
aren’t as nice as infinite order jet spaces.
There are some variations on Lagrangians. We have Lagrangians, La-

grangian densities, and actions. The purpose of a Lagrangian is to pro-
duce an action, which is what gets you into business. A Lagrangian is a
function on jet space. You want to integrate the Lagrangian over space-
time (the base space) to get an action. So the action of a classical field
is “
∫
M
L(φ)”. However, you can’t integrate functions: you often explain

to undergraduates that things like
∫
x2 don’t make sense; you need to

multiply a function by a form before you can integrate it. A Lagrangian

density is a form on the manifold times a Lagrangian. This is a bit untidy.
We have Jet space→M , so if we have a form on M , we can pull it back
to Jet space, so you can think of a Lagrangian density as a special kind
of form on Jet space.
Often, M has a canonical n-form, in which case you can identify La-

grangians with Lagrangian densities. For example, if M has a metric and
an orientation, this gives a volume form. You do need to worry about the
difference if you’re studying gravity, because then M has no canonical
metric (the point being that gravity varies with the metric on M). In
that case, Lagrangians and Lagrangian densities are not the same thing,
and the right thing to use is a Lagrangian density. But usually, you don’t
need to worry too much about the difference.
Finally, what is an action? If you have a Lagrangian density, you can

integrate it over spacetime to get an action
∫
M L(φ), except you can’t

because M is usually non-compact, so there is no reason for the integral
to converge. Most physics books ignore the problem by pretending the
integral converges even when it is clear it doesn’t. What seems to be going
on is that even though you can’t define the action of a field, you can define
the DIFFERENCE of the actions of two fields φ1 and φ2 provided that
they differ on a compact set.
So if we’ve written down a Lagrangian density, we can define variation.

Now you’re in business. You can define the classical equations of motion
(Euler-Lagrange equations):

∫
L(φ) is STATIONARY under variations of

φ on COMPACT SETS.
For classical mechanics, you need a fiber bundle and a Lagrangian den-

sity. Once you have these things, you hand them to somebody who knows
classical mechanics and they’ll get excited and solve the equations of mo-
tion for you.
Now let’s talk about what a quantum field theory is (let’s do the case

of a Hermitian scalar field φ : R×M → M). The basic idea: we should
have (1) a Hilbert space H and (2) an operator φ(x) on H for each
x ∈ M satisfying various axioms. The problem is that it is impossible
to make sense of the operator φ(x). The problem is that φ(x)φ(y) has
really dreadful singularities as x and y get close together. All of quantum
field theory is in some sense trying to get around the problem of how to
define φ(x)φ(x). You get around this in two steps. The first thing you
do whenever you have singularities is to smooth them out by convolving
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with smooth functions with compact support. Instead of using operators
φ(x) for x ∈M , we use φ(f) =“

∫
φ(x)f(x) dnx” where f is smooth with

compact support. There is another problem: even smoothed operators
φ(f) are not defined on H . This turns out to be a fairly minor problem.
They are defined on a dense subset D ⊆ H and map D to D (they are
“unbounded operators”).
So what you end up with is an unbounded operator on H for each

smooth compactly supported classical field f .
Now we’ll give a minimal definition of a quantum field theory. We

need (1) a module D over some ∗-commutative ring (in practice, you do
perturbative stuff, so you use formal power series) (a ∗-ring is a ring with
involution ∗ so that (ab)∗ = b∗a∗), (2) a hermitian inner product (·, ·) : D×
D → R, and (3) a ∗-algebra A of operators acting on D (generated by
φ(f)). Furthermore, (Ax, y) = (x,A∗y).
This is the minimal amount of stuff you need to reasonably say you

have a quantum field theory.

Example 1.6. QFT satisfying the Wightman axioms (we’ll discuss these
later). In this case, D is a dense subset of a Hilbert space and A is the
algebra generated by the field operators. ⋄

Example 1.7. Let L be a Lie algebra acting on a vector space D with an
invariant symmetric inner product. Then you can construct an algebra by
taking the universal enveloping algebra U(L) with a∗ = a for all a ∈ L. ⋄

Example 1.8. If G is a group and D is an orthogonal representation of
G, then we can take A to be the group-ring of G with g∗ = g−1 for all
g ∈ G. ⋄

Example 1.9 (generalizing the last two examples). A a Hopf algebra
and D to be an orthogonal representation of A. ⋄

Example 1.10. Take A to be any C∗-algebra or von Neumann algebra
and D to be any Hilbert space that is a ∗-representation of A. ⋄

� Warning 1.11. People often define quantum field theories in
terms of C∗-algebras. You have to watch out, because in our cases,

the operators will usually be unbounded, and the C∗-algebra examples
have bounded operators. y

To construct a QFT, we need to give (1) a ∗-algebra A, and (2) a module
D, and these things should satisfy some extra axioms.
How to construct examples. The algebra A is easy to construct. You

could just take it to be the universal ∗-algebra generated by classical
fields. The hard part is to construct the right representation. Start with
a state w (a linear map w : A → R such that w∗ = w) and define (·, ·)
on A, given by (a, b) = w(ab∗) and take D = A/ ker(, ) (this is basically
the GNS construction). ω is constructed using Feynman integral, which
is formally given by

∫
ei

∫
L(φ)Dφ which can be expanded as a series of

Feynman diagrams.
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2 NR 08-29 Lagrangian Mechanics

Today we’ll start with classical mechanics. Recall some basic facts.
Recall that Newton’s equations say that a trajectory γ in Rn should

satisfy the following equation.

mγ̈(t) = −∂U
∂q

(
γ(t)

)

People often write F := −∂U∂q and a := γ̈, in which case this is written
as F = ma. Thinking of a solid as a collection of constrained points, you
can understand the motion of solids. (Euler)
Let’s reformulate these differential equations as a variational problem

(Lagrange) on TRn, or more generally, on TN for a smooth manifold
N (which we’ll refer to as configuration space). Choose a Lagrangian
L ∈ C∞(TN). If N is equipped with a Riemannian metric (as in our
example N = Rn), then we take the Lagrangian

L(ξ, q) = (ξ, ξ)

2
− U(q) (2.1)

for (ξ, q) ∈ TN , where (·, ·) is the Riemannian metric and U is some
potential function. For a parameterized path γ = {γ(τ)}tτ=0 in N , define
the action functional

A[γ] =
∫ t

0

L
(
γ̇(τ), γ(τ)

)
dτ.

As we’ll see later, solutions to Newton’s equations are parameterized paths
γcl in N on which A[γcl] is extremal (i.e. the variation vanishes).
Heuristically the (first) variation is the infinitesimal change in action

when γ is changed infinitesimally.

δA[γ] = “A[γ + δγ]−A[γ]”

More precisely, if f is a function on paths, let γs be a family of

parametrized paths such that γ0 = γ and define δf(γ) = df(γs)
ds

∣∣
s=0

.
Note that this depends on the choice of the family {γs}. In particular,

δγ = dγs
ds |s=0 =

{(
δγ̇(τ), δγ(τ)

)
∈ Tγ̇(τ)(Tγ(τ)N)

}t
τ=0

is a vector field

along the path {γ̇(τ), γ(τ)}tτ=0 which descibes how we are wiggling γ
[[⋆⋆⋆ It looks like δγ is more naturally a vector field along γ, not along
(γ̇, γ), but this does induce a vector field along (γ̇, γ).]].
The variation of A is

δA[γ] = dA[γs]
ds

∣∣∣
s=0

=
∑

i

∫ t

0

( ∂L
∂ξi

(γ̇, γ)δγ̇i(τ) +
∂L
∂qi

(γ̇, γ)δγi(τ)
)
dτ

=
∑

i

∫ t

0

(
− d

dt

∂L
∂ξi

(γ̇, γ) +
∂L
∂qi

(γ̇, γ)
)
δγi(τ) dτ

︸ ︷︷ ︸
bulk term

(integrating
by parts)

+
∑

i

( ∂L
∂ξi
(
γ̇(t), γ(t)

)
δγi(t)− ∂L

∂ξi
(
γ̇(0), γ(0)

)
δγi(0)

)

︸ ︷︷ ︸
boundary terms = ∂L

∂ξ (δγ(t)) − ∂L
∂ξ (δγ(0))

We call the first term a “bulk term” and the last terms “boundary terms”.
If γ is a solution to the Euler-Lagrange equations

− d

dt

∂L
∂ξi

(γ̇, γ) +
∂L
∂qi

(γ̇, γ) = 0 (Euler-Lagrange equations)

then the bulk term vanishes, so δA[γ] is given by boundary terms. Note
that this is the only way to get the bulk term to vanish because if this
factor doesn’t vanish, we can change our choice of the family {γs} (thus
changing δγ) to get the integral to not vanish. The Euler-Lagrange equa-
tions for (2.1) are Newton’s equations in Rn. Classical trajectories are
those that satisfy the Euler-Lagrange equations.

Boundary Problems

A boundary problem is a submanifold B ⊆ TN × TN . A solution to the
boundary problem is a classical trajectory γcl (one that solves the Euler-
Lagrange equations) such that

(
γ̇(t), γ(t), γ̇(0), γ(0)

)
∈ B. Here are three

examples of boundary problems (conditions we can impose on our paths).

(i) Boundary value problems: γ(0) = Q and γ(t) = Q′. In this case,
B = TQ′N × TQN .
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(ii) γ(0) = Q and γ̇(t) = V . In this case, B = V (N)×TQN , where V (N)
is the image of the vector field V : N → TN in TN .

(iii) Initial value problems: γ(0) = Q and γ̇(0) = V . In this case, B =
TN × {(V,Q)}. This means we fixed a point on TN at τ = 0.

Consider the first problem. If we restrict to families {γs} for which(
γ̇s(t), γs(t), γ̇s(0), γs(0)

)
∈ B, then we see that δγ(t) and δγ(0) are zero,

so the boundary terms in δA[γ] vanish. Thus, the extrema of A[γ] (sub-
ject to the boundary conditions) are precisely solutions to this boundary
problem.
In general, if we restrict to families {γs} satisfying the boundary con-

ditions it is not true that a solution to the Euler-Lagrange equations is
an extremum of the action (because the boundary terms of δA[γ] may
not vanish). To remedy this, we can try to change the action functional
so that solutions to the boundary problem are extrema of the new action
functional.
Consider the second boundary problem. We have that δγ(0) = 0 (be-

cause we fixed γ(0)), so the remaining boundary terms are (in the Rie-
mannian case, using the Lagrangian in (2.1))

dL
(
δγ(t)

)
=
∑

i

∂L
∂ξi
(
γ̇(t), γ(t)

)
δγi(t) (in coordinates)

=
∑

i

γ̇i(t)δγi(t) =
∑

i

V iγ(t)δγ
i(t)

(
L(ξ, q) = (ξ,ξ)

2 − U(q)
)

=
(
Vγ(t), δγ(t)

)
(the pairing from the metric)

So extrema of our action functional are not solutions to the boundary
problem. If N = Rn, consider the modified action functional

AV [γ] = A[γ]−
∑

i

V iγ(t)γ
i(t).

Then it is easy to see that extrema of AV are exactly the solutions to the
boundary problem. [[⋆⋆⋆ For N 6= Rn, what is the analogue of this
weird term

∑
V iγ(t)γ

i(t)?]]

General strategy: If we want solutions to a boundary problem B ⊆
TN × TN to be extrema of an action functional, we should consider the

modified action functional

AF,B[γ] = A[γ] + F

for some function F on B. We want solutions to the equations of motion
to be exactly the extrema of the action AF,B, so we want

δAF,B[γcl] = boundary terms|B + δF = 0

where γcl is a solution to the Euler-Lagrange equations and the fam-
ily {γs} is contstrained by the boundary conditions (in particular, the
vector

(
δγ̇(t), δγ(t), δγ̇(0), δγ(0)

)
is tangent to B). If we use coordinates

(V,Q, v, q) on TN×TN ,1 this is equivalent to F satisfying the differential
equations

dF = −dL ◦ dQ+ dL ◦ dq.
If we choose local coordinates {xa} on B, these become

∂F

∂xa
= −

∑

i

∂L
∂ξi
(
V (x), Q(x)

)∂Qi(x)
∂xa

+
∑

i

∂L
∂ξi
(
v(x), q(x)

)∂qi(0)
∂xa

.

The question is whether we can always find such an F . If you try to do
this for the third boundary problem (iii), you’ll discover it’s impossible.
It is clear that a necessary condition is that the form −dL◦ dQ+ dL ◦ dq
is closed. In local coordinates, this means that

[( ∂

∂xb

∑

i

∂L
∂ξi
(
V (x), Q(x)

)∂Qi(t)
∂xa

)
−
(
(V,Q)↔ (v, q)

)]
−
[
a↔ b

]
= 0

Once this condition is satisfied, the obstruction to finding such an F is

an element of H1
dR(B). [[⋆⋆⋆ that is, ∂2F

∂xa∂xb = ∂2F
∂xb∂xa ]]

Example 2.2. If N is a Riemannian manifold with Lagrangian L(ξ, q) =
1
2 (ξ, ξ), then the classical trajectories are geodesics in N . [[⋆⋆⋆ HW1]]
IfN = Rn with the usual metric, the Euler-Lagrange equations say that

0 = − d
dt
∂L
∂ξ (γ̇, γ) +

∂L
∂q (γ̇, γ) = γ̈, so the trajectories are γ(t) = A+ Bt.

1[[⋆⋆⋆ Q and q are well-defined globally (and these are the only coordinates we
care about), but V and v don’t make sense. I’d like to fix this without making the
meaning unclear.]]
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If N = S2, with the metric induced by the standard embedding in R3,
then [[⋆⋆⋆ ]]. On S2, there are generically two geodesics connecting a
pair of points, demonstrating that there can be more than one trajectory
connecting two points. ⋄

The physical systems we’ve descibed so far are called conservative,
meaning that L is independent of time. More generally, we could take L
to be a smooth function on TN ×R. In this case, the action functional is

A[γ] =
∫ t2

t1

L
(
γ̇(τ), γ(τ), τ

)
dτ.

[[⋆⋆⋆ how much of the previous analysis works?]]

2 PT 08-30

We’ll be in 87 Evans starting Tuesday. Today we’ll start super mathemat-
ics. There are three books I’ve been reading. Dan Freed: Five lectures on
supersymmetry. Darajan: Supersymmetry for mathematicians. The best
notes are in “quantum fields and strings: a course for mathematicians”
volume 1; this is online (in the IAS website), but it isn’t well organized.
The one you want is: Deligne and Morgan, Notes on Super Symmetry.
math.ias.edu/qft

Super stuff started in physics and there are competing schools of math-
ematicians trying to clean it up. This sheaf-theoretic approach seems to
be dominating for now.
(Physical) Motivation: you may already know that one quantum par-

ticle is represented by a vector v ∈ H in a Hilbert space (up to phase).
A 2-particle system is represented by H ⊗H ′. If these two particles are
indistinguishable, we have H = H ′ and v ⊗ v′ = λv′ ⊗ v as a physical
state (you can pick up some phase λ ∈ S1 ⊆ C). Doing this twice, we
should pick up the same phase (for some reason, which doesn’t work in
dimension 2 for example), so we get λ2 = 1, so λ = ±1. If you keep track
of the world lines, you see that two switches is not the same as doing
nothing. If λ = 1, you get a boson; if λ = −1, you get a fermion; if
λ ∈ S1, you have an anyion (for any phase).

Bosons live in Sym2H ⊆ H ⊗H and fermions live in
∧2

H ⊆ H ⊗H .
As a consequence, you get Pauli’s exclusion principle (two fermions can’t
be in the same state because v ⊗ v = 0. Physicists decided to write (this
is a new H) Hnew = Hb ⊕ Hf = He ⊕ Ho (even and odd parts). The
usual symmetries you have preserve the even and odd parts. Physicists
think there should be symmetries which switch the two subspaces, called
supersymmetries (these haven’t been observed). Mathematically, this will
be an odd operator on Hnew. We’ll see that Sym2Hnew = Sym2Hb ⊕
(Hb ⊗Hf )⊕ Sym2Hf (and Sym2Hf =

∧2
Hf because Hf is odd).

Definition 2.1. A super vector space (over C or R) is a (Z/2-)graded1

vector space V = V e ⊕ V o. ⋄
1From now on, “graded” will mean Z/2-graded

math.ias.edu/qft
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Noah: I don’t want to call this a super vector space until you have a
tensor product. PT: you’re right, we’ll get to this later today.
If V and W are super vector spaces, then Hom(V,W ) is a super vector

space, where the even homomorphisms are the ones which preserve the
grading (sending V e and V o to W e and W o respectively), and the odd
ones reverse the grading. So you can think of a homomorphism as [[⋆⋆⋆

]].
If V = W is finite-dimensional and f =

(
A B
C D

)
, then we have

str(f) = tr(A) − tr(D) and (Berezinian superdeterminant) Ber(f) =
det(A − BD−1C) · detD−1 if detD 6= 0 (Lemma: this matrix is invert-
ible if and only if A and D are invertible [[⋆⋆⋆ well, we’ll fix this to
something correct later]]. Determinant is only defined for invertible ma-
trices?) The property you want is Ber(eX) = estr(X) [[⋆⋆⋆ Homework
1]], [[⋆⋆⋆ Homework 2: Ber(X · Y ) = Ber(X) · Ber(Y )]]

Definition 2.2. A superalgebra (over C) is a super vector space A with
an even algebra structure. That is, µ : A × A → A is even in the sense
that µ(Ai ×Aj) ⊆ Ai+j . ⋄

Example 2.3. If V is an ordinary vector space, then
∧∗

V is an example
of a superalgebra. It is Z-graded a priori, so in particular it is Z/2-graded.
This is a quotient of the tensor algebra T ∗V ։

∧∗ V . The tensor algebra
is still graded, but it is not supercommutative (or finite-dimensional). ⋄

Example 2.4. H∗(X ;C) is a superalgebra (with the cup product), so is
Ω∗(M) for M a manifold. So even if you don’t care about physics, super
stuff shows up. ⋄

These two examples are supercommutative. That is, a·b = (−1)|a|·|b|b·a
for homogeneous elements a and b.

Example 2.5. If V is a space with symmetric bilinear form b, then
Cl(V, b) = T (V )/(v⊗ v′ + v′⊗ v− b(v, v′) · 1). If b is identically zero, you
get

∧∗ V . If b is non-zero, this algebra is not supercommutative. Note
that the Clifford algebra is not Z-graded, it is only Z/2-graded. ⋄

NR: what’s the difference between superalgebras and a Z/2-graded al-
gebra? PT: no difference yet. Noah: Well, there is a small difference: the
algebra structure has to be even.

Definition 2.6. If V and W are super vector spaces, then define (V ⊗
W )e = V e ⊗W e ⊕ V o ⊗W o and (V ⊗W )o = V e ⊗W o ⊕ V o ⊗W e. This
makes V ⊗W into a super vector space. ⋄

This is good. For example, µ : A ⊗ A → A is even means exactly that
it is an even map in Hom(A ⊗ A,A). NR: still unhappy; it’s still a Z/2-
graded algebra. Noah: Aren’t there two homs flying around? PT: We
haven’t defined the category yet. I hope you’ll soon understand why the
experts are confused.

Remark 2.7. Associativity of µ : A ⊗ A → A can be written as the
following commutative diagram.

A⊗A⊗A µ⊗id
//

id⊗µ
��

A⊗A
µ

��

A⊗A µ
// A

In this class, we’ll assume the tensor product of vector spaces is associa-
tive. That is, we’ll pretend that (V ⊗W ) ⊗ X = V ⊗ (W ⊗X). These
aren’t really equal, but there is a totally canonical isomorphism. I’m not
sure if Kolya will need the associator. NR: at the very end.
Similarly, for sets, we’ll pretend (S1 ⊔ S2) ⊔ S3 = S1 ⊔ (S2 ⊔ S3). ⋄

Definition 2.8. A (strict) monoidal category is (1) a category C (think
Set, Vect or GVect (with grading-preserving maps)), (2) an associative

product functor C × C ⊗−→ C (⊗ or ⊔), and (3) a unit object 1 such that

1⊗X = X = X ⊗ 1. The diagrams above define an algebra in C. ⋄

An algebra in GVect is a superalgebra.
To define commutative algebras (A, µ) in C, we want to say that

A⊗A µ
//

c

��

A

A⊗A
µ

<<①①①①①①①①
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commutes, where c is some kind of “flip map”. If C = Vect, then the
usual flip map is ok, but if C = GVect, then you need to involve the sign
rule somehow.

Definition 2.9. A symmetric monidal category (C,⊗) is a monoidal cat-
egory with a braiding natural isomorphism c : V ⊗W ∼−→W⊗V satisfying

– (Yang-Baxter equation)

U ⊗ V ⊗W cU⊗V,W
//

id⊗cV,W

��

W ⊗ U ⊗ V

U ⊗W ⊗ V
cU,W⊗id

66♥♥♥♥♥♥♥♥♥♥♥♥

And the obvious symmetric diagram [[⋆⋆⋆ ]]. So far, we’ve defined
a braided monoidal category.

– cV,W ◦ cW,V = idV⊗W ⋄

Now we have defined a commutative algebra in a symmetric monoidal
category. Note that in a braided monoidal category, you have to make a
choice between cA,A and c−1

A,A.

Definition 2.10. The symmetric monoidal category SVect of super vec-
tor spaces has objects graded vector spaces, morphisms are even mor-

phisms, monoidal structure defined as before, and braiding V ⊗W cV,W−−−→
W⊗V is defined on homogeneous elements as v⊗w 7→ (−1)|v|·|w|w⊗v. ⋄

I invite you to check the little diagrams.

Lemma 2.11. A commutative superalgebra is the same as a commutative
algebra object in SVect.

This categorical point of view has huge advantages because you can
define all the usual objects you define in linear algebra. Once you define
something categorically, you know how to “superize it”. Noah: you may
have seen this sign rule before with tensor products of Clifford algebras.
PT: let me expand on that. If A,B are algebra objects in (C,⊗), then is

A⊗B an algebra object? Well, we have to find a map A⊗B⊗A⊗B µA⊗B−−−−→
A⊗B

A⊗B ⊗A⊗B
id⊗c⊗id

��

µA⊗B
// A⊗B

A⊗A⊗B ⊗B
µA⊗µB

77♦♦♦♦♦♦♦♦♦♦♦♦

You need the braiding to do this, and you can check that this gives you
an algebra structure on A⊗ B. What Noah was saying is that with this
tensor product, we have Cl(V1, b1) ⊗ Cl(V2, b2) ∼= Cl(V1 ⊕ V2, b1 ⊥ b2).
Note that T (V1 ⊕ V2) ∼= TV1 ⊗ TV2.

Definition 2.12. If (C,⊗, c) is symmetric monoidal, a Lie algebra in C
is an object L together with a bracket [, ] : L⊗L→ L such that you have
(diagrammatically) (1) skew-symmetric and (2) Jacobi. ⋄

Antisymmetry:

L⊗ L
cL,L

��

[·,·]
// L

L⊗ L [·,·]
// L

− id

OO

I think we need C to be an additive category so that − id makes sense.
You’ll need additive for Jacobi as well.
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3 NR 08-31 Legendre transform, Hamilto-
nian formulation

The Legendre transform

Definition 3.1. A smooth function L ∈ C∞(TN) is non-degenerate if

det
(
∂2L
∂ξi∂ξj

)
6= 0 for all (ξ, q). ⋄

Definition 3.2. L is strongly non-degenerate if
(
∂2L
∂ξi∂ξj

)
is positive defi-

nite for all (ξ, q). ⋄

For a function L ∈ C∞(TN), define H ∈ C∞(T ∗N) by

H(p, q) = max
ξ̄∈TqN

(
p(ξ̄)− L(ξ̄, q)

)
.

To find the ξ̄ for which p(ξ̄)− L(ξ̄, q) is maximum, we differentiate with
respec to ξ̄, and we see that we are trying to solve for ξ̄ in

p(ξ̄) =
∂L
∂ξ

(ξ̄, q). (3.3)

Definition 3.4. The Legendre transfrom is the map TN → T ∗N given
by (ξ, q) 7→

(
∂L
∂ξ (ξ, q), q

)
. [[⋆⋆⋆ notation . . . two different ξ’s.]] ⋄

This definition of the Legendre transform also works for L a non-smooth
convex function (some higher than first derivatives may be discontinuous).

Proposition 3.5. If L is strongly non-degenerate (resp. non-degenerate),
then the Legendre transform is an isomorphisms (resp. local isomor-
phism). In particular, equation (3.3) has a unique solution ξ̄ for a given
(p, q).

Thus, if L is strongly non-degenerate, there is a unique solution to
(3.3), so we can define H.
The “inverse transformation” is

L̃(ξ, q) = max
p̄∈T∗

qN

(
p̄(ξ)−H(p̄, q)

)
.

This L̃ is the convex hull of L (see, e.g. [CdS03]).

Theorem 3.6. If L is fiberwise convex (for all ξ, each q), then L̃ = L.

[[⋆⋆⋆ how is convexity used . . . wikipedia picture]] If we assume L is
smooth, convexity is equivalent being strongly non-degenerate.
In our applications, L will either be non-degenerate, which insures fiber-

wise convex, or the Hessian
(
∂2L
∂ξi∂ξj

)
will be identitcally zero.

Theorem 3.7. The image of classical trajectories on TN in T ∗N (with
respect to the Legendre transform) are solutions to the following first order
system.

ṗi =
∂H
∂qi

q̇i = −∂H
∂pi

Where H is the Hamiltonian of the system (given by the Legendre trans-
form of the Lagrangian).

Proof. [[⋆⋆⋆ HW4. It’s easy from the ingredients.]]

We’ll see a coordinate-free formulation of this theorem later (Corollary
3.11).

Elements of symplectic geometry 1

Recall that a symplectic manifold is a pair (M,ω) where ω is a closed non-
degenerate 2-form on M . Nondegeneracy means that when you think of
ωx as a map TxM → T ∗

xM , it is an isomorphism. Thus, we have an

inverse map ω−1
x , and we can think of ω−1 as a section of

∧2
TM (i.e. as

a bivector field). If we choose local coordinates xi on M , then we can
write ωx as

ωx =
∑

i,j

(ωx)ijdx
i ∧ dxj

ω−1
x =

∑

i,j

(ωx)
ij ∂

∂xi
∧ ∂

∂xj

Example 3.8 (M = T ∗N). For a smooth manifold N , the projection

π : T ∗N → N induces a 1-form T ∗T ∗N
α←− T ∗N on M . This 1-form
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α is called the canincal 1-form on T ∗N . Explicitly, if x ∈ T(p,q)T ∗N is a
tangent vector,

α(p,q)(x) = p
(
dπ(x)

)

where p(β) is the natural pairing of p ∈ T ∗
qN with β ∈ TqN . and

dπ : TT ∗N → TN is the differential of the canonical projection π : T ∗N →
N .
In local coordinates {qi} and corresponding coordinates {pi} on T ∗

qN ,
one can check that

α =
∑

i

pidq
i.

The 2-form ω = dα is a sypmlectic form on M = T ∗N . In local
coordinates, ω =

∑
i dpi ∧ dqi. ⋄

Definition 3.9. A a commutative algebra over C is a Poisson algebra if
it is a Lie algebra with some bracket { , } and the Lie algebra structure acts
by derivations on the commutative algebra structure:{ab, c} = a{b, c} +
b{a, c}. ⋄

[[⋆⋆⋆ HW2 formulate the notion of super Poisson algebras. c.f. PT’s
lectures for commutative super algebras and Lie super algebras]]

Theorem 3.10. For a syplectic manifold (M,ω), C∞(M) with point-wise
multiplication and the Poisson bracket given by

{f, g} = ω−1(df ∧ dg) =
∑

ij

(ω−1)ij
( ∂f
∂xi

∂g

∂xj
− ∂g

∂xi
∂f

∂xj

)

is a Poisson algebra.

Proof. It is clear that it is a commutative associative algebra. The oper-
ation { , } is a first order bidifferential operator, it will satisfy the Liebniz
rule, so we need only check the Jacobi identity, which follows from dω = 0
[[⋆⋆⋆ HW3, it’s very easy]].

A function f ∈ C∞(M) induces a vector field vf := ω−1(df) on M .

Corollary 3.11 (to Theorem 3.7). The image x(τ) in T ∗N of a classical
trajectory

(
γ̇(τ), γ(τ)

)
on TN (with respect to the Legendre transform)

is a flow line of the Hamiltonian vector field vH = ω−1(dH). In other
words, ẋ(τ) = ω−1(dH)(x(τ)) [[⋆⋆⋆ can this be simplified]].

The main moral of this transformation is that under the Legendre trans-
form, the trajectories become flow lines of the Hamiltonian vector field.

Variational principle in Hamiltonian mechanics

Assume L is strongly non-degenerate, so it gives an isomorphism between
tangent and cotangent bundles. Define p(τ) := ∂L

∂ξ

(
γ̇(τ), γ(τ)

)
. Recall

that the Hamiltonian is a function on T ∗N given by H
(
p(τ), γ(τ)

)
=

p(ξ̄) − L
(
ξ̄, γ(τ)

)
, where ξ̄ satisfies p = ∂L

∂ξ (ξ̄, q) (that is, ξ = γ̇(τ)). So
we have that

L
(
γ̇(τ), γ(τ)

)
= p
(
γ̇(τ)

)
−H

(
p(τ), γ(τ)

)
.

We can write the action as

A[γ∗] := A[γ] =
∫ t

0

(
p(τ)γ̇(τ) −H

(
p(τ), q(τ)

))
dτ

=

∫

γ∗
α−

∫ t

0

H
(
p(τ), q(τ)

)
dτ

where γ∗ = {p(τ), γ(τ)}tτ=0 is the image of γ = {γ̇(t), γ(t)} in T ∗N under
the Legendre transformation. The first term universal (in the sense that
it only depends on γ∗ and the manifold N , but not on the Lagrangian),
and the other term really describes the dynamics.
The variation of the action on a classical trajectory can now be written

in terms of γ∗cl.

δA[γ∗cl] =
∑

i

∂L
∂ξi
(
q̇(t), q(t)

)
δqi(t)−(t↔ 0) = α

(
di(δq(t))

)
−α
(
di(δq(0))

)

where α(δq) is the value of the form α on the vector field di(δq) and
i : N →֒ T ∗N is the zero section.
The goal now is to show that for B ⊆ TN × TN , the image B∗ ⊆

T ∗N × T ∗N is Lagrangian if we take the difference of the form on the
two cotangent bundles. Ω = ω1 − ω2. There is some Lt some family of
Lagrangians with the following property. Solutions to the E-L equations
with given boundary conditions (L∗) are L∗ ∩ Lt.
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Let γ∗cl be a classical trajectory in the phase space originating at q ∈ N
at time t1 and ending at time t2 at Q ∈ N . We can evaluate the action
on such a trajectory, giving a function on N ×N × R× R

A[γ∗cl] = A(q,Q, t1, t2).

Theorem 3.12 (Hamilton-Jacobi).

∂A
∂t2

+H(dQA, Q) = 0
∂A
∂t1
−H(−dqA, q) = 0.

3 PT 09-04-2007

Your feedback:

– Problem 2 is wrong in the original problem set: the formula for
the Berezinian is not multiplicative. The new version has the right
assumptions for the formula to be true.

– However, we’re still missing some assumptions for the exponential
map.

– the Stokes’ theorem hint is bad, you just need Stokes’ theorem on
the interval.

Let’s extend the submission date to next week (Sept. 11).
If A is a commutative super algebra, a free (right) module of super

dimension (m|n) is a free (right) module withm (free) even generators and
n (free) odd generators. Recall that F,A ∈ SVect, so we have µF : F⊗A→
F in SVect (in particular, it is an even map) with the usual commutative
diagrams. There is a nice adjunction formula.

HomA-mod(F, V ) ∼= HomSVect(C
m|n, Vforget).

[[⋆⋆⋆ check that super dimension is unique given the module structure.
No, over C, declare odd or even. PT: no, that’s not a counterexample
because F should be in SVect to begin with, so you have a fixed super
dimension over C.]] In problem 2, replace the exponential formula by
the following property of the Berezinian. A[e]/e2 with e even, and let
f : F → F be an even morphism, then Ber(1+ef) = 1+e str(f). Replace
the exponential property with this.
Feedback from Barbara: I said that 87 is still too small for the class. She

said that those that aren’t registered shouldn’t get a chair. So register,
and then drop whenever you like (you can drop until the very last day
of class). The only disadvantage of registering is that I might learn your
name.
If you try to say something precisely, you should try to do it categori-

cally because it will keep you honest. X ∈ C means that X is an object
in C. If X,Y ∈ C, then we’ll write C(X,Y ) for HomC(X,Y ). We talked
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about the notion of a monoidal category. If C has products1 (this is a
property of C, not extra structure).

Example 3.1. C = Set,Top,Man. ⋄

We could define X ⊗ Y := X ×C Y . We have to use choice to pick a
representative of X×CY , which is only defined up to unique isomorphism.
This ⊗ is only as associative as the product of sets (there is a canonical
associator, which we’re ignoring).
Now note that we have two different monoidal structures on Vect. In

general, you have to decide which monoidal structure you use. For mani-
folds or topological spaces, we’ll use this monoidal structure (in bordism
categories, we’ll use X ⊗ Y = X ⊔ Y instead), but for vector spaces, we’ll
use tensor product.

Definition 3.2. Let (C,⊗) be a monoidal category. A group object G in
C is an object G ∈ C together with morphisms µ : G⊗G→ G, e : 1→ G,,
and ν : G→ G satisfying the usual axioms. ⋄

Shenghao: you need a map G→ G×G for the inverse axiom. PT:

G×G id×ν
// G×G

µ

��

G
ε //❴❴❴❴

∆

OO

1

e // G

We need 1 to be a zero object to get the dashed arrow (Noah: or just
pick the map G→ 1, and then you get a Hopf algebra object. PT: yeah,
let’s do that, so add ∆ and ε to the definition, but then you have to say
what diagrams they satisfy).
If we take the monoidal structure given by product, then ∆ and ε exist

canonically.

Remark 3.3. For the notion of a commutative group in C, you need a
symmetric monoidal category (C,⊗, c). Just as you get different notions

1If X1,X2 ∈ C, then there is an object X1 ×C X2 ∈ C with two projection maps

pi : X1 ×C X2 → Xi such that the map C(Y,X1 ×C X2)
(p1◦−)×(p2◦−)
−−−−−−−−−−−→ C(Y,X1)×Set

C(Y,X2) is a bijection.

of groups by using different monoidal structures, you get different notions
of groups by using different braidings. ⋄

Last time, we defined a Lie algebra object in a symmetric monoidal
C-linear category C. Noah: I think additive is really the right thing. PT:
okay, let’s try to always get the right axioms, so let’s just say additive
instead of C-linear. We’ll also say that C →֒ C(1,1). In this case, we’ll
have C(X,Y )⊗CC(Y, Z) instead of product in Set and require composition
the map to C(X,Z) to be C-bilinear?[[⋆⋆⋆ ]]

Definition 3.4. We’ll call this kind of thing (enriched over C) a (sym-
metric) tensor category. ⋄

Definition 3.5. A monoidal category (C,⊗) is closed if there exist “in-
ner Homs” C(X,Y ) ∈ C for all X,Y ∈ C with natural isomorphisms
C(W, C(X,Y ))

∼−→ C(W ⊗ X,Y ). [[⋆⋆⋆ this is weaker than rigid be-
cause you don’t get a coevaluation map]] ⋄

Example 3.6. For vector spaces, you can think of the hom sets as vector
spaces, so there is an inner hom which is the same as the usual hom
(as a set). What is HomSVect? It is all homomorphisms, not just even
morphisms. This is Z/2-graded as before. ⋄

Example 3.7. (C,⊗) = (Top,×). Is this closed? No; if you want to
use the compact-open topology on the hom sets, you need to take the
compactly generated product ×c to get the right adjunction. If you start
with Topc, the category of compactly generated topological spaces, with
it’s product ×c, then you get a category which is closed monoidal. If
you take (Man,×), this subtlety is gone (but you have to allow infinite-
dimensional manifolds for the hom sets to be manifolds). Interesting
thing: HomSMan(R

0|n,M) is a (finite-dimensional!) supermanifold. ⋄

Note that C(1, C(X,Y )) ∼= C(X,Y ) canonically. For SVect, since a map
from 1 to HomSVect(X,Y ) must be even, so it is picking out an even map
from X to Y .
We can define the dual to X by X∨ := C(X,1). Deligne and Morgan

get the order in this next thing wrong. There is a canonical evaluation
map X∨ ⊗X ev−→ 1 by taking W = X∨ and Y = 1 and taking idX∨ on
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the left hand side. You also get a canonical map X⊗Y ∨ → C(Y,X) (this
order is important!).

Now we can define a trace. Taking X = Y , we have 1

f̃−→ X ⊗X∨ →
C(X,X) for any f ∈ C(X,X). Note that for an infinite-dimensional vector
space X , there is no trace C(X,X)→ C(1,1). You can only define trace
for f̃ . Let’s use the convention that we draw pictures with the maps going
from right to left, so that it is easy to translate into symbols. We also
write tensor products left-to-right into top-to-bottom.

1

ev←− X∨ ⊗X X ⊗X∨ f̃←− 1 X
f←− X

X

ev

X∨

X∨
f̃

X

X

f̃
X∨

ev

X

Given f̃ , you’d like to stick it onto the evaluation map, but you have to

throw in a switch. The picture below is by definition the trace 1

tr(f̃)←−−− 1

or trC(f̃) ∈ C(1,1).

X

ev

X∨

cX,X∨

X∨

f̃

X

Lemma 3.8. trSVect is str.

2 RB 09-04-2007

Today we’ll continue with what should have been the second half of the
first lecture.
Recall that last time we said that a classical field theory consists of (1)

a fiber bundle over some manifold M (which might be space-time) and
(2) a Lagrangian density, which is a special kind of form on Jet space.
For a quantum (or statistical) field theory, you have to specify a ∗-

algebra A acting on some module with a sesquilinear form (, ) satisfying
some axioms which we’ll talk about next week. This algebra will usually
be generated by classical fields.
Roughly, to get a form, you take a state ω : A → R (with R = R or

R[[λ]]) on A such that ω∗ = ω (ω∗(a) = ω(a)). Then you can define
(a, b) = ω(ab∗). So the main problem is to construct a state ω on the
algebra A. The state ω is constructed (at least formally) in terms of
Feynman integrals, which look something like

∫
(
∫
φ(x)∗f(x)dx)ei

∫
L(φ)d4xDφ

You integrate over the space of all fields. A problem: there is no invariant
measure on infinite-dimensional spaces. To get around this, think about
what a measure on a spaceX really is. It is a map from some subsets of X
to R which is countably additive, etc. This approach to thinking about a
measure doesn’t work very often when you work on an infinite-dimensional
space. A “Radon measure” is a linear map from continuous functions with
compact support to R, given by taking f to a real number which you think
of as

∫
fdµ. If you have a usual measure, then usual measure theory tells

you how to construct the integral of a reasonable function. However, it
turns out that you can’t even define a Radon measure on an infinite-
dimensional space (there probably aren’t any continuous functions with
compact support except for the zero function).
Instead: define a measure to be a linear map from some space of func-

tions to R. We only define the integral of functions we are interested in.
But which functions are you interested in? Thinking about it, you see
that most things you’re interested in are of the form

∫
(
∫
φ4(x)f(x)dx)(

∫
φ2(x)∂φ(x)dx) · · · ei

∫
quadratic dxDφ
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Where the first functions are given by integrating a form on Jet
space. So we want to integrate polynomials in (certain forms on Jet
space)×equadratic. A Feynman measure is a linear functional on this space
with certain properties (which we’ll talk about later). This is a perfectly
rigorous concept. You have to remember that physicists are doing per-
fectly reasonable mathematics, but they lie and say that they’re doing
something else. If you examine it carefully, a physicist means by “mea-
sure” a linear function on this space. PT: what if the fiber is not linear?
RB: you want the fiber to at least be an affine space and you choose a
vacuum to turn it into a vector space.
Next problem: is the Feynman measure unique? This is one of the

most confusing things about quantum field theory. (1) Most physics books
imply that it is, but they are well aware it is NOT. We need to explain why
it behaves as if it is unique. Why can we get away with pretending it is
unique? The key point is the following: There is an (infinite-dimensional)
group of renormalizations which acts simply transitively on the Feynman
measures. So there is a unique well-defined orbit of Feynman measures.
If you try to read a physics book, it gives the following misleading pic-

ture. If you start with a Lagrangian, you get a QFT (this is wrong).
The correct picture: If you start with a Lagrangian and a Feynman
measure, you get a QFT. Furthermore, there is a group acting on La-
grangians and Feynman measure which preserves the QFT, so you should
take (Lagrangians)× (Feynman measures)/(Group of renormalizations).
The group of renormalizations is the same size as the renormalization
group, so you can often get away with just picking a Lagrangian. AJ:
what you’re calling “Feynman measure” is what is usually called a regu-
larized path integral? RB: yes, a choice of Feynman measure is equivalent
to a choice of regularization and renormalization scheme.
Toy example. Can we find an invariant measure on a 1-dimensional

space? Yes, but there is no canonical way to do it if you want a
translation-invariant measure: if dµ is a translation-invariant measure,
so is sdµ. Rescaling acts on the space of all translation-invariant mea-
sures. Furthermore, the group of rescalings acts simply transitively on
the invariant measures on R1, so it doesn’t really matter which measure
you take most of the time. The same sort of thing happens in QFT, but
the group of renormalizations is infinite-dimensional and non-abelian.
Consequences of non-uniqueness of Feynman measures are things called

ANOMALIES. An anomaly is given by the following. Suppose the La-
grangian L is invariant under some group G (say G is the group of gauge
transformations). We would expect G to act on the QFT of L. There is
a problem because the QFT depends on the Feynman measure as well as
L. Can we find a Feynman measure which is also invariant under G (and
hence get a G-invariant QFT)? Sometimes you can and sometimes you
can’t. What is the obstruction to doing this?
We have a group H which acts simply transitively on a space X . In

this case, by choosing a point of X , you can identify X with H . Now
suppose another group G acts on H and X . Can we identify X with H in
a G-invariant way? The answer is that there is an obstruction given by an
element of the non-abelian cohomology group H1(G,H) (so you can do
it when this element is zero in the cohomology group). This group H will
be the group of renormalizations and G will be the group of symmetries.
The problem of whether you can get G acting on the QFT amounts to
working out an element of H1(G,H) and checking if it is zero. Thus,
anomalies are elements of H1(G,H).
Now I’ll try to explain quickly what a Feynman diagram is. A Feynman

integral can be formally expanded as an infinite series of Feynman dia-

grams. A Feynman diagram looks like . Each Feyn-
man diagram is an abbreviation for a finite-dimensional integral. Each
point represents a point of spacetime and each line represents a propaga-
tor ∆(x, y) (which is a Green’s function for the quadratic part of the La-
grangian); just think of it as some function of x and y. Then the Feynman

diagram
x1 x2 x3 x4

represents ∆(x1, x2)∆(x2, x3)
3∆(x3, x4)

integrated over some of the xi’s. You usually know that this integral does
NOT converge.
Three problems:

1. infrared divergences.

2. ultraviolet divergences.

3. divergent series (even if each integral converges, the series of them
may not).

The obvious thing to do is give up, which is what people historically did
at first.



2 RB 09-04-2007, v. 10-4 22

Why does the integral
∫∞
−∞ f(x)dx not converge? There are two basic

reasons. (1) f may be locally bad (e.g. f(x) = x−10, which blows up
at zero), which is called an ultraviolet divergence (it is short distance
singularity). The other reason an integral might not converge is (2) f is
globally too large (e.g. f(x) = x2), which is called an infrared divergence.
In general, these integrals will have both kinds of divergences.
(1) Dealing with infrared divergences. The solution is to ignore them.

The key point is that individual Feynman diagrams have infrared diver-
gence, but if you sum over all Feynman diagrams of a given order, the
infrared divergences automatically cancel out. There is a simple phys-
ical reason you’d expect this to happen. Suppose we’re looking at the
Lagrangian m2φ2 + (∂φ)2 + λ(x)φ4 for some function λ on spacetime.

time

space

A B

lab

duration of experiment

A=lab during experiment. It doesn’t matter what happens what hap-
pens outside of the box A. Well it does matter because something can
leave the lab and then come back. Let B=all points where you can send a
signal and get it back. We don’t care what goes on outside the region B.
So there is some compact region which is all we care about. If we want, we
can just replace the coupling coefficient λ by a function vanishing outside
of B. If we do that, then we find that all the integrals are over a compact
set, so there are no large-distance singularities.
Q: what do you mean by “ignoring them”? Do you pretend they are

zero, or keep them around until they cancel? RB: The infrared divergence
will be given by some parameter going to zero. The integral will diverge
if you let this parameter go to zero. However, if you add all the integrals
and then let the parameter go to zero, you get a finite number. Q: does it
all go away, or do you get a non-zero finite term? RB: there is a non-zero
finite term.

(2) Ultraviolet divergences. These are much trickier to deal with and
they definitely don’t cancel out. Distributions t have no ultraviolet di-
vergences (almost by definition,

∫
t(x)f(x)dx is defined for all f smooth

of compact support). So we could get rid of ultraviolet divergences if we
could replace ∆(x1, x2)∆(x2, x3)

3∆(x3, x4) by a distribution, we could
eliminate ultraviolet divergences. Each of the factors is a distribution,
but the product of distributions need not be a distribution (e.g. if you
square the Dirac delta, you get nonsense).
Regularize the propagator ∆(x1, x2). This means you add an extra

variable ∆(x1, x2, ε). For example, ∆(x1, x2) might be a Fourier trans-
form of (p2 + m2)−1. If you integrate over large values of p, it will be
infinite. What you can do is replace (p2 +m2)−1 by (p2 +m2)−1−ε. For
ε large and positive, everything converges nicely and we can define all
Feynman integrals. Then we want to take ε = 0. What we do is we get
an analytic function of ε and take the analytic continuation to ε = 0 and
look at the value there. It turns out you can’t do this because there is a
pole at ε = 0 in general. You deal with this pole by renormalization.
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Recall from lecture 2 that given a boundary problem B ⊆ TN × TN , we
try to find a function F on B satisfying the condition

dF (V,Q, v, q) =
∂L
∂ξ

(v, q)dq − ∂L
∂ξ

(V,Q)dQ = p dq − P dQ.

where p = ∂L
∂ξ (v, q) and P = ∂L

∂ξ (V,Q). If the form on the right is closed

(i.e. if dp∧ dq− dP ∧ dQ = 0), then such an F exists locally. [[⋆⋆⋆ I’m
not sure this coordinate-free description is quite right.]] In coordinates
{xa} on B, the closedness condition is

∑

i

( ∂Pi
∂xa

∂Qi

∂xb
− ∂qi
∂xa

∂qi

∂xb

)
− [a↔ b] = 0

In other words, a necessary condition for existence of such an F is that

Ω|B∗ = 0

where B∗ is the Legendre transform of B and Ω = π∗
1ω − π∗

2ω2 is the
symplectic form on T ∗N × T ∗N .1 Recall that such a submanifold is
called isotropic.

Elements of symplectic geometry 2

Definition 4.1. B∗ is an isotropic submanifold of a symplectic manifold
if the restriction of the symplectic form to B∗ is zero. ⋄

Definition 4.2. An isotropic submanifold of maximal dimension is called
a Lagrangian submanifold. ⋄

It is clear that if the dimension of the symplectic manifold is 2n, then
the maximal dimension of an isotropic submanifold is n (this follows from
non-degeneracy of the symplectic form).
Now let’s look at the E-L solutions. From the theory of ODEs, we

know that we generically need to fix 2n coordinates to get finitely many

1Note that λ1π∗
1ω + λ2π∗

2ω gives a symplectic form on T ∗N × T ∗N for any (non-
zero) λ1 and λ2.

solutions. Thus, if you want extrema, this boundary manifold B∗ should
be Lagrangian.
Thus, a boundary condition B is variational and the number of solu-

tions is generically finite if and only if B∗ is a Lagrangian submanifold in
T ∗N × T ∗N with the symplectic form Ω.
For each extremum of A with fixed end points (Q, q), we have the

function A[γ∗cl] on a neighborhood of (Q, q) ∈ N ×N . Assume that each
of these functions extends to a function on N × N . In free motion on a
Riemannian manifoldN these will be the geodesics connecting two generic
points. Now we can take the differential of this function with respect to
the first or second argument gives the submanifold

L
(γcl)
t := {(P,Q, p, q) ∈ T ∗N × T ∗N |P = dQA[γcl], p = −dqA[γcl]}

[[⋆⋆⋆ the condition that (P,Q, p, q) ∈ Lt is exactly “if you start at
(p, q) and flow for time t along the Hamiltonian vector field vH , you will
end up at the point (P,Q)]]

Proposition 4.3. Lt is a Lagrangian submanifold.

Proof. [[⋆⋆⋆ HW]] [[⋆⋆⋆ This follows from the fact that flowing for
time t, Ft : T

∗N → T ∗N is a symplectomorphism, and Lt is the graph of
this symplectomorphism. In general, the graph of a symplectomorphism
M →M is a Lagrangian in M ×M .]]

Now solutions to the E-L equations with boundary conditions B can be
identified with points in Lt∩B∗. Note that solutions to the E-L equations
can be regarded as points on Lt, and imposing the boundary conditions
on them intersects with B∗.
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One bit of cleanup from Tuesday. I tried to define a category enriched
over abelian groups and there was a question of whether to use ⊗ or ×
for composition. This is kind of an advertisement for monidal categories.
Fix a monoidal category (A,⊗A) (think A = Ab, with monoidal struc-
ture given by either × or by ⊗Z). An (A,⊗A)-enriched category C is
a class of objects, and for any pair of objects X,Y ∈ C, a hom object
C(X,Y ) ∈ A with identity morphisms idX ∈ A(1A, C(X,X)) and with
associative composition morphisms C(X,Y ) ⊗A C(Y, Z) → C(X,Z) in A
(we’re shutting associators out of the discussion, but you could throw
them in). Q: so this isn’t a category? PT: no, it isn’t a category. If there
exists a functor (A,⊗A)→ (Set,×), then you get a category structure on
C.

Example 4.1. C = Vect (over C) is enriched over (Vect,⊗). f ◦(g+h) =
fg+fh, so the composition is actually bilinear. A category enriched over
Vect is called a linear category. ⋄

Today I want to get to supermanifolds, so I need to take some short-
cuts. Let A be a commutative super algebra (i.e. a commutative algebra
object in (SVect,⊗, c); in particular, the multiplication is even and com-
mutativity means that a · b = (−1)|a|·|b|b · a).

Example 4.2. A =
∧∗ Cn. Remember that the Clifford algebra is not

super commutative. ⋄

The category cSAlg of commutative super algebra is itself a monoidal
category via

(A⊗B)⊗ (A⊗B)
µA⊗B

//

idA ⊗cB,A⊗idB

��

A⊗B

(A⊗A)⊗ (B ⊗B)

µA⊗µB

66♥♥♥♥♥♥♥♥♥♥♥♥♥

Fix such an A. Then the category mod-A is the category of right A-
modules with even A-module homomorphisms.

Lemma 4.3. mod-A is a closed monoidal category.

Next we will introduce supermanifolds, which can be thought of as a
commutative super algebra, and modules will be like sheaves of modules
on the supermanifold.

“Proof”. We have to define the tensor product and inner hom and verify
the adjunction formula. In general, M ⊗A N makes sense if M is a right
module and N is a left module (which it isn’t). To define the monoidal
structure, we’ll turn N into a left module via µℓN := µN ◦ cA,N .

A⊗N

µℓ
N

((

cA,N

// N ⊗A
µN

// N

[[⋆⋆⋆ To check this, you must use that A is commutative]] Now we
have two maps idM ⊗µℓN , µM ⊗ idN : M ⊗ A ⊗ N → M ⊗ N . We define
the monoidal structure M ⊗A N to be the coequalizer in SVect of these
two: M ⊗A⊗N ⇒M ⊗N →M ⊗A N .
Now let’s define the inner hom. Recall that it should come with iso-

morphisms C(X, C(Y, Z)) ∼= C(X ⊗ Y, Z).
Lemma 4.4. If M,N ∈ mod-A, the A-module HomA(M,N) (this in-
cludes even and odd morphisms) is an inner hom.

I have to give you a right A-action on HomA(M,N). HomA(M,N) is
a left module via (a · φ)(m) = a · φ(m) = µℓN (a⊗ φ(m)). Now make this
into a right A-module as above.

Remark 4.5. We used that the two actions (left and right action on N)
commute, which follows from commutativity of A. ⋄

Q: does Yoneda’s lemma work for enriched categories? PT: let’s check
during the break.
Office hours are moving today; this week, they’ll be Friday at 2.

Super-manifolds

These are defined via sheaves.



4 PT 09-06, v. 10-4 25

Definition 4.6. A super-manifold M = (|M |,OM ) of dimension (m|n)
is a sheaf OM of commutative super algebras over a (Hausdorff, second
countable) topological space |M | which is locally isomorphic (as a ringed
space) to (U,C∞(U)⊗

∧∗ Rn) where U ⊆ Rm is an open subset. ⋄

Remark 4.7. We’ll see that |M | will be come a smooth manifold of
dimension n. ⋄

Definition 4.8. If X is a topological space and C is a category. A
(C-valued) presheaf on X is a functor F : Open(X)◦ → C, where
Open(X) has objects open subsets of X and morphisms inclusions
(i.e. HomOpen(X)(U, V ) = ∗ if U ⊆ V and ∅ otherwise). ⋄

Example 4.9. F(U) = C0(U) (we could take C to be commutative al-
gebras). If X is a smooth manifold, we could define F(U) = C∞(U). ⋄

Definition 4.10. Assume C has all products. A presheaf F is a sheaf
if the gluing property is satisfied: for any open covering U =

⋃
i Ui, the

sequence

F

∏
F (ιi)

//
∏
iF(Ui)

∏
(Fιij◦pi)

//
∏

(pj◦Fιij)
//
∏
i,j F(Ui ∩ Uj)

is an equalizer in C. ⋄

Remark 4.11. If follows (by taking the empty cover of ∅) that F(∅) is
the terminal object in C. ⋄

Definition 4.12. A smooth structure on a topological manifold X is
a sheaf C∞(X) ⊆ C0(X) so that (X,C∞(X)) is locally isomorphic to
(U,C∞(U)) for some U ⊆ Rn open. ⋄

Morphisms of sheaves. (a) Say F ,G : Open(X)◦ → C are two sheaves
on the same space X . Then a morphisms of sheaves (F → G is a natural
transformation between them. That is, it is a T such that the following

diagram commutes for every inclusion ι : V →֒ U .

F(U)
Fι //

T (U)

��

F(V )

T (V )

��

G(U)
Gι

// G(V )

(b) Let F be a sheaf on X and G a sheaf on Y (both valued in C. A
morphism from (X,F) to (Y,G) is a continuous map f : X → Y and a
natural transformation from G to F ◦ f−1 [[⋆⋆⋆ The other way?!? Ok,
this is supposed to be a morphisms of “C-sheaved spaces”. Clean up.]].

Open(X)
F // C

Open(Y )

f−1

OO

G

;;✇✇✇✇✇✇✇✇✇✇

T ��

Another way to think of it:

F

��

// f∗F

��

Goo

}}⑤⑤
⑤⑤
⑤⑤
⑤⑤

X
f

// Y
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5 NR 09-07

Last time I gave the Hamiltonian interpretation of these variational prob-
lems. Let’s move forward now, and we’ll come back to it when it becomes
more relevant to the goals of the class. I want to talk about Chern-Simons
theory, which is an infinite-dimensional version of something. How you
should look at the previous sections: S(A) =

∫
M

tr(A∧dA+ 2
3 ∧3A) is the

Chern-Simons action, and δS(A) = 0. I gave the impression that there
is a unique trajectory which connects two points, which was an (untrue)
assumption. The condition that δS(A) = 0 says that F (A) = 0 (A is
flat connection). g = Lie(G) (compact Lie group). Gauge classes of flat
connections correspond to classical trajectories. The counterpart to these
classical trajectories are γcl, solutions of the E-L equations. There could
be several such γcl, so all sentences where I said “the classical solution”
should be replaced with “a classical solution”. For example, if we fix
γcl(0) = q, γcl(t) = Q, then we get A[γcl] = A(q,Q, t). Aγcl is then a
function on N ×N × R, but there is a value for each solution γcl.
I explained that boundary conditions B that have a variational inter-

pretation are, by the Legendre transform, the Lagrangian submanifolds
B∗ ⊆ T ∗N × T ∗N (under the form Ω = ω1 − ω2). I also described for
each γcl a Lagrangian submanifold Lt = {(P,Q, p, q) ∈ T ∗N × T ∗N |P =
dQAγcl , p = −dqAcl}.

Proposition 5.1. For every γcl, Lt is a Lagrangian submanifold (I’m a
little loose with the term “submanifold”; it’s generically smooth).

Then we have the following intrepretations for solutions to the E-L
equations. A solution is a system of Lagrangian submanifolds in T ∗N ×
T ∗N . Solutions to E-L equations with given boundary conditions B∗ are
intersection points in B∗∩Lγclt . If there is only one trajectory connecting
two points, then there is only one such Lt, and if B∗ and Lt are in generic
position, they’ll only intersect once, so you’ll have a unique trajectory.
You can already see the benifit of the Hamiltonian point of view: it gives
this geometric interpretation of solutions to the E-L equations.
Now let’s move on.

Hamiltonian dynamics on a symplectic manifold

So far, we’ve hadM = T ∗N . Now let (M,ω) be any symplectic manifold.
Fix the Hamiltonian function H ∈ C∞(M). It defines a vector field
vH = ω−1(dH). The Hamiltonian dynamical system generated by H
has trajectories which are flow lines of this vector field vH (you can take
this as the definition of a Hamiltonian dynamical system); i.e. they are
solution to the (generally nonlinear) sytem of differential equations

ẋ(t) = vH(x(t)). (∗)

We can think of these flow lines as the motion of points. Define Ft(x) =
x(t) (assuming the existence and uniqueness of solutions t0 (∗), at least
for some small interval), where x(t) is the flow line passing through x
at t = 0. You can think of this as the local action of R on M , given
by shifting points along flow lines. Suppose f ∈ C∞(M), then define
ft = F ∗

t (f) (i.e. ft(x) = f
(
x(t)

)
). This gives an action of R on C∞(M).

Theorem 5.2.

1. dft
dt = {H, ft} for f0 = f . Now even though the space is infinite-
dimensional, the equations of motion are linear.

2. F ∗
t ({f, g}) = {F ∗

t (f), F
∗
t (g)} (it is clear that F ∗

t (fg) = F ∗
t (f)F

∗
t (g),

so F ∗
t is a Poisson algebra homomorphism).

[3.] An infinitesimal version: ∂Hf
def
= {H, f} is a derivation of the Pois-

son algebra (C∞(M), {, }).

Proof. (1)

dft
dt

=
d

dt
f(x(t))

=
(
ẋ(t), df(x(t))

)

=
(
vH(x(t)), df(x(t))

)

=
(
ω−1(dH), df(x(t))

)

= ω−1(dH ∧ dft) = {H, ft}
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(3), then we can exponentiate it to get (2).

∂H({f, g}) = {∂Hf, g}+ {f, ∂Hg}
{H, {f, g}} = {{H, f}, g}+ {f, {H, g}}

which is just the Jacobi identity for { , }.

Proposition 5.3. vH is tangent to the level surfaces of H.

In other words, the dynamics is parallel to the level surfaces of H ; if
a trajectory originates on a particular level surface, it will remain there.
This is good news because instead of solving differential equations on a
2n-dimensional manifold, we can solve them on a (2n − 1)-dimensional
manifold. The level surfaces of H are physically surfaces of constant
energy. Notice that this proposition is true only for conservative systems,
when the Lagrangian (and thus the Hamiltonian) do not depend on time.
This is also known as conservation of energy.
This property of the Hamiltonian function inspires the following defi-

nition.

Definition 5.4. A function G ∈ C∞(M2n) is an integral of the Hamil-
tonian dynamics generated by H if

– F ∗
t (G) = G

– equivalently (because of the Theorem 5.2), {H,G} = 0. That is, G
is in involution with H . ⋄

When we have such a function, it is clear that the level surfaces G(c) =
{x ∈ M |G(x) = c} are also preserved by evolution (i.e. vH is tangent to
G(c)).
If the system is conservative, we are guarenteed at least one integral

(namelyH). If another integralG exists, then we know that if a trajectory
starts at the intersection H(E)∩G(c), it will remain there. So we will have
reduced our dynamics to a (2n− 2)-dimensional space. In general, if we
have lots of integrals, we can significantly reduce the dimension of our
space.

Elements of symplectic geometry 3

What is the maximal number of integrals we can have? What are the
extra properties of these integrals we should require?
First let’s prepare the ingredients. Let’s return to Lagrangian subman-

ifolds. Remember that if we have L ⊆ M such that ω|L = 0 (i.e. that
TxL ⊆ TxM is an isotropic subspace for the symplectic form ωx for all
x ∈ L), we call L isotropic, and a maximal-dimension isotropic subman-
ifold is called Lagrangian, and this maximal dimension is n when M is
2n-dimensional. Recall that L ⊆ M is called coisotropic if TxL ⊆ TxM
is a coisotropic subspace for the symplectic form ωx, which means that
(TxL)

⊥ ⊆ TxL. Thus, Lagrangian submanifolds are both isotropic and
coisotropic. Let’s translate this notion to the algebra of functions. What
does it mean for the Poisson algebra that a submanifold is Lagrangian?
C∞(M) has (i) pointwise commutative multiplication and (ii) a Lie

bracket {, }. From the point of view of the first structure, a submanifold
L ⊆ M corresponds to the ideal IL ⊆ C∞(M) of functions which vanish
on L. What happens with this ideal if we take into account the second
structure. Suppose f, g ∈ IL (so f and g vanish on L), then what can we
say about {f, g}? This IL could be nothing special, a Lie subalgebra, or
a Lie ideal. We have

{f, g}|L = ω−1(df ∧ dg)|L = 0

[[⋆⋆⋆ HW; prove this; it’s true for L coisotropic]] This means that for
an isotropic submanifold L, the vanishing ideal IL is a Lie-subalgebra. It
is not a Lie ideal, so {IL, C∞(M)} 6⊆ IL.

Definition 5.5. A Lagrangian fibration M2n
π−→ Bn is a fibration over a

base of dimension n, where the generic fibers are Lagrangian submani-
folds. ⋄

When we have such a map, we get π∗ : C∞(Bn) →֒ C∞(M2n), so we
have a subalgebra. What special property does this subalgebra have if
the fibers are Lagrangian?

Claim. If π : M2n → Bn is a Lagrangian fibration, then C∞(Bn) →֒
C∞(M2n) is a maximal commutative Lie subalgebra.
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So far I introduced Hamiltonian dynamics on a symplectic manifold,
and said that you can think of it as flow lines or as linear dynamics on
the space of functions. An isotropic submanifold is an ideal which is a
Lie subalgebra.
More generally, if M2n → Bk such that generic fibers are coisotropic,

then π∗ : C∞(Bk) →֒ C∞(M2n) is a commutative Lie subalgebra.
A completely integrable system is: if you have a Lagrangian fibration

so that the flow lines are parallel to the fibers. Hamiltonian dynamics
on symplectic manifold with Lagrangian fibration such that blah is a
completely integrable system.

6 NR 09-10

I want to try to finish Hamiltonian dynamics this lecture. Recall that
last time, we introduced Hamiltonian dynamics on a symplectic manifold
(M,ω), and we defined Lagrangian fibrations. Geometrically, we fix a
functionH ∈ C∞(M), then we get vH = ω−1(dH), and trajectories of our
system are flow lines of this vector field: ẋ(t) = vH(x(t)). Algebraically,
ft(x) = f(x(t)), dftdt = {H, f}.
An integral of motion is a function whose values along these flow lines

are constant () F (x(t)) =const, () {F,H} = 0, or () flow lines are paralel
to level surfaces of F .
Isotropic subspaces. We have ω ∈ ∧2T ∗M . L ⊆ M is isotropic if

ω(ξ ∧ η) = 0 for all ξ, η ∈ TL ⊆ TM . That is, TL ⊆ (TL)⊥ (where the ⊥
is with respect to the pairing ω). We say L is coisotropic if (TL)⊥ ⊆ TL.
We say L is Lagrangian if (TL)⊥ = TL (i.e. if L is both isotropic and
coisotropic).

Proposition 6.1. If L is isotropic IL ⊆ C∞(M) is a Lie subalgebra of
the poisson algebra of functions on M .

Last time I said this for isotropic L, but I was corrected that this should
be true for L coisotropic. Let’s do an experiment.

Example 6.2. M = R2n, and take L ⊆ R2n to be the submanifold given
by {q1 = 0} (this is (2n−1)-dimensional). This is clearly coisotropic. We
have that IL = {q1f(p, q)}, and {q1f, q1g} will be proportional to q1, so
the proposition is true for coisotropic; we have {IL, IL} = 0. ⋄

Proof. [[⋆⋆⋆ HW. At least half of the class should do this.]]

At the end of this week, we’ll start talking about term paper stuff.
Suppose F1 and F2 are two integrals of motion. If a point belongs to

some level surface F
(c)
1 , it will remain there. The same is true of F2. If

x ∈ F (c1)
1 ∩F (c2)

2 , then it will stay there, but what is the dimension of the
submanifold spanned by these trajectories? There are two possibilities.
If F1 and F2 are integrals, then {F1, F2} is also an integral. So you can
keep taking brackets to get more and more integrals. We want to know
how this impacts the dynamics. I don’t want to get into this. It is called
Hamiltonian dynamics with constraints, and it is important.[[⋆⋆⋆ In
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the lecture notes, NR will write what this is and give some references]]
There is one particular case which is imporatant to us, which is when
{F1, F2} = 0. This is the beginning of the notion of integrable systems.

Completely integrable systems

These are the systems where you have the maximal number of Poisson
commuting integrals. F1, . . . , Fn ∈ C∞(M) integrals, with {Fi, Fj} = 0,
such that dF1 ∧ · · · ∧ dFn 6= 0 (the Fi are independent.

Definition 6.3. The Hamiltonian system generated by H ∈ C∞(M) is
(completely) integrable if there exists such integrals F1, . . . , Fn. ⋄

Geometrically, this means that we have a Lagrangian fibration F1 ×
· · · × Fn : M2n → Rn (i.e. the generic fiber is a Lagrangian submanifold
in M). Why is this definition important?

Theorem 6.4. For an integrable sustem, we have the following.

1. Level surfaces of this fibration map (i.e. fibers) are invariant with
respect to flow.

2. Each generic fiber has an affine structure (i.e. each generic fiber we
can cover by an atlas with transition functions which are rotations
and translations).

3. Compact fibers are n-dimensional tori.

Let (φ1, . . . , φn) be local coordinates in this affine coordinate system.
These are called angle coordinates. Coordinates on Rn given by the values
of these functions, c1, . . . , cn are called action coordinates. The flow lines
of any H which Poisson commutes with these Fi are straight lines in these
coordinates:

φi(t) = ωi(H, c1, . . . , cn)t+ φi

These ωi are called frequencies and in the case of a compact fiber, these
really are the frequencies of the trajectories around the torus; if we fix
a coordinate, the flow is given by the action of R on the torus. If these
frequencies are rational, then you have periodic trajectories around the
torus. If only some of them are rational, in which case we get a dense

path in the torus. If all of them are irrational, you also get a dense
covering. You can also imaging the situation that for every generic fiber,
these frequencies are rational. Then the flow lines span one dimensional
manifolds (or maybe 2-dimensional).
This is called superintegrability (or degenerate integrability). In this

case, the invariant submanifolds have dimension smaller than n. In a
normal integrable system, the dimension of invariant submanifolds is at
most n. If you relax the condition of commutativity of the integrals, then
you can get such a system. The Fi generate a subalgebra of C∞(M).
Normally, this is a commutative subalgebra, and if we want it to be
commutative, it is not possible to get more than n such functions. In-
stead, we can require (i) the commutative (multiplication) subalgebra F
in C∞(M) generated by F1, . . . , Fk (where k ≥ n) is a Poisson subalgebra
(i.e. {Fi, Fj} = Gij(Fi . . . Fk), (ii) {Fi, H} = 0, (iii) the center Z(F ) has
rank 2n−k. Note that if k = n, condition (iii) says that the whole algebra
is commutative. In such a system, the Liouville theorem holds, but level
surfaces of the fibration should be replaced by level surfaces of the center
Z(F ). Then the dimension of invariant tori will be 2n− k ≤ n.
Integrable systems are the ones where one can say something really

explicit about the dynamics. When working with non-integrable systems,
you try to find an integrable system which is close by, and then use some
perturbation theory. I’ll put up references for Hamiltonian dynamics and
integrable systems.
PT: can you say something about this affine structure. NR: rounghly,

φ1, . . . , φn are given by flow lines of F1, . . . , Fn (you can think of each of
the integrals as a Hamiltonian). (F1, . . . , Fn) : M2n → Rn. PT: And the
coordinate changes are affine linear because of the Poisson bracket? NR:
I think that’s probably right. If I try to reconstruct the proof now, I’ll
waste the rest of the time, so I’ll talk about these coordinates next time.
It follows from the involuativity of the integrals. These are the same
reasons you use the center Z(F ) for the more general Liouville theorem.
PT: and you get disjoint unions of tori? NR: yes. I’ll return to this
question next time.
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5 PT 09-11

Definition 5.1. A supermanifold M = (|M |,OM ) of dimension (m|n)
is a (second countable, Hausdorff) topological space |M |, together with
a sheaf OM of commutative super algebras, which is locally isomorphic
to Rm|n := (Rm,ORm|n), where ORm|n = C∞(Rm) ⊗ ∧∗ Rn. (“m even
variables, n odd variables”) ⋄

If you like sheaves, you should use them, but we’ll see that you can
avoid sheaves if you really hate them.

Remark 5.2. Depending on the ground field (R or C), you get a different
notion because C∞Rm could be smooth R-valued or C-valued functions.
This gives us real or complex super manifolds. The usual convention is
that real super manifolds are called super manifolds and complex super
manifolds are called CS manifolds. You don’t say “complex superman-
ifolds” because it gets confused with “super complex manifolds”. You
know that complex and real manifolds are very different, but this distinc-
tion between supermanifolds and CS manifolds is new . . . we didn’t have
two different notions before. In the super world, these are very different
beasts. ⋄

Definition 5.3. A super complex manifold is something locally isomor-
phic to Oan

Cm|n := Can(Cm)⊗∧∗ Cn. ⋄

NR: you can draw an analogy with representation theory; real and
complex representations are very different. PT: yes, we’ll see that it
is basically the same reason that supermanifolds and CS manifolds are
different.
Let J(U) (for U ⊆ |M | open) be the ideal in OM (U) generated by the

odd elements. Note that any section of J is nilpotent because a high
enough power of a (finite) linear combination of odd elements eventually
has a square of an odd element in each term, and odd elements square to
zero.

Claim. Mred := (|M |,OM/J) is a smooth structure on |M |.

Locally, we have
(
C∞(Rm) ⊗ ∧∗ Rn

)
/J ∼= C∞(Rm). I won’t explain

why this quotient is actually a sheaf (you don’t need to sheafify); it will

be in the homework. A smooth structure is actually an embedding of the
sheaf of smooth functions into the sheaf of continuous functions. So given
φ ∈ OM/J , we construct the function (x 7→ λ(x)) where λ is uniquely
determined by the condition that φ − λ(x) · 1 ∈ OM/J is non-invertible
in any neighborhood of x.
The procedure above gives you a way to take any section of OM and

produce an honest function on |M |. The projectionOM → OM/J induces

an embedding of supermanifoldsM
m|0
red →֒Mm|n (interpreting a manifold

as a supermanifold). The map on underlying spaces is the identity, and
the projection OM → OM/J is the morphism of sheaves. Sometimes we’ll

confuseM
m|0
red with |M |, just like we do all the time (even though the first

one has an extra structure: a sheaf of smooth functions).
Now let’s look at the main examples. We’ve already seen one example:

the local model (Rm,ORm|n). We can take any smooth manifold and
tensor with

∧∗ Rn, throwing in a constant odd fiber. But you can also
twist the odd fiber around.

Example 5.4. Let En → Xm (n is the dimension of the fiber, so E
is (m + n)-dimensional) be a smooth vector bundle over a manifold
X . Define the super manifold πE as the pair (X,OπE) via OπE(U) =
C∞(U,

∧∗E) = {smooth sections of the bundle
∧∗E → X}. This is a

super manifold of dimension m|n. ⋄

Let’s discuss the different notions from the remark [[⋆⋆⋆ ]]. We have
two different notions of vector bundle: real and complex. Depending on
which one we use, you get a different notion. Take your favorite example
of a complex vector bundle which is not a real vector bundle tensor C and
you get the following corollary.

Corollary 5.5. There are “more” CS manifolds than (real) supermani-
folds.

Take the canonical line bundle on a complex manifold. Say O(−1) on
CP1 = S2. This is a complex bundle, but every real line bundle is trivial
on S2 is trivial because S2 is simply connected. But O(−1) has non-
trivial Chern class, so it is non-trivial. There could still be some weird
real manifold so that when you tensor up with C you get this πO(−1).
To rule that out, you need the following theorem.
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Theorem 5.6 (Batchelor). Any (R or C) super manifold M is isomor-
phic to πE for some smooth vector bundle E over Mred.

Noah: do these isomorphisms play well with the morphisms? PT: No.
if the answer were yes, then we wouldn’t have introduced super manifolds.
Santiago: you want to think of differential forms as sections of the odd
tangent bundle, so shouldn’t you be taking sections of the dual of

∧∗E?
PT: that’s true if you’re thinking of a quotient of a tensor power, but I’m
thinking of multilinear forms (which maybe I should denote

∧∗
(E∗)).

Proof. I’ll write OM → |M | to mean a sheaf over |M |. We can form
OM/J → |M |, which is the smooth manifoldMred. We have J/J2 → |M |,
a sheaf ofOM/J-modules overMred. Locally, J/J

2 ∼= C∞(Rm)⊗∧1 Rn ∼=
C∞(Rm)⊗Rn (since J = C∞(Rm)⊗∧≥1 Rn and J2 = C∞(Rm)⊗∧≥2 Rn.
This is a vector bundle over Mred.

1

[[⋆⋆⋆ HW to finish the proof. In particular, prove that all these
things are sheaves. Show that if E is the vector bundle J/J2, πE ∼=Mm|n.
The dimensions are right and the underlying spaces are the same. In the
proof, you have to use partitions of unity (we’re in the smooth category);
in the analytic context, this is not true. It may look obvious, but you have
to check. If you take a filtered vector space, take the associated graded,
and think of it as a filtered vector space, you don’t get the original thing
back. You really have to check that the two things are the same.]]

Thanks for the homework. I’m saying the homework in class today,
and waiting for feedback before I put it on the website.
I put the first project up: Let (A,⊗) be a closed monoidal category.

Formulate a proof of the Yoneda lemma for A-enriched categories.
Kolya and I discussed this business. We agreed that you can do the

projects in groups of one, two, or three people. If there is just one of
you, you can write a paper or give a talk. If there are three of you, you
should do both. If there are two, it will be something in between. If you

1By the way, a vector bundle can be though of as a sheaf. If you have a vector
bundle E → X, then the sheaf of smooth sections of E → X is a sheaf of modules over
OX = C∞(X). Locally, this is just smooth fiber-valued (so Rn-valued) functions on
X, i.e. C∞(Rm) ⊗ Rn. This means that the sheaf is locally free of rank n. Now the
statement is that if you start with a sheaf of modules which is locally free of rank n,
then you can construct a vector bundle. I invite you to check this [[⋆⋆⋆ ]]

want this problem, you should take it, but if you think there will be more
interesting things, then you should wait. It will be first come first served.
Next we’ll do a theorem which will get rid of sheaves. We’ve already

gotten rid of sheaves on objects (the theorem that specifying a vector
bundle is enough). Now let’s get rid of sheaves on morphisms.
We’ll define C∞(M) := OM (|M |) to be the commutative super algebra

of functions. Note that this is not C∞(Mred).

Theorem 5.7. The map SMan(M,N) → SAlg
(
C∞(N), C∞(M)

)
is bi-

jective. That is, a morphism of supermanifolds is completely determined
by the induced morphism on global sections of the structure sheaves.

I’m going to skip the theorem. We could make it HW, but let’s not.
Again, you need partitions of unity and it fails in the analytic case.

Corollary 5.8. There is an equivalence of categories
∧
-Vect →

SMan, where the objects of
∧
-Vect are smooth vector bundles and

the morphisms are given by the theorem: a morphism (E → X) →
(E′ → X ′) are pairs (f, φ), where f : X → X ′ and a φ ∈
SAlg(C∞(X ′,

∧∗(f∗E′)), C∞(X,
∧∗E)) (these are very different from

usual bundle maps; this is a morphism from C∞(πf∗E′)→ C∞(πE)).

Example 5.9. R0|2 α−→ R1|0 given by “(θ1, θ2) 7→ θ1 · θ2”, is described
via the algebra homomorphism Λ∗[θ1, θ2] = C∞(R0|2) ← C∞(R1) ∋ x
given by x 7→ λθ1θ2 for some λ ∈ R. Why is this well-defined? It looks
like it’s only defined on the polynomial algebra R[x]. If this were well-
defined, we could take any map f : R → R and get x 7→ f(θ1θ2). The
point is that we have Taylor series, and θ1θ2 is nilpotent, so the Taylor
series automatically converges (normally, it only converges for analytic
functions).
A more interesting example might have been R1|2 → R, given by

(y, θ1, θ2) 7→ y + θ1θ2. Here you’d need to find

f(y + θ1θ2) =

∞∑

n=0

f (n)(y)

n!
(θ1θ2)

n

which will converge. ⋄

Remark 5.10. There is no (good) theory of Ck super manifolds because
you don’t get Taylor series. ⋄
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[[⋆⋆⋆ HW 2 (this even holds in the analytic setting, no partition of
unity needed): SMan(M,Rp|q) ∼= (C∞(M)ev)p × (C∞(M)odd)q. That is,
specifying a map to Rm|n is just specifying m even functions and n odd
functions. If xi, θj are coordinates on Rm|n, the even functions are F ∗xi
and the odd functions are F ∗θj , where F ∈ SMan(M,Rm|n). If you like,
you can think about SAlg(C∞(Rp|q), C∞(M)) instead of SMan(M,Rm|n)]]

3 RB 09-11

Today we’ll try to finish off the first lecture. We said last time the infrared
divergences all cancel out. You deal with ultraviolet divergences by reg-
ularization and renormalization. Regularization is where you raplace the
propagator (say 1

p2+q2 ) by, say,
1

(p2+q2)1+ε . Everything is a function of ε

with poles at∞. Renormalization is a cunning way to choose Lagrangian
as a function of ε.
The third problem we had was divergent series. The problem is

that we only know how to define Feynman integrals of the form∫ ∫
(poly in φ)equadraticDφ, but we want to be able to define things

like enon-quadratic. The non-quadratic Lagrangian will be something like
(∂φ)2+m2φ2+λφ4. You can expand this as a formal power series in λ to
get
∫
equadraticDφ+

∫ ∫
λφ4equadraticDφ+

∫ ∫
λφ4

∫
λφ4equadraticDφ+· · · .

Each of these integrals can be defined useing regularization and renormal-
ization. So you get a well-defined formal power series in λ, which (prob-
ably) doesn’t converge (unless λ = 0). Nobody knows for certain that it
doesn’t converge in four dimensions, but it is ridiculously improbably. It
doesn’t converge because the coefficient of λn is the sum on Feynman di-
agrams on n points. The number of Feynman diagrams on n points grows
like n! or something. So we get series like

∑
λnn! (this shouldn’t really be

taken seriously), which doesn’t converge for any non-zero λ. For λ small,
the first few terms decrease, so you get a very accurate approximation to
something (but nobody knows what). In QED, λ is something like 10−2,
so the first hundred terms decrease and then the terms are incredibly
tiny, so you have a very good estimate of something, and these agree with
experiment to great accuracy. This final problem nobody knows what to
do about.
There is no caninical way to regularize and renormalize Feynman inte-

grals. I vauguely indicated that you can insert ε in a particular way, but
there are loads of other way to do it. There are something like a dozed
different ways it’s done in the litiriture. This corresponds to the fact that
Feynman measure is not unique.
Suppose we have two different regularization/renormalization methods

A and B, and suppose we have a Lagrangian L. This means we get
two different theories for the Lagrangian L, which don’t give the same
answer. In other words, the QFT we get depends on L AND on the choice
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of renormalization method. The space of Lagrangians is well-behaved
(it’s finite-dimensional), but the space of renormalization schemes is not.
If your theory depends on an unknown point in an infinite-dimensional
space, it’s really bad beacause there is no way to identify this point with
a finite number of measurements.
Fortunately, there is a group of (finite) renormalizations which acts sim-

ply transitively on the space of renormalizations (i.e. Feynman measures),
and it also acts on the space of Lagrangians. The theory of (L,M) (Feyn-
man measure M) is the same as the theory of (g(L), g(M)) where g is a
renormalization. So physicist A may be using a Lagrangian L, but phisi-
cist B has to use a slightly different Lagrangian to get the same results.
Suppose A uses (L,A) and B uses measure B. Find a renormalization g
taking A to B and then the second physicist has to use Lagrangian g(L).
So there is no such thing as a theory associated to a Lagrangian, you need
a Lagrangian together with a Feynman measure.

� Warning 3.1. The group of renormalizations is not the same
as the renormalization group, though they are closely related. The

first is infinite-dimensional and acts on the space of Lagrangians and
measures. The second is one-dimensional and is the group of “rescalings”
of space-time. Rather confusingly, the second group also acts on measures
and Lagrangians. Suppose you choose a measure A. By rescaling space-
time, you get a new measure A′. You might think that A′ is obtained by
scaling A by a constant, but renormalization and regularization are not
scale-invariant, so the relationship is more complicated than you’d think.
These two measures are related by a renormalization. In other words, if
you take a measure A and an element of the renormalization group, this
gives you a renormalization. This isn’t actually a homomorphism, but
the way. y

That’s it for introduction. Let’s get to producing examples and seeing
what axioms they satisfy.
First recall representation theory of a Heisenberg algebra. It turns

out that the theory of free quantum field theory is equivalent to the
representation theory of Heisenberg algebras. The Heisenberg algebra
is a Lie algebra of dimension 3 with [X,Y ] = Z and Z in the center.
A typical example is X = d

dx and Y = x and Z = 1 acting on C[x].
We want to find all “lowest weight” representations of the Heisenberg

algebra generated by “vacuum vector” v with Y (v) = 0 and Z(v) = v.
If you’ve done quantum mechanics, this is the harmonic oscillator. Y is
the annihilation operator and X is the creation operator. It is easy to
work out what the representation looks like. The only interesting thing
you can do is act on v by X .

v
X

**

Z

DD Xv

Z

DD
Y

hh

X
++
X2v

Z

DD
Y

kk

X
** · · ·

Y

kk

So the representation we get is the symmetric algebra H = C[x].
We want to put an inner product onH so that X∗ = −Y and (v, v) = 1.

From this you can work out everything else. For example, (Xv,Xv) =
(v,−Y Xv) = (v, v) = 1. It turns out that

(Xnv,Xnv) = n!(v, v).

PT: do you care if it’s positive definite? RB: No, I don’t care. The point
is that the representation theory of Heisenberg algebras is easy (at least
if you only care about highest weight representations). The same thing
happens if instead of X and Y you take an arbitrary vector space.
Let V be a vector space with some inner product (, ). For a Heisenberg

algebra V − ⊕ R ⊕ V +, where V ± are copies of V , with [V +, V +] = 0 =
[V −, V −] and [u+, v−] = (u, v). Highest weight rep: acting on S(V +)
with V −(1) = 0 and R acts as multiplication by the identity. So the
free quantum field theory we’re going to construct is essentially a highest
weight rep of a Heisenberg algebra.
Basic example: Free Hermitian scalar field. To construct a QFT,

we need to give (1) a ∗-algebra A and (2) a ∗-representation H . A
is generated by operators φ(f) where f is a classical field with com-
pact support. “classical field” just means a smooth real function on
space-time. φ(f) = φ+(f) + φ−(f) for certain operators φ+(f) and
φ−(f) which are part of a Heisenberg algebra. The commutation re-
lations are [φ+(f), φ+(g)] = 0 = [φ−(f), φ−(g)] and [φ+(f), φ−(g)] =
i
∫
Rn f̃(p)g̃(−p)m(p)dnp, where the f̃ and g̃ are Fourier transforms of f

and g, and m(p) is the measure with support p2 = m2
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p > 0

p2 = m2

p < 0

m(p) supported on top sheet and is rotationally invariant. TakeH to be
a lowest weight representation of a Heisenberg algebra. there is a (very
degenerate) inner product, whose kernel we quotient out by to get H .
Then A is the algebra of operators generated by φ(f) = φ+(f) + φ−(f).
φ(f)∗ = φ(f). Now we have all the basic data.
PT: why don’t you use the whole Heisenberg algebra, just these combi-

nations? RB: because the Wightman axioms don’t care about them; you
can keep them if you like.
Any unitary representation of a group is going to satisfy these condi-

tions, so we need to narrow our definition of a QFT. What extra conditions
do A and H need to satisfy to be a QFT? Answer: Wightman axioms.

1. (minor) The algebra A is generated by φ(f) where f is a classical
field on space-time with compact support.

2. The inner product on H is positive definite. If you’re an analyst
you’ll probably want to complete to get a Hilbert space, but there is
no need for that.

3. Lorentz invariance: O+
1,3(R) (the + means preserving the time direc-

tion)1 acts on R1,3, and A, H should be invariant under this action.
In fact, this is Poincaré invariant because you also require translation
invariance.

4. (Positive Energy condition) E =translation (forward) in time is a
positive operator (i.e. (Ea, a) ≥ 0 for any a ∈ H).

1Switching the time direction would switch which sheet of the hyperboloid you’re
on.

5. (Locality) [φ(f), φ(g)] = 0 if the supports of f and g are spacelike
separated (i.e. if f(x) 6= 0 and g(x) 6= 0, then x − y is spacelike).
This is non-trivial to check in our example.

6. (Vacuum vector) There is a vector fixed by the Lorentz group
R1,3O+

1,3(R).

7. (minor) the vacuum is essentially unique

8. (minor) Tempered.



7 NR 09-12, v. 10-4 35

7 NR 09-12

From last lecture there was a question about where this affine structure
came from on level sets of integrals. F : M2n → Rn. When we have
{Fi, Fj} = 0 with dF1 ∧ · · · ∧ dFn 6==, the corresponding vector fields vFi

commute. On corresponding components of M (c) = {x ∈M |Fi(x) = ci},
we have an action of Rn which is locally free and transitive, giving you
an affine structure. If there is a subgroup Γ ⊆ Rn that acts trivially (Γ
is the stabilizer), then this connected component is isomorphic to Rn/Γ.
Any such Γ must be isomorphic to Zk, so any connected component is
isomorphic to Rn−k × Tk.

[[⋆⋆⋆ Project 1: “noncommutative integrability”, which we called
superintegrablity last time.]] There is a tool which allows you to construct
basically all known integrable systems. These are Poisson-Lie groups.
[[⋆⋆⋆ This can either be in Project 1, or it can be Project 2]] You
probably know about Lie groups. I’ll talk about the Poisson part when
we talke about Hamiltonian reduction.

States in classical mechanics

Definition 7.1. A state on manifold M (doesn’t have to be symplectic)
is a probability measure on M (i.e. a measure µ so that µ(M) = 1). ⋄

Last time, we assigned to a function f ∈ C∞(M) a measure µf on
R. If E ⊆ R, then µf (E) is supposed to be the probability that f has
value in E. In the view of our new definition, µf (E) = µ

(
f−1(E)

)
, or

µf (E) =
∫
Mf (E)

µ, where Mf (E) = f−1(E) = {x ∈M |f(x) ∈ E}.

Remark 7.2. If µ1 and µ2 are such measures, then any convex combi-
nation αµ1 + (1 − α)µ2 is also a probability measure. ⋄

Definition 7.3. Pure states are states µ that are supported at points.

That is, they are measures µx(U) =

{
1 x ∈ U
0 x 6∈ U

. ⋄

C∞(M) is the algebra of classical observables. M can be identified with
the set of pure states. We get an expectation value Eµ(f) =

∫
M fµ =:

〈f〉µ for an observable f . Another important value is the disperssion
around Eµ(f)

σµ(f)
2 =

〈
(f − 〈f〉µ)

〉
µ
= 〈f2〉µ − 〈f〉2µ ≥ 0.

Say we have a (Hamiltonian) dynamics1 on M is f 7→ ft, with
dft
dt =

{H, ft}. The dual dynamics on states is µ 7→ µt, where Eµ(t)(f) :=
Eµ(ft). This evolution is called Liouville evolution of states. If M is
symplectic with some volume measure ωn and if our state is continuous
with respect to this measure (i.e. if µ = ρωn for some continuous function
ρ), then dρt

dt = −{H, ρt}.
This is the picture of states in classical mechanics. Q: what does a state

mean? do you have a set, and the measure is the number of particles in
that set? NR: it depends what measure you take. If you have a pure state,
then Eµx(f) = f(x). Another example is the Gibbs state. If you have
an energy functino (usually the Hamiltonian) E(x) > 0, then the Gibbs
state is µ(x) = exp

(
−E(x)/T

)
ωn, where T is a parameter analogous

to temperature. If you let T go to zero (if you cool the system), then
the measure will become concentrated at the points which have minimal
energy.
Q: how do we know there is a µt like that? NR: This is something like

the Rees-Nikodim theorem. It says that if you have a functional on the
space of functions, then there is measure giving it. PT: aren’t you just
pushing forward the measure along the flow? NR: yes, that’s a better way
to say it: µt(E) = µ

(
gt(E)

)
, where gt is the evolution map.

Hamilton-Jacobi equation

Now we return to the situation where our symplectic manifold is T ∗N for
some smooth manifold N , Hamiltonian H ∈ C∞(T ∗N) with correspond-
ing Lagrangian L (assume strongest possible non-degeneracy). Suppose
γ(q,Q) is a solution to the Euler-Lagrange equations with fixed end points
so that γ0 = q and γt = Q. Let’s assume that this solution is unique for
every pair (q,Q). Then we have

A[γ(q,Q)]t1,t2 =

∫ t2

t1

L
(
γ̇(τ), γ(τ)

)
dτ =: At1,t2(q,Q)

1By “dynamics” I mean a local action of R telling you how points evolve in time.
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PT: actually, in geometry, you just say γ̇ because it has a well-defined
basepoint. NR: Let’s stick to this mixed version.
So we have a family of functions At1,t2 on N ×N . These functions are

quite remarkable. It defines a Lagrangian submanifold in T ∗N × T ∗N ,
and this Lagrangian submanifold is Lt = {(P,Q), (p, q)|P = dQAt1,t2 , p =
−dqAt1,t2}. The second wonderful property is that if we want to compute
it we don’t have to use the Euler-Lagrange equations.

Theorem 7.4 (Hamilton-Jacobi2). —

∂At1,t2
∂t2

+H(dQAt1,t2 , Q) = 0
∂At1,t2
∂t1

−H(−dq(At1,t2), q) = 0

Proof. Use the Legendre transformation.

At1,t2 =

∫ t2

t1

(pq̇ −H(γ∗(τ))︸ ︷︷ ︸) dτ

the second term is the image of (γ̇, γ) under the Legendre transform, so

At1,t2 =

∫

γ∗
α−

∫ t2

t1

H(p(τ), q(τ)) dτ

[[⋆⋆⋆ NR: it is better to use t1 and t2 so that we can apply this stuff
to non-conservative systems.]] So we have

∂At1,t2
∂t2

= −H(p(t2), q(t2)) = −H(P,Q).

Q: the path γ depends on the t1 and t2? NR: yes, but the integral
∫
γ∗ α

doesn’t depend. Q:but we only fixed the q’s, not the p’s. NR: maybe
[[⋆⋆⋆ HW1]]

We’ll see how these equations will appear as a kind of justification of
the path integral in quantum mechanics.
Another way to think about it: these equations give you the generating

function for the Lagrangian submanifolds Lt. There are many ways to
get the same information about classical evolution.

2Maybe this was proven by somebody else, but these are the names everybody
attaches.

Hamiltonian reduction

So far, we’ve been using symplectic manifolds of the form T ∗N with the
symplectic form ω = dα, but there is a general source of examples not of
this form

Definition 7.5. A Poisson manifold is a pair (M,p ∈ ∧2TM) with M a
smooth manifold and p a bivector field such that the bracket

{f, g} = 〈p, df ∧ dg〉

induces a Poisson algebra structure on C∞(M). ⋄

Since this bracket is a bidifferential operator of first order, it acts by
derivations on C∞(M) (with pointwise multiplication). The Jacobi iden-
tity gives a bilinear differential identity for p. In local coordinates it can
be written as

[[⋆⋆⋆ ]]

The coordinate-free approach using the Schouten bracket can be found in
[[⋆⋆⋆ ]].
[[⋆⋆⋆ Project 3: Poisson geometry and the Schouton bracket.]]

Example 7.6. Suppose p is non-degenerate. Then p : T ∗M → TM has
an inverse, which can be regarded as a 2-form p−1 ∈ ∧2T ∗M . [[⋆⋆⋆

HW2: show that the corresponding 2-form p−1 is a symplectic structure
on M . You need to prove that it is closed.]] ⋄

Example 7.7 (Lie-Kirillov-Kostant). Let g be the Lie algebra of a
(finite-dimensional) Lie group G. Let g∗ be the dual space. Then on
C∞(g∗), we can define the operation

{f, g}(x) =
〈
x, [df(x), dg(x)]

〉

(note that x ∈ g∗ and df(x) ∈ g, dg(x) ∈ g). This defines a bivector field
p on g∗. If {ei} is a basis for g, {xi} are coordinate functions on g, and
{ ∂
∂xi } is a basis for the tangent space, then

p =
∑

i,j,k

cijkxi
∂

∂xj
∧ ∂

∂xk

where [ei, ej ] =
∑

k c
k
ijek ⋄
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Equivalently, the Poisson bracket between coordinate functions has the
form

{xi, xj} =
∑

k

ckijxk.

[[⋆⋆⋆ inconclusive . . .maybe this section should be moved to the next
lecture.]]

6 PT 09-13

Three main theorems on super manifolds.

(a) M ∼= πE for some smooth vector bundle E → Mred. Recall that
C∞(πE) = C∞(Mred,

∧∗E∗). [[⋆⋆⋆ HW1]]

(b) SMan(M,N) ∼= SAlg(C∞N,C∞M). Super manifolds are in some
sense “affine”.

(c) If U ⊆ Rp|q is a domain (the restriction of the super manifold
structure on Rp|q to an open subset U), then SMan(M,U) ∼=
{f1, . . . , fp ∈ C∞(M)ev, φ1, . . . , φq ∈ C∞(M)odd|(f1(x), . . . , fp(x)) ∈
|U | for all x ∈M}.[[⋆⋆⋆ HW2]]

The first two use partitions of unity, so you must be in the smooth cate-
gory, not the analytic category.
Combining, C∞(U) = C∞(Ured)[ξ1, . . . , ξq] ⊇ R[x1, . . . , xp] ⊗∧∗
[ξ1, . . . , ξq], which is a free commutative super algebra on xi and ξj , so

it is really easy to specify a morphism from this subalgebra (it is deter-
mined by choosing an even guy for each x and an odd guy for each ξ).
To extend this to the whole algebra, you use Taylor expansion.
Last time we saw that there are maps

SMan(M,U)→ Man(Mred, Ured)→ C0(|M |, |U |)

[[⋆⋆⋆ ]].
Reimundo: do you have a map M → Mred. PT: there is a map which

comes from the zero section using M ∼= πE, but since this isomorphism
is not canonical, they map is not canonical.

Remark 6.1 (Historical digression?). Once you have this third result,
you can throw the other stuff away and define super manifolds locally.
If S,U ⊆ Rp|q are domains, then SMan(S,U) ∼= {fi, φj as above}, with

fi ∈ C∞(S)ev =
(
C∞(Sred)⊗

∧∗[ξi]
)ev

, so

fi =
∑

I even

f iI(x) · ξI = f i∅(x)︸ ︷︷ ︸
body

+ · · ·︸ ︷︷ ︸
soul
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I varies over index sets (sequences of 0’s and 1’s) (i1, . . . , ir) where 1 ≤
ia ≤ q and fI ∈ C∞(Sred). Similarly, the φj have the same, but for odd.
The soul is nilpotent. The φj don’t have a body, just a soul.
Historically, people defined morphisms of super manifolds this way (be-

fore defining objects). Then you have to figure out how to compose these
guys. I’m going to skip this. You have to use the Taylor expansion on all
of these fi’s around the body. If you do the second homework, you have
to deal with these Taylor expansions.
Then you know how to deal with maps between domains, so you can

talk about isomorphisms. Now you can glue domains together just like
you’d glue ordinary manifolds, using these isomorphisms to glue.
What we’ve done is equivalent, but is more elegant in my opinion. To

do computations, you should use the local language, but to formulate
precise statements, use the global language. ⋄

Example 6.2. f : U → R1|1 given by
∑

I fI(x) · ξI . The body is f∅(x)
and the rest, fs(x), is the soul. The soul has some even stuff in it, but it
is nilpotent because it has odd factors. The body is (like Reimundo was
saying) an ordinary function in C∞(Mred). You cannot write is as this
body/soul as a direct sum if U is not a domain. You can always pick out
the body, but the soul is not canonical.1. Q: isn’t the soul just f minus
the body? PT: no, the body is a function on the reduced guy.
[[From (c), by the way, you get C∞(M) ∼= SMan(M,R1|1) ∼=

SMan(M,R1|0) × SMan(M,R0|1). This gets into this inner Hom stuff.
This is saying that any function breaks up uniquely as an even and an
odd function.]]
Now we have g : R1|1 → R1|0. Ah, there is trouble, you can think of

g as a function (not necessarily even) on R1|1 or as a morphism in the
category, so even. I mean that g(y, η) = g0(y), so I mean a morphism in
the category. That is, g is an even function. Reimundo: write R1|0 on
the target; then there is no confusion. PT: yes, that’s a good idea.
Now let’s try to calculate g ◦ f(x, ξ). I’ll write in terms of body and

soul because I have to Taylor expand around the body. g is equal to its

1“The body is canonical. Everything else you have to search for.”

body.

g
(
f0(x) + fs(x, ξ)

)
=

∞∑

n=0

g(n)(f0(x))

n!
(fx(x, ξ))

n

= gf0(x) + g′(f0(x))fs(x, ξ) + g′′(f0(x))??? + · · ·

And we know that this will be a finite sum because fs(x, ξ) is nilpotent. ⋄

Notation: Let A ∈ SAlg and M ∈ mod-A. Then we get the parity
reversed module πM , given by defining (πM)ev = Modd and (πM)odd =
M ev. For example, A is a free module on one even generator, and πA is a
free module of dimension (0|1) with free generator 1A ∈ Aev = (πA)odd.
Thus, a free module of dimension (p|q) is (by definition, if you want)

isomorphic to A⊕p ⊕ (πA)⊕q =: Ap|q. If the algebra is commutative
(super), then p and q are determined by the module, otherwise they are
not.

Super objects in differential geometry.
Philosophy: Anything one can formulate in terms of functions (more

generally, sections of bundles) has a super analogue.

Definition 6.3. M a super manifold. Then a vector bundle (of dimen-
sion (p|q)) E over M is a locally free sheaf of OM -modules over |M | (of
rank (p|q)). ⋄

Q: Are these bundles completely determined by their global sections.
PT: that is an excellent question. I think they are, but I haven’t checked
it. It should follow from the same techniques we used to prove result (b).

Definition 6.4. If A is a commutative super algebra, Der(A) =
{D : A→ A|D(ab) = D(a)b+ (−1)|D||a|aD(b)} is an A-module. ⋄

Example 6.5. TM →Mm|n is a vector bundle of dimension (m|n) given
by OTM (U) = Der(OM (U)).
“Proof”. in a coordinate chart (xi, ξj), basis is given by ∂xi and ∂ξj ,

which act like you’d think on the coordinate functions. ⋄
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[[break]]

Consider Up|q
f−→ R1|1 g−→ R1|1 as before. Body and soul decomposition

only makes sense because we’re working in Rp|q. The even part of f is
f0(x) + fevx (x, ξ), which is like your y and the odd part is foddx (x), which
is like your η. So we have

g0(f0(x) + fevx (x, ξ)) + g1(f0(x) + fevs (x, ξ)) · foddx (x, ξ)

You do the Taylor expansion around the body, with variable the even part
of the soul.
Q: in the R1|1 case, the soul only has an odd part. PT: yes, this is a

bad example.
Let’s get back to these vector bundles. Jonah asked a good question

over the break: we defined TM → M as a sheaf, but is TM a super
manifold? The answer is yes. there is an alternative way to define vector
bundles where you have a total space and you say it’s locally trivial.

Example 6.6. M = R1|1 with coordinates (t, θ), and consider the odd
vector field D = ∂θ + θ∂t. What is D2 = 1

2 [D,D]? It is not a vector
field in general, but remember that 1

2 [D,D] is not zero because D is odd.

Given f ∈ C∞(R1|1), we can write it as f0(t) + f1(t)θ. So we have

D(f) = (∂θ + θ∂t)(f0(t) + f1(t)θ)

= f1(t) ∂θ(θ)︸ ︷︷ ︸
1

+θ(f ′
0(t) + f ′

1(t)θ)

= f1(t) + f ′
0(t)θ

D2(f) = f ′
0(t) + f ′

1(t)θ

= ∂t(f)

So D2 = ∂t. ⋄

The notation is bad. I should have denoted the tangent bundle as
χ(M) (vector fields). Ω1M are sections of the “cotangent bundle”, given
by Ω1M(U) = HomOM (U)(χM(U),OM (U)).
Then there is a beautiful operator d : OM → Ω1M , the de Rham differ-

ential. It is determined by 〈D, df〉 = D(f) for D ∈ χM . This is an even

map. d extends to a graded derivation of square zero Ω·M =
∧·

OM
(Ω1M),

which is Z-graded as usual; this is what I mean by graded derivation
. . . there are no other signs because d is even. Reimundo: you’re making
a choice of what is the even and odd parts. PT: there is a whole chapter in
Deligne and Morgan about two very natural choices. Reimundo: I think
you’re making a choice by saying that d is even. PT: I don’t know about
that.
Theorem: H∗(Ω∗M,d) ∼= H∗

dR(Mred).
You should think of the reduced guy as having all the real features ...

the odd part is like a nilpotent cloud.



8 NR 09-14, v. 10-4 40

8 NR 09-14

Definition 8.1. Let x ∈ M . The symplectic leaf of M through x is the
subset Sx = {points connected to x by piecewise Hamiltonian paths},
where a Hamiltonian path is a flow line of a Hamiltonian vector field
vH = p(dH) for a smooth function H ∈ C∞(M). ⋄

Theorem 8.2. Sx ⊆ M is a submanifold. Furthermore, Sx is a sym-
plectic manifold with symplectic structure given by restricting p. Two
symplectic leaves either coincide or do not intersect.

One of the main questions in Poisson geometry is: given a Poisson
manifold (M,p), find the symplectic leaves. This is the geometric ana-
logue of classifying isomorphism classes of irreducible representations of a
given associative algebra. Deformation quantization deforms an associa-
tive algebra in such a way that the first order deformation is given by the
Poisson bracket. The symplectic leaves then correspond to ideals in the
algebra so that quotienting by them gives irreps. [[⋆⋆⋆ part of Project
3: symplectic leaves in Poisson-Lie groups. These examples can be very
involved and complecated, but are very interesting.]]

Example 8.3. If M is symplectic, there is only one symplectic leaf,
namely M . ⋄

Example 8.4. g∗ is a Poisson manifold.

Theorem 8.5 (Lie-Kostant-Kirillov+others). Symplectic leaves in g∗ are
coadjoint G-orbits.

G naturally acts on g by the adjoint action. The dual action of G on
g∗ is the coadjoint action. ⋄

Summary: we extended the notion of symplectic manifolds to Pois-
son manifolds. Poisson manifolds in many ways behave like associative
algebras in the sense that symplectic leaves correspond to irreducible rep-
resentations.

The moment map and Hamiltonian reduction

Recall that a vector field v on a symplectic manifold (M,ω) is Hamiltonian
if there exists a function H ∈ C∞M such that v = ω−1(dH). Since
[vH1 , vH2 ] = v{H1,H2}, Hamiltonian vector fields form a Lie subalgebra
HV ect(M) of the Lie algebra V ect(M) of all vector fields on M . Assume
a Lie group G is acting on M . This induces a Lie algebra homomorphism
φ : g→ V ect(M).

Definition 8.6. The action of G on M is Hamiltonian if the image of g
in V ect(M) lies in HV ect(M). ⋄

In other words, if x ∈ g, then etx ∈ Ge ⊆ G (neighborhood of the
indentity), and we have

d

dt
f(etxm)

∣∣∣
t=0

= 〈φ(x), df〉(m) = x · f(m)

So Hamiltonian action means that for each x ∈ g, there exists a function
hx ∈ C∞(M) such that

x · f(m) = {hx, f}(m).

From the definition, we can see that hx is linear in x (modulo a constant,
so let’s require that h0 = 0), so hx(m) = 〈µ(m), x〉 where µ : M → g∗.
[[⋆⋆⋆ for NR: what is the standard notation here?]]
PT: do you assume h[x,y] = {hx, hy}? NR: it follows. PT: then you

need a stronger assumption.

g
Lie//

Lie
$$❍

❍
❍

❍
❍ HV ect(M) ⊆ V ect(M)

C∞(M)

OO

consts

OO

Theorem 8.7. (1) µ : M → g∗ is a Poisson map (i.e. h[x,y] = {hx, hy})
and (2) µ is G-equivariant.
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[[⋆⋆⋆ for NR: clarify the following disscussion.]]
Natural question: what can we say aboutM/G? This is already a quite

complicated question. There are various ways to make it into a manifold
if there are geometric problems. Let’s assume there are no such geometric
problems.

Theorem 8.8. M/G is a Poisson manifold.

If we want to study this manifold, one way to do it (corresponding to
the notion of a categorical quotient) is to consider C∞(M)G (G-invariant
functions). For this, we should be in the algebraic category. The sub-
algebra C∞(M)G ⊆ C∞(M) is a Poisson subalgebra, which means that
M →M/G is Poisson (assuming M/G makes sense as a manifold).
We produced a Poisson manifold out of a symplectic manifold. What

are the symplectic leaves of M/G? [[⋆⋆⋆ Project 3 is not for one
person. You can include the precise statement of the following and a
precise discussion of what kind of quotients we can have when we have a
Lie group action on a manifold. One notion that was used effectively is
the theory of GIT quotients.]]

Theorem 8.9. Symplectic leaves of M/G are µ−1(O)/G (where O is a
coadjoint orbit).

Remember that symplectic leaves in g∗ are coadjoint orbits O ⊆ g∗.
In particular, we always have the distinguished orbit zero. So in par-

ticular, µ−1(0)/G will be a symplectic leaf. This symplectic leaf is called
the Marsdon-Weinstein reduction of M by G. The origin of this theory
is in physics and angular momentum, when G = SO(3)
[[⋆⋆⋆ Refferences]]

Classical field theory

[[⋆⋆⋆ for NR: is there a page of corrections to this section somewhere?]]
If you’re a (classical) physicist and all you care about are coordinate

functions qi(t) 1 ≤ i ≤ n. If you have infinitely many particles in a box,
then you have infinitely many degrees of freedom. In this case, does it
make sense to ask how many particles are in a given region? NO. You
should ask what is the density of particles in the region. So we pass from

finitely many degrees of freedom to densities of particles. In field theory,
you have no individual particles, just fields.
The idea: replace the time interval [t1, t2] by some (possibly compli-

cated) manifold M with possibly non-empty boundary ∂M . Classically,
M = I, and ∂M = pt ⊔ pt (the initial point should come with a minus
sign). It makes sense to assume M is oriented, so ∂M is oriented.
These densities evolve in time. There is some distinction between the

time direction and the other directions. We can either choose to take
this into account or to ignore it. We can also choose to think of M as a
Riemannian manifold.
Recall that the action can be written in terms of the Hamiltonian

∫

γ∗
α−

∫ t2

t1

H(γ∗(t)) dt

The first term is independent of the parameterization. If we take H = 0,
then a phisicist would say this is an empty system, but the evolution is
non-trivial. This is called topological mechanics.
At Berekeley, Michael Green (not Brian Greene) gave some lectures.

The title of the colloquim talk was “string theory = theory of nothing”.
His last slide was that in some cases the action is non-zero even though
the hamiltonian is zero. Thus, TQFT is “the theory of nothing”, which
we’ll study a lot.
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Two things we’ll have to come back to: (1) constrained mechanical sys-
tems, Lagrangian and Hamiltonian, and (2) systems with degenerate La-
grangian (gauge systems)[[⋆⋆⋆ Project]].
Back to classical field theory. Last time I explained that the main idea

is to replace the interval [t1, t2] with an oriented manifold M . We will
assume that the boundary of M is naturally polarized; that is, it has two
connected components Σ1 ⊔ Σ2. We will replace paths γ by section of
some fiber bundle. This is the first approximation of what we want. Let’s
do the second approximation (still not the final version)

Space-time categories

A d-dimensional spacetime category is a category in which objects are
oriented closed (d − 1)-dimensional manifolds Σ (possibly with extra
structure: e.g. Riemannian metric or symplectic form) and morphisms
Σ1 → Σ2 are d-dimensional oriented compact manifolds M (usually with
extra structure) together with an isomorphism ∂M ∼= Σ1⊔Σ2 (respecting
any extra structure on M , Σ1, and Σ2). The composition is given by
gluing.

Example 9.1 (Riemannian category). Objects are (d − 1)-dimensional
Riemannian manifolds. The morphisms are (equivalence classes) of d-
dimensional Riemannian manifolds (in the true version, there will be some
extra information, “collars” on objects which tell you how to glue an
object to a morphism)M with ∂M ∼= Σ1⊔Σ2. Gluing is more involved. ⋄

Example 9.2 (Minkowski category). Here there will be similar sub-
tleties. The objects are (d − 1)-dimensional manifolds (most likely with
collars). Morphisms are d-dimensional Minkowski manifoldsM (the met-
ric is not unique, just the signature should be (d − 1, 1), so one minus
sign). ⋄

Example 9.3 (Topological category). Objects are compact oriented (d−
1)-dimensional smooth manifolds Σ and morphisms M : Σ1 → Σ2 are

homotopy classes of d-dimensional manifolds M with smooth (d − 1)-
dimensional boundary together with isomorphisms ∂M ∼= Σ1 ⊔ Σ2. This
is the category of d-cobordisms. ⋄

Example 9.4 (Cell decomposition). Objects are (d − 1)-dimensional
manifolds with a cell decomposition and morphisms are d-dimensional
manifolds with a cell decomposition M : Σ1 → Σ2 together with ∂M ∼=
Σ1 ⊔Σ2 so that the boundary is a subcomplex. The cell decomposition is
part of the extra structure. ⋄

Example 9.5 (Metrized cell decomposition). A metrized cell decompo-
sition is a cell decomposition where you assign volumes to all cells. Take
this as the extra structure. This is an intermediate case between the
topological and Riemannian categories. By taking finer and finer ap-
proximation, we can obtain the Riemannian category. One of the ideas
of dealing with infinite-dimensional field theory is to approximate it by
combinatorial approximations on a cell complex. ⋄

Example 9.6. One can weaken the previous example by assigning vol-
umes only to d-dimensional cells. So objects are (non-metrized) cell
decompositions of (d − 1)-dimensional manifolds, but morphisms are d-
dimensional cell complexes of manifolds together with volumes of the
d-cells. ⋄

Example 9.7 (Classical mechanics). Objects are (oriented) points, and
morphisms are (oriented) intervales connecting points. ⋄

Objects in spacetime categories are analogs of the endpoints of time
intervals, and morphisms are the analogs of of time intervals.
Now we need the notion of fields to talk about classical field theory.

The space of fields is the space of smooth sections C∞(F →M) of a fiber
bundle F →M with fiber X . In mechanics, we take M = [t1, t2], and F
is the trivial bundle with fiber X = N .
In classical mechanics a Lagrangian function L is a function on TN . We

will only take first order Lagrangians (this is a fundamental principal that
to fix a trajectory you only need to fix a position and velocity. In general,
the Lagrangian could be some function on Jet space). In mechanics, we
had L(ξ, q). In field theory, we will have L

(
φ(x), dφ(x)

)
∈ ∧n T ∗

xM . A
classical field φ is a section of π : F → M , so over each point x ∈ M of
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space time we have a fiber Fx ∼=ix X , which contains the point φ(x). Then
dφ(x) ∈ T ∗

xM ⊗R Tφ(x)Fx ∼=R T
∗
xM ⊗ Tix(φ(x))X . Q: are you assuming a

connection? How did you get into the tangent space to the fiber? AJ: are
we secretly using the Jet space. NR: yes, we are secretly using the Jet
space. Maybe I should just pick a connection right now. What I mean is
that

〈dφ(x), ξ〉 = d

dt
φ(γt)

where γt has γ̇t(0) = ξ (in particular γt(0) = x).
The Lagrangian defines the classical action functional as

A[φ] =
∫

M

L(x).

It is a functional on the space of fields.

Example 9.8 (Scalar R-valued field in the Riemannian category). X =

R. L
(
φ(x), dφ(x)

)
= 1

2 〈dφ(x), dφ(x)〉 − m2

2 φ(x)
2 − V (φ(x)) where V is a

finite polynomial 1
3!λ3φ(x)

3 + · · · λn

n! φ(x)
n (this is n-th order). These are

the “kinetic term”, “massive term”, “self-interaction term”. ⋄

7 PT 09-18

Ways of defining:

super manifolds vector bundles
1 sheaf OM in SAlg locally free OM -modules

2 gluing domains U ⊆ Rm|n gluing U × Rm|n, fiberwise linear
3 C∞(M) ∈ SAlg projective modules1 over C∞(M)
4 functor of points (Yoneda)

[[⋆⋆⋆ Project 2: characterize C∞(M) for a supermanifold M , alge-
braically, among all commutative super algebras. It turns out there is a
beautiful characterization: if you give me a commutative super algebra,
there is a beautiful way to decide if it is the functions on a supermani-
fold. This is known for ordinary manifolds: you prove that points in the
manifold correspond to maximal ideals with real residue field, then use
the Zariski topology, then work some more to get the sheaf of functions.
This is all explained in some book; I’ll put a pdf on my web site.]]
Once you have various points of view, you jump around and always use

the most convenient interpretation.
Q: does 3 work for non-compact things? PT: yes, this is because man-

ifolds are paracompact, so any vector bundle lies in a trivial bundle.
Pullbacks of vector bundles. You know the construction of pullbacks

for ordinary manifolds.
f∗E //

��

·
E

��

M
f

// N

Point of view 3 is most convenient here. Given f : M → N , we have
f∗ : C∞(N) → C∞(M). If PE is a projective module, we can define
f∗(PE) := PE ⊗C∞(N) C

∞(M).

Remark 7.1. If PE is a C∞(M)-module, it can also be viewed (via our
algebra map f∗) as a C∞(N)-module. We’ll call this push-forward. Note
that this operation doesn’t preserve “projective”. ⋄

To check that we preserve projective, it is enough to observe that we
preserve direct sum and freeness. It is clear that the first construction
(pull-back) does this, but the second (push-forward) does not.
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Example 7.2. Let’s pull back to a point. What is a map from a point to
N? IfX is an ordinary manifold, then SMan(X,N) ∼= SAlg(C∞N,C∞X).
I claim this is the same as SAlg(C∞Nred, C∞X); this is because C∞X
has no odd part, so the ideal in C∞N generated by the odd functions
must be killed. But this is the same as Man(X,Nred). [[⋆⋆⋆ This is
just saying that red is adjoint to the forgetful functor from manifolds to
super manifolds.]]
When you pull back,

f∗E

��

Ep|q

��

pt
f

// Nred ⊆ N

This fiber f∗E is the fiber, but remembering that it is (p|q)-dimensional.
⋄

Products in SMan. I want to define these so I can talk about super Lie
groups.

Definition 7.3. A super Lie group is a super manifold with G×G µ−→ G,
G

ν−→, and R0 = R0|0 = pt
e−→ G. ⋄

In an arbitrary monoidal category, you need to define a Hopf algebra
object, but if you have products, you don’t need the diagonal and counit
maps.
The easiest way to define products is using description 2 (there was a

homework which told you how to get maps to Rp|q, from which you can
prove that products are what you think), but let’s use 3. Question: what
is the coproduct in Alg. Answer: it is tensor product (over whatever the
base is). Two maps A1 → A and A2 → A gives you a map A1 ⊗A2 → A
(for this, you need to be in commutative rings), and you can go the other
way by restriction. Question: is this ok for supermanifold (or just regular
manifolds)? For ordinary manifolds, is C∞(X1 × X2) ∼= C∞X1 ⊗alg
C∞X2? No! There is a map C∞X1 ⊗alg C∞X2 → C∞(X1 × X2), but
this map is only onto if one of them is discrete. The point is that any
function which depends interestingly on both variables isn’t a finite linear
combination of simple tensors.

Theorem 7.4. If one completes ⊗alg to the projective tensor product ⊗
of Frechét spaces, the above map becomes an isomorphism.

This Frechét spaces stuff will be relevent later when we do quantum
field theories, so let’s explain a little of this now.
We’ll have to prove that C∞M is a Frechét space. It turns out that

there is a unique structure of a Frechét algebra on C∞(M) (check the
reference for Project 2). So C∞M ∈ FSAlg.
To define a super Lie group, you turn around all the arrows to see

that C∞G has a Hopf algebra structure. The only subtlety is that this
is a Hopf algebra in the category FSAlg (commutative as an algebra, but
possibly non-cocommutative).
[[break]]
Let me explain how these projects should work. It’s first come first

served, and Matthias grabbed this one and somebody is already interested
in Project 1. But since there can be more than one person per project,
it’s ok to say that you’d also like to work on that project.

Frechét spaces

We’ll call them F-spaces. Banach spaces are B-spaces. The difference is
like compact and non-compact spaces, or Ck versus C∞. For superman-
ifolds, even if we restrict to compact super manifolds, you still have this
trouble with Ck. (Andy: if you limit the odd dimensions, you can do
Ck.)
Start with a topological space X . Then what structure do we have on

C0(X)? We have the compact-open topology. We only have a norm if X
is compact (the supp-norm). Matt: you could take functions vanishing
at infinity if it isn’t compact. PT: yes, but I don’t want to; this amounts
to looking at functions on the one point compactification. If X is not
compact, we might still want to give a good description than the compact-
open topology. This is done by the notion of uniform convergence on
compact sets. If X is any topological space, you get a semi-norm for each
compact K ⊆ X , ρK(f) := maxx∈K |f(x)|. This family of semi-norms
leads to the topology of uniform convergence on compact sets. The nice
thing about manifolds is that they are second countable, so we just need
a countable sequence of these semi-norms.
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On a (topological) manifold, we may pick a countable sequence K1 ⊆
K2 ⊆ · · · such that X =

⋃
Ki. Then we get ρK1 ≤ ρK2 ≤ · · · defining

the topology on C0(X). If you want, you can even define a metric now
by some formula. This implies that C0(X) is metrizable.

Theorem 7.5. C0(X) is complete with respect to this topology.

Completeness of a topological vector space means that Cauchy se-
quences converge (this is ok so long as the space has a countable basis;
otherwise you need to use nets). [[⋆⋆⋆ btw, how does this work?]]

Definition 7.6. A Frechét space (or F-space) is a complete topological
vector space whose topology is given by an increasing countable sequence
of semi-norms. ⋄

You can get around picking the norms; here is an equivalent definition.

Definition 7.7. A Frechét space (or F-space) is a complete locally con-
vex2 topological vector space that is metrizable. ⋄

Remark 7.8. Locally convex is important because the Hahn-Banach
theorem tells you that linear continuous maps V ′ can detect points (there
will always be a continuous linear map which doesn’t vanish at a given
point). ⋄

Example 7.9. Lp[0, 1] (p > 0) is locally convex if and only if p ≥ 1 (in
which case they are actually Banach spaces). ⋄

Example 7.10. Any Banach space. In this case, you have just one norm
which defines the topology. As we saw (by taking X non-compact), there
are other F-spaces. ⋄

Example 7.11. Let X be a compact smooth manifold. Then Ck(X) is
a B-space for all 0 ≤ k <∞ using the Ck semi-norms [[⋆⋆⋆ a sequence
converges if derivatives up to order k converge pointwise?]]. The norm
will depend on some choices (like a choice of some charts or a choice
of a Riemannian metric), but the induced topology does not depend on

2A subset is convex if the line between any two points in the set is in the set.
Locally convex means that any neighborhood of 0 contains a convex neighborhood.

these choices. An F-space only has the topological structure, not on the
sequence of semi-norms. Similarly, Ck has lots of norms, but they all
define the same topology, so it is more naturally an F-space than a B-
space.
If X is not compact, then Ck(X) is only an F-space.
Finally, if X is not compact, you can make C∞(X) into an F-space via

controlling more and more derivatives on larger and larger compact sets.
It is enough to check completeness. [[⋆⋆⋆ We’re taking an inverse limit
of Frechét spaces · · · → Ck+1(X) →֒ Ck(X). Shouldn’t completeness
follow immediately from the fact that all the CkX are complete and
C∞X =

⋂
CkX?]] ⋄

If V and W are topological vector spaces, then V ⊗alg W has lots
of possible topologies. This is one of the problems with topologi-
cal vector spaces. We’ll use the projective topology, characterized by:
given a continuous bilinear V × W → Z, it factors uniquely through
V ⊗proj W by a continuous linear map (through the usual bilinear map
ε : V ×W → V ⊗proj W ).

Definition 7.12. If V and W are F-spaces, then define V ⊗W to be the
completion of V ⊗proj W . ⋄

The result is that if we take complete topological vector spaces Z, the
property given above characterizes ⊗ (because a map to a complete thing
extends uniquely to the completion).

Lemma 7.13. If X1 and X2 are smooth manifolds, then C∞(X1) ×
C∞(X2)→ C∞(X1×X2) given by (f1, f2) 7→

(
(x1, x2) 7→ f1(x1) ·f2(x2)

)

is bilinear and continuous.

Theorem 7.14. The induced map C∞X1 ⊗ C∞X2 → C∞(X1 ×X2) is
an isomorphism.

For any super manifold, C∞(M) is a Frechét algebra. In fact, the
structure sheaf OM is a sheaf of Frechét algebras. Locally, that sheaf
is C∞(Rm) ⊗∧∗ Rn, and this exterior algebra is finite dimensional. We
know that C∞(Rm) has a unique Frechét structure. ⊗ defines a product
on super manifolds which is compatible with the product on manifolds.
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In the last lecture, we were discussing the free Hermitian scalar quantum
field theory. Recall that, as for all quantum field theories, we need to give
a ∗-algebraA acting onH . For a free quantum field theory, A is generated
by operators φ(f) where f is a smooth compactly supported function on
R1,3. You define φ(f) = φ+(f) + φ−(f), creation and annihilation op-
erators. All the creation operators commute, and all annihilation opera-
tors commute, and [φ−(f), φ+(g)] is some scalar (

∫
p2=m2,p0>0

f̂(p)ĝ(−p)).
And φ−(f)∗ = φ+(f). This more or less gives you a Heisenberg algebra,
and these algebras have really easy representation theory. H is the (es-
sentially unique) representation generated by the vacuum vector which is
killed by all φ−(f).
I was commenting on various properties that this has: positivity,

Lorentz invariance, positive energy. These are easy to check. A harder
property to check is locality: [φ(f), φ(g)] = 0 if f and g are spacelike
separated (i.e. Supp(f) and Supp(g) are spacelike separated). This has
something to do with the fact that you can’t send signals faster than light.
We have

[φ(f), φ(g)] = [φ−(f), φ+(g)]− [φ−(g), φ+(f)]

=

∫

p2=m2,p0>0

f̂(p)ĝ(−p)−
∫

p2=m2,p0<0

f̂(p)ĝ(−p)

=

∫
f(x)g(y)m(x − y) d4x d4y

[[⋆⋆⋆ picture of cone and two sheet hyperboloid; first integral over
top sheet and second integral over bottom sheet.]] This is the same as
integrating over the whole two sheet hyperboloid with a measure M of
coefficient +1 on the top sheet and a coefficient of −1 on the bottom sheet.
Let m be the Fourier transform of this measure. So to prove locality, we
have to show that m vanishes on spacelike vectors. You could explicitly
compute m, but let’s not. M has the following properties:

1. It is invariant under rotations preserving the time direction.

2. It changes sign under the reflection t 7→ −t.

It follows that m has the same symmetries. Any function m with these
symmetries is zero on spacelike vectors x because there is a time-reversing
rotation σ fixing x. So m(x) = m(σx) = −m(x) as m changes sign under
σ. With a little more work, we see that any measure m must also vanish
on spacelike vectors.
So locality can be traced back to the fact that the measure we integrate

over has an antisymmetry property under reversing the time direction.
Why do we define [φ−(f), φ+(g)] =

∫
m2=p2,p0>0

f̂(p)ĝ(−p)d · · · ? (1)
We want translation invariance. Any translation invariant distribution
like this can be written as

∫
f̂(p)ĝ(−p)d(measure) by taking Fourier trans-

forms and fiddling with them. Conversely, you can take any measure you
like and this will be translation invariance. (2) We want rotation invari-
ance. This forces the measure to be rotationally invariant. (3) Positive
energy condition needs the condition that the support of the measure has
“positive energy”. This means that the support is in the positive cone
of momentum space (p2 > 0). [[⋆⋆⋆ only the top part of the cone for
some reason]] (4) Why do we need the condition p2 = m2? We don’t.
For other measures, we get things called “generalized free field theories”
which are pretty similar. The only use I know of for these things is as a
source of counterexamples. Q: the ones for fixed m are irreducible and
the others aren’t? RB: depends on what you mean by that. It’s true
that if you want the state space (?) to be irreducible, you have to use
the free field theory. The generalized guys still have H irreducible as an
A-representation.
What is a free field (theory)? That is, how do you recognize a free field

theory when you see it? There doesn’t seem to be any definition, but
everybody can recognize one when it comes up.1 A free field theory should
be roughly equivalent to a representation of some Heisenberg algebra.
The ∗-algebra should be generated by a set of “annihilation operators”
which commute (this isn’t too important) and the commutator of an
annihilation operator with an adjoint of one should be some scalar (this
is the key property).
What does a free field theory actually look like? That is, what is the

Hilbert space H? H = C⊕Sym∗(H1) (H1 is “one particle states”). H1 is
the space of (well-behaved)2 functions on the manifold p2 = m2, p0 > 0.

1A dog can’t define a rat, but knows one when it smells it.
2L2 or rapidly decreasing, or whatever.
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Classically, the one particle states with p2 = m2 correspond to the points
of this manifold. In quantum mechanics, the space of one particle states
is functions on this manifold. The interpretation is that Symn(H1) is
the space of n non-interacting particles (“sort of like mathematicians at
a party I guess”). It would be good to have a field theory where you have
the particles interacting. Nobody has found such a field theory which
satisfies the Wightman axioms. The problem with the Wightman axioms
is that they don’t allow perturbative QFTs, where instead of working over
R, you work over a formal power series ring R[[λ]] (λ is called a coupling
constant). Solution: extend the Wightman axioms to work over R[[λ]];
make A an algebra over the power series ring instead of over R. Let’s
check if there are any problems.

– Lorentz invariance works over R[[λ]] with no changes.

– Locality works over R[[λ]] with no changes (so long as you don’t do
anything stupid).

– Positive energy and positivity gives a problem. (a, a) ≥ 0 and
(a,Ea) ≥ 0. You have to decide what it means for a formal power
series to be positive. There are several different ways to define posi-
tivity. We need to explicitly choose a set of positive elements of R[[λ]].
It doesn’t seem to matter very much which method you choose. For
example, you could say x ≥ 0 if x is a square of a formal power
series (any sum of squares is already a square). AJ: does this admit
Φ3(?) theory in 6-dimensions, where you don’t have a positive defi-
nite Hamiltonian by perturbatively it doesn’t matter? RB: I’m not
sure. The problem is that the potential is not positive, but perturba-
tively it is (because the kinetic term is positive). I would guess this
works. This illustrates that working perturbatively, you don’t see a
lot of important things.

To describe a free field theory, we’ll describe its n-point “functions” (dis-
tributions). To describe a representation H from A using a “state” ω,
we do (a, b) = ω(ab∗). What is the state ω for a free field theory? A
typical element of A looks like φ(f1) · · ·φ(fn). The corresponding ele-
ment ω is given by 〈vac, φ(f1) · · ·φ(fn)vac〉. This is sometimes written as
〈vac|φ(f1) · · ·φ(fn)|vac〉 or as 〈φ(f1) · · ·φ(fn)〉 [[⋆⋆⋆ I think]]. This is
really a distribution on the product of n copies of spacetime (sometimes

called a Wightman distribution). Knowing this ω is the same as knowing
these Wightman distributions explicitly.
The idea is that to compute 〈vac,

(
φ+(f1) + φ−(f1)

)
· · ·
(
φ+(fn) +

φ−(fn)
)
vac〉, you push the φ−(fi) to the right, as these kill the vacuum.

Let’s do the case of a two-point function first.

〈(φ+(f1) + φ−(f1))(φ
+(f2) + φ−(f2))〉 = 〈φ−(f1)φ+(f2)〉

= 〈[φ−(f1), φ+(f2)]〉

which is a scalar distribution given by ∆+(x1, x2), Fourier transform
of p2 = m2, p0 > 0. This is some kind of Bessel function. [[⋆⋆⋆

rewrite this. since the commutator [φ−(f1), φ+(f2)] =: ∆+(x1, x2) is a
scalar operator, 〈vac, [φ−(f1), φ+(f2)]vac〉 = [φ−(f1), φ+(f2)]〈vac, vac〉 =
[φ−(f1), φ+(f2)]]]

Lemma 4.1. The “n-point function” 〈φ(f1) · · ·φ(fn)〉 is given by∑
σ perfect
pairing

∏
i<σ(i) ∆

+(xi, xσ(i)), where a perfect pairing is an order 2 per-

mutation with no fixed points.

Proof. It suffices to prove that

〈φ(f1) · · ·φ(fn)〉 =
n∑

k=2

∆+(x1, xi) · 〈φ̂(f1)φ(f2) · · · φ̂(fk) · · ·φ(fn)〉

(where the hats indicate omission) and to observe that the 1-point func-
tion < vac, (φ+(f1)+φ

−(f1))vac〉 is zero because the φ− kills the vacuum
on the right and the φ+ kills the vacuum on the left. This formula follows
almost immediately from the observation

φ−(f1)φ(fk) = [φ−(f1), φ
+(fk)] + φ(fk)φ

−(f1)

= ∆+(x1, xk) + φ(fk)φ
−(f1).

[[⋆⋆⋆ it wouldn’t hurt to write this out more explicitly]]

Example 4.2. By the lemma, we can compute the 4-point function
〈φ(f1)φ(f2)φ(f3)φ(f4)〉 to be

∆+( 1 2 3 4 ) + ∆+( 1 2 3 4 ) + ∆+( 1 2 3 4 )

=∆+(x1, x2)∆
+(x2, x4) + ∆+(x1, x3)∆

+(x2, x4) + ∆+(x1, x4)∆
+(x2, x4) ⋄
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So in free field theories, everything can be determined in terms of the
two-point functions. This two-point functions is called the Wightman
2-point function or the cut propagator.
Next we’ll discuss propagators, which are confusing because there are

six different sorts of propagators for a QFT. We’ll talk about them and
the relations between them.

10 NR 09-19 Pure Yang-Mills theory

Fix a principal G-bundle E → M . Assume M is Riemannian and g =
Lie(G) has a non-degenerate bilinear form 〈, 〉. The space of fields in
pure Yang-Mills theory is the space of connections on E (see Appendix 1
[[⋆⋆⋆ does not yet exist]]). The Lagrangian is

L(A) = 1

2
(F (A), F (A))

where F (A) = dA+A∧A ∈ Ω2(M,Ead) is the curvature of the connection
A. If {xi} are local coordinates on M and {ea} is a basis for g, then

F (A) =
∑

i,j,a

F aijdx
i ∧ dxjea where F aij(A) = ∂iA

a
j − ∂jAai + cabcA

b
iA

c
j

There are several names for this: Yang-Mills, gauge theory, chromody-
namics. There are observables which are guage invariant when you cannot
express in terms of F , like W (A) = tr(P exp(

∫
γ
A)) for γ ⊆ M . [[⋆⋆⋆

for NR: edit this an write Appendix 1]]
If we assume G = GLN , then Ag = gAg−1 and ωRg = dg ·g−1. This is an

infinite dimensional group. It acts on connections: F (g(A)) = gF (A)g−1.
You can see that the Lagrangian L is invariant with respect to this action.
So we have a Lie group acting on the space of fields and the Lagrangian
is invariant. This is very bad news because it means that the Lagrangian

is invariant. The Legendre transform assumes that det( ∂2L
∂ξi∂ξj

) 6= 0, but

we have that L(ξg , qg) = L(ξ, q) which implies that this determinant is
identically zero. I think this was the second project, and it is still open.
Why chromodynamics? According to the accepted theory of strong

and weak interactions, these fields are supposed to describe the particles
which glue the nucleus together. If you consider the case where G = U(1),
then

L =
1

2
(F (A), F (A))metric on M

=
1

2
Fij(A)

2

This is called Pure electrodynamics. [[⋆⋆⋆ ]] Something about d =
4. As an exercise, you can derive the Maxwell equations as the Euler-
Lagrange equations for this action. In this case, A is called the vector
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potential. The electric field induced by this vector postential A = (A0, ~A)
(in coordinates x0 (time), x1, x2, x3) is

~E = ∂0 ~A ~B = ~∇× ~A

From these you can derive the Maxwell equations. Q: are you assuming
Minkowski metric? NR: strictly speaking, I’m assuming we’re in dimen-
sion d = 3 + 1.

The moral is that there are many systems with degenerate Lagrangians.
We should be able to somehow reduce the manifold since the Lagrangian
is invariant with respect to the guage group, and formulate the mechanics
on orbits of the action. Then we can hope the Lagrangian will be non-
degenerate so that we can do the Hamiltonian formulation.
Example (3); Chern-Simons (CS) theory. M is a 3-dimensional smooth

manifold, F = Ω1(M,Ead), E → M is a principal G-bundle, and g has
〈a, b〉 non-degenerate. Let’s assume g is simple, so this is the killing form
tr(ab).

Remark 10.1. The Lagrangian should always be a top form so that we
can integrate it, so you should have a volume form whenever you describe
it as a function. ⋄

Take the Lagrangian L = tr(A ∧ dA) + 1
3 tr(∧3A) (this is a 3-form on

M . PT: isn’t it a 3-form on the total space E?), then

A =

∫

M3

L(x)

Is this guage invariant? What happens if A 7→ g(A).
PT: isn’t A a 1-form on E with values in the Lie algebra?

8 PT 09-20 Super Lie algebras (over C)

Classical super Lie algebras (see Kac):

gl(p|q) sl(p|q)⊇

osp(p|q)

∪|

osp has several versions over R.

P (n) =
{(

A B
C −At

) ∣∣∣ tr(A) = 0, B symm, C skew symm
}

Q(n) =
{(

A B
B A

) ∣∣∣ tr(B) = 0
}

g F4 G3 D2|1(α)
sdim 24|16 17|14 9|8

(g0, g1) · · · (G2 × sl2,C7 ⊗ C2) ((sl2)
3,C2 ⊗ C2 ⊗ C2)

Note that g1 is a representation of g0. The table doesn’t give you the
information of what brackets of g1 with g1 are.

A super Lie algebra is a super vector space g together with a Lie bracket
[, ] : g× g→ g that is skew symmetric and satisfies the Jacobi identity (in
SVect, so [b, a] = −(−1)|a|·|b|[a, b]).

Example 8.1. If sdim(V ) = (p|q), then gl(p|q) = Hom(V, V ) =
SVect(V, V ). This contains sl(p|q) := {α ∈ Hom(V, V )| str(α) = 0}. Note
that if p = q, then the identity has supertrace zero. If you want a simple
Lie algebra, you’d have to quotient out by the multiples of the identity.
The bracket here is [α, β] := αβ − (−1)|α|·|β|βα. sl(p|q) inherits this
bracket. ⋄

Example 8.2. If φ is a non-degenerate symmetric bilinear form on
V = V e ⊕ V o (i.e. it is symmetric on V e, skew on V o, and vanishes on
pairing even with odd), we have osp(p|q) = {α ∈ Hom(V, V )|φ(αv,w) +
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(−1)|α|·|v|φ(v, αw) = 0}. Over R there are many non-isomorphic forms
like this, so you should really write osp(p1, p2|q), where (p1, p2) is the
signature. Over C there is only one such form up to isomorphism. The
Lie bracket is inherited from gl(p|q). ⋄

Example 8.3. P (n) and Q(n) ⋄

Example 8.4. Finally, there are a few exceptional super Lie algebra.
The last one has a continuous parameter α. This completes the list of
simple super Lie algebras (actually, not all of these examples are simple,
because you have to quotient sl(p|p) by identities to get simple, and erase
gl(p|q). Then you have all the simples. This is a theorem of Kac [[⋆⋆⋆

ref]]). You have to form extensions between these things ⋄

Andy: why don’t you also have one for skew-symmetric bilinear forms?
PT: It turns out to be isomorphic to osp (as a super Lie algebras), so it
is already on the list. Reimundo: It’s not the same vector space though;
spo(p|q) should be isomorphic to osp(q|p). What happens if you take
a form which pairs the even and the odd part non-trivially? [[⋆⋆⋆

something I didn’t catch]]

Super Lie groups

Definition 8.5. A super Lie group is a super manifold G with µ : G ×
G → G, ν : G → G, and e : pt → G satisfying . . . . Here we had to use
existence of products in SMan. ⋄

We were asking if SMan has products. We thought of it as some cat-
egory of sheaves over ordinary manifolds, together with some Frechét
structure. Then you can take products by taking these completed ten-
sor products. Another way of proving this was that we had an equiv-
alence of categories

∧
-Vect to SMan, given by taking (Eq → Xp) 7→

C∞(πE) = C∞(
∧∗

E∗), where the morphisms in
∧
-Vect are induced by

the morphisms in SMan. Now it suffices to show that
∧
-Vect has prod-

ucts. Define (E1 → X1) × (E2 → X2) = (E1 ⊕ E2 → X1 × X2) (since∧∗
(E∗

1 ⊕ E∗
2 )
∼=
∧∗

E∗
1 ⊗

∧∗
E∗

2 ). You can use whatever model for the
product you like.

Definition 8.6. A (left) G-action on a super manifold M is a morphism
ℓ : G×M →M satisfying the associativity and unit diagrams. ⋄

Example 8.7. G = R1|1, with R1|1 × R1|1 +−→ R1|1 given by(
(t1, θ1), (t2, θ2)

)
7→ (t1+ t2, θ1+θ2) (this actually works on any Rp|q). ⋄

Example 8.8 (Super Heisenberg group). R1|1 × R1|1 µ−→ R1|1 given by(
(t1, θ1), (t2, θ2)

)
7→ (t1 + t2 + θ1θ2, θ1 + θ2). Note that this group is not

commutative (not even super commutative), but you can prove that this
is associative. You can check that ν(t, θ) = (−t,−θ) and e = (0, 0) (this
is just the point 0 in the underlying R1. You don’t actually have a choice
of θ because choosing e amounts to choosing an even and an odd function
on R0|0, and there aren’t any odd functions. ⋄

We want to go from Lie groups to Lie algebra, so I have to define
left invariant vector fields. What are left invariant vector fields on a
G-manifold M? The usual formula: ξ ∈ V ect(M) is left invariant if
ℓ∗gξ = ξℓ∗g for all g ∈ G (ℓg : M → M is multiplication by g). This
is problematic in our case because this is defined pointwise; you have
to use arrows. Let’s check if the formula itself is a problem. Given

ξ ∈ V ect(M) = Der(C∞M), we have C∞M
ξ−→ C∞M

ℓ∗g−→ C∞M is a

derivation and C∞M
ℓ∗g−→ C∞M

ξ−→ C∞M is also, so the equation makes
sense.
Define L := (π1 × ℓ) : G ×M → G ×M . Note that C∞(G ×M) =

C∞G ⊗ C∞M (using our definition of ⊗). id⊗ξ is a derivation on this
thing. You have to check that this is continuous on the usual tensor (then
there is a unique continuous extension to the completion). You would call
this “the vertical vector field on G×M corresponding to ξ”.

Definition 8.9. ξ ∈ V ect(M) is G-invariant if L∗(id⊗ξ) = (id⊗ξ)L∗.
⋄

If you think about it just a bit, you’ll see that this L has all group
elements built in, and this is equivalent to the usual definition.
The left invariant vector fields form a Lie subalgebra of all vector

fields (the derivations form a Lie algebra, but it is infinite-dimensional):
V ect(M) is a super Lie algebra under the bracket and V ect(M)G forms
a Lie subalgebra.
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Theorem 8.10. Let G be a super Lie group and g be the super Lie al-
gebra of left invariant vector fields on G (so M = G and the action ℓ
is the multiplication µ). Then the restriction map rese : g → TeG is an
isomorphism of super vector spaces.

If our group G had dimension (m|n), then TeG has dimension (m|n).
[[break]]
There is a little confusion about what this restriction map. Let’s start

with a vector bundle “E → M”, which is by definition a locally free
OM -module C∞E (this is the “sheaf of sections”). Then we have

“ f∗E //

��

·
E

��

N
f

// M

”

We specify C∞(f∗E) := C∞N ⊗(C∞M,f∗) C
∞E. Now if N = R0|0

is a point, then C∞N = R or C, so the module C∞(f∗E) is just
a finite-dimensional super vector space, and this is what I meant by
TeG = C∞(e∗TG) (as a C∞(pt)-module). What is this restriction? Re-
member that g ⊆ V ect(G) := Der(C∞(G)) =: C∞(TG). I claim there is
a map C∞(TG) → C∞(e∗TG). This is just saying that there is a map
C∞(TM)→ C∞(pt)⊗ C∞(TM) given by 1 7→ 1⊗ s for s ∈ C∞(TM).

“ f∗E //

��

·
E

��

N
f

//

f

BB

✺
✤
✠

M

s

^^ ”

Remark 8.11. By the way, the notation is C∞(E) = ΓC∞(X ;E), which
is confusing because this is not the same as functions on E (thought of
as a manifold). ⋄

Proof of 8.10. We construct the inverse map TeG → g. What is TeG?
An element v ∈ TeG is a derivation v : C∞G → R in the sense that
v(f · g) = v(f) · g(e) ± f(e) · v(g). Remember that we can evaluate

functions at points by composition: pt
e−→ G

f−→ R. If you had a global

vector field (derivation) V : C∞G→ C∞G, then you could compose with
evaluation at the point e. So whenever you have a global vector field, you
can evaluate at any point you want to get the value of the vector field at
the point.

Now we construct TeG→ g, given by v 7→ ξv. We define ξv : C
∞G

µ∗
−→

C∞(G ×G) = C∞G ⊗ C∞G
id⊗v−−−→ C∞G ⊗ R = C∞G [[⋆⋆⋆ ]]. Sym-

bolically, f(x) 7→ f(x · y) 7→ v
(
y 7→ f(xy)

)
|y=e.

Claim. ξv is left invariant and v 7→ ξv is the inverse to restriction to the
identity.

Example 8.12. (R1|1, µ) and v = ∂θ2 . Then ξvf = ∂θ2
(
f(t1 + t2 +

θ1θ2, θ1 + θ2)
)
|(t2,θ2)=(0,0)

f(t, θ) = f0(t) + f1(t)θ

ξvf = ∂θ2

(
f0(t1 + t2) + f ′

0(t1 + t2)θ1θ2 + f1(t1 + t2)(θ1 + θ2)
)

= −f ′
0(t1)θ1 + f1(t1)

So ξv = ∂θ−θ∂t on R1|1 which is that vector field for which 1
2 [ξ, ξ] = −∂t.

Then since the dimension of the Lie algebra is 1|1, we have that it is
generated by ξ and [ξ, ξ]. ⋄
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Functionally, classical Hamiltonian field theory can be regarded as a func-
tor from a spacetime category to the category of symplectic manifolds.

Definition 11.1 (First approximation). A Hamiltonian classical field
theory in a d-dimensional spacetime category is an assignment of a sym-
plectic manifold S(Nd−1) to each object Nd−1 in the spacetime category
and an assignment of a lagrangian submanifold L(Md) ⊆ S(∂Md) for each
morphism Md. Axioms:

1. S(∅) = pt.

2. S(Nd−1) = S(Nd−1).

3. S(N1 ⊔N2) = S(N1)× S(N2).

LM1⊔M2 = LM1 × LM2 ⊆ S(∂M1)× S(∂M2).

4. If ∂Md = N ⊔ N ⊔ N ′ and if M ′ = M/〈N ∼ N〉 (so ∂M ′ = N ′),
then LM ′ = {ℓ ∈ S(N ′)| there is m ∈ S(N) with (m,m, ℓ) ∈ LM ⊆
S(N) × S(N) × S(N ′)}. [[⋆⋆⋆ for NR: there needs to be some
transversality assumption to get a Lagrangian submanifold]] ⋄

If you ignore the transversality problem, this gives a functor from a
spacetime category to the category of symplectic manifolds (where mor-
phisms in Hom(M1,M2) are lagrangian submanifolds of M1 ×M2).
Let R → E → Md with M Riemannian, and let L be a first order

Lagrangian (written L(φ, dφ)). Then we get an action functional. Let’s
compute it’s variation. We can write L = L0(φ)+L1(φ, dφ)+L2(φ, dφ)+
· · ·

δA[φ] =
∫

M

(∂L
∂φ

δφ+
∂L
∂dφ

∧ δdφ
)

=

∫

M

(∂L
∂φ
− d
( ∂L
∂dφ

))
dφ+

∫

∂M

( ∂L
∂dφ

)
δφ = α(δφ).

δφ is a vector field on the space of fields and α is a 1-form on the space
of fields. But at the same time this is a (d− 1)-form on ∂Md.

The Euler-Lagrange equations are the condition that the bulk term of
the variation vanishes.

∂L
∂φ
− d
( ∂L
∂dφ

)
= 0.

In this case S(∂M) = Ω0(∂M)⊕Ωd−1(∂M). The symplectic structure is

ω =

∫

∂M

Dϕ ∧Dπ

where ϕ ∈ Ω0(∂M) and π ∈ Ωd−1(∂M). [[⋆⋆⋆ what are these Ds?
NR: the symplectic form is a pairing on the cotangent space of the space
S(∂M)]] It’s the same formula as

∑
dpi ∧ dqi in local coordinates.

ω((δφ1, δπ1), (δφ2, δπ2)) =

∫

∂M

(δφ1 ∧ δπ2 − δφ2 ∧ δπ1)

Now I have to describe LM ⊆ S(∂M).

LM =
{
(ϕ, π)

∣∣∣ ϕ = φ|∂M , π =
∂L(φ,dφ)

∂dφ

∣∣∣
∂M

, where φ solves E-L eqns
}

[[⋆⋆⋆ HW: prove this is isotropic. to prove it is maximal isotropic, you
might need some extra assumption.]]
In the case of classical mechanics, M = [t1, t2], ∂M = p ⊔ p, S(∂M) =

S × S, where S = T ∗N . Solution to the E-L equations

L
(γ)
t1,t2 = {(P,Q), (p, q)|P = dQA[γ], p = −dqA[γ]}

In principal you can have several solutions to the Euler Lagrange equa-
tions, so you might have many Lagrangian submanifolds.
The primal idea is the variational principle. You can then impose some

constraints and the result will be a more complicated dynamics. Hamil-
tonian dynamics gives a very natural framework for such constraints. For
field theories, it is a similar story. You start with a variational field theory,
but then you can pass to the Hamiltonian description. If L is invariant
under some group action, one should reduce the symplectic manifold to
get a Hamiltonian description.
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Last time I gave an outline of classical field theory. Our main goal is
Chern-Simons theory, where the fields are connections on a principal G-
bundle on a [[⋆⋆⋆ Riemannian?]] manifold. The other example is
Yang-Mills theory. So let’s talk about connections on principal bundles
today.

Connections

Definition 12.1. Let π : P →M be a fiber bundle overM . A connection
on P is a distribution on P which projects isomorphically to TM . ⋄

A distribution is a subbundle of the tangent bundle, so for each p ∈ P ,
we select a linear subspace A(TpP ) ⊆ TpP . We have dπ : TP → TM ,
which has a kernel. So we get the sequence

0→ ker(dπ)
i−→ TpP → Tπ(p)M → 0

A connection is a choice of a splitting TpP = ker(dπ)) ⊕ A(TpP ) with
A(TpP ) ∼= Tπ(p)M under dπ. Equivalently, a connection is a section
A : TpP → ker(dπ)) (so i ◦A = idker(dπ).
An important notion is parallel transport. If we have two points x, y ∈

M , and a path γ connecting them, then we can lift γ to an isomorphisms
h(γ) : Px → Py. Because TpP ⊇ A(TpP ) ∼= Tπ(p)M , we can lift a tangent
vector from the base to P . Integrating these lifted tangent vectors gives
a lifted path [[⋆⋆⋆ how does this give the isomorphism?]].
Alternatively, you could define Γsm1 (M) to be the category whose ob-

jects are points of M with [−ε, ε) ⊆ M so that 0 maps to the point
(call such a thing cx) [[⋆⋆⋆ germs of paths]] and Hom(x, y) consists
of smooth paths from x to y with cx, cy ⊆ γ (i.e. with the given germ).
Gluing gives the composition. [[⋆⋆⋆ will this be a category . . . any
trouble with identity morphisms?]] [[PT: you could take the objects to be
[0, ε) collars and the morphisms look like [[⋆⋆⋆ picture with “outside
collar”]] so morphisms are also collars, so the identity is just the object
itself. Unfortunately, when you go to infinite-dimensional something, it
turns out that the natural direction is different from what you think.
This gives you a nice category; it works well. It probably isn’t the only

choice.]] [[⋆⋆⋆ you have to vary parameterizations to get associativity
of composition]]
If P is a fiber bundle over M , a representation of Γsm1 → P is an

assignment cx 7→ Px and (cx, cy ⊆ γ) 7→ (h(γ) : Px
∼−→ Py). In otherwords,

it is a functor from Γsm1 (M) to the category where objects are fibers of
P and morphisms are linear morphisms between the fibers [[⋆⋆⋆ what
if we don’t require isomorphisms?]]. This gives an equivalent description
of a connection. PT: you have to put some subtle conditions to give you
smoothness of the distribution. NR: I always ignore these smoothness
conditions and we’ll see why in a minute. You’re right that there should
be some conditions on smoothness.
ConsiderMT a cell decomposition ofM . We can try to modify this def-

inition to define a connection on a fiber bundle over a cell decomposition.

Definition 12.2. A fiber bundle overMT is an assignment to each vertex
(0-cell) x ∈ V (MT ) a fiber Px such that Px ∼= Py (non-canonically) for
all x, y ∈ V (MT ). ⋄

Clearly a fiber bundle over M induces a fiber bundle over MT by re-
striction. It is not true that any fiber bundle over the decomposition
extends to a fiber bundle over M . If you can construct a fiber bundle for
any decomposition MT , then you can expect that it will give you a fiber
bundle on M . Q: isn’t any fiber bundle over MT trivial?
We define Γ1(MT ) to have objects vertices of MT and morphisms are

edge paths (in the 1-skeleton) from x to y. A connection is a choice of
isomorphisms Pe+

∼−→ Pe− for every path from e+ to e− (in a compatible
way). A connection is thus a representation of Γ1(MT ).

Connections on principal G-bundles

Let G be a Lie group and P →M a principal G-bundle (i.e. G acts simply
transitively on the fibers of the bundle).

Definition 12.3. A connection on a principal G-bundle P → M is a
G-invariant distribution on P that projects isomorphically to TM . ⋄
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Again we have

0 // ker(dπ)
i // TP
A
mm

dπ // TM // 0

so that i ◦A = id and G-invariance.
I claim that a connection can be viewed as an element A ∈ Ω1(P, g)G,

where G acts on g by the adjoint action. For this we need the following
lemma.

Lemma 12.4. ker(dπ) ∼= P × g G-equivariantly (where there is the diag-
onal action on the product P × g).

Proof. [[⋆⋆⋆ HW]]

Now it is completely clear; this is exactly what 1-forms do. A element
of Ω1(P, g)G is a G-equivariant morphism TP → g. Fiberwise, this means
we have a canonical isomorphism TpP ∼= g× Pp. [[⋆⋆⋆ ]]
Suppose A1 and A2 are two connections. Will a linear combination be a

connection? No, because of the condition i ◦A = id. However, the differ-
ence satisfies i◦ (A1−A2) = 0, so A1−A2 ∈ HomVect(TpP/ ker(dπ), g) =:
V . In other words, the space of connections is not a vector space, but it
is an affine space over V .

Definition 12.5. An affine space L over a vector space V is a triple
(L, V, θ : L × L → V ) (we usually denote θ(a, b) by “a − b”) so that for
any b ∈ L, a 7→ a− b is a bijection L ∼= V and (a − b) + (b − c) = a − c.
In otherwords, it is a principal V -set. ⋄

Claim. Connections on a principal G-bundle P form an affine space over
V = HomVect(TpP/ ker(dπ), g).

Claim. V ∼= Ω1(M, gad).

This was my initial definition of the space of connections. This is
wrong because the space of connections is an affine space over this space.
The easiest way to see this is through the transformation properties with
respect to the action of the guage group.
If you have a connection A, you get an action of g ∈ G given by

Ag = gAg−1+ dgg−1 (this is the action on connections), so (A1−A2)
g =

g(A1−A2)g
−1 (which is how 1-forms transform). Next time we’ll go into

details about what this means.
Let P be a principal G-bundle over MT (a cell decomposition of M),

so over each x ∈ V (MT ), we have Px ∼= G (non-canonically).

Example 12.6. Given P →M , it induces P →MT . ⋄

If A is a connection on P and γ is a path connecting x and y, we have
a G-equivariant isomorphism h(γ) : Px

∼−→ Py . If we fix a trivialization
Px ∼= G, then we have the action of G on P by right multipication by the
inverse (g : h 7→ hg−1). The map h(γ) : G→ G is multiplication by some
element g(γ).
Moral: a connection on P → MT with fixed trivialization is an as-

signment to each edge e a group element g(e) ∈ G, so a connection is
a mapping E(MT ) → G. If you change the trivialization, this mapping
changes.
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9 PT 09-25

About the first homework: nobody got the characterization of the
Berezinian because I didn’t put enough conditions. You need that the
Berezinian is natural. If F is free over A of finite dimension, then
Ber: HomA(F, F )

× → GL1(A
e) is multiplicative. If φ : A → B is a

morphism of commutative super algebras, then the diagram

HomA(F, F )
Ber //

α⊗idB

��

GL1(A)

GL1(φ)

��

HomB(F ⊗A B,F ⊗A B)
Ber // GL1(B)

Recall that we proved the following theorem.

Theorem 9.1. If G is a super Lie group with g = Lie(G) the left invari-
ant vector fields on G (a super Lie algebra), then rese : g → TeG is an
isomorphism in SVect.

We proved this by constructing an explicit inverse.
If M is a super manifold and m ∈ M , what is TmM? It is a super

vector space (it is a vector bundle over a point). I want to say that
TmM ∼= Der(C∞M,Rm) (as a super vector space) [[⋆⋆⋆ HW1. this is
an easy one]]. Where is m? R is a bimodule over C∞M via evaluation at
m. By the way, a points of M are SMan(R0|0,M) ∼= Man(R0,Mred), so a
point really is a point of the underlying manifold. You get evaluation at
a point by C∞M → C∞Mred

evm−−→ R.
Ok, so what was this explicit inverse? Remember that V ect(M) =

Der(C∞M,C∞M) is a C∞M -module. Given v ∈ TeM , v : C∞G→ R a

derivation,we produced ξv : C
∞G

µ∗
−→ C∞(G×G) ∼= C∞G⊗C∞G

id⊗v−−−→
C∞G ⊗ R = C∞G. [[⋆⋆⋆ HW2. fill in the gaps. In particular, check
that ξv is left invariant]] Explicitly, this ξv is given by f(x) 7→ f(x · y) 7→
v(y 7→ f(x · y)). This will be left invariant because we are using right
multiplication by y. If you wanted right invariant, you’d use v⊗ id instead
of id⊗v. Part of this homework is to prove the following lemma.

Lemma 9.2 (Inverse Function Theorem [[⋆⋆⋆ this is the right
name?]]). If f : M → N induces an isomorphism dfm : TmM → Tf(m)N ,
then f is an isomorphism in some neighborhood of m ∈M .

What is this dfm? It is given by TmM ∼= Der(C∞M,Rm)
−◦f−−−→

Der(C∞N,Rf(m)) ∼= Tf(m)N .

� Warning 9.3. We do not have df : V ect(M)→ V ect(N).
y

Examples of super Lie groups and their Lie algebras

Example 9.4. Let V = V0 × V1 be a super vector space. Then V is a
super Lie group under addition. We have to produce a super manifold and
a multiplication, so we need to define C∞(V ). It is C∞V := C∞(V0) ⊗∧∗

(V ∗
1 ) ⊇ V ∗ (the linear functions on V0 are smooth and

∧1
V ∗
1 = V ∗

1 ).
Now we need to describe the super Lie group structure. We have mor-

phisms of super manifolds V × V +−→ V , V
−−→ V , and pt

0−→ V . I hope
it is clear what exactly these maps are. Note that this is a commutative
super Lie group. ⋄

Super Heisenberg groups are really key.

Example 9.5 (Super Heisenberg groups). Let V ∈ SVect, and let b an
even skew form on V . So b : V ⊗V → R is a skew symmetric morphism in
SVect, so it is skew on the even part, symmetric on the odd part, and the
cross terms are zero because R is even. Then we can construct H(V, b).
As a super manifold, it is R × V (or C × V ) (the R will be the center).
But as a group, it is not the product (I hope it is clear that there are
products of super Lie groups; you have to be a little careful because you
get a sign). The group structure is (R×V )× (R×V )→ R×V , given by(
(t1, v1), (t2, v2)

)
7→
(
t1 + t2 + b(v1, v2), v1 + v2

)
. This is an extension of

V by R:
1→ R→ H(V, b)→ (V,+)→ 1

Taking v1 = 0, we see that this R is central. This is not a semi-direct
product because there is no splitting (as groups) if b 6= 0. Explicitly, in
terms of functions, we have C∞(R×V ×R×V )← C∞(R×V ), given by
sending t 7→ t1+t2+b, where b : V ×V → R pulled back to R×V ×R×V ,

and V ∗ ∋ φ 7→ φ1+φ2, the pull back of the dual addition map V ×V +−→ V ,

V ∗ × V ∗ +←− V ∗. Now I’ve told you where the linear maps go, and this
determines the whole algebra map.
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[[break]]
Now let’s compute h(V, b) := Lie(H(V, b)). As a super vector space, it

is R⊕ V ∈ SVect. The Lie bracket is given by

1

2
[v, w] = b(v, w) · cR

where c = 1 ∈ R is the central element.
How do we prove this? If v ∈ V , we want a derivation ψv ∈ h(V, b) by

the procedure in the proof of Theorem 8.10. Note that v ∈ V extends to a

global vector field ∂v ∈ V ect(V ). ξv : (t, φ)
µ∗
7−→ (t1+t2+b [[b(v1, v2)]], φ1+

φ2 [[φ1(v1)+φ2(v2)]])
id⊗v [[1⊗∂v2 ]]7−−−−−−−−−→

(
(−1)|v1|·|v2|b(v1,−) [[= v∗1 ]], ∂v2φ2

)
.

The conclusion is that ξv = ∂v ± v∗∂t. I should have done the right

invariant case so that I don’t pick up the sign. So ξv : (t, φ)
µ∗
7−→ (t1 + t2+

b, φ1 + φ2)
v1⊗id7−−−−→

(
v∗2 , ∂v1φ1

)
, so ξv = ∂v + v∗∂t ∈ V ect(R× V ).

Now the claim is that [ξv, ξw], the Lie bracket of derivations, is
2b(v, w)∂t.

[ξv, ξw] = · · ·
= [∂v, ∂w]︸ ︷︷ ︸

0

+ [v∗∂t, w
∗∂t]︸ ︷︷ ︸

0

+∂v(w
∗∂t)± ∂w(v∗∂t) + v∗∂t∂w ± w∗∂t∂v

= ∂v(w
∗)∂t ± ∂w(v

∗)︸ ︷︷ ︸
b(w,v)=v∗(w)

∂t

= 2b(v, w)∂t

The ∂v terms commute so they fall out and the ∂t stuff commutes. If you
believe the signs are good, then some more stuff cancels out. If you think
about this some more, you get the right result.
Now you can take the universal enveloping algebra U(h(V, b)) defined

as usual (T ∗(h(V, b))/(αβ ± βα − [α, β])). Inside of this tensor algebra,
you have this central part RcR (which is different from the unit of the
tensor algebra). You can quotient further by this central piece. If V
is completely odd, then the quotient U(h(V, b))/(cR − 1) is the Clifford
algebra Cl(V, b). All of this stuff comes from the super Lie group. When
you quantize, you use representations of these Clifford algebra, which
really come from representations of the super Lie groups. ⋄

5 RB 09-25

Propagators

If you look in a physics book, a propagator is supposed to be an “ampli-
tude for a particle to go from one point to another”. I don’t know that
this means, so I’ll ignore it. Six types of propagators (for the hermitian
scalar field theory)

1. 2 Feynman propagators

2. 2 Cut propagators

3. 2 advanced/retarded propagators

If you think that’s a lot, each propagator can be viewed in position space,
but it also has a Fourier transform which lives in energy/momentum
space, so all together, there are twelve things. Moreover, propagators
can be either massless or massive, so there are 24 propagators. You also
have to worry about spin 0, 1

2 , or 1 propagators, so there are 72 of them.
These are propagators in Lorentzian space. We could also look a propa-
gators in Euclidean space (his doesn’t quite double it). We can also look
at propagators in other dimensions, so you should multiply this 72 by ∞.
In dimension ≥ 2, massless propagators have special properties. They
also behave differently in odd or even dimensions.
That gives you a bird’s-eye view of propagators. What is a propagator

∆? Let’s consider the case of a Hermitian scalar field in 4-dimensional
Lorentzian space.
(1) ∆ is a distribution onM×M , whereM is spacetime. If you think of

∆ as a function (which it isn’t), ∆(x, y) is the “amplitude of propagation
from x to y”.
(2) It is translation invariant: ∆(x + z, y + z) = ∆(x, y), so it is much

easier to think of it as a distribution on one variable: ∆(x, y) = ∆(x− y)
is now a distribution on M .
(3) ∆ is a solution to (∂2i +m2)∆(x) = cδ(x) (this first operator is the

Klein-Gordan operator), where δ(x) is just a Dirac delta function at 0.
If c = 1 (Feynman, advanced/retarded), ∆ is a Greens function for the
K-G equation. If c = 0 (Cut propagators), ∆ is a solution of the K-G
equation.
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(4) ∆ is invariant under rotations (preserving time).
(5) Wave front set of ∆ should be as small as possible (see later).
These are the properties that characterize the propagators we’ll be

interested in. Before we find some propagators, let’s say what they are
used for.

1. Cut propagators appear as the two point functions of a free field
theory. More generally, all the n-point functions can be written in
terms of the cut propagator ∆(x, y).

2. They are needed to define Feynman diagrams. A Feynman diagram
is going to appear as a piece of an asymptotic expansion.

1

2 4

3

Each edge in the diagram represents a Feynman propagator, and
the diagram represents their product, so the picture above repre-
sents the term ∆(x1, x2)∆(x2, x3)∆(x2, x4)∆(x3, x4)

3. This is NOT
DEFINED because of ultraviolet singularities.

Let’s try to solve (∂2i +m2)∆ = δ(x) (i.e. ∆ is a Greens function for
the K-G operator). Why are we interested in the K-G operator, by the
way? Because it appears as the E-L equation for the “free” part of the
Lagrangian. For this lecture, assume somebody has given you the K-G
operator.
First let’s solve it in Euclidean space where it is rather easier. Let’s

try to solve (∂2i −m2)∆ = δ(x) with ∆ tempered (i.e. don’t behave too
badly, so closed under Fourier transforms). Taking the Fourier transform,
we get (p2 +m2)∆̃ = 1 (where p2 = p21 + p22 + · · · ). The solution is that
∆̃ = 1/(p2 +m2). Note that p2 +m2 > 0, so this is well-defined. So ∆ is
the Fourier transform of this ∆̃. You can write this as a Bessel function if
you want, but this doesn’t completely specify it as a distribution because
of something with singularities. So this is the only reasonable thing to
use as a propagator in Euclidean space, so we don’t get 6 different things.
Note that if m = 0 you have some problems, but let’s not worry about it.

Now let’s try it in Lorentz space. As before, we get (p2 +m2)∆̃ = 1.
Now we have a problem because p2 +m2 = 0 on a two sheet hyperboloid
(or a cone if m = 0). Anywhere off these surfaces, you can invert p2+m2.
How do we define 1/(p2 + m2) (as a distribution) when p2 + m2 = 0?
First of all, the solution of (p2 +m2)∆̃ = 1 is not unique. This equation
has solutions given by any function (times measure) on the hypersurface
p2 = m2 (more precisely, any distribution on this hypersurface gives you
a solution). So there is an infinite-dimensional space of solutions. We can
cut down the dimension by adding the condition that ∆ is invariant under
time-preserving rotations. In the Euclidean case, it was automatically
invariant under rotations, but in the Lorentzian case, this really is a new
condition. The rotation invariant solutions of (p2 + m2)∆̃ = 0 form a
2-dimensional space (one for each component of p2 +m2 = 0). No, that’s
a bit misleading. This 2 is the number of orbits of the group of time-
preserving rotations on the space p2 = m2; this is not the number of
topological components.

Remark 5.1. If the dimension is 2 and m = 0, then p2 = 0 has FIVE
components under the connected component of the rotation group.

p2 = 0

=

This corresponds to left moving and right moving things on a string, so
this shows up in string theory. ⋄

The cut propagators are the two solutions to (p2 + m2)∆̃ = 0 corre-
sponding to these two components. So a cut propagator is the Fourier
transform of the invariant measure on a component of p2 = m2.
Now we want some “good” solutions to (p2 +m2)∆̃ = 1. The solution

is essentially 1/(p2 +m2), but we have to explain what this means when
p2 = −m2 [[There is a sign convension which I can’t ever rememeber]].
There are four reasonable things it could mean. The Fourier transform

of 1/(p2 +m2) is
∫
R4

eipx

p2+m2 d
4p. when p2 = m2, this blows up, but if you
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think of p as complex, then there is a pole at p2 +m2 = 0, and you can
go around the pole.

p2 = m2
−m m

Advanced
Retarded}

Feynman

}
Cut

There are four reasonable ways to go around the poles. These four choices
give the remaining propagators. To get the cut propagators, you’re really
taking the residue at the pole (i.e. integrating around the little circles).
Notice that you can read off lots of linear relations from linear relations
between these 1-cycles. For example, if you take the difference between
the advanced propagator and a Feynman propagator, you get a cut prop-
agator. The space of solutions is only three dimensional, so if you take
any four of these, there will be a linear relation among them.
We’re integrating eipx. This integral goes to zero if the imaginary part

of p goes to infinity. So if you have an advanced propagator, you can
move your line of integration up to get that it vanishes. The conclusion:
The advanced and retarded propagators vanish if x is not in some closed
cone.

Supp(Adv) ⊆ Supp(Ret) ⊆

The advanced and retarded propagators aren’t used very often, except
to show that some Feynman propagator is equal to some cut propagator
except inside a certain cone.

What is special about these six propagators? They have very small
WAVE FRONT sets. I said that there is a 3-dimensional space of Greens
functions. Why not integrate along some path that loops around the poles
a few times? That gives you a perfectly good propagator, but they have
large wave front sets.
Motivation: we want to multiply propagators together (because we

want to make sense of Feynman diagrams). The problem is that we

cannot multiply distributions. For example, there is no reasonable way
to make sense of δ(x)·δ(x). We can multiply distributions with DISJOINT
SINGULAR SUPPORT because you can always multiply a distribution
by a smooth function. The problem is that for Feynman diagrams we
want to multiply propagators without disjoint singular support. Wave
front sets give a more refined obstruction to multiplying distributions.

Example 5.2. δ(x) · δ(x) =?. However, (think of δ as eating functions
and giving values) δ(f) = f(0) which is the residue of f(z)/z at zero,

which is given by the integral
∫
C
f(z)
z dz, where C goes around 0 coun-

terclockwise. Alternatively, we could integrate 1
2πi

∫∞
−∞

f(z)
z dz in two dif-

ferent ways (going a little above and a little below the origin), and the
difference of these two give you δ(f). So δ(x) = 1

2πi
1
x+ − 1

2πi
1
x− . These

distributions 1
x± are equal to 1

x = d
dx log(x) for x 6= 0. 1

x+ is d
dx log(x) for

the imaginary part of x greater than zero.

Now note that
(

1
x+

)2
is perfectly well defined because it is the boundary

value of 1
x on the upper half plane. However, 1

x+ × 1
x− is not well-defined

because you cannot multiply functions on the upper and lower half planes.
The point is that the wave fronts of these two are small enough. ⋄

Next time we’ll say what wave fronts are and why you can use them to
tell if you can multiply propagators.
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13 NR 09-26

Unfortunately, this class is going slower than I expected. Something
should be done about it or we won’t get to the point of the class (Chern-
Simons theory). I was going to spend two more classes on connections,
but I’ll just make a handout which will be part of the notes. So we’ll skip
the stuff about connections for the time being. I’ll return to this part
when I’ll be discussing guage theories. So connections will be on paper,
and later we’ll spend a bit more time on connections when we talk about
Yang-Mills theory and Chern-Simons theory.
If M is a space of fields with an action of a Lie group G, you get

guage theory. Another important part of this is classical field theory
with degenerate Lagrangians. Recall that when we went from Lagrangian
mechanics to Hamiltonian dynamics, we assumed the Lagrangian is non-
degenerate. In general, you can expect that the Hessian will be of constant
rank less than the dimension of the manifold. The setup we care about
is infinite-dimensional. The nature of the problem can be understood in
finite dimensions.
First, let’s ignore the most important examples and focus again on the

very basic structures.
First let’s say something about discrete versions of connections. Let

MT be a cell decomposition of M and let Γ = (MT )
1 be the 1-skeleton

(a graph). A principal G-bundle P → MT on MT is P → V (MT ) ∼=
G × V (MT ) (non-canonically). Two different trivializations are related
by

P
∼ //

$d

$$❏
❏❏

❏❏
❏❏

❏❏
❏ G× V (MT )

≀
��

(h, v)
❴

��

G× V (MT ) (g(v)h, v)

GMT = {g : V (MT )→ G} is the discrete version of the guage group.
AGMT

= {connections on P}/GMT . A connection on P , α =

{α(e)}e∈E(Γ), with α(e) : Pe+
∼−→ Pe− a G-equivariant (with respect to

the right G action) isomorhism given by p 7→ α(e)p. Then we see
that AGMT

∼= GE(Γ)/GV (Γ); this isomorphism is the trivialization. Herer

GMT = {β(v) : Pv ∼−→ Pv G-equivariant}.

Flatness. Suppose we have two graph paths which are related by a
homotopy in the cell complex.

x

⑧⑧⑧⑧⑧⑧⑧

1
2 ....

γ1

y❄
❄❄

❄❄
❄❄
n

⑧⑧
⑧⑧
⑧⑧
⑧

. . . .
γ2

❄❄❄❄❄❄❄

KS

Given α, we can define parallel transport along γ as hγ(α) =
α(en) · · ·α(e2)α(e1). We say that α is flat if hγ1(α) = hγ2(α). In par-
ticular, if you had a connection on M which was flat in the sense of
differential geometry, the induced connection on the cell deomposition is
flat. This gives a subspace MG

MT
, the moduli space of flat connections,

inside of AGMT
, the moduli space of graph connections.

[[⋆⋆⋆ HW: MG
MT

∼= (π1(M) → G)/G (the representation variety of
the manifold) when G is a finite group.]]
These moduli spaces will appear again and again. Moduli spaces that

will be common will be [[⋆⋆⋆ something]] of 2-dimensional manifolds
M .

back to classical field theory

Let’s look at the examples of classical field theories which are finite-
dimensional but still have all the important features.
Classical Bose field on surface graphs. A surface graph Γ = (MT )

1 is
the 1-skeleton of a cell decomposition of a compact oriented manifold, pos-
sibly with boundary. When there is a boundary, we will assume that the
edges of Γ do not include the edges of (MT )

1 which are on the boundary.
The vertices of Γ will be all vertices of (MT )

1.
Recall Hamiltonian field theory. We assign to ∂M (possibly with some

special structure, such as marked boundary points) a symplectic manifold
S(∂M) and toM we assign a Lagrangian subspace of S(∂M) so that some
axioms are satisfied. We want to construct this from a Lagrangian field
theory. That is, we fix fields on M and a Lagrangian and the variational
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problem will suggest this structure and the Lagrangian subspace will be
the space of solutions to the Euler-Lagrange equations.
In our case, the special structure will be the choice of cell decompo-

sition MT and the special structure on the boundary is the induced cell
decomposition of ∂M .
The space of fields F will be maps from V (Γ) to R, v 7→ φ(v). The

Lagrangian will be

A =
∑

e∈E(Γ)

(
φ(e+)− φ(e−)

)2

ℓ(e)2
v(e)

where ℓ, v : E(Γ)→ R>) are a part of the special structure on M (“part”
of the Riemannian metric on M ; the length of the edges. v(e) is the
volume of the dual to e). For now these are just some functions.
[[⋆⋆⋆ picture]]
If φ is a smooth function on M , then we have that φ(e+) − φ(e−) ≈

ℓ(e) · ∂eφ. So the action is (in the limit where the graph fills up the
surface) ∑

e∈E(Γ)

(∂eφ(x))
2 −→

∫

M

(dφ, dφ) d2x

E-L equations of this form are solutions to the equation ∆φ = 0. It is
easy to see that

δ

∫

M

(dφ, dφ) = 2

∫

M

(dδφ, dφ)

= −
∫

M

(∆φ) δφ

This action is invariant with respect to transformations x 7→ λx (and in
fact invariant with respect to all conformal (angle-preserving) transfor-
mations).
What are the Euler-Lagrange equations for this Lagrangian? It should

be some different version of the Laplacian.

(dA[φ], δφ) =
∑

e∈E(Γ)

φ(e+)− φ(e−)
ℓ(e)2

(δφ(e+)− δφ(e−))v(e)

=
∑

v∈V (Γ)

δφ(v)
∑

e∈Sv

v(e)
(−1)(e,v)
ℓ(e)2

(
φ(e+)− φ(e−)

)

=
∑

v∈V int

δφ(v)[· · · ] +
∑

v∈V bdry

δφ(v)
φ(e+)− φ(e−)

ℓ(e)2︸ ︷︷ ︸
∗

v(e)(−1)(e,v).

Where Sv is the collection of edges adjacent to v. δφ(v) is a “vector field”,
an element of

⊕
s∈E(Γ) R = RV (Γ), with φ(v) ∈ R. (−1)(e,v) = 1 if e starts

at v and −1 if e ends at v.
So the Euler-Lagrange equations are

0 =
∑

e∈Su

v(e)
(−1)(e,v)
ℓ(e)2

(φ(e+)− φ(e−))

=
∑

w−u
v(w, u)

(−1)(w,u)
ℓ(w, u)2

(φ(u)− φ(w))

If the adjacency matrix is au,w = 0 if disconnected, −1 if connected
(or some other weight), and p if u = w. This is the determinant of
some weighted adjacency matrix. Under some assumptions, this discrete
Laplace-Beltrami operator converges to the smooth Laplace-Beltrami op-
erator.
On solutions to the Euler-Lagrange equations,

(dA, δφ) = boundary terms

= (α, δφ)

∂M 7→ S(∂M) = (
⊕

v∈∂Γ R) ⊕ (
⊕

bdryedgesΠ(e) R), with ω =∑
v∈∂Γ dφ(v) ∧ dπ(e). The Lagrangian LM is {(φ(v), π(v))|φ(v) is the

boundary of a discrete harmonic function such that π(ev) = ∗}.
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This is a finite-dimensional approximation to a very important example
in conformal field theory, the Bose field something.
(1) ω = dα̃ α̃ =

∑
v π(ev)dφ(v), and (2) α̃|L = dA.

10 PT 09-27

More examples of super Lie groups

Problem: If G 6∼= Rp|q (as a super manifold), how does one write down
µ : G×G→ G? Use the following trick.
Trick: For any super manifold S ∈ SMan, you can study the S-points

of G, G(S) = SMan(S,G). For any S, G(S) is an ordinary group. I hope
the group structure is clear:

G(S)×G(S) = SMan(S,G)× SMan(S,G) = SMan(S,G×G) µ∗−→ G(S).

Similarly, you get the inverse and identity.
Yoneda’s lemma tells us that this determines G. If you want to describe

G, it is enough to give a bunch of ordinary groups (with some naturality).
To determine GLp|q, we just need to write down the (ordinary) groups
GLp|q(S).

Definition 10.1. GLp|q(S) := GLp|q(C
∞S). That is, thinking of C∞S

as a commutative super algebra, this is the set of invertible even endo-
morphisms of (C∞S)p|q. ⋄

Now I claim that this defines the super Lie group GLp|q. We have to
check naturality.

S

f

��

G(S) = SMan(S,G)

S′ G(S′) =

f∗=G(f)

OO

SMan(S′, G)

This is clear because we get C∞S′ f∗
−→ C∞S.

Given such a collection {G(S), G(f)}, you get a functor G : SMan◦ →
Gp, but we don’t know that the induced G : SMan◦ → Set is representable.

Example 10.2. We have the functor GLp|q : SMan◦ → Gp. Is
GLp|q(S) ∼= SMan(S,GLp|q) for some super manifold GLp|q? This looks
like we’re back to where we started, but the point is that now we’re
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just looking for a super manifold (because the group structure is deter-
mined). ⋄

General setting: Yoneda embedding. If we have a category C (SMan

in our case), then we get a functor Y : C → Fun(C◦, Set) =: Ĉ given by

M 7→ (S 7→ C(S,M)) and (g : M → M ′) 7→
(
C(S,M)

g∗−→ C(S,M ′)
)
. Ĉ is

a kind of completion of C; it has all limits.

Lemma 10.3. C(M,M ′)
Y−→
∼
Ĉ(Y (M), Y (M ′)) (i.e. Y is fully faithful).

But it is not true that every object in Ĉ is in the image of Y .

Definition 10.4. An object in Ĉ is representable if it is isomorphic (in
Ĉ) to something in the image of Y . ⋄

If C is the category of finite-dimensional vector spaces, then an infinite-
dimensional vector space will give you a functor which will not be repre-
sentable.

Claim. S 7→ GLp|q(S) is representable as a domain in Rp
2+q2|2pq (the

space of all even endomorphisms of (C∞S)p|q).

We get a functor Sred 7→ GLp|q(Sred) ∼= Man(Sred, GLpR × GLqR)

induced by GLp|q, and GLpR×GLqR ⊆ Rp
2+q2 is an open subset.

We define the domain by Ured :=
{
(a, d)| det(ared), det(dred) 6= 0

}
.

This gives us a manifold representing our functor [[⋆⋆⋆ hmmm . . . flesh
out the hidden effective descent statement and topology]].

Remark 10.5. Given a super manifold M , as soon as Y (M) factors
through Gp, you have the group structure.

SMan
Y (M)

//

Ỹ (M) ##❋
❋

❋
❋

❋ Set

Gp

forget

OO

Need µ : M ×M → M , and you have M(S) ×M(S) → M(S) for each
S. Taking S =M ×M and looking at the image of the identity, you get
µ. ⋄

Definition 10.6. SLp|q(S) = {α ∈ GLp|q|Ber(α) = 1}. ⋄

You can then check that SLp|q is representable.
[[⋆⋆⋆ There is Project 3 on the website: The K-theory of a super

manifold is the same as the K-theory of the underlying manifold]]
[[⋆⋆⋆ Project 4: describe super Lie groups corresponding to Kac’s

list of simple super Lie algebras over C. After the break, we’ll see that
there always is some super Lie group giving you the super Lie algebra.]]
[[break]]
There is a theorem that any super Lie group embeds into GLp|q, so

why do need all this machinery if we’re just multiplying matrices? Well,
why do you need conceptual mathematics? If you really want to define
something precisely (physicists don’t define what a field theory is, they
just know what it is), you need some conceptual stuff. There is no natural
embedding into GLp|q.

Theorem 10.7. There is an equivalence of categories SMan ∋ G 7→
(Gred, g, gred ∼= Lie(Gred), Gred × g

a−→ g extending the adjoint action on
ge).

Theorem 10.8 (Stated in [DEF+99, Deligne-Morgan]). Fix a super Lie
group G and a super manifold M . Then there is a natural bijection

{actions M × G
r−→ M} ↔

{
actions Mred × Gred

ρ−→ Mred, Lie homo

g
φ−→ V ect(M) such that ge

φ|ge−−−→ V ect(M)e → V ect(Mred) is dρ
}

dr : g→ V ect(M).
The idea of the proof: Frobenius theorem [[⋆⋆⋆ Project 5: prove the

two theorems using the Frobenius theorem. You have to read between
the lines in Deligne and Morgan]]
If X is an ordinary manifold and ξ ∈ V ect(X), then you get a local R

action (the flow of ξ). This action is global if X is compact. So if G = R,
then the reduced action is actually redundant.

Corollary 10.9. If M is a compact supermanifold, then odd vector fields
are in bijective correspondence with actions (R1|1)×M →M . (The R1|1

has the Heisenberg group H(R0|1, b) where b is a non-zero bilinear form.
(t1, θ1) · (t2, θ2) = (t1 + t2 + θ1θ2, θ1 + θ2)).
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Proof. An odd vector field ξ ∈ V ect(M) is a Lie homomorphism from
B(1) (free Lie algebra on one odd generator, which is (1|1)-dimensional)
to V ect(M). [ξ, ξ] is an even vector field onM , so it induces a vector field
on Mred. Integrating this in the usual way, we get an action of R.

This is a funny way to do it. You should really solve some ODE with
even and odd elements. For project 5, I think you’ll have to prove this
corollary directly.
Reimundo: how do you know [ξ, ξ] 6= 0? PT: it could be zero. This is

a good case. Given ξ ∈ V ect(M)o such that [ξ, ξ] = 0 leads to an action
R0|1 ×M →M and vice versa.
So odd vector fields correspond to R1|1 actions and odd vector fields

whose bracket with themselves is zero correspond to R0|1 actions. Later,
we’ll get d ∈ V ect(πTX) (the de Rham d) from the obvious R0|1 action
on πTX = SMan(R0|1, X) induced by the action of R0|1 on itself.

14 NR 09-28

Last time I gave an example of the classical Bose field on a surface graph.
Today we’ll generalize a bit and slightly modify. Last time I arranged the
theory in such a way that the fields are defined on vertices and the edges
are not on the boundary. Another version of the same theory is where
Γ = (MT )

1 is the 1-skeleton of a cell decomposition on a 2-dimensional
compact oriented manifold. Last time I made some mistakes in the signs.
What I described last time was Gaussian field theory (or Linear field
theory, because the Euler-Lagrange equations were linear; or Free bose
field on Γ, because free propagation is described by linear equations).
Now let’s consider a more general theory. The fields are the same

(maps V (Γ)→ R), and the Lagrangian is a collection of smooth functions
Lv,w : R × R → R ((v, w) is an edge in Γ), which is assumed symmetric.
The action is given by

A[φ] =
∑

neighboring vertices v,w

L(φ(v), φ(w))

Last time, Lv,w(x, y) = (x − y)2 a(v,w)
ℓ(v,w)2 . It could be Lv,w(x, y) = (x −

y)2 a(v,w)
ℓ(v,w)2 +V (x)+V (y), in which case V (x) is called the self-interacting

potential, and this describes a wave interacting with itself.
Last time I talked about the continuum limit. In this case, ℓ(e) → 0

and a(e)→ 0. We assume φ(v) is the restriction to v of a smooth function
φ on Σ = M . Then

∑
(v,w) L(φ(v), φ(w)) →

∫
Σ

(
1
2 (dφ(x))

2 + V (φ(x))
)
.

In this case, we can compute the E-L equations.

δA[φ] =
∑

v

(∑

(v,w)

∂L
∂x

(φ(v), φ(w))
)
δφ(v)

The E-L equations are then

∑

w:w−v

∂L
∂x

(φ(v), φ(w)) = 0

for v ∈ V (Γint). A solution to the E-L equations satisfies

δA[φ] =
∑

v∈V (∂Γ)

(∑

(v,w)

∂L
∂x

(φ(v), φ(w))
)
δφ(v)
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The Hamiltonian interpretation. I’m changing things so that this will
work for all dimensions. The symplectic manifold is

S(∂M) =
⊕

v∈V (∂M)

(R[[π(v)]] ⊕ R[[φ(v)]])

with ω =
∑

v∈V (∂Γ) dπ(v) ∧ dφ(v) (this notation is a little different from

last time). It is clear that ω = dα with α =
∑
v π(v)dφ(v). The La-

grangian submanifold is

LM = {(π(v), φ(v)) ∈ S(∂M)|φ(v) is the boundary value of a soln to E-L eqns, π = ∗}

assuming the E-L equation has a unique solution ϕ for give boundary
values of φ

π(v) =
∑

(v,w)

∂L
∂x

(ϕ(v), ϕ(w)) (∗)

The 1-form α and A:
α|LM = dA[ϕ].

Remark 14.1. MT can be of any dimension. ⋄

I wanted to do discrete Yang-Mills theory, but this would just be
another example of a classical field theory demonstrating that the La-
grangian can be invariant with respect to the action of a big group. So
if you want the lagrangian submanifold LM to make sense, you have to
reduce the symplectic manifold. If it reduces to a point, you have a topo-
logical field theory, which is what happens in discrete Yang-Mills.

Quantization

I forget who said this, but some great person said, “you cannot really un-
derstand quantum mechanics; you can only get used to it”. Let’s accept
this point of view. It’s an experimental fact. What is the main concept?
You have classical observables ( smooth functions) on the phase space
M (a symplectic manifold). Somehow, this C∞M should be replaced by
some non-commutative associative algebra. Why it should be this way is

a long story, and there are still people who disagree with it. It was formu-
lated by Dirac that there should be a correspondence. Given a classical
observable f , there should be an operator f̂ which would represent f .
This is the quantum-classical correspondence. Dirac (I think) said that
these operators should satisfy

[f̂ , ĝ] = i~{̂f, g}

This is a version of the quantum-classical correspondence, but it is too
näıve to be right. Mathematically, quantization is a deformation of C∞M
(commutative algebra with {·, ·}) to a family of associative algebras.
Let me make a detour into some obvious facts about (formal) deforma-

tions of algebras. Suppose A is a commutative algebra over C. B over
C[[h]]. Ah for h ∈ [−ε, ε] is a family of deformations of A if

– Ah is an associative algebra for each h,

– A0 = A, and

– there is an isomorphism of vector spaces Ah ≃ A.

We fix such an isomorphism Ah ≃ A as part of the data. Then we have

– A a vector space over C, and

– a ∗h b a family of associative multiplications such that a ∗0 b = ab
(multiplication in A).

Q: is there some naturality condition? NR: no, right now it is very generic.
Which deformations should we consider equivalent? We say ∗h and ∗̃h
are equivalent if there exists φh : A → A a linear isomorphism such that
a ∗h b = φ−1

h (φh(a)∗̃hφh(b)).
Natural question: given a commutative associative algebra A, describe

equivalence classes of deformations.
All of these space are infinite-dimensional, and the question is too gen-

eral. There should be the condition that the multiplication is continuous
and something else is continuous and smooth. One case where it can be
answered is if A is finitely generated and has some nice properties. The
other thing we can do is do formal deformations (i.e. use formal power
series). ∗h as function of h is too difficult, so replace it by a formal power
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series and study the resulting moduli space. Formal deformations are not
studied because they are interesting (they are quite boring), but because
you can say quite a lot about them. The problem of formal deformations
was resolved in the last 15 years (first by Kontsevich, then several people
filled in the picture).
Formal deformations of commutative algebras. B = A[[h]] over C[[h]]

is a formal deformation of a commutative algebra A if (B, ∗) has an
associative multiplication (called a ∗-product)

a ∗ b = ab+
∞∑

n=1

mn(a, b)h
n.

wheremn : A⊗CA→ A extended h-linearly to B⊗C[[h]]B → B. ∗ is equiv-
alent to ∗̃ if there exists φ : B → B such that φ(a) = a+

∑∞
n=1 h

nφn(a)
such that

a ∗ b = φ−1(φ(a)∗̃φ(b)).

Claim. If ∗ is as above, then {a, b} := 1
2m1(a, b)− 1

2m1(b, a) is a Poisson
structure on A.

We can say that (A, {, }) is classical mechanics (or at least one of the
ingredients). The formal quantization deformation problem is: given
(A, {, }), classify equivalence classes of ∗-products such that this Poisson
bracket is induced by the ∗-product.
Let’s check that an equivalence doesn’t change the induced Poisson

bracket. Say a ∗ b = ab+ hm1(a, b) +O(h2), then

a∗̃b = φ−1(φ(a) ∗ φ(b))
= ab+ hm1(a, b) +

(
−φ1(ab) + φ1(a)b + aφ1(b)

)
h︸ ︷︷ ︸

symmetric

+O(h2)

since the extra linear stuff is symmetric, it doesn’t affect the Poisson
bracket.
Say (M,p) is a Poisson manifold. Say A = C∞M , with {f, g} = (p, df∧

dg). Let’s assume we want to study symmetric ∗-products, meaning

mn(f, g) = (−1)nmn(g, f)

Theorem 14.2 (Kontseveich, Rd). The space of such ∗-products modulo
equivalence is in bijection with formal deformations of p modulo formal
diffeomorphisms.

A formal deformation of p is where you try to construct

{f, g}h = {f, g}+
∞∑

n=1

hnpn(f, g)

such that {f, g}h is still a Poisson bracket on C∞M . A formal dif-
feomorphism is: given α : M → M , you get α∗(f)(x) = f(α(x)), and
we forget that this comes from a map. A formal diffeomorphism is
α : C∞(M)[[h]]→ C∞(M)[[h]] so that α(f) = f +

∑∞
n=1 h

nαn(f).
Next time I’ll continue a bit about formal deformation quantization.

Then we’ll see that there are actual examples of family deformation quan-
tization. Then we’ll return to the quantization procedure and construct
quantum obervables.
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I’ll continue with deformation quantization today. Recall that if you have
a Poisson algebra (A, {, }), then a deformation quantization of A is a
family of associative algebras Ah so that

– Ah ∼= A (as a vector space)1

– Assuming the identification Ah ∼= A, {a, b} = limh→0
a∗b−b∗a

h .

This is very hard because these spaces are typically infinite-dimensional
and it is hard to construct a family, so there is an easier version, called
formal deformation quantization.
LetM be a Poisson manifold (assumeM = Rd with some poisson vector

field p ∈ ∧2
TM), with {f, g} = 〈p, df ∧ dg〉. Consider A = C∞Rd. Then

a bidifferential ∗-product on A is a collection {mn : A⊗R A→ A} where
the mn are bidifferential operators (mn(f, g) =

∑
mαβ
n ∂αf(x)∂βg(x) for

multi-indices α and β of degree ≤ n), such that after extending mn to
A[[h]]⊗C[[h]] A[[h]]→ A[[h]] by linearity,

f ∗ g = fg +

∞∑

n=1

hnmn(f, g)

is associative. We also require that the ∗-product is symmetric, meaning
mn(f, g) = (−1)nmn(g, f). Finally, we require m1(f, g) =

1
2{f, g}.

Let φ : A[[h]] → A[[h]], with φ(f) = f +
∑∞

n=1 h
nφn(f), where φn is

a differential operator of degree at most n. We say ∗ ≃ ∗̃ if f ∗ g =
φ−1

(
φ(f)∗̃φ(g)

)
for some such φ.

Theorem 15.1 (Kontsevich). Bidifferential ∗-products up to equivalence
are in bijection with formal deformations of the Poisson bracket up to
equivalence.

A deformation of the Poisson bracket is a Poisson bracket of the form
{f, g}∼ = {f, g}+∑∞

n=1 h
2npn(f, g), where the pn are bidifferential oper-

ators of order (1, 1). We say that {, }∼ ≃ {, }≈ if {φf, φg}∼ = φ({f, g}≈)
for some φ.

1This is sometimes called a torsion free deformation quantization.

What was surprising about this theorem is that the bijection was con-
structed completely explicitly with things that look like Feynman dia-
grams. It turns out that there is a topological quantum field theory
interpretation of this result.
The value ~ is supposed to be an actual number, not a formal parameter

(~ is Planck’s constant after all, it can’t “go to zero”). Can something
measured in meters, kilograms, or whatever go to zero? No, what we
mean when we say that is that the value goes to zero relative to some
unit measure. Poincaré in some sense worked out special relativity before
Einstein, but his units were 1 = c = 2π and he didn’t have the physical
interpretation. Anyway, the point is that there are relative scales, and ~
changes value based on which scale you’re using.
Family deformations.

Example 15.2. Take M = R2, A = PolC(R2) = C[p, q] with the stan-
dard symplectic form dp∧dq giving the bracket {p, q} = 1 (this determines
the bracket). We have a natural monomial basis pnqm on A. Define

Ah = 〈p, q|pq − qp = h〉

It is clear that this is a family of algebras. To say that this is a deformation
of A, observe that pnqm is a basis Ah, and identifying the bases gives an
isomorphism θ : Ah ∼= A. Note that we could have chosen a different basis
and we would get a different ∗-product, but it would be equivalent. This
is why it doesn’t make sense to talk about individual ∗-products (rather
than equivalence classes). We also have to check that this multiplication
is compatible with the bracket. Let’s verify that {a, b} = limh→0

a∗b−b∗a
h

where a ∗ b = θ(θ−1(a) ·Ah
θ−1(b)). It is enough to check it on generators.

lim
h→0

p ∗ q − q ∗ p
h

= lim
h→0

θ
(pq − qp

h

)
= 1

⋄

Example 15.3. Take M = T ∗Rd = Rd × Rd (with coordinates pi and
qi, respectively), ω =

∑
i dpi ∧ dqi = dα, and A = PolC(Rdp) ⊗C C

∞Rdq .

Then {pi, pj} = 0 = {f, g} (for functions f, g) and {pi, f} = ∂f
∂qi .

We get the deformation quantization

Ah = 〈p1, . . . , pn, f ∈ C∞Rd|[pi, pj ] = 0, pif − fpi = h
∂f

∂qi
, fg − gf = 0〉
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Take θ : Ah
∼−→ A given by the common basis pa11 · · · pann f(q).

[[⋆⋆⋆ HW: check that this is a deformation quantization. That is,
check that {a, b} is the usual limit]]
It is easy to see that Ah can be identified with the algebra of differential

operators Diff h(R
d) (you have to scale derivatives by h, which is a non-

canonical operation).
[[⋆⋆⋆ HW (which could become a projec): if M is d-dimensional

and smooth, then C∞
pol(T

∗M) (polynomial in the cotangent direction)
has a natural deformation quantization which is the sheaf of differential
operators on M ]] ⋄

Q: what is the multiplication on Ah? NR: I’m defining Ah as a quo-
tient of the free algebra. I can consider the free associative algebra
T (x1, . . . , xn) and quotient it by some ideal, giving me an associative al-
gebra. We can deform the ideal and get a family T (x1, . . . , xn)/Ih. Then
you have to show that the different algebras you get are isomorphic; this
is why we were chosing bases. Q: by C∞Rd is infinite-dimensional. NR:
you define it as an algebra over C∞Rd. I actually assumed Ah as a space
is Pol(p1, . . . , pd) ⊗C C

∞(Rd). [[⋆⋆⋆ what is the problem? why can’t
we just say there are an infinite number of generators?]]

Example 15.4. Let g be a Lie algebra, and consider Pol(g∗) = C[g]. If
{ei} is a basis for g, then we can think of the ei as coordinate functions xi
on g∗. A theorem of Kostant, {f, g}(x) = 〈x, [df(x), dg(x)]〉, {xi, xj} =∑

k c
k
ijxk. Pol(g

∗) then gets a Poisson bracket.
We can get a deformation quantization

Ah = 〈x1, . . . , xn|xixj − xjxi = h
∑

k

ckijxk〉

Note that Ah ∼= Ug for any h 6= 0 (you just have to rescale the x’s
by h). On the other hand, Chosing the monomial basis xa11 · · ·xann in
C[x1, . . . , xn] and the PBW basis in Ah. Identifying them, we get Ah ∼=
C[x1, . . . , xn], which is how the PBW theorem is usually formulated.

Ug ∼= Pol(g∗) ∼= Sym(g)

We get a linear isomorphism θ : Ah ∼= A. It is easy to check that this is a
deformation quantization. ⋄

There are plenty of examples related to the universal enveloping al-
gebras. [[⋆⋆⋆ Project: report about various aspects of deformation
quantization.]]

Quantization of classical mechanics

I didn’t talk about all aspects of quantization, just about deformation
quantization. You may have heard about geometric quantization and
other things. I’ll return to them. I want to indoctrinate you that defor-
mation quantization is some how primal (well, not really, there is a way
to go back and forth). Geometric quantization gives you representations
of deformation quantization. There is a wonderful theorem (the GNS
construction) which does something.
Remember that in classical mechanics, we have a symplectic manifold

(M,ω) and observables C∞(M) (or some algebraic analogue). The defor-
mations we were doing were over C. So if we want to deform, we should
complexify: C∞(M)C = C∞M ⊗R C. Then we can recover the classical
obervables as fixed points of complex conjugation σ. If you open a text-
book, it will say that obervables are hermitian operators. In this case,
they are elements of this algebra. You run into the problem that the
product of two hermitian operators is not hermitian.
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Project 5 (on super group actions) use the following Fröbenius theorem:
Every involutive distribution (on a super manifold) is integrable (to a
foliation). A distribution is a sub-bundle of the tangent bundle. On a
super manifold, we have Der(OM ), which is a locally free OM -module,
and a distribution D is just a locally free submodule. If you have such a

thing, there is the Fröbenius map D ⊗OM D
[,]−→ Der(OM )/D, [X, fY ] =

X(f)Y +(−1)|X||f |f · [X,Y ]. The first term is an “error term” which is in
D, so modulo D, this map is well defined. A distribution is involutive if
the Fröbenius map is zero. A distribution D on a manifoldM is integrable
if locallyM ∼=M1×M2 where D ∼= Der(OM1). This is exactly analogous
to the classical version. You can find the proof in [DEF+99, Deligne-
Morgan].
Project 6: Formulate a theory of G-principal bundles (where G is a

super Lie group) and their connections. This is really a joint project
with Kolya’s class. A connection picks out a horizontal distribution in
P →M . A connection is flat exactly when the corresponding horizontal
distribution is involutive. The curvature is exactly the Fröbenius map.
This should be done in such a way that a representation G → GLp|q
takes a G-principal bundle P to a vector bundle E and a connection on
P to a connection on E in the following sense. A vector bundle E is a
locally free sheaf of OM -modules (you should think of this as sections of a
total space . . .making this precise will be your homework). A connection
on E is an R-linear map ∇ : E → Ω1M ⊗ E (remember that Ω1M =
HomOM (Der(OM ),OM )) such that for a section s ∈ E and f ∈ OM ,

∇(f · s) = df ⊗ s+ f · ∇(s).
Usually there would be a sign, but we require ∇ to be even. In particular,
if you have a vector field, you can use ∇ to differentiate a section of E
along the vector field:

∇X(s) = 〈X,∇(s)〉 ∈ E .
In my first class, I used the word “Quillen connection”. Let me explain

that. Given a connection ∇, you can extend it uniquely to a derivation
∇̃ : Ω∗M ⊗R E → Ω∗M ⊗R E such that

∇̃(α⊗ s) = dα⊗ s+ (−1)c-degαα · ∇(s).

The sign comes from cohomological degree (which is different from the
sign coming from parity). In the ordinary setting, you need the sign so

that the curvature ∇̃2 is OM -linear.

� Warning 11.1. Ω∗M has two gradings: (1) cohomological degree
“c-deg”∈ N0, and (2) parity |α| ∈ Z/2. The de Rham d has odd

cohomological degree, but even parity. Deligne and Morgan have a good
sign convention which doesn’t mix the two gradings: Ω∗M is a Z-graded
object in the category of super algebras. y

Definition 11.2. A Quillen connection on a super vector bundle E is a
∇̃ satisfying ∇̃(α ⊗ s) = dα⊗ s+ (−1)c-degαα · ∇̃(s). ⋄

Today I want to explain zero dimensional quantum field theories, but
you won’t know it yet because we haven’t said what a quantum field
theory is. Recall that if you have a category C (which will be SMan soon)
and if you have Y, Z ∈ C, then you’d sometimes like to have an inner
home C(Y, Z) ∈ C so that you get natural isomorphisms

C(X × Y, Z) ∼= C(X, C(Y, Z)).

(here we assume C has products; in general you can use some other
monoidal structure).

Remark 11.3. The adjunction defines a functor C◦ → Set for a given Y
and Z. Then you can ask if the functor is representable. ⋄

Take C = Man. Is there an inner hom? Only when one of the man-
ifolds has dimension 0. If you extend your category to include infinite-
dimensional manifolds, then you get an inner hom.

Theorem 11.4. If M ∈ SMan, then SMan(R0|1,M) exists and is iso-
morphic to πTM (by the way, it exists for R0|q for any q). That is, there
are natural isomorphisms

SMan(S × R0|1,M) ∼= SMan(S, πTM).

We’ll call R0|1 a “super point”, and we’ll call πTM the “odd tangent
bundle”. The caveat is that you need to know what πTM is as a super
manifold. [[⋆⋆⋆ current HW2 covers this. If E is an OM -module, you’ll
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figure out how this leads to a super manifold E with a morphism E →M
so that E is locally isomorphic to p1 : U × Rp|q → U .]]
[[break]]
Statement of HW2: E a locally free sheaf of dimension (p|q) over OM

(think E = Γ(πTM)). Define a morphism E
p−→ M which locally looks

like p1 : U × Rp|q → U . There are two approaches:
(Approach a) OE is a completion of Sym∗

OM
E . If M is an ordinary

manifold and E is an ordinary vector bundle, then we did something
which produced a super manifold whose sections were Sym∗ E .

Definition 11.5. If E is an A-module, then you can form SymA E , the
free (commutative) A-algebra on E . That is,

SAlg(SymA E , B) ∼= A-mod(E , Bforget). ⋄
This gives me things which are polynomial on the fibers. SymR(V

∗) is
polynomials on V . This is why you need to complete: the smooth func-
tions are the completion of polynomial functions (in the Frechét topology).
If F and M are ordinary things, then we defined a super manifold πF .

We said that C∞(πF ) :=
∧∗

OM
(F ).

Definition 11.6.
∧∗
A E := SymA(πE). ⋄

Q: Something is funny . . . . PT: I’m using the sign convention where
there is only one grading, which mixes the cohomological degree and the
parity.
Sign convention for today: add the parity and cohomological degree to

get a single sign. For example,
∧∗
A E is just a commutative super algebra.

Now the two π’s are consistent. What we did a month ago is the
special case where M and F are ordinary things, and F := πE. For the
projection, I just have to remember the OM -module structure.
(Approach b) Functor of points approach. Define

SMan(S,E) := {(f, s)|f ∈ SMan(S,M), s ∈ f∗(E)e}.

f∗E

��

//

·
E

p

��

S
f

//

s

BB ==③
③

③
③

③
M

Proof of Theorem 11.4. Pick S ∈ SMan.

SMan(S × R0|1,M) ∼= SAlg(C∞M,C∞S ⊗ C∞R0|1) (for convenience)
∼= {(f, s)|f ∈ SAlg(C∞M,C∞S),

s : C∞M → C∞S odd derivation w.r.t f}

Since C∞R0|1 ∼= R[θ]/θ2, the tensor in the first line is an algebraic tensor
product. Given φ ∈ SMan(S × R0|1,M), I can write φ = f + θs. The
condition that φ is an algebra map: φ(ab) = f(ab) + θs(ab) for functions
a, b, so I have φ(a)φ(b) = (f(a) + θs(a))(f(b) + θs(b)) = f(a)f(b) +
θ(s(a)f(b) + (−1)|a|f(a)s(b). So f must be an algebra map and s is a
derivation as desired.
We’ll have to finish the last step on Thursday.
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Last lecture we looked at the following problem: (1) a Feynman diagram
represents a product of propagators (one for each line). The problem is
that propagators have singularities, which make it difficult ot multiply
them. There is one easy case when you can multiply them (when they
have disjoint singular supports), but this is not refined enough for us. We
saw that you can sometimes multiply two distributions even when they
are singular in the same place.
Question: when can you multiply two distributions f and g at a point

x? Answer: whenever the wave front sets at x travel in roughly the same
directions.
What is a waved front set of a distribution f? A crude measure of

singularities: look at singular points of f . The wave front set is a subset
of the cotangent space at each singular point. PT: how are you thinking
of these distributions? As functions which are allowed to blow up? RB:
yes, that is a good approximation, and the singular set is the set of points
where f cannot be written as a smooth function. A compactly supported
distribution f on Rn is smooth (at all points) is equivalent to saying that

the Fourier transform f̂ is rapidly decreasing. Now we can ask, “in which
directions is f̂ NOT rapidly decreasing?” These directions somehow tell
you the “directions in which the singularities are going”. Such a direction
is an element of the dual of Rn.

Definition 6.1. The wave front set of f at x ∈ Rn:

1. localize f at x: multiply f by a smooth compactly supported bump
function u with u(y) = 1 for y near x.

2. look at the Fourier transform f̂u of fu. This is a function on the
cotangent space of x

The wave front set of f at x is given by intersection over all u of the

directions in T ∗
x near which f̂u is NOT rapidly decreasing. ⋄

This makes the wave front set of f a conical subset of the cotangent
space of Rn

The singular points are just those such that there is a non-zero element
of the wave front set in the cotangent space at that point. Some authors

say you shouldn’t count the zero covector as being in the wave front set,
but sometimes it is handy to include the zero covectors.
We can multiply f and g provided there is no point x and vectors

v ∈ WF (f)x and w ∈ WF (g)x with v + w = 0 with v, w 6= 0. WF (f)x
is a cone and WF (g)x is a cone. If the cone generated by WF (f)x and
WF (g)x is a proper cone, then we can multiply f and g. This also works
for collections of distributions [[⋆⋆⋆ because the wave front set of the
product is contained in the cone generated by the wave front sets of the
factors?]].
What are the wave front sets of our propagators? There are six dif-

ferent propagators because there are six interesting choices of wave front
sets. The singular points all lie on norm zero vectors (points in the usual
cone). We can think of the cotangent space as the tangent space, which
inherits the metric. It turns out that the vectors of the wave front sets
are cotangent vectors of norm zero (they lie on the cone in the cotangent
space).
Possible wave front vectors p: (x > 0 or x < 0) × (p > 0 or p < 0)

(there is also x = 0, but that is a really bad guy). We can tweak our
propagators so that that the wave front set vanishes in two of these four
regions. This gives us

(
4
2

)
= 6 possibilities.

(1) Advanced, Retarded propagators. These had the property that the
support is contained in a closed cone, so all the singularities are in that
cone, so these are the cases where the wave front sets lie in (x < 0) or
(x > 0). These don’t occur in quantum mechanics because the wave
front sets where these are singular are going in all directions, so you can’t
multiply them together on the light cone. So advanced and retarded
propagators are good for classical mechanics, but not for quantum.
(2) Cut propagators. These have the property that the Fourier trans-

forms ∆̃ have support on one of the two hyperboloids of revolution of
p2 = −m2 (i.e. one of the sheets of the usual hyperboloid). This is
rapidly decreasing except in directions p2 = 0 with p > 0 (or p < 0) (this
is because we’re supported on the sheet, so in any other direction, you’re
eventually zero). So the wave front sets have p > 0 (or p < 0). Note that
you can multiply a cut propagator by itself as much as you want because
the wave front sets always go in the same direction.
(3) Feynman propagators ∆. In this case, ∆ is equal to a cut propagator

except in the negative cone (since ∆ is a cut propagator plus the retraded
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propagator), so ∆ has the same singularities as the cut propagator except
in the negative cone. However, ∆ is equal to the other cut propagator
except in the positive cone (using another relation), so in the positive
cone it has the same singularities as the other cut propagator.
Possible wave front sets of propagators:
[[⋆⋆⋆ picture]]
We can multiply Feynman propagators by themselves everywhere ex-

cept at zero, which is why we get ultraviolet divergences.
Now let’s try to evaluate some Feynman diagrams: put a Feynman

propagator at each edge and try to multiply them together. By the way,
we haven’t specified the directions of the edges, but since the Feynman
propagators are invariant under multiplication by −1, we’re fine.
[[⋆⋆⋆ x y connected by two edges]]
This is ∆(x − y)2, which is defined except at x = y. If we require

translation invariance, this implies that the ambiguity is a distribution
on Rn × Rn/Rn with support at a point, given by the diagonal mod Rn.
Distributions supported at a point are really easy to deal with.
[[⋆⋆⋆ complicated picture]]
Suppose not all points are the same, and suppose it is connected. We

can choose x and y which are joined by a line L. Let F be the diagram
minus this line, so the diagram is F ∪L. A distribution of F ∪L should be
the distribution of F times ∆(x − y). When is this well defined? Check
it is well defined by looking at the wave front sets. For this we need to
know about the wave front set of a diagram, which we should be able to
do inductively.
Suppose (p1, . . . , pk) is in the wave front set of a Feynman diagram at

the point (x1, . . . , xk) ∈ (Rn)k.

Theorem 6.2. If xi is a minimal1 point with
∑

xj=xi
pj 6= 0, then∑

xj=xi
pj < 0. If xi is a maximal point with

∑
xj=xi

pj 6= 0, then∑
xj=xi

pj > 0

Wave front set of ∆ over a typical point (x1, . . . , xn) (with x1 > x2)
looks like (p,−p, 0, 0, . . . , 0), p > 0. Wave front set of a Feynman diagram
F must contain (−p, p, 0, . . . , 0) for the product not to be defined, but

1Space time is partially ordered: x < y means we can send a signal from x to y.

this contradicts the condition satisfied by the wave front set of a Feynman
diagram (the theorem).
We also need to check that the wave front set of F ·∆ also satisfies this

condition. For this you need to know the wave front set of a product. Use
the fact that the wave front set of a product of distributions at a point
is contained in the sum of their wave front sets. It is then a fairly easy
exercise to check the condition [[⋆⋆⋆ HW: do this exercise, proving the
Theorem]].
The result is that we can define each Feynman diagram up to addition

of a distribution that is (1) supported on the diagonal and (2) translation
invariant. This is effectively a distribution supported at a point (the
point diagonal/translations in (Rn)k/translations). PT: so there are only
problems when all the points of the Feynman diagram are the same? RB:
That’s right.
Distributions with support at 0 ∈ Rn are just given by polynomials in
∂
∂xi

applied to the Dirac delta function. The Fourier transform is therefore
a polynomial in p1, . . . , pn. So the ambiguity in the result is a polynomial
in momentum. It will turn out that the amibuity will be closely related
to what physicists called “counterterms”.
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Last time I gave examples of deformation quantization. Now I want to
discuss the states in quantum mechanics. Before that let’s discuss one
more example.
By C(M) we mean the algebra of obervables (if M is T ∗N , this will be

polynomial in the cotangent direction and smooth on N ; ifM is algebraic,
this will be algebraic functions; of it might be C∞M). This is an algebra
over R, but all of our deformations were over C. The first step in quanti-
zation is to complexify the algebra of obervables, then C(M)R ⊆ C(M)C
is the fixed point set of complex conjugation σ. Then we form the defor-
mation Ah (with the first jet given by the Poisson bracket). We need one
more ingredient in the quantum case, which is the ∗-involution. There
is a bit of confusion here; this is different from the ∗-product, so I’ll use
σ when there could be confusion. σ : Ah → Ah is an anti-C-linear anti-
involution, so σ(fg) = σ(g)σ(f), σ(λf) = λ̄σ(f), and σ2 = id. Recall
that we imposed the assumtion that Ah ∼= C(M)C. This is actually a
very strong assumption. In general you get a sequence of matrix algebras
and the best you can hope for is that as h goes to zero, you get some
kind of isomorphism. Let’s ignore this for the moment and assume this
torsion free hypothesis. Finally, we need to require that Aσh

∼= C(M)
as a real vector space (this should be the restriction of the isomorphism
Ah ∼= C(M)C), so we get a deformation of the whole structure. In this
case, Aσh is called the quantum space of obervables. PT: it’s not an algebra
any more. NR: that’s right. If A,B are hermitian operators on a Hilbert
space H , then AB is not hermitian, but AB+BA is and i(AB−BA) is.
These are the two structures on A. This is the structure of a Lie-Jordan
algebra on Aσh (I think just the first one gives a Jordan algebra). The
traditional abuse of language is to say that Ah is the quantum algebra
of observables, but not all of it’s elements are observables. PT: why do
we classically want obervables to be an algebra? Bruce/NR: for example,

energey E = p2

2m .
Now we have a family of associative algebras Ah. The first question

you should ask is, “what are isomorphism classes of irreducible repre-
sentations, and what is the structure of its representations?” We have
more than an algebra structure, we also have σ. In this setting, there is
a natural notion of Hermitian (or unitary, or ∗-) representation. A rep-

resentation is a homomorphism πh : Ah → End(V ). To have a notion of
a hermitian conjugate in V , we have to choose a hermitian bilinear form
(a bilinear form on V so that 〈x, y〉 = 〈y, x〉 and 〈x, x〉 > 0 for x 6= 0).
This gives us a norm ‖x‖ = 〈x, x〉. We can complete V with respect to
this norm to get a Hilbert space H = V .

Definition 16.1. A σ-representation of Ah in (H, 〈, 〉) is a representation
πh : Ah → End(H) such that πh(σ(a)) = πh(a)

∗, where A∗ of A is defined
by 〈A∗x, y〉 = 〈x,Ay〉. ⋄

If f is a classical observable, we represent it as πh(f̂), a hermitian

operator on H , where f̂ is the image of f under the isomorphism C(M) ∼=
Ah.
Assume that πh(Ah) ⊆ B(H) (bounded operators on H). This is a

common assumption (but rather brave, and not usually true). B(H) is an
algebra with ∗-involution (hermitian conjugation). This is the motivating
example for the notion of a C∗-algebra. Andy: are you assuming you
have a πh for each h? NR: yes, and we’re assuming h ∈ R. In geometric
quantization, h = 1/m for m ∈ N.

States

Now let’s move on to states. I want to deliver the intuitive notion of a
state in quantum mechanics. This can be extended to the notion of a
state on a C∗-algebra.

Definition 16.2. A is a trace-class operator in H , if
∑∞

n=1 |(Aen, en)| <
∞ for any orthogonal basis {en} of H . In this case, define trA :=∑∞
n=1(Aen, en). ⋄

Theorem 16.3. —

1. B1(H), the space of trace-class operators on H, is a Banach space
with ‖A‖ = tr(

√
A∗A.

2. B1(H) ⊆ B(H) is a two sided ideal.

3. tr(AB) = tr(BA) for A ∈ B1(H) and B ∈ B(H).
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Any A ∈ B1(H) defines a linear functional on B(H), given by ℓA(B) =
tr(AB). [[⋆⋆⋆ check that AB is a trace-class operator]]

Definition 16.4. For A ∈ B(H), the spectrum σ(A) = {z ∈ C|A− zI is
not invertible}. ⋄

If A = A∗ (i.e. if A is hermitian), then σ(A) ⊆ R.

Definition 16.5. A hermitian operator A is positive if σ(A) ⊆ R≥0. ⋄

Let ρ ∈ B1(H) be a positive trace-class operator which is normalized
(i.e. tr ρ = 1).

Definition 16.6. The linear functional ℓρ(A) = tr(ρA) is a state on
B(H) and ρ is called the density matrix of this state. ⋄

You can extend this definition to any operator for which this linear
functional is finite.

Definition 16.7. ℓρ is a pure state if ρ = Pψ is the orthoginal projection

to ψ ∈ H (i.e. Pψ(φ) =
〈φ,ψ〉
‖ψ‖ ψ). ⋄

So every vector ψ ∈ H defines a pure state. There is a natural action
of S1 on H , given by x 7→ zx where |z| = 1. The orthogonal projection
is invariant with respect to this action, so when you pass to pure states,
you get this extra structure.
Let Sun(H) be the space of states (i.e. the subspace of B(H) of positive

trace class operators).

Proposition 16.8. Sun(H) ⊆ B(H) is a positive cone. That is, (1) if
ρ1, ρ2 ∈ Sun(H) (the ρs are the density matrices), then ρ1+ρ−2 ∈ Sun(H)
(for 0 < α < 1, (2) if ρ ∈ Sun(H), then tρ ∈ Sun(H) for t ∈ R>0, and
(3) Sun(H) ∩ (−Sun(H)) = {0}

S(H) ⊆ Sun(H), the space of normalized positive trace-class operators
(states) is a convex subset in Sun(H). That is, ρ1, ρ2 ∈ S(H) implies
αρ1 + (1 − α)ρ2 ∈ S(H) for 0 ≤ α ≤ 1. Pure states are the extremal
points of S(H).

Example 16.9. Assume ψ1, . . . , ψN is an orthonormal system. Assume
that ρ =

∑N
n=1 ρnPψn . ρ is a state if and only if ρn > 0 and

∑
ρn = 1.

In this case, we can interpret ρn as the probability that the mixed state
ρ is in the pure state Pψn during the obervation.
Definition: the expectation value of an observable A in a state with

density ρ is 〈A〉ρ = tr(ρA).

A = A∗ is an observable. Say that A =
∑M

n=1 anPφn (A has finitely

many eigenvalues for simplicity). Then 〈A〉ρ =
∑N
n=1 ρn(Aψn, ψn) =∑N

n=1

∑M
k=1 ρnak|(φk, ψn)|2. This says that ρn is the probability that the

system will be found in the pure state Pψn . |(φ, ψ)|2 (≤ 1 since φ and ψ
are normalized) is the probability that a system in the pure state ψ can
be found in the pure state φ.
Then

∑N
n=1 ρn|(φ, ψn)|2 is the probability in a mixed state ρ can be

found in the pure state φ. ⋄

Under certain reasonable assumptions, we will have that if ρ = e−βHh

(Hh hermitian converging to something), then tr(ρ · πh(f̂)) converges as
h goes to zero to 1

(2πh)n

∫
M
e−βH(x)f(x)ωn.
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Theorem 12.1. If M is a super manifold, then SMan(R0|1,M) ∼= πTM .
That is, there is a natural isomorphism SMan(S, πTM) ∼= SMan(S ×
R0|1,M).

This theorem will explain zero dimensional quantum field theory. I
haven’t quite explained what πTM is, but the homework shows that

for any locally free sheaf of modules E , there is a total space E
p−→ M

such that SMan(S,E) = {(f, g)|f ∈ SMan(S,M), g ∈ (f∗E)e} for any
super manifold S. In particular, taking E = πDer(C∞M), we get E =
πTM . In particular, the homework shows that these functor are actually
representable by a super manifold. We did part of the proof last time,
but let’s start over.

Proof. Pick S.

SMan(S × R0|1,M) ∼= SAlg(C∞M,C∞S ⊗ C∞R0|1)
∼= {(f, g)|f ∈ SAlg(C∞M,C∞S),

g : C∞M → C∞S odd derivation }
∼= {(f, g)|f ∈ SMan(S,M),

g ∈ Γ(f∗TM)odd = Γ(f∗πTM)ev}
∼= SMan(S, πTM)

Let φ ∈ SAlg(C∞M,C∞S⊗C∞R0|1), then φ = f + θg for f, g : C∞M →
C∞S. Saying that φ is a super algebra homomorphism says that

f(ab) + θg(ab) = φ(ab)

= φ(a)φ(b)

=
(
f(a) + θg(a)

)(
f(b) + θg(b)

)

= f(a)f(b) + θ
(
g(a)f(b) + (−1)|a|f(a)g(b)

)

Comparing coefficients, we get that f ∈ SAlg(C∞M,C∞S), and that
g(ab) = g(a)f(b) + (−1)|a|f(a)g(b), which is equivalent to saying that
g : C∞M → f∗C∞Sf∗ is an odd derivation (we’re thinking of C∞S as a
C∞M -bimodule via f).

For the third isomorphism, we’re using the fact that

f∗TM //

��

·
TM

��

S
f

// M

Γ(f∗TM) = Γ(TM) ⊗(C∞M,f∗) C
∞S. This works for any bundle, but

there is a lemma that Γ(TM)⊗(C∞M,f∗) C
∞S ∼= Der(C∞M, f∗C∞Sf∗).

The last isomorphism follows from the homework. I’m not going to
check the naturality, but everything we did was totally obvious.

πTM is the odd tangent bundle. Writing it as in the theorem, we get
an action of R0|1 on πTM . Today we’ll try to understand the action of
Aut(R0|1) on πTM . Let’s first understand the endomorphisms group.
Note that by the theorem SMan(R0|1,R0|1) ∼= πTR0|1 = R1|1 (over R0|1

there are no twisted bundles; one of the projects is to show that bundles
over a super manifold are the same as bundles over the reduced manifold).
Now the super Lie group Aut(R0|1) is R0|1 ⋊R× (odd translations times
even nonzero dilations).

Theorem 12.2. For any super manifold M , there is an embedding
Ω∗M →֒ C∞(πTM) with image the fiberwise polynomial functions such
that

(a) the infinitesimal generator of the odd translations extends the de
Rham d (using the convention that adds the two gradings). This is
the first time that this super stuff has given us a better understanding
of something classical.

(b) the (even) R× action restricts to the grading operator on Ω∗M . That
is, for λ ∈ R× and ω ∈ ΩkM , we have that λ∗(ω) = λkω.

IfM is an ordinary manifold, this is the definition [[⋆⋆⋆ I missed the
explanation]]. In general, C∞(πTM) is the completion of

∧∗
OM

(πTM)
(the theorem is that this is isomorphic to Ω∗M).
If you don’t know anything about the de Rham d, this defines it for

you. The best property it has is that d2 = 0. This means that [d, d] = 0,
which just says that translation commutes with translation. From (b),
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we can see that d has cohomological degree 1 (this is equivalent to saying
that dilations and translations commute the way they do).
[[break]]
Now we’ll prove the theorem using local coordinates, and leave it as an

exercise that the proof works globally.

Proof. Consider the case M = U ⊆ Rp|q a domain, with coordinates xi
and ηj on Rp|q. Then [[⋆⋆⋆ PT: this is actually a third way to under-
stand the total space; by gluing]] πTU ∼= U × Rq|p, with coordinates η̂j
and x̂i on Rq|p (these are just totally different coordinates, not operators
or anything like that). Note that xi and η̂j are even and x̂i and ηj are
odd. If we don’t need to separate the xs and ηs, then we’ll write yk to
mean xk or ηk−p (if k > p). Now I’ll write the isomorphism from the first
theorem in local coordinates.

SMan(S, πTU)
HW∼= {(Xi, Hj , Ĥj , X̂i)|Xi, Ĥj ∈ (C∞S)e such that

Xi(s) ∈ |U |, X̂i, Hj ∈ (C∞S)o}

SMan(S × R0|1, U)
HW∼= {X1 + θX̂1, . . . , Xp + θX̂p ∈ C∞(S × R0|1)e

H1 + θĤ1, . . . , Hq + θĤq ∈ C∞(S × R0|1)o s.t. . . . }

The notation presents the isomorphism of the first theorem for you.
(a) (Right) translation action of R0|1 ⊆ Aut(R0|1) (coord η, the coordi-

nate on the R0|1 in S×R0|1 is θ). The group law R0|1×R0|1 → R0|1 is given
by (θ, η) 7→ θ+η. On the coordinates of πTU , you get πTU×R0|1 → πTU ,
given by (yk, ŷk, η) 7→ (yk + ηŷk, ŷk). Xi + θX̂i 7→ Xi + (θ + η)X̂i =
Xi+θXi+ηX̂i. yk is just Xi, which goes toXi+θ0 7→ Xi+(θ+η)0 7→ Xi.
if yk is X̂i, then it goes to θX̂i 7→ (θ + η)X̂i 7→[[⋆⋆⋆ ]].
We have to differentiate this action with respect to η. This gives a

vector field D on πTU , which is given by D(yk, ŷk) = (ŷk, 0). So in local
coordinates, we get D =

∑
k ŷk∂yk .

Claim. The embedding i : Ω∗M →֒ C∞(πTM) is given by taking yk 7→
yk, and dyk 7→ ŷk. These two determine the map i.

From this we can see that D comes from
∑p+q

k=1 dyk∂yk , which is just
the de Rham d.

Maybe I shouldn’t start this again on Tuesday. Let’s call this done.
Part (b) is way easier, so I’ll leave it as an exercise (I don’t want to make
it a homework).



17 NR 10-05, v. 10-4 76

17 NR 10-05

Last time I introduced the notion of a state with density matrix ρ. The
definition should be that a state with density ρ is the linear functional
ℓρ(A) = tr(ρA), with ρ positve . . . . More generally, we have Aσh ⊆ Ah.
Under extra assumptions, we can define a postive subspace A+

h ⊆ Aσh
(e.g. in a C∗-algebra, this could be the set of A with σ(A) > 0). In this
case, a state is a positive linear functional on Aσh, which means that (1)
ℓ(A) ≥ 0 for every A ∈ A+

h , and (2) ‖ℓ‖ = 1, which implies that ℓ(1) = 1.
The truth is that we will never use this more general context. In the
context of C∗-algebras, the GNS construction constructs a representation
out of linear functionals, so these are more or less the same [[⋆⋆⋆ ]].

More on the probablistic interpretation

Remark 17.1. Suppose Pφ and Pψ are two pure states (orthogonal
projections to φ, ψ ∈ H , respectively), then we can compute 〈Pφ〉ψ =
tr(PφPψ) = |(φ, ψ)|2 = 〈Pψ〉φ, the probability that a system in pure state
Pφ is found in the state Pψ. This is the nature of quantum mechanics,
that even when you’re in a pure state, there is still a probability that
you’re in some other pure state. ⋄

If A = A∗ on Cn, it has n eigenvalues, which we can order increasingly.
Then we have the orthogonal projections Pφi to the corresponding eigen-
vectors: PφiPφj = Pφiδij . The theorem says that A =

∑n
i=1 aiPφi . How

do we generalize this to some Hilbert space instead of Cn.
When the spectrum is discrete, we should replace the finite sum by an

infinite sum. When the spectrum is continuous, we should get a direct
integral.
(1) Projection valued measures on R are maps P : (Borel subsets)→

B(H) such that

– P (E)∗ = P (E), P (E)2 = P (E) for E ⊆ R,

– P (∅) = 0, P (R) = I, and

– if E =
⋃∞
n=1En, then P (E) = limn→∞ P (En).

P has the meaning: it is the sum of those projections for which the
eigenvalue fall into the set E.
(2) Projection valued distributions. Given such a P , P ((−∞, λ)) =

P (λ) has the properties

– P (λ)P (µ) = P (min{λ, µ}),

– limλ→−∞ P (λ) = 0, limλ→+∞ P (λ) = I,

– limµ<λ,µ→λ P (µ) = P (λ).

Theorem 17.2 (von Neumann). For any self-adjoint A : H → H, there
exists a unique P such that

1. D(A) = {φ ∈ H |
∫
R
λ2d(PA(λ)φ, φ) < ∞} (the domain of A, the

subspace of H where A is defined), and

2. Aφ =
∫
R
λdPA(λ)φ for φ ∈ D(A).

The moral: if we are careful, we can treat operators on Hilbert space as
if they are self adjoint something [[⋆⋆⋆ ]].
Given a state ℓρ(A) = tr(ρA), we have the distribution of values of an

observable A in the state ℓρ defined as follows:

– µA,ρ is a measure on R,

– µA,ρ(E) is the probability that “A takes values in E”.

– (definition) µA,ρ(E) := tr(ρ · PA(E)).

Classical case: we have M2n with symplectic form ω, so we have a
measure ωn. A state is a probabilistic measure on M2n. A state with
density ρ (ρ a distribution on M2n) is ℓρ(f) =

∫
M2n

f(x)ρ(x)ωn. Then I

defined µρ(E) =
∫
f−1(E) ρ(x)ω

n =
∫
M χf−1(E)(x)ρ(x)ω

n.

For a pure state, ρ is just a delta distribution at a point. In statistical
mechanics, a typical ρ is ρ(p, q) = e−E(p,q)/T .
That’s not the end of the probabistic interpretation. There is something

called the Uncertainty principle. We already defined the expectation value
of A in state ρ, 〈A〉ρ = tr(ρ · A) = ℓρ(A). We can define the dispersion
σ2 = 〈(A− 〈A〉ρ)2〉ρ.
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Theorem 17.3. If ρ is a pure state, ρ = Pψ for ψ ∈ H, then
σ2
ρ(A)σ

2
ρ(B) ≥ 1

4 〈i[A,B]〉2ρ.

Proof. [[⋆⋆⋆ very nice HW exercise.]]

If we have two quantum observables, then you cannot measure them
at the same time. Once we measure, then we know the value of the
observable. This theorem tells us that we cannot narrow the disperssions.
Two noncommuting observables cannot be in the same pure state.
Assume Aφ = aφ for some A = A∗, so a ∈ R. Then 〈A〉Pφ

= tr(PφA) =
a, and σ2

Pφ
(A) = 〈(A − a)2〉Pφ

= tr(Pφ(A − a)2) = 0. This means that if
a pure state is an eigenvector of the observable, then A has the precise
value a in this state—there is no dispersion. If some other B doesn’t
commute with A, then since σ2

Pφ
(B) is finite, we get that 〈i[A,B]〉Pφ

= 0.

If you have pi, qi coordinates on T
∗Rn, we have [pk, qℓ] = −i~δkℓ.

Summary: We have the notion of quantization of classical observables.
C∞M (or C(M)) can be quantized to Ah, a family of associative algebras
over C, with a C-anti-linear anti-involution σ. We have the real subspaces
Aσh ⊆ Ah. We have states, linear functionals on the algebra of observables
which are positive on the positive cone. States are defined by density
matrices for a given representation of Ah in H .
Quantization is not a functor; the functor goes the other way. You can

take classical limits. The states that survive when you take the classical
limit are the classical states.

Qunatization of Hamiltonian dymanics

So far I completely ignored the dymanics. On the classical level, with
C∞M , we are given H ∈ C∞M . This gives us vH = ω−1(dH), and
evolution dft

dt = {H, ft}, with f0 = id and ft(x) = f(xt). This gives us

Ah, with Hh ∈ Aσh, and evolution ihdftdt = [H, ft], with f0 = f . This is

R ×Ah → Ah, f 7→ ft, is an automorphism of At. If exp( ithHh) = U(t)
makes sense, then f(t) = U(t)fU(t)−1. This is the Heisenberg picture.
If we have a representation πh : Ah → End(H), then the Hamilto-

nian evolution induces the Schrödinger picture: evolution of vector in H :
ψ 7→ ψ(t) = e

it
h π(H)ψ. More precisely, it is the solution to the infinite

dimensional ODE ihdψt

dt = πh(H)ψt with ψ0 = ψ.

What is the moduli space of these deformations? We can answer this
for formal deformations.
We can require that as h goes to 0, Hh goes to H . However, therer is

still no canonical quantization of a given system. If you have an integral
system, then you do get some kind of functoriality in quantization.
This finishes up quantum mechanics in general. Next time we’ll talk

about quantum mechanics on R2n.
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Remember that if you have a pure state ψ, then σ2
ψ(A)σ

2
ψ(B) ≥

1
4 〈i[A,B]〉2ψ . There was a question last time. Imagine that M = R2, so

the corresponding algebra is Ah = 〈p = −ih ∂
∂q , C

∞(R)〉, so p̂ = −ih ∂
∂q ,

q̂ = q, and H is L2(R). We can choose pure states to be ψε(q) =

cε exp
(−(q−q0)2

ε

)
. This is a sequence of functions which concentrate to

q0 (converge to the delta distribution at q0, which is not in the Hilbert
space), with ‖ψε(q)‖2 = 1. We have that 〈q〉ψε = q0, and 〈σ2(q)〉ψε → 0
as ε → 0. So by the uncertainty principle, σψε(p)σψε(q) ≥ h

2 . As ε → 0,
σψε(p)→∞ and σψε(q)→ 0.
If you open a physics text book, eipx = |p〉 is presented as a state with

momentum p, but this doesn’t make sense because it is not normalized.
What you should really do is make a sequence of L2 states that have more
and more localized momenta. If you have an operator on the real line, say
d2

dx2 , then you have eigenfunctions, like eipx, but [[⋆⋆⋆ something about
turning the operator into the operator p2]]. You can have such states if
you are working on ℓ2(Z) instead of L2(R).
There are two types of evolution: Heisenberg and Schrödinger evolu-

tion. The Heisenberg evolution is a dynamics on Ah given by ih∂f∂t =
[Hh, ft], where Hh is the quantum hamiltonian, and Hh → H as h → 0
via the identification Aσh ∼= C(M). Schrödinger evolution is a dynam-

ics on a representation H of Ah, given by ih∂ψt

∂t = π(Hh)ψt, where
π : Ah → End(H) is a ∗-representation on a hilbert space H .
If you take the Heisenberg algebra and impose the natural ∗-involution

(p∗ = p, q∗ = q), then there is some theorem which gives you an equiv-
alence between these two. In general, Heisenberg evolution induces a
Schrödinger evolution, but they are equivalent on T ∗Rn.
Standard problems in quantum mechanics. In general, we don’t know

what Hamiltonian to choose. If H is the classical hamiltonian, we could
choose anything like H + o(h). Using some context, there is usually a
natural choice.

– Given Hh, find the spectrum of Hh. This is the quantum analogue
of describing values of H . This is a stationary problem; there is not
time dependence.

– Scattering. This is the quantum analogue of a classical scattering

problem. Imagine H =
~p21

2m1
+

~p22
2m2

+ · · ·+V (~q1, ~q2)+ · · · , so there are
some interaction terms. You can imagine some particles (or stars,
for example) coming in, doing something, and then some particles
(or stars) are trapped in the interaction area, and some particles fly
out. This is a non-stationary problem. In the quantum case, we
should assume that as t → −∞, ψt → ψih(t) should be some states
with non-interacting particles (a typical example of such a state is
exp(i~p~x + iEt); since we want to satisfy the Schrödinger equation,

E = p2

2m ). Now describe the outgoing asymptotics (as t→ +∞).

Quantization of T ∗Rn

In this case, M = R∗Rn ∼= R2n, with coordinates p and q as usual, with
the standard symplectic form ω =

∑
dpi ∧ dqi. The algebras of functions

are Pol(R2n) ⊆ C∞
pol(R

2n) ⊆ C∞(R2n) (the middle one is polynomial
functions in the cotangent direction). In this situation, we can actu-
ally construct families of ∗-products. Remember that a ∗-product is not
unique; you can apply any automorphism which becomes the identity at
h = 0. Let me describe two of these star products.
(1) Weyl quantization (Weyl ∗-product).

Theorem 18.1. The operation (f1 ∗ f2)(p, q) =
1

(πh)2

∫
R2n

∫
R2n f1(p1, q1)f2(p2, q2) exp

(
4i
ℓ

∫
∆
ω
)
dp1dq1 where ∆ is

the Euclidean triangle with vertices (p, q), (p1, q1), and (p2, q2), is a
family of associative products on C∞(R2n).

Proof. [[⋆⋆⋆ HW: prove it (i.e. prove associativity)]]

[[⋆⋆⋆ HW; prove that f1 ∗ f2 = f1f2 − ih
2 {f1, f2}+ o(h2).]]

Similar thing can be used to quantize Kähler manifolds, but for com-
pact Kähler manifolds, you don’t get a family. There is something
called deformation quantization with torsion. You have a sequence of
∗-products for h = 1

n . This is Berezin-Toeplitz quantization. There
is C∞(M), with a map φn to End(Hn) (family of representations), and

mapsEnd(Hn)
ψn−−→ C∞(M). The statement is that limn→∞(ψn◦φn) = id

and limm→∞ i[ψn, φn(f), ψn◦φn(g)]m = {f, g}. So the case of R2n is very
lucky because we have a torision-free deformation.
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Theorem 18.2. There is an isomorphism of algebras
(
Pol(R2n), ∗

) Φ−→
∼

Pol(p̂, q̂), where p̂j = −ih ∂
∂qj

and q̂j = qj (or think of it as generated

by the p̂ and q̂ with [p̂j , q̂
k] = −ihδkj ), where (for multi-indices α and

β) Φ(pαqβ) = Sym(p̂αq̂β), where the symmetrization is the sum of all
the things you get by letting the symmetric group act on α and β (or
(
∑

i u
ip̂i +

∑
j vj q̂

j)k =
∑

|α|+|β|=k
k!
α!β!u

αvβ non-commutative binomial

formula).

How to construct a deformation of Pol(R2n with {pi, qj} = δji , ps

and qs commute? 〈p̂i, q̂j |[p̂k, q̂j ] = −ihδjk, others commute〉, σ(p̂i) =
p̂i and σ(q̂i) = q̂i. We need to choose an isomorphism. Choose

P (p, q)
Φ−→ P (p̂, q̂), then (P ∗Q)(p, q) = exp(#h

∑
i(

∂
∂p(1)

∧ ∂
∂q(2)

− d
dq(1)

∧
∂

∂p(2)
)P (p(1), q(q))Q(p(2), q(2)).

A remarkable property of this ∗-product: tr(f) = 1
(2πh)n

∫
R2n f(p, q)ω

n

is cyclic for this ∗-product (i.e. tr(f ∗ g) = tr(g ∗ f)).
Next two lectures there will be a guest lecturer who will talk about

quantum Calabi-Yau manifolds, then he’ll continue the talk 5-6 in the
RTGC seminar. Friday, either I’ll continue or he’ll continue if there is
something left.

13 PT 10-09

Last week we proved that SMan(R0|1,M) ∼= πTM . This implies that
Aut(R0|1) ats on πTM . This leads to a Z-grading on C∞(πTM) ⊇ Ω∗M ,
with d2 = 0 and d of degree 1. So the easiest super point leads to the de
Rham differential.
Project 7: SMan(R0|2,M) leads to the structure of differential gorms on

M . There is a paper to read. These gorms have more structure because
the automorphism group of R0|2 is bigger. (Research project: keep going
. . . structure on SMan(R0|q,M))
On the homework: nobody proved Batchelor’s theorem. You have a

super manifold Mm|n, and you functorially construct Gr(M) := πEM ,
where EM → Mred is an ordinary vector bundle over Mred, given by
Γ(EM ) = JM/J

2
M , where JM is the ideal of nilpotents (the ideal generated

by the odd elements). Notice that C∞(Gr(M)) = Γ(
∧∗

(JM/J
2
M )) =⊕n

k=0

∧k(JM/J2
M ), but

∧k(JM/J2
M ) ∼= JkM/J

k+1
M canonically, given by

a1 ∧ · · · ak 7→ asym(a1 · · · ak). A theorem: there is an isomorphismM
φ−→

Gr(M) such that Gr(M)
Gr(φ)−−−−→ Gr(Gr(M)) = Gr(M) is the identity

map. These will be much easier to glue (actually, extend).
We were tied up for the last weeks trying to make super manifolds

precise. Now let’s loosen up and try to describe where we are and how it
is related to Kolya’s class. Today will be a kind of a survey of the rest of
the class.

Classical Field Theory

Data:
(1) a spacetime M (of dimension d, if this is a d-dimensional field

theory), which is usually a Lorentz manifold (has a non-degenerate metric
with one negative). This is often too hard, so you do a “Wick rotation” to
turn it in to a Riemannian metric (this is called “Euclidean field theory”).
(2) Fields Φ(M). One example is scalar fields (spin 0), in which case

Φ(M) = C∞(M ;V ) (linear case: V a vector space), or C∞(M ;X) (the
nonlinear case, X is the “target”). Another example is guage fields (spin
1), where a field is a G-principal bundle with a connection. In the easiest
case (where you have a line bundle, like in electrodynamics), you have
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Ω1M/dΩ0M . There are p-form fields where the fields are p-forms. An-
other research project could be “noncommutative p-form fields” for which
you’d have to go into gerbes and their connections. Another example of
fields is gravitational fields (spin 2), where fields are metrics onM . These
integral spin fields will correspond to bosons. There are also spinor fields
(spin 1/2), which are sections of the spinor bundle. The last thing is spin
3/2.
(3) Classical action A : Φ(M)→ R (or C), which describes the physics

on the fields.

Remark 13.1. The structure onM (and on the bundle over it) is chosen
such that A can be defined. ⋄

The examples Kolya studied:

– Classical mechanics (d = 1), where M = R, and Φ(M) = C∞(M ;N)
(N = X is configuration space). M is also sometimes called the
world-line. AJ: world-line usually refers to the embedding, so a field
would be a world line. If you take N = V a vector space with the
simplest possible action (the action from classical mechanics), you
call this the linear σ-model ; if N is something else, it is the non-
linear σ-model. A =

∫
M
L(γ), where L(γ) = |γ̇|2g, so you need a

metric g on N ; you also need a measure on M so you can integrate.
You could add a potential. This is special because the lagrangian
only depends on the 1-jet.

– Classical string theory (d = 2), where M is a surface (the world-
sheet)

– Electromagnetism (Yang-Mills).

Classically, you get a space of classical solutions M, which is a sym-
plectic manifold, defines as solutions to the Euler-Lagrange equations for
the given action A (with respect to variations vanishing near boundary).
If you have M = [a, b], and Aab : Φ([a, b]) → R is the 1-form

dAab(φ, δφ) =
∫ b
a

(
∂L
∂φ δφdt

)
+ α(φb, δφb) − α(φa, δφa) (the “bulk term”

and the “boundary terms”; here we do not require any vanishing on δφ).
Classical solutions are the ones for which the bulk term vanishes. If we
restrict to classical solutions φ ∈ M, we get that dAab = αb − αa. This

implies that ω = dαb = dαa ∈ Ω2M is well defined. In good cases, this is
a symplectic form.
Now I want to get to what data are associated to the boundary itself.

If we choose a boundary point (a or b in this case), it gives in addition
this 1-form αa (or αb). This is the kind of input you need if you want
to do geometric quantization (here you take the trivial line bundle, and
d+ αa is the connection; the non-trivial line bundles come from the case
where your action is R/Z-valued).
[[break]]

Example 13.2. Kinetic energy only. L(φ)(t) = |φ̇(t)|2g so A(φ) =∫
R
|φ̇(t)|2dt for φ : R → (N, g). Then M is the space of geodesics in

(N, g). You could identify these with TN . You could also use the metric
to identify this with T ∗N . Then this 1-form α0 becomes the canonical
1-form α on T ∗N (and αt is given by pushing forward by the flow). ⋄

In general, the dimension ofM is 2r · dimN if L depends only on the
r-jets of the fields. In general, you won’t get the cotangent bundle, but
you will get a symplectic manifold under good conditions.
Time translation gives a vector field ξ onM. This leads to the Hamil-

tonian function h :M→ R by h(φ) := iξαt(φ)− Lt(φ). Independence of
t: iξαa − iξαb = iξAab = ξ(Aab) = Lb − La by the fundamental theorem
of calculus. What we’re using is the extra structure that once we fix a
time t, we get his 1-form, and for different ts, the difference of the two
1-forms is d of a function.

Qunatization

We have (M,Φ(M), A). There are different opinions about what a quan-
tization should be. In Kolya’s class, we quantize the classical observables
(the algebra C∞(M)) to some Ah (sometimes you can’t set h to Planck’s
constant). Then we study representations Ah → B(H).
I want to go a slightly different route, where we get the state space

H directly. The states (positive linear operators on H) only see the
projective space on H , and physically, you only expect this much (since
scaling a state doesn’t change it). We get H by choosing a polarization.
If you make this extra choice, then you actually get a Hilbert space, and
you have to discuss how the Hilbert space changes when you change your
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choice. In the cases we’ll do, it will only change by scaling, so in the end of
the day, we’ll get a projective space. Good choices of polarization usually
lead to isomorphic “Hilbert spaces” (they’ll actually be Frechét spaces)
and the isomorphism will be canonical up to phase. Moreover, we want
operators on H (e.g. we want to quantize functions, like the Hamiltonian
h). One way to get these is to go through the deformation quantization
(where the operators come first, and then you take a representation). The
other way is to choose a polarization and use the path integral approach,
but I don’t want to start this today. We’ll do it Thursday.
If you start with a classical field theory (M,Φ(M), A), then you can take

the classical solutions to pick up (M, ω, αt, Aab). Kolya explained how
to think of these data (as a “Hamiltonian field theory”): if dimM = d,
then you associate to ∂M a symplectic manifoldM (with ω = dα) and to
M you associate a Lagrangian submanifold L ⊆ M (so that α|L = dA).
Then you can do geometric quantization to get a Hilbert space and a
Hamiltonian operator. Or you could go through deformation quantization
and pick a representation to get this stuff. It is a little silly to only look at
the classical solutions and then try to quantize. It would be better to look
at the whole field theory and then try to quantize. This was Feynman’s
idea: particles don’t travel along the classical solution, but there is some
probability which peaks at the classical solution (but is non-trivial outside
of the classical solutions).

Supersymmetric (Susy) classical field theories

We’re trying to change the data to something that makes sense for super
manifolds. We need

– super spacetime Mp|q (maximal susy in physics literature is M4|16;
here we’ll only go up to M2|1, which is all you need for elliptic coho-
mology). There will be something like a metric g, which we’ll get by
trying to define a classical action.

– space of fields Φ(M), which you can do by adding the word super a
few times to everything we did. We’ll concentrate on the scalar field
case where Φ(M) = SMan(M,X) “Susy σ-model with target X”.

– classical action A : Φ(M) → R. Here we run into trouble. The in-
tegral is ok (you integrate sections of the Berezinian line bundle).

To get dAab, we differentiated the classical action. For this, we
needed some kind of smooth structure on Man([a, b], N). What we
really want, therefore, is Φ(M) = SMan(M,X), which is not a finite-
dimensional super manifold (unlessM or X is zero dimensional). We
understand this in terms of the functor of points. For every super
manifold S, we have AS : SMan(M,X)(S) = SMan(S × M,X) →
R(S) = C∞(S)e, and this should be natural in S.

These are the theories that we’ll quantize via path integrals.
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Last lecture, we said what a Feynman diagram is. It represents some
product of propagators. We saw that the product of propagators is well
defined UP TO addition of a translation invariant distribution with sup-
port on the diagonal. The Fourier transform of a distribution with support
on the diagonal will be a polynomial in momentum. In physics, you get
these things called counterterms associated to Feynman diagrams, and
the fact that they are polynomial essentially comes from the fact that the
product of propagators is defined up to this distribution on the diagonal.
One problem is that we have to specify the product precisely (this is the
problem of renormalization). We won’t do this today.
Why are we interested in defining Feynman diagrams? Answer: they

come from expanding Gaussian integrals
∫
polynomial(x)·e−quadratic(x)dx.

Whenever you have such an integral, you’ll probably get Feynman dia-
grams popping up. Pretend you’re a 1A student.
1-dimensional case. (1) what is

∫
e−x

2

dx (we know it is
√
π, but let’s say

we don’t; the tricks won’t work in infinite dimensions). We’re stuck. (2)

What about
∫
xe−x

2

dx? This is easier because it is −
∫

1
2
d
dxe

−x2

dx = 0

since e−x
2

vanishes at ±∞. (3) How about
∫
x2e−x

2

dx? Integrating by

parts, we can reduce to the case
∫
e−x

2

dx.

In general,
∫
xne−x

2

dx = − 1
2

∫
(n− 1)xn−2e−x

2

dx. Diagrammatically,
we have
[[⋆⋆⋆ picture]]
The whole integra is the sum of − 1

2 times what you get if you pair
off two xs and cross them out (leaving n− 2 other xs), and sum over all
possible pairings. Consider the case of x6, we get a sum over all Feynman
diagrams like
[[⋆⋆⋆ picture]]

multiplied by the integral
∫
e−x

2

dx. We put the “propagator” − 1
2 on

each edge (this − 1
2 is a distribution on 0-dimensional space).

Now let’s try to make some Feynman diagrams on more points.

Example 7.1.
∫
x4×x4×x6×e−x2

dx. Pretend we’re particularly stupid
1A students and we haven’t realized we can multiply these together. Then
we sum over the diagrams
[[⋆⋆⋆ picture]] ⋄

In higher dimensional cases, you can’t always stick all the points to-
gether.
Now let’s try to work out

∫
e−m

2φ2−λφ4/4!, which is a kind of 0-

dimensional version of
∫
e
∫
(m2φ2(x)+(∂φ)2+λφ4)dx for φ : Rn → R. This

is defined for λ > 0, and you can define it for all complex λ 6= 0 by chang-
ing φ 7→ φ ·λ−1/4, but it has a branch point AND an essential singularity
at λ = 0. At the point λ = 0, the integral converges, but there is still
an essential singularity (if you approach from positive λ, it’s ok, but if
you approach from negative λ, you run into trouble). Expanding as a
power series in λ at λ = 0 is totally stupid because you can’t expand
an essential singularity like this, but we’re going to do it anyway. The

integral becomes
∑ (−λ)n

n!

∫
(φ4/4!)ne−m

2φ2

dφ. Each term is something
we can expand using Feynman diagrams. It is

∑

n

(−1)n
(4!)nn!

[[⋆⋆⋆ picture]]

with the propagator 1/2m2 for each edge, and a factor of λ for each vertex.
There are a lot of such diagrams and we’d like to reduce the number a
bit. Instead of summing over diagrams, we can sum over isomorphism
classes of diagrams

∑

isoclasses

(−1)n[[⋆⋆⋆ squiggle]]
# diagrams in isoclass

(4!)nn!

and this last factor is one over the size of the automorphism group of the
diagram. The reason is that the denominator is the number of automor-
phisms of the vertices, and if you go to a corner and think about it you’ll
see that it’s right. So we get that what we want is

∑

isoclasses

(−1)n × value of diagram

order of automorphism group

This kind of weighting a diagram by one over the size of its automorphism
group occurs all over the place in mathematics.
Back to our example of

∫
e−m

2φ2−λφ4

dφ“ = ”
∫
e−m

2φ2

dφ× [[⋆⋆⋆

picture]]
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But the power series can’t possibly converge because there is an essen-
tial singularity, so what is the meaning of this power series. The power
series is an asymptotic expansion of the integral valid for λ > 0. This
means that the integral is asymptotic to a0 + a1λ + a2λ

2 + · · · , so it is
equal to a0+ · · ·+ anλ

n+O(λn+1). So the approximation (for a given n)
gets better as λ goes to zero [[⋆⋆⋆ or infinity?]], but the approximation
gets worse as you increase n.
Finite dimensional case is pretty similar:

∫
P (x)e−Q(x)dx where x ∈

Rn, P is polynomial and Q is quadratic. The calculation is similar; you
just need to compute the propagator for something like

∫
xixje

−Q(x)dx.
It is the bilinear form Q−1 applied to xi, xj .
The infinite dimensional case is somewhat trickier. What is (say)∫
P (φ)e−Q(φ)Dφ, where φ is a field on R3. For example, you could have∫
φ(x1)φ(x2)φ(x3)

3e−
∫
φ(x)2+(∂φ)2dxDφ (ignoring the complication that

φ is really a distribution). Trying to expand like before, we run into a
severe problem right away.
Problem 1: What is Dφ? it should be a translation invariant measure

on an infinite dimensional space and this is a big problem because trans-
lation invariant measures tend to exist only on locally compact spaces
and infinite dimensional spaces are not locally compact. Such a measure
doesn’t exist. It turns out it is possible to make sense of the Gaussian
measure e−Q(φ)Dφ. There are two approaches.
(Analytic approach) On any (real) finite dimensional Hilbert space, we

have a canonical Gaussian measure e−πx
2

dnx of total mass 1. These are
all compatible in the following sense. If we have a finite dimensional vector
spaceH1 = H2⊕H3 and we have projection H1 → H1/H2 = H3, then the
projection of the Gaussian measure of H1 to H3 is the Gaussian measure
ofH3. This is obvious from the simple example:

∫
f(x)e−π(x

2+y2) dx dy =∫
f(x)e−πx

2

dx.
Now suppose thatH is infinite dimensional. Looking at all finite dimen-

sional quotients, we see that all the Gaussian measure on the quotients
are compatible, so we can define the measure of any cylindrical set (the
inverse image of a measurable set of some finite dimensional quotient).
This ought to give us a nice Gaussian measure on all of H . If it did,
quantum field theory would be easy. It is not obvious what goes wrong
with this construction. (1) µ(H) should be 1. (2) Suppose Br is a ball

of radius r in H , we get that µ(Br) is less than or equal to the measure
of a ball of radius r in Rn, which is less than or equal to the measure of
a cube of side 2r in Rn, which is less than or equal to

(∫ r
−r e

−πx2

dx
)n

,
which tends to zero. So a ball of radius r has measure zero. Since H is a
countable union of such balls, we get that µ(H) = 0.
So what is wrong? The problem is that we have a “measure” defined

on all cylindrical sets, which don’t form a σ-algebra. It turns out that
you cannot extend this to the σ-algebra generated by cylindrical sets in
a countably additive way.
You can define a Gaussian measure on larger spaces of distributions.

You have to replace your Hilbert space by something called a rigged
Hilbert space, and then do some other stuff. It turns out that this big-
ger space consists of distributions rather than functions and this is bad
because φ4 doesn’t make sense for a distribution φ.
Next week well see an algebraic approach.
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Today’s speaker is Yan Soibelman.
Today’s seminar talk will be related to holomorphic Chern-Simons

theory. This talk will be an elementry background talk about this.
References: math/0606241 (A∞-algebras and categories), draft of book
with Kontsevich “Deformation theory” Vol. 1 can be downloaded from
www.math.ksu/~soibel.
Two main players in today’s lecture: A∞-algebras and L∞-algebras

over a fixed field k of characteristic 0. I will present very similar points
of view on these two structures; the point of view of noncommutative
geometry.

Definition 19.1 (Preliminary). An L∞-algebra is a formal pointed man-
ifold in the category of Z-graded vector spaces over k together with a
vector field Q of degree +1 such that [Q,Q] = 0 and Q(pt) = 0 (vanishes
at the marked point).
An A∞-algebra is a noncommutative formal pointed manifold in the

category of Z-graded vector spaces over k together with a vector field Q
of degree +1 such that [Q,Q] = 0 and Q(pt) = 0 (vanishes at the marked
point). ⋄

In this preliminary definition we see that there is some kind of space.
The point of view going back to Grothendieck is that a “space” is a
functor F : C → Set [[⋆⋆⋆ not C◦]] with some properties. Most of what
I’ll be talking about can be said for any k-linear symmetric monoidal
category C which admits infinite sums and products. If you don’t want
to think in such abstract terms, the two main examples will be C = Vectk
and C = VectZk (Z-graded vector spaces with grade-preserving morphisms,
with ordinary tensor product with induced grading, with commuter V ⊗
W → W ⊗ V given by vn ⊗ wm 7→ (−1)nmwm ⊗ vn). NR: but these are
not super vector spaces . . . this is some kind of hybrid. YS: yes.
You can talk about algebras, coalgebras, and all sorts of other things

in C (c.f. Peter Teichner’s lectures). An algebra is an object A with
morphisms m : A⊗A→ A and 1: 1→ A (we are assuming End(1) = k)
so that the usual diagrams commute. We have AlgCf ⊆ AlgC (finite-
dimensional or finite length algebras) and CoalgCf ⊆ CoalgC .

Theorem 19.2. Let F : AlgCf → Set be a functor that commutes with
finite projective limits. Then F is represented by a counital coalgebra.
that is, there is a B ∈ CoalgC such that F (R) ∼= HomCoalgC (R

∗, B).

Similar to the category of vector spaces, you can talk about cocommu-
tative coalgebras (this is just throwing in another diagram, which says
that the opposite coproduct ∆′ is equal to the usual coproduct ∆). If
instead of AlgCf , we take AlgcomCf , then the theorem is still true, with B
cocommutative.
If we have a coalgebra, we can take its dual to get an algebra (the

opposite isn’t true). For this reason, I prefer to work with coalgebras. You
can dualize, but then you have to speak about topological coalgebras. If
we have a commutative algebra, then we have an affine scheme; if it is not
commutative, then we can imagine that there is some noncommutative
scheme corresponding to our algebra. That is, we have some “generalized
space” according to Grothendieck’s point of view.

Definition 19.3. The category of noncommutative thin schemes in C is
the category equivalent to CoalgC . The category of thin schemes in C is
the category equivalent to CoalgcocomC ⋄

For today’s lecture, if we have a coalgebra B, we will denote the cor-
responding “geometric object” by XB, and given a thin scheme X , we
denote the corresponding coalgebra BX , so B∗

X = O(X).

Example 19.4. Fix V ∈ C, and consider T (V ) =
⊕

n≥0 V
⊗n. We can

make it into a coalgebra (the cofree coalgebra) by δ(v1 ⊗ · · · ⊗ vn) =∑n−1
i=1 (v1⊗· · ·⊗vi)

⊗
(vi+1⊗· · ·⊗vn). The noncommutative thin scheme

corresponding to T (V ) is a noncommutative formal graded manifold.
Similarly, we have the cocommutative version C(V ) =

⊕
n≥0 Sym

n(V ).
[[⋆⋆⋆ Exercise: figure out the ∆ (you’ll need characteristic zero). It
should be cocommutative.]] The corresponding thin scheme is called a
formal graded manifold. ⋄

From now on, let’s fix C = VectZk . We can almost make sense of the
preliminary definition. To implement marked point, we should either fix
a morphism from k to the coalgebra, or we can take our direct sums
starting at n = 1 instead of n = 0. We will denote these things by T+(V )
and C+(V ), and the geometric objects will be (noncommutative) formal

www.math.ksu/~soibel
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pointed graded manifolds (or NCfpg manifold). So a NCfpg manifold
corresponds to B ∼= T+(V ) for some V . PT: you aren’t going to allow
things like this to be glued together? YS: no, these are really formal
manifolds, with just one closed point. A formal pointed graded manifold
corresponds to B ∼= C+(V ).
You can’t do too much differential geometry on formal manifolds, but

you can do something. For example, you can speak about vector fields,
which correspond to derivations of the algebra or coalgebra. If X is a
(noncommutative) formal pointed graded manifold, then V ect(X) corre-
sponds to Der(T+(V )) as a coalgebra (or without the + if not pointed).
A derivation is an element of Aut(M ⊗ k[ε]/ε2) [[⋆⋆⋆ ]]. Since we are
working with a graded coalgebra T+(V ), we can look for derivations of
different degrees, and define [D1,D2] = D1D2 − (−1)|D1||D2|D2D1, mak-
ing V ect(X) into a graded lie algebra. Note that a vector field need not
commute with itself because for an odd vector field Q, [Q,Q] = 2Q2.

Definition 19.5. A noncommutative formal pointed differential graded
manifold is a pair ((X, pt), Q), where (X, pt) is a NCfpg manifold and Q
is a vector field on X vanishing at the marked point such that degQ = +1
and [Q,Q] = 0. A vector field Q of degree 1 with [Q,Q] = 0 will be called
a homological vector field. If you drop noncommutativity, then you get
the notion of a formal pointed differential graded manifold. ⋄

Let A ∈ VectZk , then we denote the shifting of the grading by 1 by A[1],
so A[1]n = An+1. Consider T+(A[1]), a noncommutative formal pointed
graded manifold. Given a coalgebra B, let’s denote the corresponding
space SpcB.

Definition 19.6. An A∞ structure on A is given by a structure of a non-
commutative formal pointed differential graded manifold on SpcT+(A[1]).
If you drop noncommutative and change T+ to C+, you get the definition
of an L∞-structure on A. ⋄

Algebraically, we have T+(A[1]) =
⊕

n≥1A[1]
⊗n with Q2 = 0, so the

derivation Q respects the coproduct. In order to define a derivation on a
free algebra, it is enough to define it on generators. So to define such a
Q, it it equivalent to have a collection of maps Qn : A

⊗n → A[2− n] (for
n ≥ 1). Geometrically, the Qn are Taylor coefficients of the vector field

Q. Abusing language a bit, we write Q = Q1 + Q2 + · · · (we start with
Q1, which corresponds to the fact that Q(pt) = 0). The condition Q2 = 0
imposes infinitely many quadratic relations on the Qn.
We’ll finish on Friday.
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Classical field theory consists of the data

– space time Σd,

– Fields Φ(Σ), and

– a classical action A : Φ(Σ)→ R.

The easiest case (so far), which we saw in NR’s class, is d = 1, with
Σ = [a, b], Φ(Σ) = C∞(Σ, N) for some configuration space N , and ac-
tion A(φ) =

∫
Σ
|φ̇(t)|2 dt (using some Riemannin metrics g on N and

something on Σ). Take N = R. We want to quantize thisby taking the
hilbert space H = L2(N, volg). The Hamiltonian operator is H = −∆g.
In the case N = R, H = −∂2x. I want to explain how to get this from
path integrals instead of deformation quantization. This case is actually
very precise; the measure in question actually do exist (it is called the
Weiner(?) measure).
Quantum mechanical evolution onH is given by eitH . In other words, if

you know H , you can apply this operator to a state to determine how the
state evolves in time. This is one way to solve the Schrödinger equation.
That is, solutions of the Schrödinger equation are eitH(ψ).
I want to do the Euclidean version of this, which is the heat equation.

I want to study the operator e−tH . We see that this is the heat equation
because d

dte
−tH(φ) = −H(e−tHφ) = ∂2x(e

−tHφ), so e−tHφ is a solution to
the heat equation. If φ gives the distribution of heat on R at time 0, then
e−tHφ tells you the distribution of heat at time t. This is the easiest way
to solve the heat equation if you happen to know how to write down the
operator e−tH . In particular, if we put a unit of heat at y ∈ R (roughly,
“φ = δy”, in quotes because δy 6∈ L2), then we get the “integral kernel”
of e−tH .
Because H is self-adjoint, you can write an eigenspace decomposition of
H. eitH will have the same eigenspaces, but with eigenvalues eitλ. Even
though the operatorH is unbounded, you can check that e−tH is bounded
(because of the minus sign).
Let me explain the notion of integral kernels. Let’s say I want

an operator Ok : L
2N1 → L2N2. I claim it can be described by its

integral kernels (if it has them) k ∈ C0(N1 × N2). Think of the

k as matrix coefficients and O as a linear operator. We have that
(Okf)(n2) :=

∫
N1
k(n2, n1)f(n1) dn1. It turns out that if k is con-

tinuous, then this will always be a compact operator (assuming N1

and N2 are compact). In the non-compact setting, if k ∈ L2, you
get Hilbert-Schmidt operators, and some other things in general. Can
you imaging how these things compose? What is Ok2 ◦ Ok1 , where
k1 ∈ C0(N1 ×N2), k2 ∈ C0(N2 ×N3). This is just like matrix multipli-
cation: (Ok2 ◦Ok1)(f)(n3) =

∫
N1×N2

k2(n3, n2)k1(n2, n1)f(n1) dn1 dn2 =

(Ok3f)(n3), where k3(n3, n1) =
∫
N2
k2(n3, n2)k1(n2, n1) dn2 (by Fubini’s

theorem).
These integral kernels are quite convenient. I claim that any good

enough compact operator has a kernel. For example, (e−tH)(φ)(x) =∫
R
kt(x, y)φ(y) dy (here, all Ni = R), where kt is the heat kernel. What is

the interpretation of kt? If we plug in φ = δy0 (start with a unit of heat at
y0), then we just get kt(x, y0), which is supposed to tell us the amount of

heat at time t at the point x. It turns out that kt(x, y) =
1√
2πt

e
1
2tdg(x,y)

2

(for the derivation, take a PDE class).
Now I want to derive why kt is given by path integrals. Let’s write this

in terms of a path integral. This is the one case where we can actually
do this. Note that we could be doing this on any Riemannian manifold
N ; we’re just using R to be explicit. We want to write out the matrix
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coefficients

e−tH(x, y) := kt(x, y)

= (e−
t
nH · · · e− t

nH)(x, y)

=

n−1︷ ︸︸ ︷∫

R

· · ·
∫

R

kt/n(x, x1) · · · kt/n(xn−1, y) dx1 . . . dxn−1

=

∫

Rn−1

dx1 . . . dxn−1
1

(2πt/n)n/2︸ ︷︷ ︸
Zn(t)

(
e−

1
2

∑n
i=1

d(xi,xi−1)2

t/n

)

=

∫
dx1 . . . dxn−1

Zn(t)
e−

1
2

∫
t
0
|...σ(t)|2 dt

︸ ︷︷ ︸
e−A(σ)

=

∫
pcws linear σ

w/ crnrs at i · t/n

dσ

Zn(t)
e−A(σ)

where σ : [0, t] → R is a piecewise geodesic path connecting x0 = x and
xn = y (you go by a geodesic from xi at time it/n to xi+1 at time
(i+ 1)t/n; this is ok because R has unique geodesics). Our space time is
Σ = [0, t] and the fields are φ : [0, t]→ R.
Now we let n go to infinity, and this is always the heat kernel, so the

limit exists. We can write this as

O[0,t](x, y) = “

∫
σ : [0,t]→R

σ(0)=x, σ(t)=y

dσ

Z(t)
e−A(σ)

︸ ︷︷ ︸
Wiener measure

”

You can’t just take C1 paths because they have Wiener measure zero.
If you take all continuous paths, then the individual parts don’t make
sense, but somehow this Wiener measure makese sense. You compute
this integral by taking the limit as n goes to infinity (this is not the way
Wiener got it, this is Bruce Driver’s and somebody’s reinterpretation).
Now we can change the minus signs in the exponents to i’s, and you

get Feynman’s interpretation of the Schrödinger equation.

eitH(x, y) = “

∫
σ : [0,t]→R

σ(0)=x, σ(t)=y

dσ

Z(t)
eiA(σ)”

The idea is that because of the i, you get oscillatory behavior which
cancels almost everything out in the integral except for the extrema of
the action. Now we got the quantum mechanical evolution without using
deformation quantization. We put in the classical action and the magic of
the path integral. The data are the classical field theory and the Wiener
measure.
[[break]]

Theorem 14.1 (Driver-Anderson). If (M, g) is a compact Riemannian
manifold, then e−t∆g(x, y) = limn→∞

∫
dσ

Zn(t)
e−A(σ), where the integral is

over piecewise minimal geodesic paths σ : [0, t] → M with σ(0) = x and
σ(t) = y with corners at i · t/n.

Note that both sides make perfect sense. The quotation mark come in
when we try to write the right hand side as “

∫
dσ
Z(t)e

−A(σ)”, where the

integral is over (some) paths σ : [0, t] → M with σ(0) = x and σ(t) = y.
In the d = 2 case, nobody can make sense of either side of the theorem. If
you know what Wiener measure is, you can remove the quotation marks,
but R is the only case where that works. Before you take the limit, the
right hand side of the theorem makes sense, but it is unknown in general
if the limit exists.
Now we’ll try to formalize this expression in quotation marks.

Path integral quantization of classical field theories

Let Σ be our d-dimensional space time, with ∂inΣ →֒ Σ and ∂outΣ →֒ Σ.
We have our classical action A : Φ(Σ) → R, which we can restrict to
Φ(∂inΣ) and Φ(∂outΣ). When you try to make sense of this restriction, it
becomes really important what your spacetime category is. Now we want
to quantize.
If Y d−1 is one of these (d − 1)-manifolds (like one of the boundary

components), we want to get a Hilbert space HY . Before, we associated
to the endpoints L2N , and to the interval, we associated the operator
eitH : L2N → L2N . We also want an operator OΣ : H∂inΣ → H∂outΣ for
each compact Riemannian manifold Σ.
We define “HY = L2(Φ(Y ))” (doesn’t make much sense because Φ(Y )

will not be finite dimensional unless Y is zero dimensional). Now for
φin ∈ Φ(∂inΣ) and φout ∈ Φ(∂outΣ), we define “OΣ(φin, φout)” to be
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∫ Dφ
Z(φ)e

iA(φ), where the integral is over all φ ∈ Φ(Σ) such that the restric-

tion to ∂inΣ is φin and the resetriction to ∂outΣ is φout. This “normalized
Lebesgue measure” Dφ/Z(φ) doesn’t really exist.
[[⋆⋆⋆ “HW: check that the functor Q from Riemannian category

in dimension d to the category of Hilbert spaces given by Q(Y ) = HY
and Q(Σ) = OΣ is a symmetric monoidal functor.”]] [[⋆⋆⋆ it isn’t
completely clear to me that this is even a functor]]

20 NR 10-12

Today Yan Soibelman is speaking again.
Recall that last time we did noncommutative (resp. commutative) (1)

((X, pt), Q) formal pointed differential graded manifolds (degQ = 1,
Q(pt) = 0 and [Q,Q] = 0), which corresponds to a cofree coalgebra
B ∼=

⊕
n≥0 V

⊗n = T (V ) (resp. Sym∗(V )) with a fixed coalgebra mor-

phism k → B, with Q̃ : B → B[1] derivation with deg Q̃ = 1, Q̃2, and Q̃
vanishes on the image of k → B.
V = A[1] for some graded vector spaceA. Then T (V ) is by definition an

A∞-algebra structure on A. Geometrically, we get the Taylor expansion
Q = Q1+Q2+ · · · . Algebraically, this corresponds to a collection of maps
mn : A

⊗n → A[2−n], called higher multiplications. We get conditions on
the mi from the condition Q2 = 0.(∑

mi

)2
= 0 implies m2

1 = 0, m1 : A → A[1] a derivation. We also
get m2

2 +m1m3 +m3m1 = 0, so m2
2 = {m1,m3} (anti-commutator), so

if m≥3 = 0, then we get m2
2 = 0, which is equivalent to m2 : A⊗ A → A

being an associative product. In general, H·(A,m1) is an associative
algebra with respect to the product m2.
If we take V = g[1], then C(g[1]). We then get “higher Lie brackets”

bn : ∧ng→ g[2−n], with b21 = 0, and b2 defining a Lie bracket. Sometimes,
we denote bn(α1 ∧ · · · ∧ αn) =: [α1, . . . , αn].
Recall that we stated last time that all these things are defined as

functors Artin
(NC)
k → Set, and stated a theorem that if such a functor

commutes with finite projective limits, then it is represented by a coalge-
bra.
L∞-algebras and deformation theory in characteristic 0. Suppose we

want to define the formal scheme of zeros of Q. As a functor, given
a commutative finite dimensional Artin algebra, we get Zeros(Q)(R) =
{R∗ → C(V )|Q̃ vanishes on the image of m∗} (m the maximal ideal of
R).
In the case V = g[1], check [[⋆⋆⋆ HW]] that the last condition is

equivalent to the following equation on γ ∈ Hom(m∗, g[1]) = g1 ⊗ m∗

(where g1 is the first graded component of g):

dγ +
1

2!
[γ, γ] +

1

3!
[γ, γ, γ] + · · · = 0 (Mourer-Cartan)
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This is called the (generalized) Mourer-Cartan equation (if b≥3 = 0, this is
the Mourer-Cartan equation, in which case this gives a differential graded
Lie algebras as a special case of L∞-algebras).
Geometrically, this is also understandable. Saying that the vector field

Q vanishes at a point x means that Q(f)(x) = 0 for all f . If f = f1+f2+
· · · is the Taylor expansion of f , then we see that fn = 1

n!f1 ∧ · · · ∧ f1.
(this more or less solves the exercise, but you have to prove this formula).
There is a certain equivalence relation on the set of solutions to Mourer-

Cartan. Consider the case when g =
⊕

n≥0 g
n is a differential graded Lie

algebra, with d, [, ]. Then [g0, g0] ⊆ g0 and [g0, g1] ⊆ g1. Since g0 ⊗m is
a nilpotent algebra, we get a corresponding group exp(g0 ⊗m) acting on
g1 ⊗ m. The action is given by γ 7→ gγg−1 − dg g−1. [[⋆⋆⋆ Exercise:
this gauge action preserve solutions to the Mourer-Cartan equation]]
PT: there must be some analog to flat connections somewhere. YS: if

you like, the γ ∈ g1 ⊗ m is a connection. PT: but on what bundle? YS:
[[⋆⋆⋆ something]]
There is a generalization of this picture to an arbitrary L∞-algebra.

Definition 20.1. The deformation functor associated to an L∞-algebra
g is a functor on commutative Artin algebras (to Set) Defg(R) =
{equivalence classes of solutions to MC}. ⋄

The corresponding space should be called the moduli space of this de-
formation theory. General philosophy which goes back to Deligne, Drin-
feld, Kontsevich, says that any deformation theory in characteristic zero
is described by a deformation functor for some L∞-algebra g.
Informally, you can think about it like this. You have some mathemat-

ical structure, like a flat connection or a complex structure or a multipli-
cation on a vector space making it into an associative algebra, and it is
part of some space of other structures so that you can speak of structures
parameterized by some base (Spec of a local artin algebra). Then we can
as for parameterizations such that over the closed point of SpecR, we
have a given structure. These are flat deformations. These families typi-
cally form a category, so you can say when they are isomorphic. Consider
the näıve deformation functor DefX0 which associates to R isomorphism
classes of families over SpecR with fixed fiber over the closed point of
SpecR. The philosophy is that for any structure X , DefX ∼= Defg for
some g.

Note that isomorphic L∞-algebras will produce isomorphic deformation
functors. There is a weaker notion of quasi-isomorphism between L∞-
algebras (a morphism which induces isomorphisms on homology groups).

Theorem 20.2. If g1 is quasi-isomorphic to g2, then they give rise to
isomorphic deformation functors.

An L∞-algebra is formal if b1 = 0, it is called linearly contractible if
H1(−, b1) = 0 and b≥2 = 0, and it is called abelian if it is formal and
[, ] = 0. On can prove that any L∞-algebra is isomorphic to a product of
a formal and a linear contractible (this is the minimal model theorem).
For a differential graded Lie algebra, in the abelian case, there is no MC

formula, which tells you that the point in the moduli space is smooth.
Suppose we have E → X a G-bundle (later X will be a Kähler mani-

fold), and suppose it is flat. Then we have a corresponding vector bundle
ad(E), with flat connection ∇0. I’m interested in the deformation the-
ory of this flat connection, so I’d like to add a 1-form γ ∈ Ω1(X, ad(E))
so that ∇0 + γ is flat. We have a differential d = [∇0,−], giving us
g = Ω·(X, ad(E)). Then the flatness condition can be written in the
form of MC: d(γ) + 1

2 [γ, γ] = 0. So we get a moduli space M∇0 of flat
deformations of ∇0 (this is a local theory, not a global one . . . we work
with Artin algebras, not arbitrary schemes).

Theorem 20.3 (Goldman-Millson, 1988). If X is compact Kähler, G
compact, then g is formal.

Suppose X is Calabi-Yau (complex Kähler manifold with trivial canon-
ical class), so it admits a nowhere vanishing holomorphic form dz. Sup-
pose we are interested in deformations of a given complex structure. This
deformation theory is controlled by g =

(
Ω0,·(X,T 1,0), ∂).

Theorem 20.4 (Tian-Tolozov?). g is quasi-isomorphic to an abelian dif-
ferential graded Lie algebra.
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Recall that last time we talked about Weyl quantization. This was the
story about T ∗Rn ∼= R2n with coordinates pi and q

i and symplectic form
ω =

∑
dpi ∧ dqi. We gave a ∗-product on C∞R2n:

f1 ∗ f2(x) =
1

(2πh)2n

∫∫

R2n×R2n

exp
(4i
h

∫

∆x,x1,x2

ω
)
f1(x1)f2(x2)ω

n
1ω

n
2

Then we have (Pol(R2n), ∗) ∼= 〈p̂i, q̂i|[p̂, p̂] = 0 = [q̂, q̂], [p̂i, q̂
j ] =

√
−1δji ,

and P (p, q) 7→ P sym(p̂, q̂) is an isomorphism of algebras. We also have
the trace

tr f =
1

(2πh)n

∫

R2n

f(x)ωn

with the property tr(f ∗ g) = tr(g ∗ f).
We have the p-q quantization

(f1∗̃f2)(p, q) =
1

(2πh)n

∫

R2n

exp
( i
h
((p−p1), (q−q1)

)
f1(p, q1)f2(p1, q)d

np1d
nq1

Then we also have (Pol(R2n, ∗̃) ∼= 〈p̂, q̂| · · ·〉, but the isomorphism is dif-
ferent, it is given by P (p, q) 7→ P (p̂, q̂)|p,q ordered.
This also gives an “explicit” deformation quantization of C∞

pol(T
∗Rn),

which is Diff h(R
n) (generated by h ∂

∂qj
); a general element is

∑
α h

|α|fα(q)
(
∂
∂q1

)α1 · · ·
(
∂
∂qn

)αn
.

Another important property is that there exists a trace for this product
∗̃

t̃rf =
1

(2πh)n

∫

R2n

f(x)ωn(1 +O(h))

such that it is cyclic (given by pushing the other trace across the isomor-
phisms).
p-q quantization of a Hamiltonian system. Our obersevables are

C∞
pol(T

∗Rn), and the quantization is this algebra Diff h(R
n). There are

natural hamiltonian systems H = p2

2m + V (q).

Example 21.1. N interacting particles of mass m in R3. In this case, a

typical hamiltonian is H =
∑

i
~p2

2m +
∑
i6=j V (~qi − ~qj). ⋄

Example 21.2. A particle in R3 in a potential field V , then H = ~p2

2m +
V (~q). ⋄

The idea of Schrödinger was that this Hamiltonian should be replaced

by some differential operator Ĥ = p̂2

2m+V (q̂). Consider the representation
in functions on Rn, where q̂i is given by multiplication by qi and p̂i =
−ih ∂

∂qi . We have an anti-involution (or ∗-structure) σ, given by σ(p̂) = p̂

and σ(q̂) = q̂. We want our representation to be a ∗-representation. The
representation space is the Hilbert spaceH = L2(Rn). InH , the quantum

hamiltonian acts as a differential operator of the form Ĥ = − h2

2m∆+V (q).
The Schrödinger dynamics (in H) is given by the differential equation
(called the Schrödinger equation)

ih
∂ψ(q, t)

∂t
= − h2

2m
∆ψ(q, t) + V (q)ψ(q, t).

The natural product on this hilbert space is
∫
Rn f(q)g(q)d

nq.
All the problems about the spectrum of the hamiltonian and scattering

become questions about this differential operator. This is the Schrödinger
point of view of quantum mechanics. If we didn’t have that i, this would
be hyperbolic differential equations.

Semi-classical limit

What can we say about these differential equations? We should be able
to recover classical mechanics by letting h go to zero. We should be able
to recover the classical evolution from the quantum evolution. Consider
the evolution of vectors of the form ψ(q) = eif(q)/hφ(q).
Why are these vectors significant? This ψ is a pure state. 〈p̂k〉ψ =

tr(Pψ p̂k) = (ψ, p̂kψ) =
∫
Rn ψ(q)p̂kψ(q)d

nq =
∫
Rn

(
ψ(q) ∂f∂qkψ(q) +

φ(q)(−ih ∂φ
∂qk

)
)
dnq. As h → 0, the second term goes away, so we get∫

Rn |φ(q)|2 ∂f
∂qk

dnq. This means that this is a state in which the momentum

has a semiclassical limit. We can also compute 〈q̂i〉ψ =
∫
|φ(q)|2qidnq. So

Pψ, as h→ 0, becomes some classical state. Recall that a classical state is
given by a measure on the phase space, so we get

∫
R2n ρ(p, q)f(p, q) dp dq.

If the classical state were supported on the whole space, we’d have an inte-
gral like this, but we only integrate overRn (not R2n), so the classical state



21 NR 10-15, v. 10-4 91

is supported on a Lagrangian, given by ρ(p, q) = δ(p− ∂f
∂q )|φ(q)|2. If you

have any differential operator d, then 〈d〉ψ h→0−−−→
∫
R2n ρ(p, q)d(p, q) dp dq.

We are moving towards the path integral from the direction of partial
differential equations. I want to motivate the formula for the path integral
from the Schrödinger equation.
Let ψ(q, t) be a solution to the Schrödinger equation with the initial

condition ψ(q, 0) = ψ(q). Lets draw a picture of the evolution of the
supporting Lagrangian L0 ({p = ∂f

∂q })
[[⋆⋆⋆ picture]]
As the Lagrangian evolves according to the Hamiltonian flow, there

may be many trajectories which end at a particular value of q. Call them
γ1, γ2, γ3.

Theorem 21.3. As h → 0, the solution ψ(q, t) =∑
j φ(qj(q, t))

∣∣ ∂Qt

∂q (qj)
∣∣−1/2

exp
(
i
hS[γj] − iπ2µj

)
(1 + O(h)), where

S[γj ] is the classical Hamilton-Jacobi action for the trajectory γj.

Proof. [[⋆⋆⋆ HW]] You’ll have to find that µj is the massless index of

the trajectory γj . The idea is to look for solutions ψ(q, t) = e
i
hSψ0(q, t)

(where S(q, t) is [[⋆⋆⋆ ]] and ψ0 is a power series in h.). Substitute
this into the Schrödinger equation. The zero order term is ∂S

∂t ψ + o(h) =
1
2m

(
∂S
∂q

)2
+ V (q) + o(h), so we get ∂S

∂t = 1
2m

(
∂S
∂q

)2
+ V (q) = H(∂S∂q , q).

This is the Hamilton-Jacobi equation, with S = S[γ] (you have to be
more careful when there are more γ’s). Considering the first order terms,
you get

∂ψ0

∂t
=
∂S

∂q

∂ψ0

∂q
=⇒ ψ0 =

∣∣∣∂Qt
∂q

∣∣∣
−1/2

.

So we got something quite familiar. We get something times a rapidly
oscilating exponent. Recall where you’ve seen these before. Consider
Zh =

∫
Rn exp

(
i
hS(x)

)
dnx; assume (1) it converges for all h 6= 0, and (2)

S(x) has finitely many simple critical points. We want to look at the
asymptotics of this integral as h → 0. We should compute the integral
using the stationary phase approximation.
(i) find critical points xα, where dS(xα) = 0. (ii) S(x) = S(xα)+

1
2

(
x−

xα, S
′′(x0)(x − xα)

)
+ O(x − xα). As always, you split the integration

region into places that are close to the critical points and far away from
the critical points

∫

Rn

exp
( i
h
S(x)

)
dnx

=
∑

α

∫

Uε
xα

ei
S(x0)

h + i
2h (x−xα,S

′′(x0)(x−xα))+···dnx

= 〈y = (x− xα)
1√
h
〉

=
∑

α

∫

1√
h
Uε

xα

exp
(
i
S(xα)

h
+
i

2
(y, S′′(xα)y) +O(

√
h)
)
dnx

=

∫

Rn

e
i
2 (y,Ay)dnx

= # · 1

(detA)1/2

Something | det(S′′(xα))|−1/2ei
π
2 (n+−n−). Something about writing some-

thing as an integral over all paths.
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Be sure to do the second problem on the homework (the one in quotes),
because it will be the motivation for most of what we will do in this class.
This was the problem of showing that the path integral, if it made sense,
would define a symmetric monoidal functor. By the way, the symmetric
monoidal structure on Hilbert spaces is given by taking the usual algebraic
tensor product, with the pairing 〈v1 ⊗ v2, w1 ⊗ w2〉 = 〈v1, w1〉〈v2, w2〉.
What is the difference between this tensor product and the projective
tensor product (if the hilbert space is a Frechét space)? All of these lie in
the space of continuous linear operators from H1 to H2. The relationship
isH∗

1⊗HilbH2
∼= HS(H1, H2) (Hilbert-Schmidt operators) which contains

H∗
1⊗projH2

∼= TC(H1, H2) (trace class operators) which containsH∗
1⊗alg

H2 = FR(H1, H2) (finite rank operators).
Kolya talked about trace class operators. A product of two Hilbert-

Schmidt operators is a trace class operator. HS(H1, H2) is supposed to
be a Hilbert space, so we have to define 〈A,B〉HS , which we define as
tr(A∗B) (trace of an endomorphism of H2).
What about the d-dimensional bordism category? The Atiyah-Segal

definition of a d-dimensional quantum field theory is exactly a symmetric
monoidal functor from the bordism category to the category of Hilbert
spaces. The various flavors, like TQFTs, CFTs, etc. come from differences
in the precise definition of the bordism category (smooth, conformal, Rie-
mannian manifolds make up the bordism category). Kolya did the special
case of TQFTs where you only use topological manifolds.
Easiest version of a d-dimensional bordism category (as in Kolya’s

class): let objects be closed (topological) (d − 1)-manifolds1 (note that
the objects don’t form a set) and let Hom(Y1, Y2) be the set of triples

(Y2
i2−֒→ Σd

i1←−֓ Y1) where ∂Σ = i1Y1 ⊔ i2Y2 and Σ is a compact manifold,
up to homeomorphism relative boundary. This makes the morphisms into
a set, and the composition is what you think (just gluing works because
we are working with topological manifolds). What should we do about
the identity? Note that the identities are already in there. This will be
the wrong answer in the Riemannian category, where we’ll basically have
to throw in identities by hand. Andy: so all the different choices of i1 and

1With an orientation, spin structure, graph drawn on the manifolds, or whatever
extra structure you like.

i2 give you different morphisms? Chris: if i1 and i′1 are pseudo-isotopic
(in the same concordence class), then they will give you the same mor-
phism set. Another Chris: well, you really want Σ-pseudo-isotopic; that
is, pseudo-isotopic using a cylinder. [[⋆⋆⋆ I don’t think I understand
what pseudo-isotopic means]] PT: so to answer Andy’s question, if you
have different parameterizations, then they’re different if they’re different
using the given equivalence relation.
If d = 2, then we’re interested in Homeo(S1)/isotopy, which is Z/2. If

d = 3, then we’re interested in Homeo(Σ2)/isotopy, which is the mapping
class group of Σ. If Σ = T2, then this group is GL2(Z). The action on
H1 for an arbitrary Σ gives you a map to Sp(2g,Z) (g is the genus of Σ).
If you try to put a smooth structure on top of everything, do you get a

problem with gluing along the boundary? You have to use collars around
the boundary (you prove that the boundary has a collar by integrating an
inward-pointing vector field). Q: Actually, you needed collars on topolog-
ical manifolds to get identities in the topological bordism category. PT:
that’s right; good point. You can glue the interiors of the collars to get a
smooth structure. Note that we had to make some choices, but different
choices are in the same equivalence class, so the composition is well de-
fined (using diffeomorphisms instead of homeomorphisms). This defines
the smooth bordism category.
We want a Riemannian bordism category. We could try the same trick.

We could assume there is a collar where the metric is a product metric,
and people sometimes do, but we don’t want to do that (it throws out a
lot of manifolds). The categories we’ve seen so far have a weird symmetry
to them (you can reverse a bordism).
[[break]]
We can start with a Riemannian manifold M without boundary (but

possibly non-complete), and metrically complete it (adding a boundary)

to get M̂ . An isometry φ : M1 →M2 induces φ̂ : M̂1 → M̂2.

Definition 15.1 (Stolz, Teichner). Riemd is the category with objects
Riemannian d-manifolds without boundary (possibly non-complete, non-

compact) together with a decomposition M̂ r M = ∂outM ⊔ ∂inM
(as sets), and morphisms Riemd(M1,M2) = {isometries φ : M1 →
M2|φ(∂inM1) = ∂inM2, φ(∂outM1) = ∂outM2}. ⋄
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Note that this is a symmetric monoidal category under disjoint union
(rather distant union).

Example 15.2 (d = 1). We have manifolds that look like (a, b) (with
∂out = a, ∂in = b), (a,∞) (with ∂out = a, ∂in = ∅), (−∞, b), and
(−∞,∞). Note that the inclusion (a, b) →֒ (a,∞) is not a morphism. By
the way, if I decided that ∂in(a, b) = {a, b}, then I would draw it as .
We could take the manifold M = (a, b) r {c} with some choices of ∂in
and ∂out. No, this is bad because the metric completion of this has two
extra points in the middle, not one. As a manifold with metric tensor, it
is the disjoint union of two open intervals.
Chris: do you require the in and out parts to consist of whole connected

components? PT: not, it is just a disjoint union as sets. Chris: so you
could have an open disk, with the boundary broken up in a really nasty
way, like a Cantor set and the complement. PT: yes, I guess I’m allowing
that for now. ⋄

Definition 15.3. The Riemannian bordiam category RBd has objects
{Y ∈ Riemd|∂outY is a closed (d − 1)-manifold}/(germs towards ∂in),
where germs toward ∂in is the equivalence relation generated by saying

that Y1 ∼ Y2 if Y1
i−֒→ Y2 (isometrically) with î : ∂outY1 → ∂outY2 an

isomorphism. ⋄

I’ll do the morphisms on Thursday. The punchline is that we get an
asymmetry of the bordism category (which we want) because there is a
little germ hanging off one end of the morphism, so you can’t reverse it.

8 RB 10-16

Guassian measure on infinite-dimensional spaces

Finite-dimensional Hilbert spaces have nice Guassian measures. For some
subtle technical reason, you can’t just take a limit of the Guassian mea-
sure on the finite-dimensional subspaces to get a Guassian measure on
an infinite-dimensional space (you just get a cylindrical measure which
cannot be extended).
The problem is that cylindrical set measures on Hilbert space do not in

general give you honest measures. There is a way around this. If you have
a Hilbert space of functions, it will often come equipped with a nuclear
space as a subspace and it will be contained in the dual of a nuclear space.
Such a thing is called a rigged Hilbert space. A typical nuclear space is
something like the space of smooth rapidly decreasing functions; a typical
example of a Hilbert space is L2 functions; and the dual of the nuclear
space is just distibutions. We DO get gaussian measures from cylindrical
measures on rigged Hilbert space.
In quantum field theory, you run into a new problem. We want to

integrate things like e−
∫
φ(x)4dx. If φ is L2, then you have some chance

of integrating φ(x)4, but if φ is a distribution, then φ4 will not make any
sense at all (if you try to define it with limits, it becomes infinite almost
everywhere). In LOW dimensions, this works.
In the 1-dimensional case, the support of the measure is the set of

“brownian motion paths” (non-differentiable, but at least continuous, so
φ4 makes sense). The result of this is that quantum field theory is easy
in dimension 1. This measure is called Wiener measure.
In the 2-dimensional case, it fails, jut “only just”. Roughly, φ has

logarithmic singularities everywhere (which are “only just” singular).
The nastyness of the measure depends on how bad the singularities of a

propagator are. In one dimension, the Green function is
∑

( ∂∂x )
2), giving

you |x| which is continuous. In two dimensions, you get log |x|, which
is just barely singular. In three dimensions, you get |x|−1, which is not
borderline at all.
If you work at it, you can make two-dimensional QFT work out. In

three dimensions an higher, you can’t get around it (actually, some spe-
cialized case has been worked out).
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An honest attempt to define gaussian measure did not work, so we’re
going to cheat. If you can’t solve a problem, secretly change the definitions
in the problem to make it easier. We’ll change the definition of a measure.
A measure (1) assigns a real to every measurable set such that . . . . (2)
Alternatively, we can use the idea of a Radon measure, which (for locally
compact spaces) can be thought of as a linear map (compactly supported
continuous functions)→ R, thought of as f 7→

∫
fdµ such that . . . . These

two definitions are more similar than they appear; you can think of a
normal measure as a linear function from measurable functions to R.
Generalization: define a measure to be a (well-behaved) map from some

space of functions on X to R. So we’ll only worry about integrating
some smaller set of functions which we’re really interested in. A typi-
cal example of such a space of functions will be functions of the form
(polynomial×e−x2

).

Example 8.1. An “algebraic” construction of Lebesgue measure on R.
Our algebraic measure will just be a linear map from (polynomials×e−x2

)
to R. Lebesgue measure is supposed to be translation invariant; what
does this mean for us? Polynomials times guassians are not invariant
under translation, but they are invariant under infinitesimall translation
(i.e. differentiation). By the way, if you’re used to thinking of Lie algebras
and Lie groups as the same thing, that doesn’t work in infinite dimen-
sions. Here we have an action of a Lie algebra on an infinite-dimensional
space which doesn’t integrate to an action of the group. So translation
invariance means that

∫
d
dx(poly × e−x

2

dx = 0. So we want to find a lin-

ear map from (poly×e−x2

)/ d
dx(poly × e−x

2

) to R, which is easy because
this space is 1-dimensional (modulo derivatives, everything is a multiple

of e−x
2

. This is more or less equivalent to saying that there is a unique
translation invariant measure up to scaling. ⋄

Remark 8.2. There are some minor advantages to this algebraic ap-
proach. It works for eQ(x) where Q is a nonsingular quadratic form in
n-dimensional space (it doesn’t have to be positive definite). For example,

you can define
∫
poly × ex2

dx algebraically. ⋄

In finite dimensions, everything works just like in the 1-dimensional case
(there is a unique translation invariant measure). What about in infinite

dimensions? It turns out that the space (poly×e−x2

)/ d
dx(poly × e−x

2

)
is usually infinite-dimensional. So instead of just one candidate for a
gaussian measure, we have an infinite dimensional space of candidates.
This turns out to the fact that Feynman diagrams are defined up to an
infinite-dimensional space of ambiguities.

Remark 8.3. There is a major disadvantage of this algebraic approach.
We want to integrate (say) e−λ

∫
φ(x)4dx. In the analytic approach, this

failed because φ4 blew up almot everywhere. In the algebraic approach,
this fails because exp(−λ

∫
φ4dx) is not a polynomial in φ. But we can

expand it as a formal power series, and each term can be defined. So we
can come up with a formal power series as the answer. Nobody knows
how to get around this problem. The answer you get is always a formal
power series which usually doesn’t converge. ⋄

How do we define
∫
(poly(φ))e−quadratic(φ)Dφ, where the quadratic

thing will usually look like
∫
m2φ2 + (

∑
∂2φ)φdx and the polynomial

term will look like
∫
φ4dx times similar terms. Formally we just copy

what happens in the finite dimesnional case: the integral can be written
as a (finite) sym of Feynman diagrams. The propagator for these dia-
grams, ∆(x1, x2), is given by the inverse of m2+∂2, which is more or less

the Greens function. [[⋆⋆⋆
∫
φ(x1)φ(x2)e

−
∫
m2φ2+(∂2φ)φdxDφ]]

First attempt at the definition: the integral is given by the
usual sum of Feynman diagrams. Suppose we want to compute∫
φ(x1)

4φ(x2)
6φ(x3)

4e−
∫
m2φ2+(∂2φ)φdxDφ. then we take the sum over

all ways of joining up dots with valance four, six, and four. This leads to
a distribution in x1, x2, and x3.
Another way to think of a distribution is to plug in a test func-

tion and integrate it. So we can think of it as

∫ ∫
φ(x1)

4f1(x)dx ×
∫
φ(x2)

6f2(x)dx · · · e−
∫
...dxDφ (real valued) where f1, f2, f3 are smooth

compactly supported functions. These things are polynomials in φ(x)
and derivatives, where x is a smooth function. This is formally the same
thing as a Lagrangian (density). So this can be thought of as a linear
map from the symmetric algebra of actions of compact support to R. So
that’s what a guassian measure is, except that this whole thing doesn’t
actually work. This definition fails because the product of distributions
is not defined (because of ultraviolet divergences). However, it is almost
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well-defined. The product of propagators is well-defined except on the
diagonal of (Rn)#pts. This small ambiguity is controlled by renormaliza-
tion.
The plan of attack is as follows. (1) Define an infinite dimensional

space of possible gaussian measures as linear maps Sym(actions) → R
satisfying some conditions. (2) find a group of renormalizations (acting
on Sym(actions)) acting simply transitively on the space of gaussian me-
assures.
We definitely do not have a canonical Gaussian measure (there are

obstructions, called anomalies, proving that you can’t get such a thing).
However, any two Gaussian measures are equivalent, meaning that there
is a unique renormalization taking one to the other. This isn’t really
anything new.

Example 8.4. A translation invariant measure on a finite-dimensional
real space is not unique (because you can multiply by a constant). How-
ever, the group of positive reals acts simply transitively on the space of
such measures. ⋄

The difference between the finite-dimensional case and the infinite-
dimensional case is that in the finite-dimensional case, we have a 1-
dimensional abelian group, and in the infinite-dimensional case we get
an infinite-dimensional non-abelian group.

22 NR 10-17

Anton missed this class. The following are notes were taken by Chris
Schommer-Pries.
Recall what happened last time: We considered quantum Mechanics

in Rn (The quantization of classical mechanics on T ∗Rn). We had the
quantum algebra of observables:

Diff~(R
n) =<

∑

α

~|α|fα(q) > times derivatives

We represent it on H = L2(Rn). If the Hamiltonian H = p2/2m+ V (q),
it’s quantization is Ĥ = − ~

2m∆+ V (q), and the Schrödinger equation is,

i~
∂ψ

∂t
= Ĥψ

With initial condition ψ(q, o) = ψ(q). The evaolution of purre states Pψ ,
in the semiclassical limit is

– ψ(q) = φ(q)e
if(q)

~

– ψ(q, t) =
∑
j φ(qj(q, t))|∂Qt

∂q (qj)|−
1
2 e

i
~
S[γj ]−iπ2 µj (1 +O(~))

Where j is a trajectory from the initial Lagrangian L0 = {(p, q) | p =
df |q}, to the Lagrangian Lt.

The rapidly oscillating integral Z~ =
∫
Rn e

i
~
S(x) dx is approximately,

in the semicalssical limit:
∑

α

ei
S(xα)

~ | det(S′′(xα)|−
1
2 ei

π
2 (n+−n−)(1 +O(~))

The Evolution Operator: If you just think of this in terms of linear
algebra, it’s just a linear differential equation and the solutions should
be,

ψ(q, t) = (e
it
~
Ĥ)ψ(q) =

∫

Rn

U(q, q′)(t)ψ(q′); dq′

It is very tempting to say something like this:

1.
∫
Rn U(q1, q2)(t1 − t2)U(q2, q3)(t2 − t3) dq2 = U(q1, q3)(t1 − t3)
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2. U(q2, q1)(−t) = U(q1, q1)(t) = [U(q1, q1)(t)]
−1

We guess/assume

1. U(q1, q1)(t) =
∫
pathsγ e

i
~
S[γ], where the paths satisfy γ(0) = q1 and

γ(t) = q2. The left-hand-side is defined using the functional calculus
for self-adjoint unbounded operators, and involves some technicali-
ties, but is well defined. The right-hand-side is problematic.

2. ψ(q, t) =
∫
Rn

∫
{γ} φ(q

′)ei
f(q′)

~
+ i

~
S[γ] Dγ dq′ The critical points of

f(q) + S[γ] are the paths starting at L0 and ending at q.

We don’t really know how to do an integral over all paths in Rn. But we
have a semiclassical expansion and we have a semigroup law structure. Let
γC be a classical solution, i.e. a solution to the Euler-Lagrange equations.
Let’s expand the action around this path γC :

S[γ] =

∫ t

0

(
m

2
γ̇2(t) + V (γ(t)) dt

So,

S[γC+x] = S[γC ]+

∫ t

0

(
m

2
ẋ2+ < V (2)(γC)x, x >) dt+

∑

n≥3

1

n!

∫ t

0

V (n)
γC (x(t)) dt

i.e. we do a Taylor expansion. So when we integrate over all γ (near γC)
we get,

ei
S[γC ]

~

∫

x

e
i
2<,ky>+i

∑
n≥3

~

n
2

−1

n!

∫ t
0
V (n)(x) dx

Which becomes,

ei
S(γC)

~ | det(K)|− 1
2 ei

π
2 Ind(K)

Where,

K = id
m

2

d2

dt2
+ V (2)(γC(t))

acts on functions [0, 1]→ Rn. This is very similar to the expansion of the
operator U .
We have a question: do we have |det′(K)| = |∂Q∂q |? Yes. There is a

theorem.

Now can we do better? Can we identify all the terms in the asymptotic
expansions? On the one hand (for U) we get a sum made out of Feynmann
diagrams, and on the other hand the asymptotic expansion associated to
the PDE. Are these the same? This is probably an open question.
Further questions:

1. Is it true U(q1, q2)(t) [defined by Feynmann diagrams] satisfies the
‘semigroup’ identities?

If so, then we can assign a vector space to the endpoints on an interval,
and to the interval itself we can assign the power series U(q1, q2)(t). We
don’t know if it converges or anything like that.
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Homework question: what is the “Hilbert space”? You have a classical

field theory Φ(Σd)
A−→ R, with restriction maps Φ(Σ) → Φ(∂in/outΣ). A

quantum field theory would be a functor Q from the bordism category to
hilbert spaces. You take Q(Y d−1) =“L2(Φ(Y ))”.
I’m going to start over again with the Riemannian category Riemd of

Riemannian d-manifolds.

Definition 16.1. The objects are Riemannian d-manifolds (Md, g) with-
out boundary with finitely many connected components Mi and finitely
many ends1 such that M̂ := ⊔M̂i, the metric completion of M (com-
pleting the connected components), is compact. And together with the

decomposition δM := M̂rM = δpermM ⊔δgermM (perm for permanent)

so that δpM is closed. Note that the boundary of M̂ will be contained

in δM . Note also that M̂ need not be a manifold (for example, take M

to be the open cone on a torus; then M̂ adds in the point of the cone,
which doesn’t have a neighborhood that looks like Rn). The morphisms
are Riemd(M1,M2) = Isom(M1,M2), isometric embeddings (these don’t
have to preserve the decomposition of δM1). ⋄

Remark 16.2. Such an embedding induces a map M̂1 → M̂2, but this
map doesn’t have to have any nice properties (like injectivity). ⋄

Definition 16.3. The objects of RBd are objects Y of Riemd such that
Y ∪ ∂pY is a (topological) manifold with boundary δpY (note that δpY
is a closed (d − 1)-manifold, topologically), modulo a germ equivalence
relation generated by ∼ saying Y1 ∼ Y2 if Y1 ⊆ Y2 (open isometric in-
clusion) such that δpY1 = δpY2. We denote the equaivalence class by
[Y ].. RBd([Y1], [Y2]) = {(Σ, [i1], [i2])|Σ ∈ Riemd, ik ∈ Riemd(Yk,Σ)

2 such
that i2 induces homeomorphism δpY2 ∼= δpΣ and i1 induces a homeomor-

phism î1 : δgY1 → δgΣ for some representative Y1}/germ equivalence of

1The ends of a space is Ends(X) = lim
←−K⊆X

π0(X r K) where the limit is over

compact subsets of X. For example, if you have R2 minus some points, each deleted
point is an end (and one end “at infinity”).

2For some choice of representative Yk in [Yk].

(Y1
i1−֒→ Σ). You also mod out by isometries rel boundary to get a cate-

gory (actually, I want to make a bicategory where the 2-morphisms are
isometries). ⋄

Chris will lecture next Wednesday at 2 on bicategories.
Maybe next time I’ll give you an equivalent definition without germs.
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U(q1, q2|t) = eitH/h(q1, q2) =
(

1
2πih

)n/2∣∣ ∂2S
∂q1∂q2

∣∣1/2 exp( ihS(q1, q2, t))(1 +

O(h))
Assuming a single trajectory connecting two points.

ψ(q, t) =

∫
U(q, q′|t)φ(q′)ei

f(q′)
h dq′

= φ(q0)|
∂γ(t)

∂q0
|−1/2 exp(iS(q, q0, t)/h)(1 +O(h))

Where γ is a path with γ(0) = q0 and γ(t) = q. The Legendre transform
of γ̇(t) is df(q).

Proof of formula. Assume T ∗R. We have

ih
∂ψ

∂t
= − h

2m

∂2ψ

∂q2
+ V (q)ψ

Try solutions of the form ψ(q, t) = eiS(q,t)/hψ0(q, t)(1 + O(h)) where ψ0

is a power series in h. Then the equation becomes

−Stψ0+ih
∂ψ0

∂t
= − h2

2m

∂2ψ0

∂q2
−i h
m

∂ψ0

∂q

∂S

∂q
+

1

2m
(
∂S

∂q
)2ψ0−i

h

2m

∂2S

∂q2
ψ0+V (q)ψ0.

Looking at the terms

h0: −∂S∂t = 1
2m (∂S∂q )

2 + V (q). This is the Hamilton-Jacobi equation S =

Af [γcl], where Af [γcl] =
∫ t
0
( 1
2m γ̇

2
cl + V (γ))dτ + f(q0).

h1: i∂ψ0

∂t = − i
m
∂ψ0

∂q
∂S
∂q − i

2m
∂2S
∂q2 ψ0, whic we can write as

( ∂
∂t

+
1

m

∂S

∂q

∂

∂q

)
logψ0 = − 1

2m

∂2S

∂q2

From Hamilton-Jacobi, ∂A[γcl]
∂q = p = mdγ(t)

dt and ∂A[γcl]
∂q0

= p0. This

is just because L(ξ, q) = ξ2

2m − V (q) and p = mξ. This means that
this formula is

( ∂
∂t

+
1

m

∂γ(t)

∂t

∂

∂q

)
log γ0(q, t) = −

1

2

d

dt
log

∂q

∂q0

because the right hand side is

∂2S

∂q2
=

∂

∂q

∂A[γcl]
∂q

= m
∂

∂q

dγ(t)

dt

= m
∂q0
∂q

∂

∂q0
(
dγ(t)

dt
)

= m
∂q0
∂q

d

dt
(
∂γ(t, q0)

∂q0
)

= m(
∂q

∂q0
)−1 d

dt
(
∂q

∂q0
) =

d

dt
log

∂q

∂q0

( ∂
∂t

+
1

m

∂γ(t)

∂t

∂

∂q

)
log γ0(q, t)

∣∣∣
q=γ(t)

=
d

dt
(logψ0(γ(t), t))

∂q

∂q0

∣∣∣
t=0︸ ︷︷ ︸

=1

so

d

dt
logψ0(γ(t), t) = −

1

2
log

∂q

∂q0

ψ0(γ(t), t) = φ(q0)
( ∂q
∂q0

)−1/2

From the Schrödinger picture, we have U(q1, q2|t) = C ·
ei

S(q1,q2,t)
h

∣∣∂2S
∂q2

∣∣1/2(1 +O(h)). From the path integral, we have

U(q1, q2|t) = C · ei
S(q1,q2,t)

h | detK|−1/2(1 +O(h))

Where K = − 1
m ( dds )

2 + V (2)(γ(s)) for 0 ≤ s ≤ t on L2[0, t] with x(0) =
x(t) = 0.
Computing these coefficients is painful (and grows more painful with
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higher order terms). Using the path integral, we have

U(q1, q2|t) =
∫

γ(0)=q1,γ(t)=q2

exp(
i

h
A[γ])Dγ

=

∫

x(0)=x(t)=0

exp
( i
h
A[γc + x]

)
Dx

= eiA[γc]/h

∫

y(0)=y(t)=0

exp(i(y,Ky) +
∑

n≥0

hn/2−1

n!
(V (n), yn))Dy

= CeiA[γc]/h| detK|−1/2eiπν(K)/2 ·
∑

n≥0

hncn[γx]

Say γ = γc + x, then use A[γc + x] = A[γc] +
∫ t
0
( 1
2m (ẋ(t))2 +

V ′′(γc(τ))x2(τ)) dτ +
∑
n≥3

1
n!

∫ t

0

V (n)(γc(τ))x
n(τ) dτ

︸ ︷︷ ︸
=:(V (n),yn)

, and x =
√
hy.

ν(K) is the index of the operator (difference of positive and negative
eigenvalues)
Look at

∫
ei(x,Bx)+

∑
n≥3

1
n! (V

(n),x)hn/2−1

dx =
∑

n3≥0,n4≥0···

h(3n3+4n4+··· )/2−n3−n4−···

n3!(3!)n3n4!(4!)n4 · · ·

∫

Rn

ei(x,Bx)(V (3), x3)n3(V (4), x4)n4 · · ·

Assume B has some positive imaginary part.

∫
ei(x,Bx)xi1 · · ·xindnx =

1

n!

∂

∂yi1
· · · ∂

∂yin

∫
ei(x,Bx)+(y,x)dnx

∣∣∣
y=0

= C · 1
n!

∂

∂yi1
· · · ∂

∂yin
(e−i/4·(y,B

−1y))
∣∣∣
y=0

You can write this as the sum over all perfect matchings on (i1, . . . , in)

of the product of the (−
√
−1
4 B−1)ij =: Gij (where i and j are paired).

Example 23.1. n = 4, then this integral will be equal to G12G34 +
G13G24 +G14G23. ⋄

The power series can be written as

=
∑

ni≥0,i≥3

h#

· · ·
∑

perfect matchings

perfect matchings with V (3), V (4), etc attached to vertices

This is the sum over all graphs Γ with valence at least 3 at each vertex of
1

|Aut(Γ)|F (Γ), where F (Γ) assigns a V
(k)
··· to each k-valent vertex and Gij

to each edge between i and j.
As far as I know, nobody has bothered to prove that∫
U(q1, q2|t)U(q2, q3|s) dq2 = U(q1, q2|s+ t).
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Last time: I explained that the amplitude in quantum mechanics can be
considered as a sum of Feynman diagrams. As far as I know, it is open
to verify that the composition law is satisfied. Recall that

∫

Rn

exp
(
−1

2
(x,Kx) + V (x)

)
dnx =

∑

Γ

F (Γ)

|Aut Γ|

Where F (Γ) is computed by assigning elements of your potential, Vi1,i2,...,
and to each vertex and to each edge assigning (K−1)i1j1 , and then mul-
tiplying everything together. Then

U(q!, q2|t) =
∫

γ(0)=q1,γ(t)=q2

exp
( i
h
S[γ]

)

which we expand near a classical path γc, with γ = γc + x. We get

C exp
(
iA[γc]

h

)
| det′(Kγc)|−1/2

∑
Γ

F (Γ)
|Aut(Γ)| with

A[γc+x] =
∫ t

0

( 1

2m
γ̇(τ)2+V (γ(τ))

)
dτ = A[γc]+

∫ t

0

( 1

2m
. . . x2 + V ′′(γc)x

2
)

︸ ︷︷ ︸
− 1

2 (x,Kx)

From now on I’ll assume n = 1. We have that the regularized determinant
is det′(K) =

∏∞
n=1

λn

λ0
n
.

What is F (Γ)? If we have n vertices, and 0 ≤ s ≤ t, then K−1 will
have kernel K−1(s, t), so it will satisfy the differential equation

(
− 1

m

d2

ds2
+ V ′′(γc(s))

)
K−1(s, u) = δ(s− u)

This K−1(si, sj) is the weight we assign to an edge between vertices i and
j in the diagram, and we assign V ′′′(γ(si)) to the vertices. As far as I
know, nobody has bothered to prove that

∫
Rn U(q1, q2|t)U(q2, q3|s)dq2 =

U(q1, q3|s+ t). Phisicits didn’t do this because it is obvious. Mathemati-
cians didn’t bother to do this because it doesn’t solve any fundamental
problem. So this problem, which is probably not very hard, is open.
This is more or less the end of the path integral in classical mechanics.

Now we ask the following questions.

1. How is this related to the deformation quantization?

2. What to do if ∂2L
∂ξi∂ξj

is degenerate? If you have a classical system with

a Lie group action so that the Lagrangian is invariant, then you’ll
run into this problem. In this case, you should reduce the dynamics
to the orbits. This is known as Hamiltonian reduction. This is where
all these gadgets like Fadeev-Popov ghosts, BRST quantization, and
BV quantization appear.

Since I already gave an example of a classical field theory, let me give
and example of a quantum field theory which quantizes this scalare Bose
field.

Quantum field theory of a scalar Bose field (perturba-
tive)

Classically

– M is Riemannian

– Fields are R-valued functions onM , so the space of fields is C∞(M).

– A[φ] =
∫
M

(
1
2

(
dφ(x), dφ(x)

)
+ V (φ(x))

)
dnx

– Critical points of A[φ] with fixed φ|∂M = ϕ have δA[φc] = 0. δφ is a
vector field on the space of fields C∞(M). Given a functional F on
fields, δF [φ] := d

dsF [φ+ sδφ]|s=0. So

δA[φ] =
∫

M

(
−∆φ(x) + V ′(φ(x)

)
δφ(x) dnx+

∫

∂M

δφ(x)
(
dφ(x), dnx

)

This second term will be zero anyway because we assume the fields
are ϕ at the boundary. This is where you run into the problem of
renormalization. So the Euler-Lagrange equations are

−∆φ(x) + V ′(φ(x)) = 0

with the boundary condition φ|∂M = ϕ. For good potentials V ,
this problem has unique solutions. You can kind of see this from
1
2 (dφ, dφ) + V (φ); if V is good, there is a unique minimum.
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We can try to define the amplitude UM , a functional on the space of
possible values of boundary values ϕ. In a quantum field theory, this
would be exactly H(∂M). Since this space is very bad, I’ll try to define
what I can. So we try

UM (ϕ) =

∫

φ|∂M=ϕ

exp
( i
h
A[φ]

)
Dφ

How can we define this in a meaningful way? I know how to make
sense of formal oscillating integrals like I did before:

∫
e

i
hS(xc+y)dy

using Feynman diagrams. To deal with that, we wrote S(xc +
y) = S(xc) +

1
2 (y,Ky)) +

∑
n Vn(y) . . . then everything turned out to

ei
S[xc]

h det(d2S(xc)
−1/2

∑
Γ

F (Γ)
|AutΓ| . In this case, we will just define this

UM as a sum of diagrams. In the previous case, I could actually “do the
diagram integrals”, but now we’re over an infinite-dimensional space.
In quantum mechanics, we can define UM (ϕ) as

1. the kernel (ei
t
hH)(x, y) (this is the honest definition). We can derive

this as the h→ 0 limit of the Schrödinger equation.

2. A wild project:

U(q1, q2|t) = lim
h→0

∫

x(0)=x(t)=0

exp
(
i
S[xc + x]

h

)
Dx

def
= exp(i

S[xc]

h

′
det(Kxc)

−1/2
∑

Γ

F (Γ)

|Aut Γ|

Problem 1: Prove that 2 gives the same notion as 1 (as far as I know, it’s
open).
Problem 2: Up,ints ∗ Up,intt = Up,ints+t [[⋆⋆⋆ I don’t know what those
superscripts are]].
The idea is to approximate the infinite-dimensional integral as a finite-

dimensional integral and hope that there is a limit of these expressions.
But this is very hard. I want to go through known facts as much as
possible, but this area is like a mine field; you often step on something
unproven. We’ll use the perturbative approach as much as we can. We’ll
see how it works in this very simple example. Then we’ll do this in Chern-
Simons theory. The perturbative approach will give you knot invariants

and other good things, but the limitations of this perturbative approach
will become clear, so we’ll defined things as these power series.
In quantum mechanics we’re in very good shape; we have an honest

definition. Anywhere else, we only have these guesses. The goal is to
organize these guesses as much as we can.
So I define

UM (ϕ)
def
= exp

(
i
A[φ]
h

)
det(Kφc)

−1/2
∑

Γ

F (Γ)

|Aut(Γ)|
∫

exp
(
i
A[φc + x]

h

)
= A[γc] +

1

2
(x,Kφcx) +

∑

n

V (n)(φc)x
n.

You can already see a problem with this definition. This K(x, y) is sin-
gular at x = y (ultraviolet divergences). This is what Richards course is
about. I will make a few comments about this next time. Then we will
completely ignore all divergence problems in this course.
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What Kolya called spacetime categories, I’ll call bordism categories. Let
Bd be the category whose objects are closed (d − 1)-manifolds, with

Bd(Yin, Yout) = {Yout
jout−֒−→ Σ

jin←−−֓ Yin|Σ compact, ∂Σ = im jin ⊔
im jout}/equivalence. Really, you shouldn’t mod out by equivalence.

Bd(Yin, Yout) is really a category with objects (Yout
jout−֒−→ Σ

jin←−−֓ Yin) and
morphisms are isomorphisms Σ→ Σ′ respecting the embeddings jin/out.
Thus, Bd should really be thought of as a bicategory. A bicategory C has
a class of objects, hom categories C(x, y) for each pair of objects x, y ∈ C,
and composition functors C(y, z) × C(x, y) → C(x, z) (called horizontal
composition). Furthermore, we reqire an associator natural transforma-
tion satisfying the pentagon identity. Note that the composition in C(x, y)
is associative (because it is a category); this composition is called the ver-
tical composition. Furthermore, there is some idx : pt → C(x, x), which
are weak identities.

Definition 17.1. A 2-category is a category enriched over Cat. That
is, a 2-category is where the composition functors are associative on the
nose. ⋄

Mac Lane proved that any bicategory is equivalent (as a bicategory) to
a 2-category, but this rigidification is unnatural (there are more functors
between bicategories than between 2-categories).
Let me tell you the horizontal composition B(Y2, Y3) × B(Y1, Y2) →

B(Y1, Y3). If Y3
Σ′
←− Y2

Σ←− Y1, then the horizontal composition is the
pushout Σ ∪Y2 Σ′ : Y1 → Y3. Since union of sets is not associative, this
composition is not associative. Note that this gluing doesn’t work in
the Riemannian category. Even in the smooth category, you need to use
collars. This is ok in the topological category.

Claim. This pushout defines a composition in RBd.

Let me first give an equivalent version of RBd, with no germs. Recall
that Riemd has objects Riemannian d-manifolds without boundary Y d

with three tameness conditions:

– finitely many ends,

– finitely many components, [[⋆⋆⋆ follows from next condition]] and

– Ŷ is compact,

together with the decomposition Ŷ r Y = δpY ⊔ δgY . Then Riem(Y1, Y2)
consists of isometric embeddings Y1 →֒ Y2.
RBd has objects Y ∈ Riemd such that Y ∪ δpY is a topological d-

manifold with boundary δpY . Last time we used a germy equivalence

relation, but we aren’t doing that this time. RBd(Yin, Yout) = {Y 1
out

jout−֒−→
Σ

jin←−−֓ Y 1
in|Σ ∈ Riemd, Y

1
in/out an open subset of Yin/out such that

– δpY
1
out
∼= δpYout,

– ĵout : δpY
1
out

∼−→ δpΣ, ĵin : δgY
1
in

∼−→ δgΣ}.
Note that the germ boundary of Y 1

in doesn’t have to match the germ
boundary of Yin. Given Y ∈ RBd, idY ∈ RBd(Y, Y ) is Y →֒ Y ←֓ Y .
Given another morphism Y 2

out →֒ Σ′ ←֓ Y 2
in, a 2-morphism Σ → Σ′ is an

isometry Σ → Σ′ such that there exist Y 3
in/out ⊆ Y 1

in/out, Y
2
in/out so that

Σ → Σ′ respects the inclusions of Y 3
in/out. Composition is just the usual

composition.
I still have to define the (horizontal) composition. Say we have Y3 →֒

Σ ←֓ Y2 →֒ Σ′ ←֓ Y1, then we can glue Σ and Σ′ along Y 3
2 (intersecting

the representatives Y 1
2 and Y 2

2 ).
Variations on the theme: You can’t just choose Y 3

2 , you have to take
it ot be the intersection Y 1

2 ∩ Y 2
2 . Another point: for 2-morphisms, you

have to use Σ′ r (Y 2
in r Y 3

in) instead of Σ′.
There is a bit of a subtlety with the gluing. Consider two copies of

R1 glued together along (0, 1). This is still locally R1, but the result is
non-Hausdorff (the two 0’s and the two 1’s are indistinguishable). We can
remove (−∞, 0) from the first R and [1,∞) from the other R, and then
the problem is gone.

More generally, if you have embeddings U
i1−֒→ M1 and U

i2−֒→ M2 such
that i1×i2 : U →M1×M2 is proper, thenM1∪UM2 is Hausdorff. [[⋆⋆⋆

HW. You probably only need that U , M1, and M2 are Hausdorff.]]
Now we have to check properness in the horizontal composition in RBd,

which I claim follows from our conditions (this is where you use that Ŷ is
compact). [[⋆⋆⋆ HW: show that if Y 1 ⊆ Y open, then Y1 ∼= Y in RBd]]
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We’re going to continue trying to figure out what a gaussian Feynman
measure. Goals:

1. Define what we mean by a Gaussina Feynman measure.

2. Define a group of renormalizations that acts simply transitively on
Feynman measures.

The setup: 1 hermitian scalar field φ on (say) Minkowski space M =
R1,d−1. We assume we’re given a well-behaved propagator ∆ that is a
distribution on M ×M . Most of the constructions of Feynman measure
really only depend on the choice of this ∆.
Recall that a Feynman measure is a map from Sym∗(compactly sup-

ported actions) to R. A compactly supported action is something that
looks roughly like

∫
f(x)φ(x)4 dx where f is a smooth compactly sup-

ported function. The reason for making it compactly supported is to
eliminate infra red divergences. The result is not translation invariant,
but we’ll see how to get that back. This φ(x)4 can be any polynomial
in derivatives of φ. PT: you don’t have a preferred action corresponding
to the propagator? RB: no; it’s a little misleading to call them actions,
actually. It looks like you’re looking at the space C∞

0 M ⊗ (polys in φ and
derivatives), but you have to mod out by the images of derivatives ∂i to
get actions. You can do

∫ ∫
fφ4dx

∫
fφ6dx︸ ︷︷ ︸

∈Sym∗(actions)

ei
∫
m2φ2+φ2∂2φdxDφ→ R

We require that a Feynman measure have some property. Formally, this
integral can be written as a sum of Feynman diagrams (products of prop-
agators, well-defined up to distribution on the diagonal).

Definition 9.1 (First). A Feynman measure is a linear function
Sym∗(actions) → R which can be obtained by summing over Feynman
diagrams satisfying the conditions mentioned earlier (that for any edge
between x and y, you can remove the edge at the cost of adding a factor
of ∆(x, y)). ⋄

It would be nice to have a definition which doesn’t explicitly talk about
summing over Feynman diagrams.

Definition 9.2 (Second). A Feynman measure is a linear function∫
: Sym∗(actions)→ R with the following property. If a =

∫
φ3
∫
φ4
∫
φ2

and b =
∫
φ4
∫
φ6 are in Sym∗(actions) have disjoint supports (there are

hidden functions with compact support, which I’m too lazy to write),
then

∫
ab is

∑∫
a′ ×

∏
(∆) ×

∫
b′

summing over all ways to joing a φ in a to a φ in b, where b′ is b without
the φ’s joined to a (and a′ similar), and where

∏
(∆) is a product over

propagators where something in a is joined to something in b. ⋄

Whichever definition you like, the result is an infinite-dimensional space
of Gaussian Feynman measures. Instead of trying to find a canonical
element of this space (which is not possible in general), we try to find a
group acting transitively on it.

Construction of group of (“finite”) renormalizations

What should this group look like?
(1) First of all, it is a subgroup of GL(Sym∗(actions)), invertible linear

maps Sym∗(actions)→ Sym∗(actions) (which don’t have to preserve the
grading). This acts (by definition) on Sym∗(actions) and on its dual
(which contains Feynman measures). By the way, the reason for using
these huge spaces is that the formulas become more transparent; we’ll see
an example of this in a moment.
(2) We need renormalizations to action on Lagrangians. The reason is

that we want a map from Lagrangians×measures to quantum field the-
ories. In physics books, they pretend like there is only one measure,
but this is false. Both Lagrangians and measures are acted on by renor-
malizations, and we want the map to QFTs to be invariant under the
renormalization action. Lagrangians are more or less the same as actions,
and we’ve already got an action on actions, but there is something very
tricky. The renormalization action on Lagrangians is NONLINEAR. This
is one of the reasons renormalization is so hard to understand. The reason
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it’s nonlinear: if you look inside a Feynman integral, it contains a factor of
eiL, and it turns out that the action of the renormalization group on these
things is linear. eiL is more or less in Sym∗(actions) (ignoring convergence
problems). We have that the Lagrangians are mapped into Sym∗(actions)
by the exponential map, making Lagrangians a subspace of actions. This
induces the action of the renormalization group on Lagrangians.
There is a problem, because there is no reason the action on

Sym∗(actions) should preserve things of the form eiL. Problem: sup-
pose V (which will be the space of actions) is a module over a Q-algebra,
and suppose a group G acts on Sym∗ V . When does G preserve the subset
of elements of the form eλv ∈ Sym∗(V ) (where λ is infinitesimal, meaning
nilpotent). Solution: pretend V is an abelian Lie algebra (you can ignore
this if you like), so Sym∗ V is the universal enveloping algebra of V (again
you can ignore this if you like), which is, in particular, a Hopf algebra with
coproduct given by ∆(v) = v⊗1+1⊗v and extended to make it an algebra
homomorphism. A coproduct is a map ∆: Sym∗ V → Sym∗ V ⊗Sym∗ V .
The coproduct roughly tell you how something in Sym∗ V acts on the
tensor product of two things. Now we can define two special sorts of
elements.

Definition 9.3. g ∈ Sym∗ V is primative (Lie-algebra-like) if δ(g) =
1⊗ g + g ⊗ 1. g ∈ Sym∗ V is group-like if δ(g) = g ⊗ g. ⋄

For example, the primitive elements of Sym∗ V are exactly the elements
of V . If G is a group, then the group-ring C[G] is a Hopf algebra with
δ(g) = g⊗g for g ∈ G and the group-like elements of C[G] can be identified
with G.
If g is primative and nilpotent, then exp(g) is group-like. Conversely,

if g is group-like and unipotent (1 plus something nilpotent), then log(g)
is primative.
So elements of the form eL (if we ignore convergence) are exactly the

group-like elements of Sym∗(V ). If we go back to thinking of V as the
space of actions, then we want a renormalization group action which
preserves the group-like elements of Sym∗ V . How can we ensure that
an endomorphism preserves the set of group-like elements? An obvious
way to do it is to require it to preserve the coproduct ∆: Sym∗ V →
Sym∗ V ⊗ Sym∗ V .

What on earth are the coproduct preserving maps? Well, a good way
to think about this is to dualize everything. What are maps Sym∗ V →
Sym∗ V preserving the product Sym∗ V ⊗ Sym∗ V → Sym∗ V . These are
easy to identify; they are the same as linear maps V → Sym∗ V , because
any such map can be uniquely extended to an algebra homomorphism.
Dualizing, you find that maps preserving coproduct can be identified with
linear maps Sym∗ V → V .
We’ve cut down our space a bit, but this space of linear maps is still

too big, so we need some more conditions. You may be thinking, “why
not require that the product is preserved as well?” Well, then it would
be too small to act transitively on all measures.
(3) Renormalizations ALMOST preserve products: g(ab) = g(a)g(b) if

a and b have disjoint support.
(4) Renormalizations fix 1 ∈actions (not the same thing as 1 ∈

Sym∗(actions)).
(5) Renormalizations commute with the group of sections of the vector

bundle which I’ll explain next week.
This more or less defines what a renormalization is. It is clear that

renormalizations form a group. This group acts transitively on measures
(I’ll explain this next week).
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Today I wanted to continue talking about the Scalar Bose field. I want to
focus on a problem which doesn’t exist in any TQFT, but does exist in any
realistic QFT: divergences due to ultraviolet divergences and renormal-
ization. RB should be doing this in his class. In this case, fields φ are ele-
ments of C∞(M). The action functional isA[φ] =

∫ (
1
2 (dφ, dφ)+V (φ)

)
dx,

where V (φ) is the self-interaction term. We assumeM is Riemannian with
boundary ∂M . Let φcl be the solution to the Euler-Lagrange equations,
assuming we fix φ|∂M = ϕ, so δφ|∂M = 0. Then we have

δA[φ] =
∫

M

(
−∆φ(x) + V ′(φ(x))

)
δφ(x) dx

For this to vanish, we must have −∆φc + V ′(φc) = 0. We have UM (ϕ),
the analogue of U(q1, q2|t) (where q1 = γ(0), q2 = γ(t)). We define

UM (ϕ) =

∫

φ|∂M=ϕ

exp
( i
h
A[φ]

)
Dφ

We want to have some analogue of the composition law∫
M U(q1, q2|t)U(q2, q3|s)dq2 = U(q1, q3|s + t), so we require UM to
satisfy the following axiom. If M1 and M2 are manifolds, with part of

their boundaries identified, say ∂1M1
f−→
∼
∂1M2, then

∫

ϕ|∂1M1=∂1M2

UM1(ϕ)UM2(ϕ)Dϕ = UM1#fM2(ϕ) (∗)

We can only make sense of UM (ϕ) perturbatively as

c
∑

φc

exp
( i
h
A[φc]

)
(det′Kφc)

−1/2
∑

Γ

F (Γ)

|Aut(Γ)|

The problem: Does UM (ϕ) satisfy (∗)?

Remark 25.1. Though the integral itself doesn’t make sense, we can try
to make sense of it perturbatively, so (∗) should be regarded as an identity
involving series of Feynman diagrams. ⋄

Let me say what are the rules of these Feynman diagrams. The intuitive
idea is that we should consider A near φc, so

A[φc+ψ] = A[φc]+
1

2

∫

M

ψ
(
−∆+V ′′(φc(x))

)
ψ dx+

∑

n≥2

1

n!
V (n)(φc(x))ψ(x)

n dx

When you have a vertex with valence n, you assign x ∈ M and as-
sign V (n)(φc(x)) to the vertex. To an edge between x and y, you assign
(Kφc)

−1(x, y) =: G(x, y).
Let’s look at all diagrams of order 1.

Example 25.2. To
x y

we assign

∫∫

M×M
G(x, x)V (3)(φc(x))G(x, y)V

(3)(φc(y))G(y, y) dxdy

Also, we have
x y x

[[⋆⋆⋆ add formulas]] ⋄

Kφc = −∆ +

U︷ ︸︸ ︷
V ′′(φc(x)). The problem with K is that eigenvalues λi

blow up as n → ∞, so detKφ has no chance to exist. But we also have
the operator −∆, whose eigenvalues λ0i also diverge if you order them like
λ01 ≤ · · · . But λn/λ

0
n converges to 1, so we have some hope of making

sense of det(−∆+U
−∆ ) = det(I−U∆−1). It turns out that this determinant

exists.
Let’s see how these expressions behave. For this, we have to understand

how K−1
φc

(x, y) = G(x, y) behave as x goes to y. “x goes to y” means
that in the Fourier transform, we should take p to ∞. If x and y are
close, then the distance to the boundary is much larger than the distance
between them. Let’s say M is m-dimensional. I claim that as x goes to
y, the asymptotics of this Greens function is G(x, y) → GRm(x − y) =
∫
Rm

exp(ip(x,y))
p2 dmp = |x− y|−m+2

∫
Rm

exp(iq( x−y
|x−y| )

q2 . In the short distance
asymptotics, we’re picking up large eigenvalues of the Laplacian ∆, so
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we can pretend like U = 0. We can ignore the integral
∫
Rm

exp(iq( x−y
|x−y| )

q2

[[⋆⋆⋆ for some reason]], so GUM (x, y)→ c
|x−y|m−2 + · · · .

If m = 1 (quantum mechanics), G(x, y) ∼ |x− y|, so no divergences.
If m = 2, it turns out that G(x, y) ∼ log |x − y| + · · · , so there diver-

gences, but they aren’t that bad.
If m ≥ 3, then G(x, y) ∼ 1

|x−y|m−2 , with m − 2 > 0, so you have to

do something to make the formulas corresponding to Feynman diagrams
make sense; all the integrals have divergences at short distances. These
are ultraviolet divergences.
So we’ve failed to define the integral UM (ϕ) using Feynman diagrams.

In any QFT in dimension at least 2, there will be singularities. If we
believe that something like this should exist, we can try to regularize.
How should we fix the problem? You could integrate over some neigh-

borhood outside the diagonal inM×M . Another idea is as follows. Let’s
do something with the action to make these Greens functions non-singular
at the diagonal. In Rm, instead of considering −∆, take −∆+

∑
i≥4 εi∆

i,
where we’ve added some higher order differential operators. If you do the
Fourier transform, this becomes p2 +

∑k
i=1 εi(p

2), so as p→ ∞, this be-

haves like εkp
2k. Then GU,εM (x, y) ∼ c(ε)

|x−y|m−2k . So we can kill off the

singularities, but at a very heavy price; we’ll have to let εi go to zero
eventually or something. The idea of changing the Laplacian like this
is known as Pauli-Williams regularization. Physicists used this for more
than 50 years. The idea is: regularize A[φ], and then UpertM,ε (ϕ) is defined.
The big question is then, “what happens when ε → 0?” We know the
answer: each of the Feynman diagrams (which now depend on ε) diverges
as ε → 0. The hope is that as ε → 0, we can choose a modification
Vε(φ) of our potential V (φ) so that the coefficients in F (Γ) will be finite.
Richard is doing this more carefully.
Q: how does this address the problem of G(x, x)? NR: just as in the

case of mechanics, we had a power in the denominator of m − 2k, so
if k is large, this will be negative, so you get a positive power of |x −
y|. Q: if I regularize the action, I’m really changing the entire problem;
the determinant changes as well. Will we have to reregularize that part
too? NR: with the determinant we should be more careful. det′Kε

φ =
det(Kε

φ/K
ε
0).

So now we have to adjust Vε to compensate the divergences. It is not

at all clear that this is ever possible, but it turns out it is.

Theorem 25.3 (BZZ). If m = 2, then V (φ) can be any polynomial and
the renormalization procedure exists. This is a rather involved statement
already. If m = 3, then V (φ) should be a polynomial of degree 6, or it
won’t be renormalizable. If m = 4, then V must be a polynomial of degree
4. A renormalizable theory doesn’t for m > 4.

There is another complicated question: there are many many renormal-
ization procedures; Theo proposed the momentum cutoff regularization.
And we can produce many more. Will the answer depend on the regular-
ization procedure or not? The statement at the moment is that it depends
up to a certain finite renormalization. There is the (infinite-dimensional)
group of renormalization schemes. There is a series of papers by Connes
and Krimer. They invented some kind of cocommutative Hopf algebra
of diagrams, a candidate for the universal enveloping algebra of some Lie
algebra. It simplified lots of computations in the proof of this theorem.
Observables should be invariant with respect to the action of this group.
I don’t understand if this has really been resolved, and I haven’t gotten
a straight answer to it. It is probably not an issue for phisicits.
These lectures will sometimes be quite pessimistic: I’m telling you that

people know very little about quantum field theory. Though if you look
in textbooks, you’ll see more optimistic statements.
Today we did an example of a QFT with non-degenerate Lagrangian

(that is, (dφ, dφ) was non-degenerate). Next time we’ll start talking about
systems with degenerate Lagrangian. One question is to make the Hamil-
tonian formulation, and the other question is how to quantize using the
path integral.
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Definition 18.1 (Reminder Chris’ talk).

(a) A (strict) 2-category is a category enriched over (Cat,×).

(b) A bicategory is a “weak” version of a 2-category where one only has
canonical “assiciators” and “identitators”. ⋄

This means that in a 2-category C, we have

– objects x, y ∈ obj(C),

– morphism categories C(x, y),

– composition functors C(y, z)× C(x, y)→ C(x, z), and

– identity functors pt→ C(x, x) for each x ∈ C

such that the identity is an identity and the composition is associative.
In a bicategory, instead of imposing these conditions on the identity and
the composition, we add the extra data of the associators and identita-
tors. The associator must satisfy the pentagon identity, which (by Mac
Lane’s theorem) tells you that any two ways you associate are canonically
isomorphic. There is a similar thing for the identitators; they satisfy the
triangle identity (which also tells you that anything you want to do is
canonical).

Example 18.2. Alg is a bicategory, where the objects, 1-morphisms, and
2-morphisms are algebras, bimodules and intertwiners, respectively. Ten-
sor product gives you the horizontal composition, and the universal prop-
erty of tensor product gives you the associators and identitators.
There are also more subtle versions of this. For example, you could

take Frechét algebras and Frechét bimodules. ⋄

A QFT will be a bifunctor from a geometric bicategory to this algebraic
bicategory.

Example 18.3. Bd, whose objects, 1-morphisms, and 2-morphisms are
closed (topological) (d − 1)-manifolds, compact d-manifolds (with a de-
composition of the boundary into inclusions of incoming and outgoing

(d−1)-manifolds), and homeomorphisms of compact d-manifolds respect-
ing the inclusions.
RBd has a forgetful bifunctor F to Bd. The objects, 1-morphisms, and

2-morphisms of RBd are germs of Riemannian structures around (d− 1)-
manifolds Y , agreeable bordisms Σ between them (with some germiness at
the in-boundary), and isometries. F (Y ) = δpermY , F (Σ) = Σcore (where
you’ve removed the germiness) and F of an isometry is the isometry
restricted to the cores.
Is this F a 2-functor? Well, Chris hasn’t discussed 2-functors yet, so

we won’t get into it too much. It is weaker than you might think it is. A
2-functor doesn’t have to respect (horizontal) composition on the nose,
but only up to natural isomorphism.
Theo: This functor doesn’t send identities anywhere. PT: If you add

homeomorphisms to the bordisms in Bd, then it becomes ok. You have
to make sure that you still have a bicategory; you have to know how to
compose these homeomorphisms with bordisms. You do this by compos-
ing the embedding with the homeomorphism (or its inverse, depending on
which side you’re composing). It turns out that this bigger Bd is equiva-
lent. Chris S-P: no, now you have some more automorphisms . . . [[⋆⋆⋆

some stuff about the cylinder not playing like it should]]. ⋄

I want to give you some examples of 1-morphisms in RBd.
Assume we have a geometric bi-collar Σ of Y = δpΣ [[⋆⋆⋆ Σ is a

cylinder, with the whole boundary declared to be germ boundary]]. Let’s
cut it in half (along Y ) and call the (open) two sides YR and YL. We have
that F (YR) = F (YL) = Y . I claim that we can make a nice 1-morphism
out of this. You can think of it as living in RBd(YL ⊔ YR,∅) by letting
jin : YL ⊔ YR →֒ Σ be the inclusion.
By the way, I’m going to give up the right-to-left notation because it

gets us confused; you just have to label the boundary components as in
or out. In RBd, we’ll draw collars on the outside for the in boundary and
collars on the inside for the out boundary.
Can you think of this as an element of RBd(YL, YR)? Can you think of

this as an element of RBd(∅YL ⊔ YR)? No. δpΣ is empty, so the target
must be the empty set.
Analogy: in Frechét spaces, it is much easier to get bilinear maps V ⊗

W → C than to get vectors in V ⊗W . For example, take W = V ′; you
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get a canonical pairing, but you only get a canonical vector if V happens
to be finite dimensional. This kind of corresponds to the fact that in Bd,
you can flip bordisms around to get a “reversed morphism”.
Given a monoidal bifunctor Q : RBd → Frechét, we get two Frechét

spaces Q(YL) = VL and Q(YR) = VR, and a pairing Q(Σ): VL ⊗VR → C.
In TQFTs, this morphism doesn’t exist, so it is sometimes added as an
axiom that the two guys are dual.
[[break]]
A couple of remarks. If you apply F to this Σ, you’re going to get non-

sense: F (Σ) = Y , which is supposed to have an inclusion from Y ⊔ Y .
This doesn’t make sense, but I invitet you to make a bigger category
where this works. Chris convinced me that the enlarged Bd is not equiv-
alent to the smaller Bd because the cylinder is not the identity on the
homeomorphisms. Another thing you can do is use the axiom of choice
to choose slightly larger cores for all bordisms (so in our case, the core of
Σ would be a cylinder on Y , not Y ). Then you don’t have to throw in
homeomorphisms either.
The other thing I should announce is that Bruce was volunteered to talk

about how path integrals connect the three different classes next week.
I think of a quantum field theory as a representation of the category

RBd. A representation of a group is exactly the same thing as a functor
from G (thought of as a 1-object category) to the category of vector
spaces.
About HW2: You can enrich Bd by adding a space X (which you think

of as the target of some classical field theory) to get Bd(X), where the
objects are continuous maps f : Y d−1 → X , bordisms have maps to X ,
and homeomorphisms must respect the maps to X . If you do this for RBd
(you probably want to take smooth maps to X). Another thing you could
do is equip Y with a bundle and a section (a crazy way to think of a map
Y → X is to think of it as a section of the trivial bundle X × Y → Y ,
but there is no reason to take the trivial bundle). When I wrote Φ(Σd) in
the homework, this is what I had in mind; Σ was equipped with a bundle
P → Σ, and the fields Φ(Σ) is the space of sections of this bundle. This
part was precise, the imprecise part was that the Hilbert space associated
to this Σ was supposed to be L2(Φ(Σ)).
Consider d = 0 (this is below mechanics, where d = 1. This is called

instanton theory because there is no time). What are symmetric monoidal

functors B0(X) → Vect. The objects are (−1)-manifolds mapping to X .
There is only one (−1)-manifold, which is ∅.
If you have a functor between two monoidal categories F : (C,⊗) →

(D,⊗), you can require a map F (x ⊗C y)→ Fx ⊗D Fy, and you usually
require it to be an isomorphism (or quasi-isomorphism), but I’ll require
it to be an equality for this class.
So there is one object of B0(X), which is Q(∅) = Q(1) = C. B0(∅,∅)

is sets of circles, so x ∈ B0(X)(∅,∅) is a map from a bunch of circles to
X , and x get’s mapped to some Q(x) ∈ C.
We need to add requirements on the Q’s such that

– Q is smooth. Recall that Hn
dR(X)

HW1
= Ωncl(X)/concordence.

Ωncl(X) = 0-dimensional susy QFTs. πTX = super points in X .
C∞(X), C∞(πTX) = Ω∗(X).

– susy Q’s leading to functions on super points, which is Ω∗(X).

– understand closedness and degree.
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Last time, we took M Riemannian and L =
∫
M

(
1
2 (dφ)

2 + V (φ)
)
dx. I

talked about a regularization scheme where you first regularize the prop-
agators G(x, y) = (−∆+V ′′(φc))−1(x, y) which you assign to edges in the
Feynman diagrams, where φc is a solution to the Euler-Lagrange equation
with given boundary conditions. For m ≥ 2, you get singularities, so the
integrals which we assign to Feynman diagrams don’t make sense. To take
care of the singularities at x = y, you replace −∆ by −∆ +

∑n
i=2 εi∆

i

and eventually send εi to 0. The first problem is that F (Γ) are singular
as εi → 0.
The second part of the procedure is renormalization. Vε(φ) =∑
i≥3 gi(ε)φ

i, and adjust gi(ε) such that Fε(Γ)→ F0(Γ). There are many
questions, like “what if we regularize the propagators some other way?
Will you get different results?” This is what Richard is doing and will
be doing. The answer is that there is a group of renormalizations (not
“the renormalization group” you find in physics literature). Different reg-
ularization schemes are related by the transitive action of the group of
renormalizations.
You will always have problems with ultraviolet divergences when you do

perturbation theory. In this case, fortunately, they arise in a controllable
way.
The work by Kevin Costello; BV quantization, as I understand it (or

don’t understand it, as the case may be), the goal is to have “d2 = 0”
description of working with ultraviolet divergences. The other name for
this is BRST, and secretly, it is the same as the Fadeev-Popov trick. All
of these involve super analysis, so I’ll do a complementary introduction
to super geometry.

Grassman algebra

Recall some facts about Rn|k and Cn|k. The Grassman algebra is the
algebra 〈ci, . . . , cn|cicj + cjci = 0〉. We can consider odd derivations

∂
∂ci
ci1 · · · cin =

{
0 i 6∈ {i1, . . . , in}
(−1)kci1 · · · ĉik · · · cin i = ik

. This is the “left

derivative” and you get the right derivative using the sign (−1)n−k in-
stead.

Ingegral over Gn =
∧· Cn: Choose an orientation of Cn, a basis in∧nCn. Choose c1 ∧ · · · ∧ cn in

∧nCn. If you have P ∈ Gn, you can
write it as ptopc1 ∧ · · · ∧ cn+ lower terms. Then we define

∫

C0|n
P dc := ptop.

Now let’s see if this is a useful definition. So far, we’ve only been using
integration very crudely, we only care about integrating gaussians.

Example 26.1. P = exp
(
1
2 (c, Bc)

)
, where (c, Bc) =

∑
ij ciBijcj . Since

the ci anti-commute, we need Bij = −Bji, and we should assume n is even
(otherwise, we’ll never get something in the top degree by exponentiating
an even degree function). If n is even, then

∫
exp
(1
2
(c, Bc)

)
dc =

(1/2)n/2

(n/2)!
.

To see this, not that

(c, Bc)n/2 =
∑

ik,jk,1≤k≤n/2
Bi1j1 · · ·Bin/2jn/2

ci1 · · · cin/2
cj1 · · · cjn/2

and we get that

(ci1 · · · cin/2
cj1 · · · cjn/2

)top = (−1)σ(i|j)c1 ∧ · · · ∧ cn

(incidently, σ(i|j) is the number of perfect matchings on n elements)

=
(1/2)n/2

(n/2)!

∑

σ(i|j)
Bi1j1 · · ·Bin/2jn/2

(−1)σ(i|j)

Note that the sign doesn’t change when you switch ia with ja because
the signs come in pairs. Also, the sign doesn’t change when you apply a
given permutation to both {i} and {j}, so

=
∑

σ(i|j)
ia<ja

ia1<···<ian

(−1)σ(i|j)Bi1j1 · · ·Bin/2jn/2
= Pf(B)



26 NR 10-26, v. 10-4 110

which is the Pfaffian of B. This is the formula that every physicists
know for

∫
C0|n exp((c, Bc)/2) dc. This is the combinatorial definition of

the Pfaffian. More conceptually, you can define the Pfaffian as

(∑

i<j

xi ∧ xjBij
)∧ n

2

= Pf(B)x1 ∧ · · · ∧ xn

over
∧· Cn. It depends on the basis, but only on the orientation of the

basis (i.e. it depends on a choice of orientation of
∧n

V ). [[⋆⋆⋆ HW:

Prove that Pf(B)2 = detB. All you have to do is take
∧2n

(Cn⊕Cn), and
compute something like this in two way, one of which is the determinant
and one of which is the Pfaffian.]] Given a basis c1 ∧ · · · ∧ cn ∈

∧nCN ,
xi =

∑n
j=1 Aijcj , x1 ∧ · · · ∧ xn = detAc1 ∧ · · · cn. ⋄

What if we only know determinants, but not Pfaffians. Let
c1, . . . , cn, c1, . . . , cn be a basis for C0|2n (don’t think complex conjugation,
these are independent), then

∫

C0|2n
exp((c, Ac)) dc dc =

1

n!

∫
(c, Ac)n dc dc

=
1

n!

∫ ∑

{i,},{j}
Ai1j1 · · ·Ainjnci1cj1 · · · cincjn dc dc

= · · ·

= (−1)n(n−1)/2+n2 1

n!

∑

σ,τ∈Sn

(−1)σ+τ
∏

i

Aσ(i)τ(i)

= · · · = ± detA

On the other hand, we can write this as

∫

C0|2n
exp
(1
2
(x,
(

0 A
−At 0

)
x)
)
dx+±Pf

(
0 A

−At 0

)

So we get detB = Pf(B)2 and Pf
(

0 A
−At 0

)
= detA. This is what you

need to know.
So let’s derive the formula for the Berezinian using this voodoo. So

far, I was integrating over C0|n, but what if I want to integrate over

Cn|m? Choose a hermitian bilinear form (, ) with even coordinates x
(with complex conjugates x) and odd coordinates c and c (not related
by complex conjugation). Let (x,Bc) =

∑
i,a x̄iBiac

a. Consider the

following real integral over R2n:

∫

Cn|2m
exp
(
−(x,Ax) + (x,Bc) + (B∗c, x) + (c,Dc)

)
dc dc dx dx

+(

y︷ ︸︸ ︷
x−A−1B∗c, A(

x︷ ︸︸ ︷
x−A−1Bc)) + (B∗c, A−1Bc) + (c,Dc)

=

∫
exp
(
−(y,Ay) + (c, (D +B∗A−1B)c

)

= detA−1 det(D +B∗A−1B)

∫
exp
(
(x, c)

(
A B
B∗ D

)(
x
c

))
dx dx dc dc = Ber

(
A B
B∗ D

)−1

on GL(n|m).
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27 NR 10-29

Last time:
∫
R0|n P (c) dc := (P (c))top is the definition of the integral over

the Grassman algebra Gn =
∧· Rn. Note that we need to choose a basis

for the top degree part (we choose basis c1 ∧ cn in Gn, where ci are the
usual basis for Rn). We used this to compute that

∫

R0|n
exp
(
−1

2
(c, Bc)

)
dc = Pf(B).

I want to complexify, so I look at G2n = 〈as, bs|1 ≤ s ≤ n, · · ·〉 =
∧·(Rn⊕

Rn). Then we consider G2n,c = G2n ⊗R C = 〈cs, cs|cs = as + ibs, cs =

as − ibs〉 =
∧· C2n. In this algebra, we have the following identity for a

complex n× n matrix:
∫

exp((c, Ac)) dc dc = ± detA

Last time I showed how the Berezinian comes up, but I started in the
complexified case. Last time I showed that if A∗ = A > 0, and if B and
C are odd elements,

∫

Cn|2m
exp
(
−(x,Ax) − (x,Bc)−(c, Cx)− (c,Dc)

)
dx dx dc dc

= det(A)−1 det(D − CA−1B)

This is an identity in
∧·(Mn×m(C) ⊕Mm×n(C)

)
. In general, this is an

identity in the corresponding exterior algebra. If P (c) is a polynomial in

c with coefficients in
∧· V , then this identity is in

∧· V . In this case, this
is the algebra A generated by odd elements Cia and Bdj . The integrand
is in A⊗ 〈cs, cs| · · ·〉.
So we get Ber

(
A B
C D

)
= detA · det(D − CA−1B)−1. Notice that the

exp(· · · ) in the integrand can be written as exp
(
(x, c)

(
A B
C D

)(
x
c

))
. It is

clear that for unitary super matrix U , U
(
A B
C D

)
U−1 is change of basis

by
(
x
c

)
7→ U

(
x
c

)
. The “measure” is invariant under such transformations.

This explains why the Berezinian is invariant under such transformations.
PT: what do you mean by a unitary super matrix? Is it some super Lie

group? NR: U(n|m) ⊆ GL(n|m) is the compact real form. It should be
the super matrices that preserve the hermitian inner product. It acts on
Cn|m, with hermitian product something like 〈x, y〉 =∑i xiyi+

∑
a caca.

Consider polynomial functions Pol(Cn|m) = Sym(Cn) ⊗
∧
(Cm). The

scalar product 〈·, ·〉 is an element in Pol(Cn|m ⊕ Cn|m) = Pol(Cn|m)⊗2.
The usual C-bilinear scalar product is (·, ·) =

∑
i xi ⊗ xi +

∑
a ca ⊗ ca.

The hermitian product is 〈·, ·〉 =
∑
i xi ⊗ xi +

∑
a ca ⊗ ca. a 7→ a is an

anti-linear anti-involution of the algebra Pol(Cn|m). PT: this is different
from the bar you used before . . . I take it back, maybe it’s the same bar
as before. I think we’re doing a functor of points description of U(n|m).
NR: you’re right. There are no super groups, there are Hopf algebras
which are the functions on super groups. This thing that looks like an
action is a coaction of the Hopf algebra.
You have the braided monoidal category SVect. In this category, you

have an algebra object Pol(Cn|m). In the same category, you have
Pol(GLn|m), a Hopf algebra object. There is a coaction Pol(Cn|m) →
Pol(Cn|m)⊗ Pol(GLn|m), making Pol(Cn|m) into a comodule. To make
this clearer, we’ll talk about this last time. PT: in some sense, we talked
about this in my class. If you have a super group acting on a super man-
ifold, then this is really a coaction on the level of algebras. You’re doing
the universal case, where you’re taking your base algebra to be generated
by all the things that appear in the formula. NR: yes.
You should all know that SVectk is an abelian monoidal category with

braiding given by v ⊗ w 7→ (−1)|v|·|w|w ⊗ v. You should also know from
Peter’s class what an algebra object in such a category is. You should
also know what a Hopf algebra object is. Recall what is the meaning of
a Hopf algebra. We want a Hopf algebra H to coact on an algebra A.

Example 27.1. If Γ is a finite group, then H = Maps(Γ, k) is a Hopf
algebra object in Vectk, with (f · g)(x) = f(x)g(x), (∆(f))(x, y) = f(xy),
S(f)(x) = f(x−1), and ε(f) = f(e). ⋄

From a completely algebraic point of view, (functions on) a super group
is a commutative Hopf algebra object in SVectk.

Example 27.2. H = C(Mn|m) = 〈aij , biβ, cαj , dαβ |1 ≤ i, j ≤ n, 1 ≤
α, β ≤ m, supercommutative with b, c odd〉. This has a bialgebra struc-
ture. The co-algebra structure is given by ∆aij =

∑
k aik⊗akj+

∑
α biα⊗
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cαj , and the counit is ε(aij = δij , ε(b) = ε(c) = 0, ε(dαβ = δαβ . You can
think of this as (

a b
c d

)
⊠
(
a b
c d

)
=
(
∆a ∆b
∆c ∆d

)

Then you get H̃ , the Hopf algebra of GLn|m, as H ⊗ 〈A,D〉/(Adet a −
1, D det d − 1). In this algebra, there exists an antipode, which you can
think of as

S
(
a b
c d

)
=
(
a b
c d

)−1
. ⋄

Next time I’ll say a few more words about actions and coactions. The
eventual goal for this week is to get the Feynman diagrams for fermions.
The goal for next week is to get

∫

Rn

exp(
i

h
S)dx

where S is invariant under some group action. One way to deal with this
is with the Fadeev-Popov trick. The mathematical meaning of this trick
is revealed by the BRST quantization or BV quantization.

19 PT 10-30

Today’s lecture was given by Bruce Driver.
Today is a bosonic day. I’ll start with some finite-dimensional calcula-

tion and hopefully get to the point where you’ll see the connection with
Borcherds’ class.
Let A > 0 be an N×N real matrix. The invariant way to do this is not

to introduce a matrix at all; just use an inner product, but we’ve always
been using this A. Consider the partition function ZA =

∫
RN exp

(
− 1

2Ax ·
x
)
dx =

√
det(2πA−1). Let dµA(x) =

1
ZA

exp
(
− 1

2Ax · x
)
dx be the asso-

ciated Guassian probability measure. The measure you’ve been seeing in
Borcherds’ class is

dµ(φ) =
1

ZA
exp
(
−1

2

∫ (
(∇φ(x))2 +m2φ(x)2

)
dx (∗)

which we’ve been writing asDφ. To get the operatorA, you do integration
by parts on this integral. You can rewrite the thing in the exp as

(
−∆+

m2)φ, φ
)
L2(Rd,dx)

, so our A is −∆+m2.

Integration formulas. Now I’ll give you some ways to integrate against
this measure. The first one is

∫

RN

eλ·x dµA(x) = e
1
2A

−1λ·λ (1)

You do this by completing the square. Define the operator L = LA :=∑N
i,j=1 A

−1
ij

∂
∂xi

∂
∂xj . If A is the identity matrix, this is the Laplacian.

Next, we have, for a positive number t,
∫
f(x−

√
ty) dµA(y) = (etL/2f)(x) = u(t, x). (2)

By definition, u solves the heat equation: ∂u
∂t = Lu/2, u(0, , x) = f(x).

This measure is completely determined by this, by the way. Again, I
won’t prove this; you could do it with Fourier transforms. Let me at least
do an example.

Example 19.1. Take f(x) = eλ·x. Compute Lf =(∑N
i,j=1 A

−1
ij λiλj

)
f = (A−1λ · λ)f . Since f is an eigenfunction for

L, it is easy to write down etL/2f = et(A
−1λ·λ)/2f .
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On the other side, we have (recall that dµA(y) is invariant under y 7→
−y)

∫
f(x−

√
ty)dµA(y) =

∫
eλ(x−

√
ty)dµA(y)

=

=f︷︸︸︷
eλ·x

e
1
2
A−1(

√
tλ)·

√
tλ

︷ ︸︸ ︷∫
e
√
tλ)·ydµA(y)

= e
t
2A

−1λ·λf ⋄

Next, by setting x = 0 and t = 1 or log(2), we get
∫

RN

f(y)dµA(y) = (eL/2f)(0)

This is a good way to compute these integrals on polynomials.

Example 19.2.
∫
(λ ·x)2dµA(x) = (eL/2(λ ·x)2|x=0. Since L is nilpotent

here, you can just use the power series to get (I + L/2 + (L/2)2/2! +
· · · )(λ · x)2, which at x = 0, you get L

2 (λ · x)2|x=0 = (A−1λ · λ). ⋄

You can do this for any polynomial. The other way to do this is to use
formula (1) and differentiating with respect to λ to get new formulas.
If you want to see Feynman diagrams coming out, you can do integra-

tion by parts. Suppose we have
∫
∂vf(x)dµA(x), where v ∈ RN and ∂v is

the directional derivative. You can compute this as
∫
∂vf(x)

1

ZA
e−

1
2Ax·xdx =

∫
f(x)(Av · x) 1

ZA
e−

1
2Ax·xdx

=

∫
(Av · x)f(x)dµA(x)

You’re using that some things go to zero fast enough. If you replace f by
fg, then we have that the adjoint ∂∗v with respect to the inner product
given by the integral is −∂v +M(Av·x). You can write this as

M(v,x) = ∂∗A−1v + ∂A−1v.

It is this sum of creation and annihilation operators which is interesting.

Example 19.3. Apply the formula to the function 1, giving
∫
(v1 ·

x) · · · (v4 · x)dµA(x), where v1 · x = ∂∗A−1v1
1, which is

∫
∂A−1v1 [(v2 · x)(v3 · x)(v4 · x)]dµA(x)

=

∫
(v2 · A−1v1)(v3 · x)(v4 · x)dµA(x) + · · · (2 more terms)

The way to compute this is by drawing a dot for each pairing of four dots,
and for each such pairing you have to assiciate the weight (A−1vi, vj) when
i and j are paired, then multiply the weights together. This simply comes
from integration by parts. ⋄

Suppose cµ(φ) as before, and let f, g ∈ L2(Rd) or C∞
c (Rd). Then, by

analogy with the two-vertex formula, we get
∫
(φ, f)L2(φ, g)L2dµ(φ) = (A−1f, g)L2 .

The point of Gaussian measure is the once you know it for two, you can
get everything else as products. I really want to stick in delta functions
for f and g to compute

∫
φ(x)φ(y)dµ(φ), but there are problems.

(A−1f)(x) =
∫
∆m(x − y)f(y)dy. Here, ∆m is the propagator, which

you can write as a function of one variable (usually you need a Greens
function). Here are some of the properties of the function ∆m:

1. ∆m(x) ∼





|x| d = 1

− log |x| d = 2

|x|2−d d > 2

for x ∼ 0.

2. ∆m(x) ∼ e−m|x| for x≫ 1 independent of dimension.

If we take f = δx and g = δy, then we get
∫
φ(x)φ(y)dµ(φ) = ∆m(x− y).

The only reasonable interpretation of
∫
φ(x)2dµ(φ) is +∞ for d ≥ 2. If

you thought the measure lived on functions, you’d expect this integral to
be finite. Fact: there exists a measure µ on some space of distributions
(depending on dimension) that does deserve to be thought of as (∗).
Let me go over one more theorem in preparation for Richard’s class

today.
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Theorem 19.4. Let f and g be polynomials on RN . µA(f ·
g) :=

∫
RN f · g dµA =

∑∞
n=0

1
n!

∑N
i1,...in=1
j1,...jn=1

A−1
i1j1
· · ·A−1

injn
µA(∂i1 · · · ∂inf) ·

µA(∂j1 · · · ∂jng)
This is the formula that Richard said a Lagrangian has to satisfy, which

he said was hard to describe. think of the i’s as x’s and the j’s as being
y’s. If you assume the i’s and j’s have disjoint support, you can make
sense of all the A−1

ikjk
.

[[break, and back to PT talking]]
We don’t have that much time. It would be good to somehow see how

the different classes are related. Path integrals are at the heart of all
three classes, which is why I asked Bruce to give the analytic side of the
story. Are there any questions about how the classes are related? Let me
try to say what happens in all three classes.
We’re trying to “quantize” a classical field theory. Remember that a

classical field theory consists of the data

– Space-time M . In RB’s class, he works in flat Minkowski space
Rd−1,1. In this class, we’ve been trying to keep this generic; the
space-time is a bordism (which we usually draw as surfaces). One of
the differences between the classes is that we think of the boundary
as very important; that’s where you get your Hilbert space. RB keeps
looking at compact support things, and you have a distinguished time
direction, so you can kind of think of it as a bordism from Rd−1 to
Rd−1. NR talked about mechanics, where the space-time is [0, t], and
quantum mechanical evolution is eitH .

– Fields Φ(M). In RB’s class, we think of it as C∞
c (Rd,R). These are

the things we’re going to integrate over. We just learned from Bruce
that the Gaussian measure makes these things measure zero, so you
have to go into distributions . . . you have to enlarge your space of
fields. In this class, we haven’t specified this yet, but we’ve been
thinking of fields as sections of some bundle over space-time. The
easiest case is the σ-model, where the bundle is trivial, so Φ(M) =
C∞(M,X) for some target space X . In mechanics (NR’s class), the
fiber in this bundle is a specification of a configuration space N .

– Action A : Φ(M) → R. In RB, Φ(M) = C∞
c (Rd,R), and the action

is given by
∫
Rd(−∆ + m2)φ(x) dx. This −∆ + m2, which Bruce

called A, is a positive operator on C∞
c (Rd,R). In this class, we

haven’t specified any action. We’ll do the supersymmetric version
of the classical action later. To do that, we’ll have to explain the
integral over super manifolds using the Berezinian. In NR’s class
and in mechanics, a field is a path in configuration space, and A[γ] =∫ t
0

(
γ̇(τ)2 + V (γ(τ))

)
dτ .

To get quantum mechanics, you want Q : RB1 → Vect. It is enough to
evaluate Q on a point to get it on objects; we say Q(pt) is the Hilbert
space of states. An interval [0, t] goes to the operator eitH , where H
is the Hamiltonian operator. This is the quantum mechanical evolution
(the fact that it is an evolution is built into the assumption that Q is a
functor).
If V = 0, you can quantize by taking Q(pt) = L2(N), and H = −∆.

Remember that N must have a Riemannian metric, so we have a Lapla-
cian ∆. In this class, we’ll study space-times of dimensions d|1, with
d = 0, 1, 2.
If N is a spin manifold, we’ll see that if we take space-time to be

M = [0, t]×R0|1, then geometric quantization will give you Q(pt×R0|1)
will be the L2-spinors on M , and H will be the square of the Dirac
operator 6∇N .
Let’s say that you believe that the Hilbert space is right (there is the

subtle issue of polarization, telling you why you can just consider functions
of position and not momentum). You’d like to know how the system
evolves, so you want to understand the operator eit∆. This operator has
a kernel eit∆(x, y), which you think of as matrix coefficients. We get that

eit∆(x, y) =

∫
γ : [0,t]→N

γ(0)=x,γ(t)=y

eiA(γ)

Zγ
Dγ

This is the Feynman-Kac formula. In all the classes, we’re trying to
compute this integral. The i in the exponent makes this highly oscillatory.
If we get rid of it and assume A is positive, then you get rapid decay, and
these integrals are quite computable, as Bruce showed us today.
In RB’s class, we’re struggling with integrating eλφ(x)

4

because it is not
Gaussian, which doesn’t make sense, so we expand as a power series in
λ so that we get terms which are polynomials multiplying the Guassian
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part, which we know how to do. So when the thing in the exponent is
not purely quadratic, you have to do perturbative stuff. If you have such
a term in the classical action, you’ll run into this problem.

10 RB 10-30

Last time I was explaining Gaussian Feynman measure, which is formally
something like eiquadratic LagrangianDφ. This is more or less a linear map
from the symmetric algebra of compactly supported actions to R. Re-
member that a compactly supported action is something which looks like∫
f(x)φ(x)4 dx where f is compactly supported.
A renormalization is a linear map Sym∗(actions)→ Sym∗(actions) pre-

serving certain structures:

1. Renormalizations preserve the coproducts ∆ of Sym∗(actions). Re-
call that Sym∗ V always has a coproduct ∆(v) = v⊗1+1⊗v extended
as an algebra homomorphism. The reason we want renormalizations
to preserve ∆ is that we want renormalizations to act on the set of
things of the form e(action). Remember that this is how we got a
(nonlinear) action of the group of renormalizations on the space of
actions. PT: do you have the renormalization act on the quadratic
Lagrangian or do you fix it once and for all? RB: normally you split
the Lagrangian into a quadratic bit and the self-interaction part, and
this splitting is non-canonical. Depending on how you split it, the
answer might be yes or no.

2. Renormalizations almost preserve the product Sym∗(actions) ×
Sym∗(actions) → Sym∗(actions). More precisely, g(ab) = g(a)g(b)
whenever a and b have disjoint supports. The reason we want this is
to get an action on Feynman measures.

3. Renormalizations commute with the action of sections of the vector
bundle φ (whose sections are fields) on actions. This is a boring
condition. The reason for putting it in is that it cuts down the size
of the group of renormalizations so that it acts simply transitively on
Feynman measures. If you don’t put it in, everything works, but your
group is too big. BD: “Feynman measure” is just associated to the
quadratic part of the Lagrangian? RB: yes. For the non-quadratic
part, you have to expand as a power series.

4. Renormalizations preserve 1 in the space of actions. Again this is a
boring condition.
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The definition of the group of renormalizations looks really technical and
hairy, but all you care about is that it acts transitively on measures.
There is a problem here: writing down explicit renormalizations is

rather hard. There is an easy construction of explicit renormalizations:
take exp(infinitesimal renormalization). To write down a renormaliza-
tion, you have to know what it does on all Feynman diagrams, which
is a pain, but an infinitesimal renormalization only has to be specified
on Feynman diagrams of a given order (which you can make zero on all
but one of them). An infinitesimal renormalization is something which
satisfies infinitesimal versions of all the conditions above.
Now I want to give a vague sketch of why renormalizations act tran-

sitively on Gaussian Feynman measures. A proper proof of this would
require many technical details which are boring. Suppose M1 and M2

are two Feynman measures, and suppose they differ on some Feynman
diagram F , but are the same on all smaller Feynman diagrams (and all
others of the same size). The idea is to find a renormalization g which
fixes all smaller Feynman diagrams such that g1(M1)(F ) =M2(F ). If we
can do this, then we can repeat this an infinite number of times to get
the measures to agree on all Feynman diagrams (you can check that the
renormalizations converge because there are only finitely many diagrams
of a given size).
What is the difference between M1(F ) and M2(F ). Since M1 and M2

are the same on all smaller diagrams, the difference M1(F )−M2(F ) is a
distribution with support on some diagonal (remember that the value of
a measure on a Feynman diagram is determined by the value on smaller
diagrams up to some distribution with very limited support). PT: How are
you thinking of these Feynman diagrams as elements of Sym∗(actions).
RB: you can think of measures as functions Sym∗(actions) → R, but
you can also think of it as a map Sym∗(polys in φ and derivatives) →
(distributions), which you can expand in terms of Feynman diagrams,
though I really didn’t mean to do that. Since I’m only giving a vague
sketch, I’ll pretend like this problem doesn’t exist.
We’re going to construct this renormalization as something of the form

einfinitesimal renormalization. The exponential roughly makes sure that the
result is well behaved on larger diagrams. So we need to find an infinites-
imal renormalization g with g(M1)(F ) = M2(F ). Notice the following
things:

1. g is a map Sym∗(actions)→ Sym∗(actions).

2. g is determined by Sym∗(actions)→ (actions) because it respects the
coproduct and actions generate Sym∗(actions).

3. Using that g commutes with sections of bundles, we can reduce to
a map Sym∗(actions) → R. These are related to distributions on
products of space-time.

4. g almost preserves products, which implies that these distributions
have support on the diagonal.

So unravelling the definitions, we see that a choice of an infinitesimal
renormalization at each step more or less corresponds to the ambiguity,
a distribution with support on the Feynman diagram corresponding to
the difference between two Gaussian Feynman measures. So we have just
enough freedom in choice of g to make g(M1)(F ) = M2(F ). As I said
earlier, this is really all you care about when you think about the group
of renomalizations.
Actually, there is another problem: I haven’t actually constructed a

single Gaussian Feynman measure. I’ve vaguely sketched that given any
two measures, there is a renormalization taking one to the other. How can
we show that there is at least one Gaussian Feynman measure? There are
two proofs, one of which is an existence proof, which I’ll vaguely sketch,
and the other honestly constructs the measure.
For each Feynman diagram, we need to extend a distribution on

Mnrdiagonal to Mn. If we use translation invariance, this reduces to
the following basic problem in distribution theory. If we have a distribu-
tion on Rk r {0}, can we extend it to all of Rk? The answer in general

is no. A typical example is e1/x
2

. This is so big near the origin that
there is no way to extend it to a distribution, though it can be extended
as a hyperfunction. Hyperfunctions are extensions of distribution with
the property that funtions can always be extended to hyperfunctions. We
don’t want to use hyperfunctions because they give me a headache. A bet-
ter answer is that you usually can extend distributions unless you’ve built
it so that you can’t extend it. Any distribution with “mild growth” near
0 can be extended. In practice, any naturally occuring distribution will
be good enough. In particular, if the original propagator is “reasonable”,
then all distributions can be extended.
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I won’t go into this too much because I want to construct an explicit
example of a Feynman measure. In order to do this, I want to discuss
extension of distributions in detail.

Example 10.1. Take f(x) = 1
|x| on R r {0}. This can be extended

to R, but there is no canonical way of doing it. For example, 1
|x| =

d
dx(log x · sinx) for x 6= 0. This is a locally integrable function, so it
is a distribution. If you have any distribution, its derivative is another
distribution. This looks perfectly canonical, but there is a catch. f(x)
is homogenous of degree −1 (that is, it is invariant under some sort of
rescalings of the reals), and we would like the extension to also be of
degree −1. If there were a unique way to extend, it would automatically
be of degree −1. There is no way to do this. The problem is that log |x|
is “not quite of degree 0”. Rescaling adds a constant to log |x|, which
messes up rescaling of the extension:

d

dx

(
(log x+ c) sinx

)
=

d

dx
log(x) sin(x) + c

d

dx
sin(x)

So when we rescale we pick up delta functions at the origin. You can see
that we’re not doing something stupid as follows. All possible extensions
of 1

|x| differ by a distribution with support at the origin. Such distributions

are just spanned by deriviatives of δ(x). Since the higher derivatives(
d
dx

)n
δ(x) of δ(x) are homogeneous of degree −1− n, we should only be

thinking about δ(x). Degree n means x d
dxf = nf , or

(
x d
dx − n

)
f = 0. It

turns out that for f(x) = d
dx log(x) sin(x),

(
x d
dx + 1

)2
f = 0, so it is some

kind of generalized eigenvector. All extensions that are generalized of
degree −1 are given by d

dx log(x) sin(x)+cδ(x). Rescaling acts transitively
on these things by c 7→ c+log(λ). So there are no homogenous extensions
of degree −1. ⋄

Now let’s consider 1
|x|s as a meromorphic-distribution-valued function

of s. The idea is going to be that if you send s to 1, you find that there
is a pole, and this pole measures the problem. We’ll do that next week.

28 NR 10-31

Let me start by reminding you where we got stuck last time. I want to
make clear what GLn|m is and what is the action on Cn|m. We have the
category SVectk, in which we have the Hopf algebra H =“Pol(GLn|m)”=(
〈1, aij , biα, cαj , dαβ〉 ⊗ C[∆±1

a ,∆±1
d ]
)
/〈∆a = det a,∆d = det d〉, where

a, d are even and b, c are odd. The coalgebra structure is given by

∆

(
a b
c d

)
=

(
a b
c d

)
⊗̇
(
a b
c d

)
ε

(
a b
c d

)
=

(
I 0
0 I

)

which should be read as saying, for example, that ∆aij =
∑
k aik ⊗ akj +∑

α biα ⊗ cαj .
In a usual group S(f)(x) = f(x−1). The axiom for S is [[⋆⋆⋆ ]]. For

GLn|m, this axiom says that

S

(
a b
c d

)
·
(
a b
c d

)
=

(
a b
c d

)
· S
(
a b
c d

)
=

(
I 0
0 I

)

which you should read as saying that
∑

k S(aij)akj+
∑
α S(biα)cαj = δij .

I claim that this determines S uniquely. Define (a−1)ij :=
Mn−1

ij (a)

∆a
. If b

and c are even, then we have

S

(
a b
c d

)
=

(
a b
c d

)−1

=
M(a)

∆a
.

In general, we will have that

S

(
a b
c d

)
=

(SM)ij

(
a b
c d

)

Ber

(
a b
c d

) .

We also have Pol(Cn|m) ∈ SVectC. As an algebra, this is isomorphic

to Pol(Cn)⊗
∧· Cm. Cn is a GLn-module, so Pol(Cn) is a commutative

algebra and a Pol(GLn)-comodule. Similarly, Pol(Cn|m) is an algebra
and an H-comodule. A comodule structure is an even map Pol(Cn|m) =
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A
δ−→ H ⊗A satisfying the commutative diagram

A
δ //

δ

��

H ⊗A
id⊗δ
��

H ⊗A ∆⊗δ
// H ⊗H ⊗A

We have Pol(Cn|m) = 〈xi, sα〉, and the coaction is given by δ(xi) =∑
j aij ⊗ xj +

∑
α biα ⊗ sα and δ(sα) =

∑
j cαj ⊗ xj +

∑
β dαβ ⊗ sβ.

If we have H = Pol(G), the Hopf algebra of an affine algebraic group
G, since it is an infinite-dimensional vector space, we can choose a
dual in a couple of different ways. You can choose H∨ and a pairing
〈·, ·〉 : H∨ ⊗ H → C. Such a triple (H,H∨, 〈, 〉) is called a dual pairing.
One of the important dual pairings for Pol(G) is given by taking H∨ to
be distributions supported at the identity. [[⋆⋆⋆ HW: open a textbook
on Lie groups and Lie algebras or go to Anton’s Lie theory notes and look
at the discussion about how this space of distributions can be identified
with Ug.]] You can think of Dist1(G) as left or right invariant differential
operators on G.
When g is a Lie super algebra, we still have the notion of the universal

enveloping algebra and we still have the notion of left and right invariant
differential operators. There is a dual Hopf algebra to Pol(GLn|m) which
is Ugln|m. If you are not familiar with universal enveloping algebras, I
strongly encourage you to learn about them. When you have a comodule
over one of the guys in the dual, it is always a module over the other one.
PT: I’m a little nervous about evaluating at 1 in the super case. I agree

that the universal enveloping algebra still acts on these comodules, but is
the pairing still valid? NR: let’s do an example. We have Ugln|m on one
side and Pol(GLn|m). I should define Ugln|m. The standard way to do
this is to define gln|m. In the usual setting, the notion of the Lie algebra
is very natural, it is the subalgebra of left invariant vector fields. In the
category of super manifolds, we can still do this and we’ll end up with the
notion of a Lie super algebra. You can think of gln|m as having a linear
basis eij , eiα, eαj , and eαβ, with [eij , ekℓ] = δjkeiℓ − δiℓekj , [eiα, eβk] =
δαβeik + δikeβα, and so on. You sometimes get a sign. This defines
gln|m. Now Ugln|m is a unital associative algebra generated by the same

elements, with the relations [a, b] = ab− (−1)|a|·|b|ba. A representation of

a Lie super algebra is the same thing as a representation of its universal
enveloping algebra. Note, by the way, that Ugln|m is just an associative
algebra with a Z/2-grading; it doesn’t know anything about its super
origins.
What is the pairing between Ugln|m and Pol(GLn|m). First, let’s de-

scribe the (n|m)-dimensional representation of gln|m. We have to con-

struct a homomorphism of Z/2-graded algebras π : Ugln|m → End(Cn|m).

It is given by taking eij to
(
Eij 0
0 0

)
, eiα to

(
0 Eiα
0 0

)
. and so on. It is easy

to check that this π extends to a homomorphism of algebras. Now for an
element a, I can associate functions πi/α,j/β .
PT: why do you need the representation? NR: the coordinates on

Pol(GLn|m) were aij . I want to make the pairing 〈x, ai1j1 · · · ainjn〉 =
〈∆(n)x, ai1j1 ⊗ · · · ⊗ ainjn〉, where 〈x, aij〉 = πij(x).
PT: maybe I should not have been nervous about evaluating at the

identity. Part of the homework from my class was that gln|m, left invariant
vector fields, really is isomorphic to the tangent space at the identity, so
you can let a left-invariant vector field act on a function and then evaluate
at the identity.
NR: Recall from PT’s class that you came across a Lie super algebra
〈X odd, H even|[X,H ] = 0, [X,X ] = H〉, which is somehow related to the
de Rham differential. Let me tell you about something related to the Lie
algebra gl1|1. Consider [X,Y ] = H central, [G,X ] = X, [G, Y ] = −Y , and

X2 = Y 2 = 0, where X = e12, Y = e21, H = e11−e22, and G = e11+e22.
V is a representation of gl1|1, given by V =

⊕
n∈Z V [n], X : V [n] →

V [n+ 1], Y : V [n]→ V [n− 1], H : V [n]→ V [n]. XY + Y X = H .
If you have a Riemannian manifold M , with de Rham operator d, and

conjugated by the Hodge star, ∗d∗, and you have ∆ = H = d∗d∗+∗d∗d.
PT: you could make it a project to explain this gl(1|1) action on any
Riemannian manifold just like we explained the de Rham differential on
a Manifold.
Next time, I will not continue with the representation of the Lie super

algebras.
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20 PT 11-01 Bruce talks again.
Notation:

– dµA(x) =
1
ZA
e−

1
2Ax·x dx, ZA =

∫
RN exp

(
− 1

2Ax · x
)
dx.

–
∫
eλ·xdµZ(x)

–
∫
f(x)dµA(x) = (eL/2f)(0)

For a while, we’ll take A = id. In general, you define a new inner product
(v, w)A = (v,Aw). The thing that tells you independence of A is that∑N
i,j=1 A

−1
ij ei ⊗ ej =

∑N
k=1 uk ⊗ uk, where {uk} is an orthonormal basis

with respect to (, )A. In general, you interpret Ax · x by (x, x)A. We’ll
set µ = µI .
Before I go to the infinite-dimensional case, let me go back to the

theorem from last time.

Theorem 20.1. If p and q are polynomials, then µ(p · q) :=
∫
RN pq dµ =∑∞

n=0
1
n!

∑N
i1,...,in=1 µ(∂i1 · · · ∂inp) · µ(∂i1 · · · ∂inq), where ∂i = ∂

∂xi
.

There are no jk’s because we took A to be the identity.
This is more or less what RB is using as his definition of a Feyn-

man measure. Actually, RB was a little misleading by saying that you
can’t make sense out of these measures. The thing to have in mind
that at the end of the day you want to apply this stuff to dµ(φ) =
1
Z exp

(
− 1

2

∫
(|∇φ|2 + mφ2)dx

)
Dφ, where φ : Rd → R. Polynomials in

φ̃(f) =
∫
φ(x)f(x) dx where f ∈ C∞

c (Rd). PT: are there two different
φ’s? BD: we’re identifying the function φ with the distribution it gives
you. The f ’s are like the i’s. We’ve basically already worked out that∫
φ(f)φ(g) dµ(φ) =

(
(−∆+m2)−1f, g

)
. What RB wants to do is integrate

things like “φ 7→
∫
f(x)φ4(x) dx”. If φ were defined, then this would be a

polynomial and everything would be fine. But this would amount to set-
ting f and g to be delta functions. We want to find an extension of this µ,
but in a nice way. PT: how does the notion of polynomials translate? BD:
the analogue of p(x) would be p(φ) =polynomial(

∫
f(x)φ4(x) dx, · · · ). A

polynomial before was something of the form p(x) =
∑
cαx

α. Now we
think of cα as f(α).
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Proof of Theorem. Let P (t, x) = (e−tL/2p)(x). Expand this as a Taylor
series in t, then we get

∑∞
n=0

1
n!

(
(tL/2)np

)
(x). This is a finite sum be-

cause p is of finite degree, so it will eventually be killed by the derivatives.
In the litirature, you see the notation : p := e−1/2p, the Wick ordering of
p. I’m going to drop the x from the notation, then we want to compute

d

dt
etL/2[P (t) ·Q(t)] = chain rule computation

=
∑

i

etL/2∂iP · ∂iQ

This essentially completes the proof. Just repeat the process. You see
that dn

dtn e
tL/2[P ·Q] =

∑
i1,...,in

etL/2∂i1 · · · ∂inP ·∂i1 · · · ∂inQ. Since these
series always truncate, we get polynomials in t and x, so there is no
problem in applying Taylor’s theorem. We get

eL/2[e−L/2p · e−L/2q] =
∞∑

n=0

1

n!
tn
( ∂
∂t

)n
etL/2[P ·Q]

∣∣∣
t=1︸ ︷︷ ︸

=
∑

i1,...,in
eL/2(∂i1 ···∂in e−L/2p)·(∂i1 ···∂ine−L/2q)

Now let P → eL/2p, Q → eL/2q then evaluate at x = 0. Something got
screwed up. If Peter gives me five minutes, I’ll fix it next time.

One of the corollaries of this computation is this.

Corollary 20.2. The mapping L2(µ) ∋ p 7→ (eL/2p) ∈ Sym∗(RN ) ex-
tends to a unitary map after completion. The right-hand side is usually
called the Fock space. The norm on Sym∗ RN (with respect to which you
complete) is ‖q‖2 =∑∞

n=0
1
n!

∑ |∂i1 · · · ∂inq|2(0).

The way you’re supposed to think about these infinite-dimensional wave
equations is φ̈(t) = −∇(φ(t)), where φ(t, ·) ∈ L2(Rspace), ∂2t φ−∆spaceφ+
· · · = 0. In the description of taking L2 of L2, you run into trouble. . . the
Fock space description is better.
Question: suppose we have a Hilbert space H . Can you make sense

out of dµ(x) = 1
Z e

− 1
2 (x,x)Dx? That is, can you find a measure µ on H

such that for each λ ∈ H ,
∫
H
e(λ,x) dµ(x) = e

1
2 (λ,λ)? We know this is

supposed to be the answer in finite dimensions. You should be thinking

of H as {f ∈ L2
∣∣ ∫ (|∇f |2 +m2f2)dx < ∞}. The thing that causes all

the problems (and all the good things) is that the answer is NO.
The problem is that H is too small. A good analogue is this. If you

just have Q and you want a Lebesgue measure on it. Since a measure
must be countably additive, you run into trouble because Q is countable.
This is similar to what is happenning here. Let me state the theorem.

Theorem 20.3. Suppose H and K are real separable Hilbert spaces such

that H
i−֒→ K is a continuous embedding (i.e. ‖i(h)‖K ≤ C‖h‖H for all

h ∈ H) and so that i(H)
K

= K. If (and only if) i is Hilbert-Schmidt, then
there exists a unique (Gaussian) measure µ on K such that for λ ∈ K∗,∫
K
eλ(x) dµ(x) = e

1
2 (λ|H ,λ|H)H∗ .

This tells you what you need to do to enlarge your space. A : H → K
is Hilbert-Schmidt if

∑∞
j=1 ‖Ae)i‖2K = ‖A‖2HS < ∞ for any orthonormal

basis {ei} of H . This is also ‖A‖2HS = tr(A∗A).
Note that µ(H) = 0.
[[break]]
For lack of time, let me stick to the following example.

Example 20.4 (Wiener measure). dµ(ω) = 1
Z exp

(
− 1

2

(ω,ω)H︷ ︸︸ ︷∫ T

0

ω̇(t)2 dt
)
Dω,

where ω(0) = 0, ω(t) ∈ Rd. When you see a D, it means that this is an
informal expression which doesn’t make sense. Where can you construct
this measure? H = {ω : [0, T ] → Rn|(ω, ω)H < ∞}. Note that Z is
usually 0 or ∞ . . . no one term in this expression makes sense.

Claim. H
i−֒→ L2([0, T ]1,Rn) is Hilbert-Schmidt.

Where is the Hamiltonian operator coming from? In other setups,
Rn is replaced by an infinite-dimensional thing. In our language, RN is
L2([0, T ]1,Rn). It turns out that ‖i‖2HS = T 2/2. You should compute
i∗ : L2 → H .

Claim. (i∗f)(s) =
∫ T
0 s ∧ t f(t) dt, where s ∧ t = min(s, t).
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This is not hard to check. The Hilbert-Schmidt norm ‖i‖2HS is tr(ii∗),
and ii∗ is basically i∗ since the inclusion doesn’t do anything. So we

should evaluate
∫ T
0 s ∧ s ds = T 2/2.

Now you do another little exercise. You can ask what is∫
K
(x, k1)K(x, k2)K dµ(x) =

∑∞
n=1(en, k1)K(en, k2)K , where {en} is an

orthonormal basis for H . This is really
(
(k1, ·)K , (k2, ·)K

)
H∗ . Now you

may as well replace en by i(en), and then (i(en), kj)K = (en, i
∗kj)H , so

we see that the result is (i∗k1, i∗k2)H = (k1, ii
∗k2)K .

Now we compute
∫
K
(f, ω)2K dµ(ω) = (f, ii∗f) =

∫∫
[0,T ]

s ∧
t f(s)f(t) ds dt. Formally, you can take f to be a delta function at t0.
The left hand side is

∫
ω(t0)

2dµ(ω) and the right hand side is t0∧ t0 = t0.
More generally, you get

∫
ω(s)ω(t)dµ(ω) = s ∧ t. We haven’t shown

that this makes sense. Weiner showed that something something making
the total measure of continuous functions 1, so you can just work with
continuous functions. ⋄

Where is the operator theory? This is supposed to have to do with
Quantum mechanics, which has to do with operators. In particular, where
is the Hamiltonian? Define

(T∨
t f)(x) = “

1

Zt

∫

ω : [0,1]→Rn,ω(0)=x

exp
(
−
∫ t

0

(1
2
ω̇(τ)2+V (ω, τ)

)
dτ
)
f(ω(t))Dω”

If you didn’t have the V , this would be the Weiner measure. The rigorous
definition of Tt would be

T∨
t f(x) =

∫

C([0,t],Rn),ω(0)=0

f
(
x+ tω(t)

)
exp
(
−
∫ t

0

V (ω(τ + x)dτ
)
dµ(ω)

On of the homework problems is the gluing axiom. From the informal
formula, you should check that T∨

s T
∨
t = T∨

s+t and T
∨
0 = id.

d

dt

∣∣∣
t=0

Ttf = −Ĥf Ĥ = −1

2
∆+MV

When you do this calculation, you get an ω̇, which you know doesn’t
make sense (because the paths aren’t smooth), but you pretend that it
does make sense. If the paths were smooth, you wouldn’t get the −∆.

You have to be a little more careful, you can’t just pull the derivative
under the integral. The key is

∫
ω(t)2dµ(ω) = t

∫
ω(t)dµ(ω) = 0

(these paths are rough). When Ito was developing stochastic calucus, this
had to do with the fact that

df(ω(t)) = f ′(ω(t))dω(t) +
1

2
f ′′(ω(t)dω(t)2dt
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29 NR 11-02

Ugln|m is generated as a unital algebra by eij , eiα, eβj, and eαβ, with

the relations you expect (e.g. eαiejβ + ejβeαi = δijeαβ + δαβeji). Cn|m

has basis ei, sα. If we don’t care about the tensor product, this is just
a vector space. Once we start dealing with tensor product, we have
to decide whether to treat it as a Z/2-graded space or a super vector
space. The vector representation on Ugln|m in Cn|m is an even linear

map π : Ugln|m → End(Cn|m), with π(eij) =
(
Eij 0
0 0

)
, π(eiα) =

(
0 Eiα
0 0

)
,

and so on. It is easy to check that the appropriate relations hold. So for
every x ∈ Ugln|m, we have linear functions πij(x), πiα(x), πβj(x), and
παβ(x) on Ugln|m. These are “coordinate functions” on GLn|m in the
sense that “Pol(GLn|m)” is the Hopf (super) algebra forming a dual pair
with Ugln|m. This Pol(GLn|m) is generated by πi/α,j/β , with the condi-
tion that the matrix is invertible. PT: I don’t understand how this works
for any other group, because you need a fundamental representation. NR:
it doesn’t. If you wanted to construct some other group, you’d need to
pick a representation. PT: so how would you put the unitary or sym-
plectic conditions into the algebra Pol(Sp) or Pol(U). NR: For SLn|m,
you would add the relation that the Berezinian is 1. For Un|m, you have
to say a little more. On gln(C), we have the involution σ(eij) = eij and
σ(λx) = λx. The fixed points of σ is gln(R). The general construction
is that you pick an involution of the Lie algebra (these are all classified),
and then the fixed points give you a real form of the Lie algebra. For
example, if you take σ(eij) = −eji, then gln(C)

σ = un = {a∗ = −a}. The
claim is that these involutions carry through the whole story. You can
get involutions on the dual Hopf algebra and take the fixed points. In
the non-super case, you have that Pol(SU(n)) = 〈uij |uji =Mij(u)〉. An
algebraic version of Peter-Weyl tells us that this is

⊕
λ irrep

⊕dimVλ

i,j=1 Cπλij .
I’ll leave it as an exercise to work out how it works in the super case. It is
trickier because Lie superalgebras are not simple in general (only osp(n|1)
is simple).
The main reason we’ve made this detour about super groups is because

I’ll want to do some manipulations with them later. Let’s return to where
we started.

∫
exp
(
(x,AX) + (c, BX) + (Cc, x) + (c,Dc)

)
dx dx dc dc = Ber

(
A B
C D

)−1

= det(A) · det(D − CA−1B).

Suppose you have
∫

x∈Rn,c,c∈Cn

exp
(1
2
(x,Ax) + P (x) + (c, Bc) +Qeven(x, c, c)

)
dc dc dx = I

Where c and c are independent. In general,
∫
P (c, c) dc dc = P top,top(c, c),

where we’ve picked an orientation. I don’t know how to compute this
I for general P (x), but I’ll take P (x) =

∑
n≥3 V

(n)(x), where V (n)

is a homogeneous polynomial of degree n, and I assume Q(x, c, c) =
∑
n≥1,m≥k≥1

1

n!k!
Q(n,k)(x)i1,...,incj1 · · · cjkci1 · · · cik

︸ ︷︷ ︸
Q(n,k)

.

We want to write I as a formal power series in V and Q. Say we live
100 years ago and we don’t have any computers, but we want to compute
these numbers. We know that we get an asymptotic expansion, so we
know that the first coefficients give a good approximation in some areas.

I =
∑∫

exp
(1
2
(x,Ax) + (c, Bc)

)
V (n1)(x) · · · V (nk)(x)Q(n1,k1) · · ·Q(nℓ,kℓ) dc dc dx

Each term is well defined, though we know that the series diverges. We
can use the Feynman diagram technique. We can say that V (n)(x)i1,...,in
is a vertex with valence n, with labels i· on the edges. Q(n,k) is associated
to some edges labelled i1, . . . in and some directed edges a1, . . . aℓ, b1, . . . bℓ
(a’s go in, b’s go out). Then we compute (using Wick’s theorem)
∫

exp((c, Bc))cb1 · · · cbℓca1 · · · caℓ dc dc

=
∑

det(B)
∑

bipartite
perfect

matchings σ

(−1)σ(B−1)a1σ(a1) · · · (B−1)aℓσ(aℓ).

You usually write this with pictures. Let’s do an example to see how this
shows up.
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Example 29.1.

∫
exp((c, Bc))cbca dc dc =

( 1

(m− 1)!
(c, Bc)m−1cbca

)top

= [[⋆⋆⋆ HW: is a minor]] ⋄

Example 29.2.

∫
exp((c, Bc))cb1cb2ca1ca2 dc dc =

1

(m− 2)!

(
(c, Bc)cb1cb2cb1cb2

)top

We can at least check that the degrees are both m − 2. In general, the
total degree is m− ℓ. ⋄

∫
exp
(1
2
(x,Ax)

)
xi1 · · ·xin dx = Pf(A)−1

∑

perf match

· · ·

After this long exercise, we have

I =
∑

Γb,f

(−1)FF (Γb,f )
|Aut Γb,f |

where the weight is computed by [[⋆⋆⋆ picture]] and F is computed by
the number of loops formed by the fermionic variables.
Next time we’ll see how this formal power series can be used to approx-

imate the asymptotics of oscillating integrals. This is the Fedeev-Popov
trick.

30 NR 11-05

Last time I wrote the formula for the Feynman diagram expansion of
an oscillatory integral which includes some Grassman variables. Let me
repeat part of it.

∫

R0|m
exp((c, Bc)/2) dc = Pf(B).

Now I want to do
∫

R0|m
exp((c, Bc)/2 + V (c)) dc

where V =
∑

k≥4

∑
{a} V

{a}ca1 · · · cak . If you do the expansion in the
integral, you get

=
∑

ℓ≥0

1

ℓ!
exp((c, Bc)/2) · V (c)ℓ dc.

You can write V (c)ℓ =
∑
V {a}V {b}ca1 · · · cakcb1 · · · cbk . So the question

is, what is ∫
exp((c, Bc)/2)ca1 · · · cak dc

def
= Ia1···ak (30.1)

This is something like the square root of what we computed last time, so
we expect some kind of sum over perfect matchings. As Bruce suggested,
we could integrate this by parts. Another thing we could notice is that
we could compute the generating function

I(η) =

∫

R0|m
exp
(
(c, Bc)/2+

∑

a

ηaca
)
dc ∈ ∧·Rm = 〈η1, . . . , ηm〉 (30.2)

We can do a change of variables c = c′ − B−1η, completing the square
(12 (c, Bc) + (η, c) = 1

2 (c+B−1η,B(c+B−1η))− 1
2 (η,B

−1η)) to get
∫

exp
(
(c′, Bc′)/2− (η,B−1η)/2

)
= Pf(B) exp

(
−1

2
(η,B−1η)

)
= I(η)

And we have the relationship

I(η) =
∑

k≥0

1

k!
Ia1···akη

a1 · · · ηak(−1)k(k−1)/2 (30.3)
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So all we have to do is expand the power series exp(−(η,B−1η)/2).

I(η)

Pf(B)
=
∑

k≥0

(−1/2)k
k!

(η,B−1η) · · · (η,B−1η)︸ ︷︷ ︸
k

=
∑

k≥0

(−1/2)k
k!

∑

a1,...,ak

ηa1 · · · ηak
∑

peft match on {a}
(−1)µ(B−1)i1j1 · · · (B−1)ik/2jk/2

where m : (a1, . . . , ak) → (i1, . . . , ik/2, j1, . . . , jk/2), and µ is the sign of
the perfect matchings

(η,B−1η) · · · (η,B−1η) =
∑

i·j·

ηi1 (B
−1)i1j1ηj1 · · · ηik/2

(B−1)ik/2jk/2
ηjk/2

=
∑

i·,j·

odd︷ ︸︸ ︷
ηi1 · · · ηik/2

ηj1 · · · ηjk/2

even︷ ︸︸ ︷
(B−1)i1j1 · · ·

So

Ia1···ak
Pf(B)

= (−1)k(k+1)/2(1/2)k
∑

µ perf match

(−1)µ
∏

α

(B−1)iαjα

︸ ︷︷ ︸
Pfk×k((B−1)aαaβ

)

Maybe I should take a break from these computations and explain why
I need them. It will be a homework to derive the formula

∫

R0|m
exp
(
(c, Bc)/2 + V (c)

)
dc = Pf(B) ·

∑

Γ

(−1)ℓF (Γ)
|Aut Γ|

where the Γ have only even-valent vertices. The weight of the graph
Γ =[[⋆⋆⋆ two vertices connected by 4 edges]] by asigning weights
i1, . . . , i4 and j1, . . . , J4 to the halves of edges, then the weight is∑
V i1···i4V j1···j4

∏4
e=1(B

−1)iℓjℓ(−1)3+2+1 (the 3 + 2 + 1 is the number
of loops). Let’s leave it as part of the homework to derive this formula for
the Grassman integral with the prescription for computing the weights
for Feynman graphs.
What is the real reason we want to have all these strange integrals?

The physical reason is that there are elementary particles which have

fermionic statistics, where each state has at most one particle in it. We
model this mathematically by taking generating functions in a Grassman
algebra.
Consider the following problem which seems completely irrelevant.

Let’s try to compute

I =

∫

Rm

exp
(
iS(x)/h

)
dmx

but let’s assume there is a Lie groupG acting on Rm so that S(gx) = S(x).
The measure dmx is also G-invariant. If G is compact, we replace this
integral by

|G|
∫

Rm/G

exp
(
iS([x])/h

)
d[x]

where d[x] = dx/dg, where dg is the Haar measure on G. Assume the
action has trivial stabilizers. The only way we’ve been able to study these
so far is with specific asymptotic expansions.
If G is not compact, then we don’t have this, but we know that the

original integral is meaningless, so we should still try to study the second
integrals.
How can we make sense of the perturbative expansion of such integrals

(we want to get some Feynman diagrams and so on). Say a cross section
[[⋆⋆⋆ level hypersurface?]] through the space of orbits is given by
fa(x) = 0, a = 1, . . . d = dimG. We have that dim(Rm/G) = m − d
(since we assume the action is free). I claim that

Jf (x)

∫
δ
(
f(gx)

)
dg = 1

where δ(f(x)) is the distribution on Rm which is supported at the cross
section given by the equations fa(x) = 0, and Jf (x) is the Jacobian

det
(
∂fa

∂ξb

)
, where the ξ are the vector fields of the G-action. I’ll return to

this next time but let me just give the answer.
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Assume G is compact, then

∫

Rm

exp(iS/h) dx =

∫

Rm

exp(iS/h) · Jf (x)
∫

G

δ(f(gx)) dg dx

=

∫

G

∫

Rm

exp(iS(x)/h)δ(f(gx))Jf (x) dx dg

=

∫

G

dg

∫

Rm

exp(iS/h)Jf (x)δ(f(x)) dx (x 7→ gx)

But we know that the result of the integral doesn’t depend on the choice
of the cross section. We can say that δ(f(x)) =

∫
Rd exp(iλf(x)/h) dλ,

and we can write Jf (x) as the Grassman integral
∫
exp
(
ca ∂fa

∂ξb
ca
)
dc dc, so

the result is
∫

Rm/G

exp(iS) dx =

∫

Rm×Rd×C0|d
exp
(
iS/h+

∑

a

ca
∂fa

∂ξb
cb +

∑

a

λaf
a(x)/h

)
dx dc dc dλ

Theorem 1: this is what we should understand as the integration over
the quotient space
Theorem 2: it doesn’t depend on the choice of cross section. This uses

BRST.
This is the only reason we went through the trouble of Grassman vari-

ables.

21 PT 11-06

Homework 5 is due Nov. 20 (before Thanksgiving).Projects:

1. Yoneda for A-enriched categories. [Theo, Dan]

2. Super manifolds via algebra. [Matthias, Dan]

3. K-theory for super manifolds. [Manuel]

4. Simple super Lie algebras. [Andre, Jonah]

5. G-actions on super manifolds.

6. Super principal bundles and connections. [Alan, Dan B.]

7. Differential gorms. [Kevin]

I’ll give you at least three more projects in the next weeks.
We’re way behind in this class because we spent so much time on super

manifolds. We’ll go very quickly through geometric quantization. I have
to do this very quickly so that we can actually get to cohomology theories.
Start with a symplectic manaifold (M,ω). I explained at some point (as

did Kolya) how to go from a classical field theory to such a setup (look
at classical solutions). For today, I’ll assume M is finite-dimensional,
though it could be infinite-dimensional in general. We want to somehow
quantize this classical system. We want a vector space V (I won’t discuss
the inner product for now), which is like the state space of a quantum sys-
tem, and Lie homomorphism C∞(M,ω) → End(V ). You should think
of C∞(M,ω) as classical observables and End(V ) as quantum observ-
ables. You want to quantize the observables in such a way that Poisson
bracket goes to Lie bracket. Furthermore, you want a map that takes
the constant function 1 to the identity idV (this doesn’t follow from Lie
homomorphism).

� Warning 21.1. I will ignore factors of ~, π, and i (I won’t “set π
or i to 1”). How do you make sure an operator has real eigenvalues?

You require that it is self-adjoint. However, unitary operators are skew-
adjoint. This i converts between skew-adjoint and self-adjoint operators.

y
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So far this is pre-quantization. We require some more properties to call
it geometric quantization. These other properties come from physics mo-
tivation. To do the geometric quantization, you have to give up part of
C∞M (the map will not be a Lie homomorphism).
This pre-quantization always exists if ω is integral, i.e.

∫
Σ2 f

∗(ω) ∈
Z for all f : Σ2 → M , where Σ2 is a closed oriented surface. Using
some algebraic topology, this is the same as saying that [ω] ∈ H2

dR(M) is
actually lies in the image of H2(M ;Z).

Construction of pre-quantization

Step 1: If ω is integral, there exists a hermitian line bundle L→M with
connection such that the curvature of the connection is ω. The reason
you need integrality for this is that if [ω] = [curvature(∇)], then it come
from the first Chern class c1(L) ∈ H2(M ;Z).
You can discuss how many such line bundles there are up to isomor-

phism. If you have two line bundles, you can complex conjugate and
tensor, so there is a notion of a “difference of line bundles”. Any two
such bundles will differ by a flat bundle. Thus, isomorphism classes of
such (L,∇) forms a torsor under the group of isomorphism classes of flat
line bundles. Flat line bundles, up to isomorphism, are classified by their
holonomy, and because we assume unitary and assume M connected, the
holonomy is just Hom(π1M,S1) = H1(M ;S1) (by the universal coeffi-
cient theorem, thinking of the circle S1 as a discrete abelian group). So
there is this torus which acts simply transitively on the choice of line
bundle.
I will skip the construction of the bundle. The name of this line bundle

with connection is called the pre-quantum line bundle. Choose one such
(L,∇).

Remark 21.2. H2(M ;Z) ∼= H1(M,S1) (S1 is sheaf of S1-valued func-
tions). ⋄

The main diagram of this story is the following. There is an exact

sequence of Lie algebras (we get this for any symplectic manifold)

0 // H0(M ;R) //

exp
��

C∞(M,ω)
d //

E
��

sp(M,ω)

exp
��

cohom class

x 7→[ixω]
// H1(M,R)

exp
��

// 0

1 // H0(M ;S1)
rot.

fibers
// Aut(L,∇)diffeo

on base
// Sp(M,ω)

diff

holonomy
// Hn(M ;S1) // 1

where sp(M,ω) are symplectic vector fields, vector fields X so that
LX(ω) = 0. If you use the Cartan formula, you see that LX(ω) = d(ixω).
Each of these are Lie algebras, all the maps are Lie homomorphisms, and
the sequence is exact
I want to exponentiate to an exact sequence of Lie Groups, which is the

bottom row (using our choice of (L,∇)). If f̃ : (L,∇)→ (L,∇) (respect-
ing connection), then f : M → M must be a symplectomorphism. The
map E : C∞(M,ω) → Aut(L,∇) is given as follows, you can flow along
the function in M and simultaneously rotate the fibers.
Step 2: Define V := Γ(L), the sections of L. This is a complex vector

space. Let C∞(M) act on V via the map E (remember we wanted a Lie
homomorphism p : C∞M → End(V )). The diagram is

C∞(M)

E

��

p
// End(V )

exp

��

Aut(L,∇) // GL(V )

More concretely, for f ∈ C∞M and s ∈ Γ(L), (p(f))(s) = ∇Xf
(s) + f · s.

Remember that we wanted p(1) = idV . The reason this is true is because
of the big diagram above commuting (you get a constant rotation of the
fibers, where 1 ∈ R exponentiates to 1 ∈ S1). You can also see this from
the formula.
The other formula I wanted to give you is this. If we have ω = dα (i.e. if

we have a symplectic potential α ∈ Ω1M), then we can take L = C ×M
and ∇ = d+mα (mα is multiplication by α). We add the 1-form α to get
curvature dα, which we want. Now we get p(f)(s) = Xf (s) + (α(Xf ) +
f) · s. In the cases that lead to quantum mechanics, M = T ∗N (N is the
configuration space), so we have the symplectic potential α.
After the break, I’ll do the even more special case where M is a vector

space.
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[[break]]
Linear case (i.e.M is a finite dimensional vector space and ω̃ : M×M →

R is a non-degenerate skew pairing). We have TM ∼= M × M , and
ωm(v1, v2) = ω̃(v1, v2) defines ω. Then ω = dα, where αm(v) = ω̃(m,w)
is in Ω1(M). Now we can evaluate these formulas. I want to evaluate them

on linear functions M
φ∼= M∗ ⊆ C∞(M). We have the pre-quantization

p(v) = ∂v +mφ(v). Because I defined the symplectic form to be constant,
this symplectic manifold has translational symmetry. That is, M acts on
itself by translations, which are symplectomorphisms (since the form is
constant).

Remark 21.3. Translations do not preserve the 1-form α. ⋄

0 // R // heis(M,ω)
� _

��

// (M, [, ] = 0)
� _

��

// 0

0 // H0(M ;R) //

exp
��

C∞(M,ω)
d //

E
��

sp(M,ω)

exp
��

cohom class

x 7→[ixω]
// H1(M,R)

exp
��

// 0

1 // H0(M ;S1)
rot.

fibers
// Aut(L,∇) diffeo

on base
// Sp(M,ω)

diff

holonomy
// Hn(M ;S1) // 1

1 // S1 // Heis(M,ω) //
?�

OO

(M,+)
?�

OO

// 0

Since translations preserve the de Rham d, but don’t preserve α, so they
don’t preserve the connection, but when we do the extension to get the
Heisenberg group, which does respect the connection. This formula leads
to a representation of heis(M,ω) on V = C∞(M ;C).
We’re sort of going back between symmetries an observalbes, so we’re

really hiding Noether’s theorem in this diagram.
You don’t expect symmetries to quantize well, you have to get a phase.

This corresponds to the fact that you had to take the extension to the
Heis(M,ω).
Fact: This representation is highly reducible! This is bad for quantiza-

tion from some point of view. [[PT: I’m using some notes I wrote a couple
of years ago, which are probably on my web site.]] To get an irreducible
representation, we choose a polarization.

In the linear case, this is a decomposition M ∼= N ⊕ N∗, where N is
a Lagrangian subspace, with ω̃ corresponding to

(
0 −ev
ev 0

)
. In the linear

case, this decomposition always exists.
Geometric quantization in this case takes V := C∞(N). Then I’d still

like to write down an action of all functions, but as I said, you can’t
always do that. I certainly want to quantize the Heisenberg, so I’ll just
do that. heis(M,ω) acts on V via N ⊕N∗ → End(V ) given by (n, φ) 7→
∂n + mφ. The ∂n are annihilators and the mφ are creators. You have
to check it, but the commutation relations are exactly the commutation
relation in the Heisenberg algebra, so this is really a Lie homomorphism
M → End(V ), with the property that the central element (corresponding
to the constant function) goes to idV . It turns out that this V is the
irreducible representation of (M,ω) for which the central element acts as
the identity (Stone-von Neumann theorem tells us that the center either
acts trivially, or the irrep is characterized by the action of the center).
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Last week we were looking at the following example. 1
|x| is a distribution

for x 6= 0. It can be extended to a distribution for x = 0, but not in a
canonical way. This is supposed to be a toy example of what is going to
happen for Feynman diagrams. First of all, let’s look at it in more detail.
Here is an idea for finding a canonical extension: look at |x|s, where

s ∈ C. If Re(s) > 0, this is actually continuous, so it gives a distribution.
The idea is to analytically continue it to all values of s. What do we mean
by that? We think of |x|s as a function of s taking values in the space
of distributions in x. This always gives people a bit of a headache when
they first come across the concept. The idea is that for each test function
f(x), we look at

∫
f(x)|x|s dx, and think of this as an analytic function

of s. Analytically continuing is the same thing as saying you can extend
this integral for other values of s.
How do we continue |x|s to Re(s) ≤ 0. Here’s an idea for doing it:

differentiate to get d
ds |x|s = s|x|s−1sign(x) for x 6= 0, s > 1. Thus, we

get |x|s−1 = 1
s
d
ds |x|ssign(x). This sign(x) is a headache because it is

discontinuous. To get rid of it, we differentiate again to get d2

dx2 |x|s =

s(s− 1)|x|s−2 for Re(s)≫ 0. So we get |x|s−2 = 1
s(s−1)

d2

dx2 |x|s, giving an

analytic extension of |x|s to a meromorphic function of s (meromorphic
because we may get poles at s = 0, 1).
Where are the poles and what are the residues (the residue at a

pole is a distribution, not a number). For example, we have s|x|s−1 =
d
dx |x|ssign(x). If we try putting s = 0, we see that this right hand side is
the residue of |x|s−1 at s = 0. We can figure out the value by just setting
s = 0, getting d

dxsign(x) = 2δ(x). So the residue is a constant times the
Dirac delta.
Now let’s go back and try to define 1

|x| as a distribution. First attempt:

take the value of |x|s at s = −1, which fails because there is a pole at
s = −1 (we’ve just worked out the residue at this pole). Second attempt:
take the constant term of |x|s = a−1(x)s

−1 + a0(x) + a1(x)s+ · · · (where
the ai are distributions). This doesn’t work because of the following subtle
problem. The constant term of a meromorphic function at a singular
point is not canonical (for example, it changes with a change of variables).
Suppose I take f(s) = s−1 + b + · · · , and take s = t + ct2 + · · · , with

s−1 = t−1− c. Then f(t) = at−1 + b+constant depending on a plus more
stuff. So the constant term is only canonical up to addition of a multiple
of the residue. If we were working with C-valued functions, this would be
useless, but since we’re working with distribution-valued functions, this
gives is some information.
Similarly, if f(s) = a−ns−n + · · ·+ a0, then the constant term changes

by multiples of a−n, . . . , a−1. So we can’t pick out the constant term,
but we can pick out a subspace of distributions which could be constant
terms. So we have a canonical family of extensions of 1

|x| to x = 0 by

taking 1
|x| =constant term of |x|s at s = −1 plus a complex nmber times

the residue at s = −1. The residue tells us the ambiguity in extending
|x|−1. If we have a pole of order k, then we find that there is a k-
dimensional space of extensions, controlled by the singularity. |x|s has
poles at s = −1,−3,−5, . . . .

Example 11.1. Consider
∫∞
−∞ |x|s−1e−x

2

dx (think of e−x
2

as a test

function). If we change x to x2, this is 2
∫∞
0 e−x|x|s/2−1 dx = 2Γ(s/2).

We know that Γ has an analytic continuation, and lots of poles all over the
place. Since |x|s−1 is meromorphic at s = 0,−2,−4, . . . , we see that Γ(s)
is meromorphic at s = 0,−1,−2, . . . . So the meromorphic continuation
of |x|s is more or less the meromorphic continuation of Γ. If you unwind
this, you find that the proof of meromorphic continuation of |x|s is more
or less the same as the proof of meromorphic continuation of Γ. ⋄

Summary: to define |x|−1, we first look at |x|s for s large, analytically
continue it to s = −1, take the constant term plus multiples of the singular
parts.
Now let’s consider the more complicated case of Feynman diagrams.
Problem: Feynman diagram is a product of propagators ∆(xi − xj),

and the product is sometimes not defined if xi = xj . So we have the same
sort of problem as for |x|s.
Strategy:

1. Replace the propagator by some holomorphic family of propagators
∆s(xi − xj) for s ∈ C so that if Re(s) ≫ 0, then ∆s(xi − xj) is
continuous (say) with ∆0 = ∆.
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2. For large s, the product of propagators is defined, so we get a function
from s to distributions

3. Try to take some analytic continuation in s to s = 0. We usually find
that it is meromorphic at s = 0 with a pole of finite order. This gives
us a reasonable space of extensions whose dimension is the order of
the pole. The Feynman diagram is given by the constant term plus
multiples of the singular parts at s = 0.

(4. Try to eliminate poles by applying a renormalization.)

How do we do step (1)? What should we use as ∆s(x)? The propagator is
a bit of a pain in x coordinates. Notice that ∆(x) is the Fourier transform
of 1

p2+m2 (suppose we’re doing scalar field theory in Euclidean space).

Then ∆(x) has singularities at x = 0. Singularities are caused by the fact
that 1

p2+m2 does not decrease fast enough at p = ∞ (in reasonably high

dimensions). So we should make (p2 + m2)−1 decrease faster. You can
immediately see lots of ways of doing this. Here are a few of the more
popular ways.

1. (p2 +m2)−1−s. This is similar to dimensional regularization. Physi-
cists say that this is “changing the dimension of spacetime to 4+ s”.
This has the additional advantage that it actually makes some sense.
This still doesn’t decrease all that fast as p→∞.

2. (p2 + m2)−1e−(p2+m2) (there should be an s in there somewhere),
which has several advantages over the previous one.

3.
∫∞
0
θ(t)e−(p2+m2)t dt.

Let’s just use the first one. You might think that this gives you a canonical
extension. The trouble is that (p2 +m2)−1−s is not scale invariant (since
it doesn’t have the same degree as (p2 +m2)−1). You can add an extra

mass µ, and take (p2+m2)−1
(

µ2

p2+m2

)s
. This extra mass really does have

to show up . . . it’s not just that you’ve done something stupid.
Bruce: what exactly does scale invariance mean if m 6= 0? RB: it

doesn’t make a whole lot of sense; I guess you rescale the mass an your
spacetime.
Ok, so now we’ve chosen a family of propagators and we find that (2)

works.

Now what about step (3)? This involves a certain amount of work. For
simplicity, we take m = 0. Then the propagator is (x2)1−d/2 times some
constant. Adding in a factor of s means we have a family of propagators
(x2)s (let’s ignore the d/2 part for now). So a Feynman diagram like
[[⋆⋆⋆ picture]] gives us something of the form (polynomial)s. This is
defined for Re(s) > 0 and we want to analytically continue it.
General problem: given a polynomial p (say positive), can we analyt-

ically continue p(x)s to all complex s? The answer is YES! This is a
theorem of Bernstein and Sato (at about the same time).
To see how to do this, look at the case of p(x)s = xs. Consider

d
dxx

s = sxs−1. Then we have sp(x)s−1 = d
dxp(x)

s. We can write this
as b(s)p(x)s−1 = (diff operator with polynomial coeffs)p(x)s. This b(s) is
called the Bernstein polynomial of p(x). If we can find such a relation,
then we can continue p(s) to all complex s.
Next week will be all about Bernstein polynomials and how you can

prove they exist.
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Last time we started to discuss oscillating integrals∫
X=Rm exp(iS(x)/h) dx as h → 0. On X we have a Lie group G
acting so that S(gx) = S(x) and dx is G-invariant. If we do the standard
variational analysis, we run into trouble because the Hessian is zero.
Fadeev and Popov suggested the following trick.
Suppose G is compact of dimension k, and suppose fa(x) for a =

1, . . . , k such that {fa(x) = 0} is a cross section of the G action on X
(i.e. X/G ≃ f−1

a (0)). Then we have vector fields ∂
∂ξa on X representing

the action of the basis elements ea in g = Lie(G). Then we have

det
(∂fa
∂ξb

)∫

G

δ(f(gx)) = 1 (∗)

where δ(f(x)) is a δ distribution on X supported at f−1(0).
Consider R, and f : R → R. Then

∫
R
g(x)δ(x) dx = g(0) by defini-

tion. Changing the variables to t = f(x), we get
∫
g(x)δ(f(x)) dx =∫

g(f−1(t))δ(t)dxdt dt = g(f−1(0))/f ′(0).
Similarly, we get a δ distribution on Rn, so

∫
Rn g(x)δ(x) dx = g(0).

Again changing variables (in such a way that the Jacobian is non-zero),
we get

∫
Rn g(x)δ(f(x)) dx = g(x0) det(df(x0))

−1, where f(x0) = 0.
Now we have to generalize this to the situation where the distribution

is supported on a submanifold. Assume X = Rn ⊇ S a submanifold with
some chosen measure µ on S. We say that δS(x) is the δ distribution
supported on S with measure µ if

∫
X
g(x)δS(x) dx =

∫
S
g(x) dµ. Ok,

sorry; this is not relavent.

∫

G

δ(f(gx)) dg =

∫

Uε
e

δ
(
f(x) +

∑

a

ta
∂f

∂ξa
(x)
)
dt

=

∫
δ
(∑

a

ta
∂f

∂ξa
(x)
)
dt

= det
(∂fa
∂ξb

)−1

on f(x) = 0 where ta are local coordinates near e ∈ G.

Now
∫

X

exp
(
iS/h

)
dx =

∫

X

exp(iS/h) det
(∂fa
∂ξb

)

=

∫

G

δ
(
f(gx)

)
dg dx

=

∫

G

(∫

X

exp(iS(x)/h) det
(∂fa
∂ξb

(x)
)
δ
(
f(gx)

)
dx

)
dg

=

∫

G

(∫

X

exp(iS(x)/h) det
(∂fa
∂ξb

(g−1x)
)
δ
(
f(x)

)
dx

)
dg

= |G|
∫

X

exp(iS(x)/h) det
(∂fa
∂ξb

)
δ(f(x)) dx

The Jacobian is G-invariant if the identity (∗) is true for all x, not just x
for which f(x) = 0. X is covered by the set of all g·f−1(0) (because f−1(0)
is a cross section of the action). Let’s assume the Jacobian is G-invariant
so that we don’t get stuck here. We’ll clear it up next time. PT: it
depends on the choice of f . For a general f , it won’t be invariant. You’re
saying that there exists an f so that it is invariant. NR: ok. Let’s assume
it’s true for now. Theo/Bruce: you should should takde x̃ to be the point
on f−1(0) which is in the same orbit as x, then Jf (x̃)

∫
G δ(f(gx)) dx = 1

is automatically gauge-invariant.
We can write

det
(∂fa
∂ξb

)
=

∫
exp
(∑

a,b

ca
∂fa
∂ξb

cb
)
dc dc

δ(f(x)) = hk
∫

Rk

exp
(
i
1

h

∑

a

λafa(x)
)
dλ

∫

R

g(x)δ(x) dx = g(0) =

∫

R

ĝ(λ) dλ

δ(x) =

∫

R

eixλ dλ

ĝ(λ) =

∫

R

eixλg(x) dx
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∫

X

exp(iS/h) dx

=

∫

X×Rk×R0|k×R0|k
exp
(
i
S(x)

h
+ i
∑

a

λafa(x)/h+
∑

a,b

τa
∂fa
∂ξb

cb

︸ ︷︷ ︸
SFP

)
dx dλ dc dc

Now what to do with this integral? If we consider S̃(x, λ) = S(x) +∑
a λ

afa(x), what are the critical points? ∂S̃
∂λa = 0 implies fa(x) = 0,

and ∂S̃
∂λa = ∂S

∂xi +
∑

a λ
a ∂fa
∂xi = 0, so critical points are critical points of S

which are on f−1(0). d2S̃ is non-degenerate. You can expand near the
critical points and evaluate the Gaussian integral as an asymptotic series,
so we get

SFP (x0 +X ;λ0 + λ, c, c) = SFP (x0, λ0) + (d2S(x0, λ0)z, z) + cK(x0)c+
∑

k

zk, cznc

where z = (x, λ).

∫

X

eiS/h dx = |G|
∑

Γ

(−1)F (Γ)

|Aut Γ| F (Γ)

Where solid (bosonic) edges get weight (d2SFP (x0))
−1, dashed

(fermionic) edges get weight K(x0)
−1. There will be vertices coming

from the expansion of the action (giving the n-th derivative S̃(n)) and
vertices with dashed edges K(n)(x0). This (−1)F will cancel the most
severe divergences.
Next time I will probably have to return to some of these questions, but

then I want to explain that there is another way to think about all this.
This Fadeev-Popov action can we written as SFP = S(x) + Qψ, where
Q2 = 0 and ψ is odd. This is the BRST approach to gauge theory. A more
sophisticated version is known as BV quantization. You can see that this

is true if Qca = λa, Qλa = 0, Qca = 1
2

∑
a,b,c c

a
bd
bcc, Qf(x) = ∂f(x)

∂ξa ca.
You can try to interpret this Q as the derivation in some cohomology
theory.

22 PT 11-08

Referecnes for geometric quantization:

– Bates-Weinstein (Berkeley MLN)

– Kirillov (Springer)

– Guilleman-Sternberg “Geometric Asymptotics”

Last time we had (M,ω) (integral) symplectic manifold. Our pre-
quantization is p : C∞M → End(V ) a Lie algebra homomorphism with
p(f) = ∇Xf

+mf , where V := ΓC∞(L) for a particular line bundle with
connection (L,∇). The easiest case is the example where M is a vec-
tor space and ω is constant ω̃ : M × M → R. In that case, we have
M ∼=ω̃ M∗ ⊆ C∞M , and on that subspace, we have p(v) = ∂v + mv.
Notice that if you write down the commutation relations, then the vec-
tors do not commute. We really want to take the constants as well:
R · c⊕M =: heis(M,ω) ⊆ C∞M , and p : heis(M,ω)→ End(V ) is a Lie
homomorphism.
I’m purposly allowing ∂v to act on C∞M . I’m not completing to a

Hilbert space. Remember that C∞M has a Frechét topology, and these ∂v
and mv are continuous, but the spectrum is unbounded. I’m avoiding the
problem by taking C∞M and now worrying about what happens on the
completion. Once you have an inner product, you can ask about adjoints.
I’m ignoring some i’s; ∂v is skew-adjoint and mv is self-adjoint. If you us
imv, then this actually leads to a unitary representation of Heis(M,ω)
on L2(M,ωn/n!). Physicists like self-adjoint rather than skew-adjoint
operators, so they would use i∂v +mv instead.
The problem is that this representation is not irreducible, and we expect

it to be because it comes from a single particle. Before we cut it down
to make it irreducible, let’s do the odd version of this. [[⋆⋆⋆ Project
8: geometric quantization for symplectic super manifolds. Everything
goes through beautifully. There are some notes for pre-quantization by
Kostant]]

Odd (linear) analogue of pre-quantization

Take W a finite dimensional vector space and b : W ×W → R a non-
degenerate symmetric bilinear form. This means that (πW, b) is a sym-
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plectic super manifold (remember that (πW )red = pt). What is the ana-
logue of pre-quantization? We have to look at C∞(πW ) =

∧∗(W ∗) ⊇
R·c⊕W ∗ ∼=b Rc⊕W =: heis(W, b) (this is a super Lie algebra). C∞(πW )
is also a super Poisson algebra. The Lie algebra structure and the Pois-
son structure are compatible, and this compatibility tells us that the Lie
algebra structure on C∞(πW ) is completely determined by its behavior
on the linear functions because {f, gh} = {f, g}h+ (−1)|f ||g|g{f, h}.
Super pre-quantization is a super Lie homomorphism C∞(πW ) →

End(C∞(πW )). On heis(W, b) ⊆ C∞(πW ), the c goes to idC∞(πW )

and w 7→ ∂w + mw (again, we’re ignoring some i’s if you want to
work with inner products). So we have a super Lie algebra repre-
sented on an associative algebra, and an associative algebra is always
a super Lie algebra, so we get a unique extension to a super alge-
bra homomorphism U(heis(W, b)) → End(C∞(πW )). Our criterion is
that c goes to the identity, so we get an algebra homomorphism from
U(heis(W, b))/(c = 1) =:Weyl(W, b). All this works in the even case by
the way. p : U(heis(W, b))/(c = 1)→ End(

∧∗
(W ∗)).

Lemma 22.1. U(heis(W, b))/(c = 1U ) ∼= Cl(W, b), with defining rela-
tions w1w2 + w2w1 = b(w1, w2).

Since the wi are odd, [w1, w2] = w1w2 +w2w1 = b(w1, w2). So the way
to prove the lemma is to observe that the two algebras have the same
defining relations.
So what we’ve constructed is a representation of the Clifford algebra

on the exterior algebra, given by the formula w 7→ ∂w + mw. You can
get Cl(W, b) → ∧∗

(W ∗) by taking a 7→ p(a) · 1∧∗ . This turns out to be
an isomorphism of Cl(W, b)-modules. This is something you might have
seen before.

Corollary 22.2.
∧∗(W ∗) is not irreducible as a Cl(W, b)-module.

Example 22.3. If you take End(V ), as a representation over itself, it is
isomorphic to V ⊗ V ∗ (with the action on the left side, so the V ∗ is the
multiplicity space).
If you take a finite group G, then k[G] =

⊕
λ Vλ ⊗ V ∗

λ (with the action
on the left again). ⋄

We see that we kind of have to take some sort of “square root” to extract
the irreducible representations. This is what the polarization does

Back to (M,ω)

A polarization of (M, ω̃) is a decomposition M ∼= N ⊕ N∗ such that ω
corresponds to

(
0 ev

−ev 0

)
.

Theorem 22.4. heis(M, ω̃) → End(C∞N), with c 7→ id and (v, φ) 7→
∂v + imφ, is an irreducible representation.

The proof is not hard, but we won’t do it. It is proved in all of the
references.

Theorem 22.5 (Stone-von Neumann). This representation exponenti-
ates to an irreducible unitary representation ρ : Hesi(M,ω) → U(L2N),
with c 7→ id. Moreover, this is the unique irreducible unitary representa-
tion of Heis(M,ω) on a Hilbert space sending c to id.

This theorem is also not that hard.
I’m very interested in how unique the representation heis(M, ω̃) →

End(C∞N) is. Bruce: it isn’t always unique. PT: ok.

Corollary 22.6. Sp(M,ω) acts projectively on L2N .

Note that Sp must fix the origin; earlier we were looking at translations
as well.

Proof of Corollary. For g ∈ Sp(M,ω), the key formula is ρ(g(h)) = Ug ◦
ρ(h) ◦ U∗

g for all h ∈ Heis(M,ω), where g(h) is the action of Sp(M,ω)
on Heis(M,ω). That is, we’ve precomposed the representation with the
action of Sp(M,ω). But by uniqueness of the representation, there must
be some unitary operator Ug making the key formula work. The Ug
is not quite unique. Two such Ug could differ by a phase (by Schur’s
lemma). That means that g 7→ Ug must be multiplicative up to phase,
which is what it means to have a projective representation: Sp(M, ω̃)→
U(L2N)/S1.

If you differentiate this action, it leads to sp(M,ω)→ End(C∞N)/S1.
But sp(M,ω) ⊆ C∞(M) are exactly the “quadratic” functions (given by
A 7→ (m 7→ ω̃(Am,m))). In fact, quantization gives a Lie homomor-
phism . . .heis(M,ω)⋊ sp(M,ω) = Rc ⊕M∗ ⊕ Sym2(M∗) ⊆ C∞(M). If
you’re careful, you’ll see that this representation extends to a Lie homo-
morphism heis(M,ω) ⋊ sp(M,ω) → End(C∞(N)) (this is quantization
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of observables). It does not extend to C∞(M). This is the down side
of geometric quantization; you can only quantize some classical observ-
ables, not all of them. This Lie homomorphism actually integrates to
Heis(M,ω)⋊ Sp(M,ω)→ U(L2N). This is quantization of symmetries.
[[break]]

Corollary 22.7. Geometric quantization of (M, ω̃) does not depend on
the polarization (up to phase).

This follows from the uniqueness part of Stone-von Neumann. This “up
to phase” is good because physically, changing the phase doesn’t change
anything.

Example 22.8. (M,ω) = (R2, dx ∧ dy). I choose the polarization
R2 ∼= Rx ⊕ Ry = N ⊕ N∗. The two operators are ∂x and mx. Let
P = i∂x and Q = mx so that everything is self-adjoint. Question: how
does SO(2) ⊆ Sp(2) act on L2R? The answer is that the infinitesimal gen-
erator of the circle action is the energy E = 1

2 (P
2 +Q2) (remember that

geometric quantization can only quantize quadratic observables). L2R
has an orthonormal basis of eigenvectors for this operator and you can
get between them with these creation and annihilation operators. The
spectrum of E is 1

2 +N0. The lowest eigenvector if 1
2 and the eigenvector

is e−x
2/2.

When we integrate, we get e2πiE = −1, so we see that we only get a
projectiv action. In fact, you can do this for any symplectic group and
you see that it is actually a double cover that acts.

S1

��

= S1

��

Mp

2
  ❆

❆❆
❆❆

❆❆
❆

**

S̃p

��

U(L2N)

Sp U(L2N)/S1

[[⋆⋆⋆ This is the Weil representation of Mp, yes?]] ⋄

The fermionic case is way easier than the bosonic case because the
Clifford algebra is finite-dimensional. In the bosonic case, you get this
infinite-dimensional universal enveloping algebra of the Heisenberg. The
analytic subtleties come from the fact that Heis(M,ω) is not compact.
In the fermionic case, the underlying space is a point which is compact,
and the rest is just linear.
Let me tell you the punch line, and I’ll do the polarization for fermions

on Tuesday.
Let (πW, b) be an odd symplectic vector space, as before. We want a

polarization W = N ⊕N∗, with b corresponding to
(

0 ev
ev 0

)
.

Problem: This only exists if the signature of b is zero. If we study
Riemannian manifolds, then we want b to be positive definite, so it looks
like we’re in trouble, but I’ll show you some tricks which will allow us to
polarize.
If the signature is zero, then Cl(W, b) → End(C∞(πN)) =

End(
∧∗

(N∗)). Counting dimensions (say dimN = n), we see that this
has dimension (2n)2 = 22n on the right, and dimCl(W, b) = 22n. It turns
out that this map is an isomorphism in the signature zero case. So in this
case, the clifford algebra is a matrix algebra.

Corollary 22.9. Cl(W, b) has the irreducible representation
∧∗

(N∗) and
it is unique.
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Last time we had a formula for the asymptotic expansion of Ih =∫
X
exp(iS(x)/h) dx. As h→ 0, this is given by Feynman diagrams. When

S is invariant under the action of some Lie group G of dimension k (as-
sume X = Rm for simplicity). We got that

Ih =

∫

X×Rk×R0|2k
exp
( iS
h

+
∑

a

λafa(x)

h
+
∑

a,b

ca
∂fa(x)

∂ξb
cb
)
dc dc dλ dx

h→0
=
∑

Γ

(−1)F
|Aut Γ|F (Γ)

where f(x) = 0 is a cross section of the action of G. In quantum field the-
ory, such expressions cannot be derived, so they are taken as definitions.
A main goal (which is still largely open) is to construct a QFT which is
not perturbative. The progress has been largely disappointing. You can
go beyond perturbation theory in some cases which are not physical but
still quite interesting to mathematicians.
PT: where are you hiding the h’s in the notation? NR: in the F (Γ).

Say z is an even coordinate on X × Rk. Then we expand the action
in powers of z. Every vertex with n even (solid) lines will have weight
hn/2−1. There will also be fermionic edges.

S(z)/h = S(zc)/h+A(z − zc)2/h+
1

h

∑

n

(z − zc√
h

)n
Vn · hn/2.

Theorem 32.1. Let Q be an operation on 〈ca, ca, C∞(X × Rk)〉 ∼=∧·(g∗ + g∗) ⊗ C∞(X × Rk), given by Qλa = 0, Qca = 1
2

∑
bc c

a
bcc

bcc

[[⋆⋆⋆ unfortunate notation, the cabc are the structure constants of
g.]], Qca = λa, and (Qf)(x) = −ih∑a c

a∂af(x), where ∂af(x) =
d
dtf(e

teax)|t=0 for a basis {ea} for g (note that [∂a, ∂b] =
∑
c c
c
ab∂c). Then

SFP = S −Qψ ψ =
∑

a

cafa(x) Q2 = 0.

You can think of this Q as follows. We have the super manifold XFP =
X × Rk × R0|2k, and Q is an odd vector field on XFP such that Q2 = 0.

You can write Q as a vector field:

Q =
∑

a

λac
a + (−ih)

∑

a

ca∂a +
1

2

∑

a,b,c

cabcc
bcc

∂

∂ca

where ∂
∂ca is the “left derivation” in 〈ca〉. This is known as the BRST

operator.
Let’s go over Lie algebra cohomology a bit. Consider the stan-

dard complex C·(g,M) for g with coefficients in M (M a representa-

tion of g, defined as
∑k=dim g

ℓ=0 Homg(
∧ℓ

g,M). We define Cℓ(g,M) =

Homg(
∧ℓ

g,M) =
∧ℓ

g∗ ⊗M . Then we define d : Cℓ → Cℓ+1 by

dcℓ(x1, . . . , xℓ+1 =
ℓ∑

i<j

(−1)i+j−1cℓ([xi, xj ], x1, . . . x̂i, . . . , x̂j , . . . , xℓ+1)

+

ℓ∑

i=1

(−1)i−1xi · c(x1, . . . x̂i . . . xℓ+1)

[[⋆⋆⋆ HW: check that d2 = 0.]] Now we can define H·(g,M) as the
homology of the complex.

Example 32.2. LetM = C be the trivial representation of g, so x·c = 0.
Then let c2 ∈ C2(g,C) and require that

dc2(x, y, z) = c2([x, y], z)− c2([x, z], y) + c2([y, z], x) = 0.

And we have that for c1 ∈ C1(g,C),

dc1(x, y) = c1([x, y]).

So H2(g,C) = {c2 ∈ C2|dc2 = 0}/{dc1}.
Claim. Given c2 ∈ H2(g,C), we can define a central extension ĝ = g⊕Ck
by [x, y]∼ = [x, y]+kc2(x, y) and [k, x] = 0. The condition dc2 = 0 implies
the Jacobi identity.

We can define a trivial central extension c2(x, y) = c1([x, y]). [[⋆⋆⋆

HW: find a basis for ĝ in this case such that ĝ ∼= g⊕Ck as a Lie algebra]].
The conclusion is that H2(g,C) classifies central extensions of g by C.

PT: you can replace C by any representation M to get extensions of g by
M (with the abelian Lie algebra structure). NR: yes. ⋄



32 NR 11-09, v. 10-4 135

Example 32.3. Let g = V ect(S1). There is a unique non-trivial central
extension of this Lie algebra given by

c2(f(t)
d

dt
, g(t)

d

dt
) =

1

2πi

∫

S1

(fg′′′ − f ′′′g)
dt

t
.

If you choose the basis Ln = t−n−1 d
dt = ieinθ ddθ (where t = eiθ, then

[Ln, Lm] = (n−m)Ln+m + k
12 (n

3 − n)δn,−m. ⋄

Example 32.4. Let M = g with the adjoint action. Then H0(g, g) =
{c ∈ C0(g, g) ∼= g|dc = 0}. Since dc(x) = x · c = [x, c], H0(g, g) = ginv is
the invariant part of the adjoint representation, the center of g. This is
true for any module; H0(g,M) = Mg, the invariant part of M (the part
killed by the action of g).
Now let’s considerH1(g,M) = {c1 ∈ Homg(g, g)|dc1(x, y) = c1([x, y])−

x · c1(y) + y · c1(x) = 0}/{dc0}. This says that c1([x, y]) = [c1(x), y] +
[x, c1(y)], so c1 is a derivation. Elements of the form dc0 are inner deriva-
tions, so H1(g, g) is the space of outer derivations of g.
One can consider H2(g, g). Remember that I was talking about de-

formation quantization of Poisson manifolds. I formulated Kontsevich’s
theorem. There is a commutative product which we don’t deform and
a Poisson bracket that we do deform. It turns out that H2(g, g) is the
space of equivalence classes of infinitesimal deformations of g.
[[⋆⋆⋆ HW: check that H3(g, g) is the space of possible obstructions

to extending an infinitesimal deformation one step further]] PT: what is
a deformation? NR: it is a bracket [x, y]t = [x, y]+

∑
n≥1 t

nc(n)(x, y). We
require that the Jacobi identity hold for this bracket and we consider such
deformations up to equivalence φ : g[[t]]→ g[[t]], φ = id+

∑
n≥1 t

nφ(n).

First statement: it turns out that c(2) ∈ Z2(g, g). Second statement:
φ equivalences act on the possible c2 as elements of B1, φ : c2(x, y) 7→
c2(x, y) + [φ1(x), y], so [c2] ∈ H2(g, g).
We want that [[x, y]t, zt] + alt = 0. The coefficient in tn is

{
[c(n)(x, y), z]+alt+c(n)([x, y], z)+alt

}
+

other︷ ︸︸ ︷
c(1)(c(n−1)(x, y), z) + alt+ · · · =

0. This is related to the Gerstenhabber algebra and the Schouten bracket,
which appear naturally. Only the terms in {} have c(n).
This can be written as dc(n) +

∑n−1
K+ℓ=k[c

(k), c(ℓ)] = 0 (the bracket is
called the Gerstenhabber bracket of Schouten bracket). This “other stuff”

(other than dc(n)) is a class in H3, which is an obstruction to the existence
of c(n). ⋄
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Let (M,ω) be a symplectic vector space. Then we have the Lie algebra
h(M,ω) ⊆ C∞(M), and a polarization (M,ω) ∼= (N ⊕N∗,

(
0 ev

−ev 0

)
) and

an irreducible representation h(M,ω)→ End(C∞N), where n 7→ ∂n and
n∗ 7→ mn∗ . By Stone-von Neumann, we get uniqueness (up to phase)
of the unitary representation of H(M,ω) on L2N . So we could extend
the representation to quadratic functions, but not to all of C∞M . The
outcome is a projective representation of Sp(M,ω), which is independent
of the polarization.

Definition 23.1. This is called the metaplectic representation of the

metaplectic group Mp(M,ω)
2−→ Sp(M,ω). ⋄

By the way, how do you classify covers of Sp(M,ω)? We have to
compute π1(Sp(M

2n, ω)). A maximal compact inside of Sp(M,ω) is
U(n), which must then have the same π1, which is Z. We all know that
π1(U(1)) ∼= Z. And U(n − 1) ⊆ U(n), and U(n) → U(n)/U(n − 1) ∼=
S2n−1 is a fibration. So there is one non-trivial connected double cover
of Sp(M,ω).
Now for the fermionic side. If (W, b) is symmetric bilinear non-

degenerate, then we get a super Lie algebra h(W, b) ⊆ C∞(πW ) =∧∗(W ∗), a polarization (W, b) ∼= (N ⊕N,
(

0 ev
ev 0

)
) (this exists if and only

if the signature of b is zero), and an irreducible representation h(W, b)→
End(C∞(πN)). The uniqueness here is obvious because it leads to
a representation of the associative algebra Cl(W, b) → End(C∞N) =
End(

∧∗
N∗). Counting dimensions, we see that this is an isomorphism,

so Cl(W, b) is the algebra of endomorphisms of a vector space, which has
a unique irreducible representation. The outcome here is a projective
representations of the orthogonal group O(W, b) on

∧∗
(N∗). I want to

get to SO(W, b). Given g ∈ Cl(W, b), we act on
∧∗(N∗). This action is

even if and only if g ∈ SO(W, b).

Definition 23.2. This is the spinor representation of Spin(W, b)
2−→

SO(W, b). ⋄

Since we’re under the assumption that the signature of b is zero, we
should take care of that. It should be clear that we should not have done

two different cases. We should have just started with a symplectic super
vector space. The claim is that you can do it in this generality [[⋆⋆⋆

Project 8: do this geometric quantization story in this case. There are now
10 projects online.]][[⋆⋆⋆ Another project (10): in the bosonic case, we
said that once you have an irrep of the Heisenberg, you can’t extend it
to all of C∞. In the odd case, if you have h(W, b) ⋊ O(b) ∼=

∧≤2
W ∗,

which acts on End(
∧∗

N∗). But
∧≤2

W ∗ ⊆
∧∗

(W ∗) = C∞(πW ∗). Can
we extend the representation to C∞(πW ∗) → End(

∧∗
N∗). There is a

filtration preserving iso Cl≤2(W ) ∼=
∧≤2

W ∗. We have a map of asso-
ciative algebras Cl(W, b) → End(

∧∗N∗). If we had an iso of super Lie
algebras Cl(W, b) ∼= C∞(πW ∗), you could extend the representation.]]

What if sign(b) 6= 0? There are two answers.

1. (this is the usual one in physics books) Assume dimW = 2n. Then
remove the signature by complexifying: (W ⊗RC, b⊗C). Because we
assumed even dimension, we can still write this as (W ⊗RC, b⊗C) ∼=
(NC, N

∗
C,
(

0 ev
ev 0

)
), which we call a complex polarization. The story

continues just as above, but now you have a complex vector space.
You’re now dealing with CS super manifolds. Then Cl(W, b)⊗RC ∼=
Cl(W ⊗ C, b ⊗ C) → End(C∞(πNC)) ∼=

∧∗
C(N

∗
C). The dimension

count argument still works, so this is still an isomorphism. The
outcome is that we get a complex representation of the real group
SO(W, b) ⊆ SO(W ⊗C, b⊗C). In particular, we can now talk about
Spin(2n) and SO(2n).

If you take this representation, you can just pull back

S1

��

S1

��

Spin(W, b)×{±1} S
1 ∼= Spinc(W, b) //

��

U(
∧∗

N∗)

��

SO(W, b) // PU(
∧∗

N∗)

It is a little work to show that the maps from Spinc factor through
Spin. But what do we do if W is not even dimensional?
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2. If b ∼=
( In+

0

0 −In−

)
, so sign(b) = n+ − n− and rk(b) = n+ + n− =

n. Then take the orthogonal direct sum W ⊥ Rn = (W, b) ⊕
(Rn,

( In− 0

0 −In+

)
) ∼= (N ⊕ N∗,

(
0 ev
ev 0

)
), where dimN = n = dimW .

By this trick, we get Cl(W ⊥ Rn)
∼−→ End(

∧∗N∗). But Cl(W ⊥
Rn) ∼= Cl(W )⊗Cln−,n+ , where Clm,n = Cl(Rn+m,

(
In 0
0 −Im

)
). Since

these b’s are diagonalizable, these are all the clifford algebras. Watch
out, this is a graded tensor product of super algebras. Now you
can think about it like this.

∧∗
N∗ is a graded irreducible Cl(W )-

Cln−,n+ -bimodule (the signs you pick up are exactly cancelled by the
signs from the tensor product).

[[break]]
Outcome:

∧∗
N∗ is graded irreducible Cl(W, b)-Cln−,n+-bimodule and

Spin(W, b)
2−→ SO(W, b) acts on it, commuting with the Cln−,n+ action.

As a bimodule, this guy is unique, as before (if you preserve gradings at
least), then you play the same game to get a projective representation of
SO(W, b) which lifts to Spin(W, b). In this case, the lifting is easy to check
because everything is real, so you can only get ±1 for phases. That’s also
the way to show it for the metaplectic group.
Now I want to put these things on bundles. There are two general-

izations of these linear discussions. (a) Discuss the vector bundle case.
This is the “family version” of what we’ve been doing. (b) Curved case
of symplectic super manifolds. If you work purely fermionically, it’s all
linear. The intersection of these two is the tangent bundle of a symplectic
manifold. I want to say a few things about (b), but basically we’ll follow
(a).
(b) Let’s do the bosonic case first. Let (M,ω) be a symplectic mani-

fold [[⋆⋆⋆ Project 9 is to do all this for super symplectic manifolds.]].
Prequantization worked very nicely to give us a Lie algebra homomor-
phism C∞M → End(ΓC∞(L → M)) (f 7→ ∇Xf

+mf ) by writing ω as
the curvature of a connection on the line bundle L→ M . For geometric
quantization, we need a polarization P ⊆ TM , a Lagrangian subbundle
(which, it will turn out, has to be integrable/involutive). If you have
this, then M2n looks locally like a cotangent bundle Rn × Rn. In this
case, you can half the space ΓC∞(L → M) by taking the sections that
are covariantly constant with respect to P , i.e. if X ∈ Γ(P ) ⊆ V ect(M),

then VP := {s ∈ Γ(L→M)|∇X = 0 ∀x ∈ Γ(P )}.
Now we will get a representation of some subalgebra of C∞(M) on VP .

What is this subalgebra? Which functions act? VP has a caonical action
by C∞(M)P = {f ∈ C∞M |X(f) = 0 ∀X ∈ Γ(P )}.

Example 23.3. If (M,ω) ∼= (T ∗N, dα), then the typical P is Pvert ⊆
T (T ∗N). If N had a metric, then we would get a canonical con-
nection, but in general, the vertical subbundle is the only canonical
thing around. Now the claim is that VP ∼= C∞N (canonically). We
are taking sections which are covariantly constant in the vertical direc-
tion, i.e. functions which are constant along fibers. If you pick differ-
ent isomorphisms (M,ω) ∼= (T ∗N, dα), then you get different polariza-
tions, which lead to different geometric quantizations. The subalgebra
C∞(T ∗N)Pvert

∼= C∞N acts on C∞N by multiplication operators. This
is terribly boring.
In our linear example, we took M ∼= N ⊕ N∗ = T ∗N , which is a

special case of this example. If T ∗N happens to be linear, then we got
the differentiation operators as well. So if you try harder, in some cases,
you can extend the action. But in general, the machine doesn’t give you
much. This is why people say quantization is an art, not a functor.
In fact, on can quantize more functions on C∞(T ∗N). In particular,

those that are linear on the fibers (these are the p’s, momenta) and some
that are quadratic in fibers (e.g. Riemannian metrics). Remember that
VPvert

∼= C∞N . A Riemannian metric g on N acts by the corresponding
Laplacian ∆g. One way to get this is to do the path integral (I’m thinking
of only potential energy). ⋄
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In the last lecture we ran into the following problem. We wanted to
define a Feynman diagram as something like a product of propagators∏

∆s(xi − xj), where ∆s(xi, xj) should be analytic in s and continuous
for s ≫ 0 (so the product is well defined) and we analytically continue
the product to the s we’re interested in (where there actually turns out
to be a pole).
More generally, suppose p(x) is any polynomial in x = (x1, . . . , xn).

Can we analytically continue |p(x)|s? The answer is yes; you can use a
Bernstein polynomial b(s), which has the property that b(x)p(x)s−1 =
(some polynomial diff operator)p(x)s. You pick up poles from the zeros
of b(s) (the poles of the analytic continuation will be at integer shifts of
the zeros of b(s), since you have to repeat).

Example 12.1. sxs−1 = d
dxx

s. This is essentially how you prove the
analytic continuation of the gamma function. ⋄

Example 12.2. p(x) = x21 + · · · + x2n. This is what you’re interested
in if you want to raise Laplacians to various powers. Well, d

dx1
p(x)s =

2x1p(x)
s−1, so d2

dx2
1
= 2sp(x)s−1 + (2x1)

2s(s− 1)p(x)s−2, so

∑

i

d2

dx2i
ps = (2ns+ 4s(s− 1))ps−1

so the Bernstein polynomial is b(s) = 2ns+ 4s(s− 1). ⋄

Example 12.3. p(x) = x2 + y3. If you manage to find the Bernstein
polynomial of this, I’ll be very impressed. It takes a huge amount of
calculation. The answer b(s) = (s+1)(s+5/6)(s+7/6). Direct calculation
is very hard. ⋄

The point is that finding Bernstein polynomials in general is very diffi-
cult. Fortunately, we don’t always need to know b(s) explicitly. Bernstein
showed how to prove that it exists without actually producing it. The
existence result is actually very powerful.

Application to show the strength of the Bernstein polyomial: the
Malgrange-Ehrenpreis Theorem. This is the fundamental theorem of dif-
ferential operators with constant coefficients. People spent about a hun-
dred years trying to prove it. It says that partial differential operators
with constant coefficients have a Green function, i.e. p(b)f = δ has a so-
lution f for any polynomial p in ∂

∂xi
with constant coefficients. This is

actually false if you allow polynomial coefficients, which was surprising.

Proof. Take Fourier transforms. We have to solve P̃ (p)f̃ = 1, where P (p)
is a polynomial in P . So we have to find a distributional inverse of a
polynomial P (p). In the case where it is positive, this is trivial because
you can invert it. We can assume P ≥ 0 by replacing it with PP (if we
can invert this, it will be easy to invert P ). The case P > 0 is trivial. You
might think that you can then take a limit, but there is a problem. The
problem is the complexity of a singularity of P (p). Hironaka’s resolution
of singularities can be used to do this. The nice thing about Bernstein’s
polynomial is that it is easier to prove and can often be used as a substitute
for Hironaka’s resolution of singularities.
Look at P (p)s−1 = a−ns−n + · · · + a0 + · · · near s = 0. We’re using

Bernstein to analytically continue and look at the Laurent expansion.
P (p)P (p)s−1 = P (p)s = 1 + ( ) near s = 0 (if P 6≡ 0). So P (p)a−n = 0,
P (p)a1−n,. . . , P (p)a0 = 1, so a0 is a distributional inverse to P (p) as
desired.

� Warning 12.4. The inverse of P (p) is NOT unique. This seems
odd because it is easy to prove that it is unique: suppose aP =

1 = bP , then a = aPb = b. This proof is wrong because multiplication
of distributions by polynomials is NOT ASSOCIATIVE! For example,(
1
x · x

)
· δ(x) = δ(x) 6= 0 = 1

x · 0 = 1
x ·
(
x · δ(x)

)
. y

PT: is there a finite-dimensional space of inverses? RB: the space of
inverses is usually infinite-dimensional. If you have a function of more
than one variable, say p(x, y), then if you have a function on p(x, y) = 0,
you get something. Even when p(x, y) = 0 is a zero-dimensional variety,
you can still run into trouble.

Example 12.5. Say you want to solve
(
∂2

∂x2 +
∂2

∂y2

)
f(x, y) = δ, with f ro-

tationally invariant. The solution is f(x, y) =const· log(x2+y2)+arbitrary
constant. This arbitrary constant is exactly arising from the pole. ⋄
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The point is that this problem of having unknown functions really does
turn up in simple natural examples. This shows that when you try to
quantize something something, then dialation invariance is automatically
broken.
The proof of Bernstein polynomial has lots of useful ideas which should

be in every mathematician’s kit. It uses D-modules (in fact, a lot of D-
module stuff was invented to prove this). A D-module is a module over
the ring D = k[x1, . . . , xn, ∂1, . . . , ∂n]. This is a non-commuting ring in
the sense that [xi, xj ] = 0 = [∂i, ∂j ], and ∂ixj = xj∂i + δij . This is
basically the universal enveloping algebra of a Heisenberg algebra.

Example 12.6. S: all smooth functions on Rn with xi acting by multi-
plication by xi and ∂i acting by ∂

∂xi
. ⋄

Example 12.7. Suppose you have a system of PDEs D1, D2,. . . with
polynomial coefficents. Then we get a D-module M = k[xi, ∂i]/left ideal
generated by Di. Note that Smooth solutions to the system are exactly
the same thing as D-module homomorphisms from M to S. So modules
over D should give you some insight into solutions to systems of PDEs. ⋄

Recall some basic commutative algebra. Recall that the Hilbert polyno-
mial of a finitely generated graded k[x1, . . . , xn]-module M =

⊕
i≥0Mi

is given by p(i) = dimk

⊕i
j=0Mj for some polynomial p for large i. This

polynomial in some sense measures the size of the module. The existence
of the Hilbert polynomial is easy using induction on n. For n = 0, this
is completely trivial because M is a finite dimensional vector space so
Mi = 0 for i ≫ 0, so p(i) = dimM for i ≫ 0. For n > 0, you consider

Mi−1
·xn−−→Mi and look at the kernel and cokernel:

0→ ker(xn)i−1 →Mi−1
·xn−−→Mi → (M/xnM)i → 0

Both the kernel and cokernel are modules over k[x1, . . . , xn−1] so by in-
duction, they both have Hilbert polynomials. So dimMi − dimMi−1 is a
polynomial for i≫ 0 by induction. But then dimMi is also a polynomial
(of one degree higher) for i≫ 0.
If a polynomial p(n) is integral for all large integer n, p need not have

integer coefficients. For example, p(n) = n(n+1)/2. However, p(n) is an

integral linear combination of
(
n
k

)
xk. This is an easy exercise. So if p has

degree k, the leading coefficient is m
k!n

k + · · · for some integer m.
If M is a module with Hilbert polynomial p(n) = m

k!n
k + · · · , then k is

called the dimension of M and m is called its multiplicity. These are the
most important measure of size of M . The complete Hilbert polynomial
depends on choices, but these values do not.
The ring we want to work with is not commutative so we have the

following problem: we want to turn the non-commutative ring D into a
commutative ring so that we can apply the nice theory of Hilbert poly-
nomials to its modules. Well, D is very close to being commutative. We
have the Bernstein filtration B0 ⊆ B1 ⊆ · · · , where Bi is the set of poly-
nomials in xi and ∂i of degree less than or equal to i. You have to be
careful talking about degree; there is no such thing as a homogeneous
polynomial (e.g. is xi∂i − ∂ixi = 1 of degree 2 or 1?), but you can talk
about thing of degree at most i. Bi and Bj commute modulo terms in
Bi+j−1. So we can form a commutative ring of about the same size:
B0 ⊕B1/B0 ⊕ B2/B1 ⊕ · · · . This has the same generators, but is now a
commutative polynomial ring.
Now let’s take a finitely generated module M over this non-

commutative ring D, generated by some finite vector space M0. Let
Mi = Bi ·M0, so we have M0 ⊆M1 ⊆ · · · . Notice that BiMj ⊆Mi+j , so
M0⊕M1/M0⊕M2/M1⊕ · · · is a graded module over

⊕
Bi/Bi−1, which

is about the same size as the original module. Now we can start applying
Hilbert polynomials and things.

� Warning 12.8. This module
⊕
Mi/Mi−1 depends on the choice

of M0. The Hilbert polynomial changes if M0 changes. So we can’t
talk about the Hilbert polynomial, but it turns out that the multiplicity
and dimension of

⊕
Mi/Mi−1 do not depend on the choice of M0, so we

can talk about the multiplicity and dimension of M . y

Next week we’ll finish off the proof of existence of the Bernstein polyno-
mial.
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33 NR 11-14

I updated my website, so now there are references. There is also a link
to projects. If you want a project for this class, you should talk to me,
preferably this week. Today 2-3, Friday 9-11 and 2-3. You can also find
homework problems there.
Last time I was talking about the standard complex C·(g, g) =⊕
n≥0 Homg(

∧n
g, g). There is another approach to this complex which

is helpful for thinking about BRST quantization. Let X be a finite di-

mensional vector space and consider
∧·X . Choose a basis {aα} of X .

Let Q :
∧·X → ∧·X be a derivation of this algebra (i.e. Q(ab) =

Q(a)b + (−1)|a|·|Q|aQ(b)). Let Der(X) be the linear space of deriva-
tions. It has a natural Lie super algebra structure: [Q1, Q2] = Q1 ◦Q2 +
(−1)|Q1|·|Q2|Q2 ◦Q1.

Proposition 33.1. Der(X) ∼= Hom(X,
∧·X) as a vector space.

The proof is obvious: it is because Q is completely determined by how
it acts on X , and any choice of action on X can be extended uniquely to

an endomorphism of
∧·X .

If X = g∗, then Der(g∗) ∼= C·(g, g) is a vector space isomorphism.
Let [·, ·] : g ∧ g → g. It defines c : g∗ → g∗ ∧ g∗. What does it mean for
the bracket to satisfy the Jacobi identity? It defines an odd derivation of∧· g∗.
Proposition 33.2. The Jacobi identity for [ , ] holds if and only if [c, c] =
2c2 = 0.

Proof. [[⋆⋆⋆ HW: direct computation]]

Corollary 33.3. A Lie algebra structure on g defines a differential on

Der(g∗) = Hom(g∗,
∧· g∗) = C·(g, g) = Hom(

∧· g, g), given by dc(a) =
[c, a] for c, a ∈ C·(g, g) ∼= Der(g∗).

You can think of Der(X) as V ect(X [1]), vector fields on X (thought
of as an odd vector space). You can generalize this to the case where X
is a super vector space.
Last time I used C·(g, g) to talk about deformation theory, using mys-

terious words like “Gerstenhabber”. The bracket on Der(g∗) is actually

the Gerstenhabber bracket. The Schouten bracket is another example of
such a construction.
So c ∈ C2(g, g) is a Lie algebra structure on g. We want to deform it.

A formal deformation is ch = c +
∑

n≥1 h
nc(n) where c(n) ∈ C2(g, g) =

Hom(
∧2

g, g). We want [ch, ch] = 0 again (i.e. we still want a Lie algebra
structure). What does this mean for the coefficients c(n). The coefficient
of hn is

2[c,c(n)]︷ ︸︸ ︷
[c, c(n)] + [c(n), c] +

n−1∑

k=1

[c(k), c(n−k)] = 0 (∗)

We write dc(c
(n)) = [c, c(n)].

Lemma 33.4 ([[⋆⋆⋆ HW]]). dc
(∑n−1

k=1 [c
(k), c(n−k)]

)
= 0 assuming

c(1),. . . , c(n−1) satisfy (∗).

So (∗) is dc(c(n))+z(n) = 0 for some z(n) ∈ Z3(g, g). Assume inductively
that [z(n)] = 0 in H3(g, g). The inductive step is to construct a c(n) so
that dc(n) = −z(n) such that [z(n+1)] = 0. If H3(g, g) = 0, then there
is no problem; you can choose c(n) without any trouble. In general it is
a very non-trivial problem. The whole deformation theory of associative
algebras can be formulated this way.
When Kontsevich classified ∗-products, the result itself wan’t the strik-

ing thing. He constructed a very explicit ∗-product, which has to do with
some field theory.
Now I want to return to quantization of guage systems. Reminder

about L∞-algebras. Say X is a super vector space. Consider P (X) =
X⊕Sym2(X)⊕· · · (like functions on X∗ vanishing at 0). This is a super
commutative (non-unital) algebra. Then a super derivation Q : P (X)→
P (X) is something satisfying Q(ab) = Q(a)b+ (−1)aQaQ(b).

1. Der(P (X)) ∼= Hom(X,P (X)) as before (because the action on a
monomial is determined by the action on degree 1 elements).

2. Der(P (X)) forms a Lie super algebra, with the usual bracket.

Definition 33.5. A formal pointed differential graded manifold (or an
L∞ algebra) is a pair

(
P (X), Q

)
where Q is an odd differential with

Q1 = 1
2 [Q,Q] = 0. ⋄
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Example 33.6. If {cα} is a basis for X , then if Q(cα) =
∑
β,γ c

βγ
α cβcγ ,

this is where X∗ is a Lie algebra. ⋄

Example 33.7. If Q(cα) =
∑

β d
β
αcβ +

∑
β,γ c

βγ
α cβcγ , where d : X

∗[1]→
X∗[1], c : X∗[1]∧X∗[1]→ X∗[1] Lie bracket. Then Q2 = 0 implies d2 = 0,
so d is a derivation of c.
This is the notion of X∗ being a differential graded Lie algebra. x ∈ X ,

Q(x) = d(x) + c(x). If X is a super vector space then this gives you a
super differential graded Lie algebra. ⋄

Suppose E = E0 ⊕ E1 is a super vector space. Then it is natural to
assume we have d : E → E with d2 = 0, with d(Ei) ⊆ E1−i. Then we can
construct the cohomology space H = ker d/ im d. There is a general fact
from linear algebra. After some work, it is also known as the Lipschitz
theorem.
Assume A : E → E so that [A, d] = 0. Then A also defines a map

[A] : H → H . Fact: strE(A) = strH([A]). We are given the right hand
side by some path integral, and we’re trying to construct an A with some
properties on some larger space with all these fermions. All these things
(Fadeev-Popov, BRST, etc.) are different constructions of such an A.

24 PT 11-15

Today we’ll put linear quantizations on bundles. Let π : E → X be a
real vector bundle of fiber dimension k on a topological space X . Let
P (E) → X be the corresponding bundle of frames (this is actually a
GL(k)-principal bundle).
(1) We want to reduce the structure group from GL(k,R) to a subgroup

G. (2) Given some extension A →֒ G̃ ։ G, we want to lift G-bundles to

G̃-bundles (this is sometimes called “reducing”).
For (1), we can formulate it in terms of (0) putting extra structure on

E (a) transition functions, (b) classifying spaces.

Definition 24.1. Reducing the structure group to G means finding a G-
principal bundle P → X and an isomorphism of bundles P ×G GL(k) ∼=
P (E). ⋄

In terms of transition functions, you take an open covering {Ui} of X
with trivializations of P (E) (or E if you like). Then the transition func-
tions φij : Ui ∩Uj → GL(k) measure the difference between the two triv-
ializations. An automorphism of the trivial bundle (Ui ∩ Uj)×GL(k)→
Ui∩Uj is the same as a transition function. Because the bundle is a bun-
dle, the transition functions satisfy the cocycle condition φkj ◦ φji = φki
on Ui ∩ Uj ∩ Uk. If you order the indices and only consider i < j, then
you don’t have to have φii = id and φij = φ−1

ji . On the other hand, these
data (covering with transition functions satisfying the cocycle condition)
exactly recover the data of the bundle. Restricting is just factoring φij
trough G ⊆ GL(k) (you’re allowed to change the φij by a coboundary,
which doesn’t change the bundle). This happens when the cohomology
class lies in H1(X ;G).

Theorem 24.2. H1(X ;G) (actually Ȟ1(X ;G)) naturally parameterizes
isomorphism classes of principal G-bundles over X, which are also pa-
rameterized by homotopy classes of maps to BG.

There is a contractible principal G-bundle EG → BG so that for a
principal G-bundle P → X , there is a unique homotopy class of maps
X → BG so that P is the pullback of EG. Fact: BGL(k) is the Grass-
manian of k-planes in R∞.
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Let EGL(k) be the total space of the universal GL(k)-bundle. Given
G ⊆ GL(k), I claim that EGL(k)/G ∼= BG. This is because EGL(k)→
EGL(k)/G is a universal bundle. We can divide out further:

EGL(k)

��

GL(k)/G

fiber
��

EGL(k)/G ∼=

����

BG

��

EGL(k)/GL(k) = BGL(k) Xoo

cc❍
❍
❍
❍
❍

If GL(k)/G ∼= ∗, then BG ∼= BGL(k) and therefore [X,BG] ∼=
[X,BGL(k)]. If you wanted to use the transition function point of view,
you’d use partitions of unity.

GL(2n,R)

♦♦♦
♦ ≃

❖❖❖
❖

Sp(n)

♦♦♦
♦

≃ ❖❖❖
❖❖
GL(n,C)

≃
O(2n)

♦♦♦
♦♦

GL(n,R)

≃ ❖❖❖
❖❖

U(n)

♦♦♦
♦♦

O(n)

If k = 2n, then GL(2n,R) has three nice subgroups (corresponding to
putting symplectic, complex, or inner product structure on a real bun-
dle). Which of these quotients are contractable? The first obstruction
to GL(2n,R)/GL(n,C) being contractible is that complex vector bundles
have natural orientations; the same problem shows up for Sp. GL(n,R)
has two components, but GL(n,C) and Sp(n) are connected. The ob-
structions to lifting lie in Hi+1

(
X, πi(GL(k)/G)

)
. So if you have some

π0, you get some obstruction (called the first Steifel-Whitney class) inH1.
In general, the obstructions can be identified with certain characteristic
classes of the bundle.
What is the inclusion GL(n,R) → Sp(n)? It is given by A 7→(A 0
0 (At)−1

)
, the symplecomorphisms that preserve the polarization R2n ∼=

N ⊕ N∗, with ω corresponding to
(

0 ev
−ev 0

)
. This is not a homotopy

equivalence, so there is some obstruction to finding a polarization on a
symplectic vector bundle.
Now let’s discuss separately the two cases of Sp(n) and O(k) (k need

not be even). I have a bundle E → X . Sp(n) structure would give me

a non-degenerate skew form ω ∈ Γ(
∧2

E∗) on E. O(k) structure would
give me a fiberwise positive definite for b ∈ Γ(Sym2E∗) on E. By the
way, I don’t assume any integrability condition. Usually a symplectic (or
complex) structure has the additional condition that the form be closed,
and we’re ignoring this for now.
Let’s say we got a symplectic structure ω. Next, we look for a polar-

ization (a GL(n,R) structure). Again, we get obstructions (and again we
ignore the integrability condition on the polarization).

Claim. We have the following diagram.

R×

2square

����

ML(n)oo

2
����

⊆ Mp(n)

2
����

R>0 GL+(n)
detoo ⊆ Sp(n)

[[⋆⋆⋆ PT: no, this is not right. Neither square is right, but that might
cancel out.]] In particular, if E → X is TX, X is a symplectic manifold,
the polarization P ⊆ TX is integrable (i.e. we have a foliation F of X
whose tangent bundle is P ), and a metaplectic structure on TX gives a

metalinear structure on each leaf of F (i.e.
∧−top/2 F exists).

The reason I mention this is, as I pointed out on Tuesday, if you have
T ∗N , you get functions on N (= X/F , the space of leaves), but you’re
missing an inner product. These things give us “half-forms” and resolve
the inner product problem. Instead of looking at functions, we look at
these half-forms. Then you can multiply two of them to get a volume
form, which you can integrate.
[[break]]
Let’s go back to this problem. wWhat does it mean to lift the structure

group from G to G̃. It means finding factoring the φij through G̃ → G
in such a way that the lifts still satisfy the cocycle condition. In general,
cijk = φ̃kj φ̃jiφ̃

−1
ij will be a map Ui ∩ Uj ∩ Uk → ker(G̃ → G) =: A.
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Assume A is abelian (in our case it will be Z/2). This will define a
class in Ȟ2(X ;A) (you have to check that cijk is a cocycle). If this cijk
is a coboundary, then you can change the φ̃ij by whatever cijk is the
coboundary of to get it to be zero. The punch line is that

H1(X ;A) // H1(X, G̃) // H1(X ;G) // H2(X ;A)

[P̃ ]
✤ // [P ]

✤ // [c]

is an exact sequence. You can see this from the fact that

BA→ BG̃→ BG

is a fibration, so

H1(X ;A) = [X,BA]→ [X,BG̃]→ [X,BG]→ [X,K(A, 2)] = H2(X ;A)

is exact (this can be extended to the left by taking loop spaces). But it
turns out that BA = ΩK(A, 2). π1(ΩY ) ∼= π2(Y ), so BA ∼= K(A, 1).

So if you want to lift a G-bundle to a G̃-bundle, the obstruction lies in
H2(X ;A), and the non-uniqueness is given by H1(X,A).
Given any H-principal bundle PH → X and ρ : G → H , we say that

PH has a “reduction” to G (over ρ) if we can find a G-principal bundle
and an isomorphism of H-principal bundles PG ×G H ∼= PH .

Example 24.3. Z/2 → Mp(n) → Sp(n) and Z/2 → Spin(n) → SO(n).
In both cases, it turns out that the obstruction is w2(E) ∈ H2(X ;Z/2),
the second Steifle-Whitney class.
The first Steifle-Whitney class w1E ∈ H1(X ;Z/2) gives you the ob-

struction to reducing to O(2n).
To get the symplectic structure, you need more things to vanish, but

the obstruction to lifting toMp(n) is the same as the obstruction of lifting
from O(2n) to Spin(2n). ⋄

Definition 24.4. Let Ek → X be an oriented vector bundle with inner
product (i.e. frame bundle has SO(k) structure). Then a spin structure
on E is a lift of the structure group to Spin(k). ⋄

Geometric quantization leads to a more concrete picture. We’ll rewind
the definition on Tuesday and answer the following question: What is a
spin structure on a (single) vector space?

34 NR 11-16

Last time I explained a construction from linear algebra. If [A, d] = 0,
for A and d operators on a super vector space Σ, with d odd and d2 = 0,
then A defines an operator [A] on H := kerd/ im d and strE A = strH [A].
Remember that the reason I brought this up was to make sense of

integrals of the form
∫
exp(iS(x)/h)Dx. For this we need to make a

connection between path integrals and traces. But I haven’t yet explained
what a quantum field theory is.

Classical field theory

We’ll talk about Hamiltonian d-dimensional field theory. It is the follow-
ing assignment

– to a (d− 1)-dimensional (compact oriented) manifold N , we assign a
symplectic manifold S(N),

– to a d-dimensional M , we assign a Lagrangian LM ⊆ S(∂M).

The axioms are

– S(∅) = ∗,

– S(N1 ⊔N2) = S(N1)× S(N2),

– S(N) = S(N) (opposite orientation goes to opposite symplectic
structure),

– LM1⊔M2 = LM1 × LM2 ⊆ S(∂M1)× S(∂M2).

– L∅ = ∗.

– (gluing axiom) ∂M = ∂1M ⊔ ∂2M ⊔ ∂3M , with an orientation re-
versing isomorphism ∂1M ∼=f ∂2M , then let Mf be the gluing, then
S(∂M) ⊇ LM → LMf

⊆ S(∂3M).

This can be formulated as a functor.
Now let’s consider Lagrangian classical field theory of first order (i.e. the

Lagrangian only depends on the first jet), which is an example of this more
general Hamiltonian picture. It consists of



34 NR 11-16, v. 10-4 144

– F (M), the space of fields on M ,

– F (∂M) = F (M)|∂M , and S(∂M) = T ∗F (∂M),

– LM ⊆ S(∂M) is the set of solutions to the Euler-Lagrange equations.

One can then argue that all of the axioms hold assuming the Lagrangian
is non-degenerage. This is a very strong assumption; in all guage theories,
the Lagrangian will be degenerate.
Ok, this is the classical picture. How do we quantize it? Let’s start with

classical mechanics. Waht did we discuss? If S is a symplectic manifold,
then C(S) is a Poisson algebra, which we can deform (at least formally)
to an associative algebra Ch(S), with the first jet of the deformation equal
to the Poisson structure. If we have a Lagrangian submanifold L, then it
gives us an ideal IL ⊆ C(S) (it is an ideal in the commutative algebra, and
a Lie subalgebra, but not a Lie ideal). This quantizes to IhL, a one-sided
(say right) ideal in the algebra Ch(S).
So we have the representation (left module) HL = Ch(S)/I

h
L of Ch(S).

Observe also that if the quantization is flat (i.e. Ch(S) ∼= C(S) and IhL
∼=

IL as vector spaces), then HL
∼= C(L) as a vector space (at least in the

smooth case). PT: is L a Lagrangian or a polarization? NR: a Lagrangian;
this is not geometric quantization. Geometric quantization has the huge
advantage that from the geometry and the polarization, you produce a
representation. PT: this is quite similar. NR: I think they are related as
[[⋆⋆⋆ I didn’t catch how]], so they are morally the same thing because
in a small neighborhood you can always choose a polarization where these
Lagrangians are the fibers.
Classically, we can have a Lagrangian L ⊆ S in a symplectic manifold.

Upon quantization, it becomes a left ideal IhL in an associative algebra
A(S) (which in some sense looks like the algebra of endomorphisms of
some vector space, so you expect a trivial center for example, so you
don’t have families of irreps).

Heisenberg picture of Quantum mechanics

Strictly speaking, in quantization, we have to complexify at some point,
but let me not pay attention to this at the moment. We have Ch(S) = A
and a family of algebra automorphisms ut : A → A such that u0 = idA,
utus = us+t, and (when it makes sense) ut(a) = eiHt/hae−iHt/h.

Now let’s try to translate this picture as a 1-dimensional quantum field
theory. Classical 1-dimensional field theory is an assignment:

– To a point, assign a symplectic manifold S.

– To an interval [t1, t2], assign Lt2,t1 ⊆ S×S defined by the Hamilton-
Jacobi action (assuming the solutions are unique).

ut2−t1 is the evolution operator that we assign to the segment [t1, t2].
It is a mapping from A to A, so we can think of it as an element of
A⊗A∗ (where A∗ is a dual vector space to A; we don’t try to make any
completions in any topology). This can be regarded as an assignment:

– To a point (which is a compact orientated 0-manifold), we assign
A = Ch(S). To a point with the opposite orientation, we assign Aop,
the algebra A with the opposite multiplication.

– To an interval [t1, t2], assign the ideal IhLt2,t1
⊆ Ch(S)⊗Ch(S)op (as-

suming C(S×S) = C(S)⊗C(S)op, which is a very strong assumption;
in general, I must take the Frechét completion of the tensor product).

How is this ideal realted to the automorphism ut? The relation is the
following. Given u : A → A an algebra automorphism, I can define Iu ⊆
A ⊗ Aop by the following formula: Iu is the right ideal generated by
elements u(a)⊗ 1− 1 ⊗ a. The idea is that if A = C(X), then if u = φ∗

for φ : X → X , then Iu is the ideal of functions generated by {(x, y) 7→
f(φ(x))− f(y)} on X ×X which vanish at (x, φ(x)) [[⋆⋆⋆ ]]. You can
write this ideal as 〈u(f)⊗ 1− 1⊗ f〉 ⊆ A⊗A.

Claim. Iut2−t1
= IhLt2,t1

⊆ A⊗Aop.

Where Lt2,t1 is the Lagrangian submanifold generated by the Hamilton-
Jacobi function for the classical limit [H ] of H (if the deformation is flat,
we can consider any element of Ch(S) as an element of C(S), which is what
we call the classical limit). PT: we use Kontsevich’s result to quantize the
associative algebra, does he also show that we can quantize these ideals?
Is there some analogous statement? NR: The main strength of his result
is that you can quantize any Poisson manifold. For symplectic manifolds,
it is easier to quantize, and [[⋆⋆⋆ student of Weinstein]] showed how
to quantize a Lagrangian submanifold to a left ideal. PT: what is the
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statement? NR: for any L ⊆ S Lagrangian, and for a given star product
(Ch(S), ∗) with chosen isomorphism Ch(S) ∼= C(S), there exists an ideal
IhL
∼= IL[[h]] as a vector space. I think there is a stronger statement

that by changing the star product [[⋆⋆⋆ to an equivalent one?]], you
can leave the ideal constant. PT: do you have something other than
formal deformation in mind? NR: you can do it for family deformation
in algebraic cases.
Now let’s talk about the gluing. It should be the analogue of the

property ut(a) = eiHt/hae−iHt/h. Suppose we have [t1, t2] and [t2, t3],
with ideals It2,t1 ⊆ A ⊗ A∗ and It3,t2 ⊆ A ⊗ A∗. At some point, I
did something strange. I said the automorphism u defines an element
of A ⊗ A∗, which is just linear algebra. The property utus = us+t is
equivalent to the following. In A⊗A∗⊗A⊗A∗, we have ut2−t1 ⊗ ut3−t2 ;
pairing the middle two, this element should map to ut3−t1 . So we should
have some composition of ideals It2t1 ∗It3,t2 (which should be It3t1 . What
is this composition? The only natural thing is trace.
We have a trace in C∞(S), given by tr f =

∫
S f · ωn. Assume it

quantizes to a trace on Ch(S) = A.
Next time I’ll prove that id⊗ tr⊗ id is really the composition map. It

will just be the translation of the old gluing property into the new setting.
I’m pretty sure this is true, but I haven’t seen it written down.

35 NR 11-19

There will be no lecture on Wednesday.
Last time I made an anouncement but I didn’t really explain it. An-

other point of view of Heisenberg evolution is ideals in the algebra of
observables. Let’s first have an algebraic lemma.
Let A be a unital algebra, and let I ⊆ A⊗Aop be a left ideal. I is also a

left-right (LR) ideal in A⊗A (i.e. a sub-A-bimodule). Let I1 and I2 be two
such LR ideals in A⊗A. Define I1◦I2 = (I2⊗1)(1⊗I1)∩A⊗1⊗A ∼= A⊗A.
[[⋆⋆⋆ This should be the tensor product of bimodules over A followed
by intersection , I1 ⊗A I2 ∩ A⊗ 1⊗A]]
Lemma 35.1. I1 ◦ I2 is a LR ideal in A⊗A.
Proof. Suppose IL is a left ideal and IR is a right ideal in A. Then
I = ILIR ⊆ A is a two-sided ideal. So I12 = (I2 ⊗ 1)(1 ⊗ I1) = {

∑
xi ⊗

yixi ⊗ yi|xi ⊗ xi ∈ I1, yi ⊗ yi ∈ I2} is a LDR (left, double-sided,right)
ideal in A⊗A⊗A. So I12∩A⊗1⊗A is naturally a LR ideal in A⊗A.

The conclusion is that we have “composition” of LR ideals in A ⊗ A.
[[⋆⋆⋆ nevermind checking associativity. If we define the composition
as tensor product over A, it should clear]]
Heisenberg evolution in Quantum mechanics. We have A = Ch(M),

ut(a) = eiHt/hae−iHt/h gives an algebra automorphism ut : A → A. We
define the left ideal It = 〈ut(a) ⊗ 1 − 1 ⊗ a〉left ⊆ A ⊗ Aop. It quan-
tizes the vanishing ideal ILt , for Lt = {(x, y) ∈ M × M |x = φt(y)}.
Lt is a Lagrangian subspace in (M,ω) × (M,−ω), so this ideal ILt ⊆
C(M)⊗C(M)op (opposite Poisson bracket) is an ideal (in the commuta-
tive assiciative algebra) and a Lie subalgebra (in the Poisson structure).
ILt quantizes to the left ideal It in Ch(M) = A. The Heisenberg evolution
is a family of LR ideals It ⊆ A⊗A such that It ◦ Is = It+s. We can check
that this is true:

It ◦ Is = (It ⊗A Is) ∩ A⊗ 1⊗A
= [[⋆⋆⋆ HW]]

Q: composition of Lagrangians doesn’t work unless the intersection is
clean; do you have the same sort of issue here? NR: yes. We’ll discuss
this more later. The intersections here should be clean.
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Schrödinger picture. We have (1) our usual algebra of obervables
A = Ch(M). We choose a representation π : A → End(H) (H should
be a Hilbert space if you want the probablistic interpretation). Ut =
exp(itπ(H)/h) : H → H, where H is the quantum Hamiltonian. (2) Let’s
return to the classical picture. Classically, we have the symplectic man-
ifold (M,ω). Let L1, L2 ⊆ M be two Lagrangian subspaces. We can
choose a modified action functional AL1,L2 = A + FL1 − FL2 . It has
the extremum on a solution to the Euler-Lagrange equations such that
γ(0) ∈ L1 and γ(t) ⊆ L2. This is the flow from L1 to L2. We also have
Lt ⊆ (M,ω) × (M,−ω). If the evolution and boundary conditions are
good, Lt ∩ (L1 × L2) is a single point. In the case M = T ∗N , we can
choose L1 = L2 to be the zero section N ⊆ T ∗N .
Quantization. L1 ⊆ (M,ω) gives the left ideal IhL1

⊆ A = Ch(M),

which gives the representation H(L1) = Ch(M)/IhL1
. Similarly, we get

H(L2), another left A-module. So once we choose boundary conditions
(L1, L2), there is a unique trajectory connecting them (if things are good).
When we quantize, we get two representation of our algebra of observ-
ables. Lt ⊆ (M,ω)× (M,−ω) quantizes to It ⊆ A⊗ A. This produces a
vanishing subspace Vt ⊆ H(L1)⊗H(L2), the subspace where the ideal It
acts trivially: ItVt = 0. The dimension of Vt will be the number of points
in Lt ∩ (L1 × L2). So in good cases, Vt = Cvt is one-dimensional, with
vt ∈ H(L1) ⊗H(L2). The is related to the Schrödinger picture like this.

H(Li) are Hilbert spaces, so vt gives a linear map Ũt : H(L1) → H(L2).
It is an unproven theorem that this is a linear isomorphism coinciding
with Ut (in good cases, provided H(L1) = H(L2) = H).
In the case L1 = L2 = N ⊆ T ∗N , then H = C∞(M) and the evolution

operator can be regarded as an integral operator with kernel Ut(q1, q2).
PT: are you thinking of N as linear or curved? NR: curved, but I’m
assuming unique trajectories. PT: I think this may behave poorly in the
curved case. NR: when the geodesic is not unique, it should be more
complicated. Instead of a function, you get a sheaf, where for generic
points you get a function, but I haven’t thought about this carefully.
Summary:
1-dimensional QFT (Heisenberg): to a point, we assign A. to the

opposite orientation of the point, we assign Aop. To the interval [t1, t2],
we assign an LR ideal It2−t1 ⊆ A⊗A. We then get gluing It ◦ Is = Is+t.
(Schrödinger) to a point we assign H(L) for L ⊆M Lagrangian. to the

point with opposite orientation, we assign H(L)∨. To the interval [t1, t2],
we get Vt2−t1 ∈ H(L1)⊗H(L2) a 1-dimensional subspace.
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25 PT 11-20

Projects 5 and 10 are still open. Please let me know your preferences on

– talk and/or paper version. The papers will be due Dec. 6 so that we
can read them.

– date of mini-conference (Fr/Mo afternoons Dec. 7 and 10 or all day
Tuesday Dec. 11)

Clean up of the mess. This is about the symplectic group Sp(n)
and the metaplectic group Mp(n), the unique connected double cover
of Sp(n). Inside Sp(n), there is GL(n), the subgroup of matrices of the

form
(A 0

0 (At)−1

)
. Pulling back, we get the metalinear group ML(n).

Z/2

��

Z/2

��

ML(n)

��

� � //

·
Mp(n)

2

��

GL(n) �
�

// Sp(n)

I thought this was trouble before because π1(GL
+
n ) = Z/2, so the map to

π1(Sp(n)) = Z must be the zero map. So the extension ML(n)→ GL(n)
is topologically trivial, though not group-theoretically trivial. Another
example: consider

Z/4 �
�

//

��

·
S1

2

��

Z/2 �
�

// S1

As a topological space, Z/4 ∼= Z/2× Z/2, but not group-theoretically.
Conclusion: There is an interesting map Hom(π1G,Z/2) →

H2(Gδ;Z/2) (this H2 parameterizes group extensions; the δ means dis-
crete topology). If you want to learn more about this, come to 253 next
semester. One of the things I’ll do is the relation between group coho-
mology and extensions.

The other thing I did, which was look at det: GL(n)+ → R>0, was not
right. As a Lie group, R> × Z/2 ∼= R×. So we keep all of GL(n):

Z/2

��

Z/2

��

Z/2

��

Z/2

��

C×

2

��

{x-axis∪y-axisr0}oo

��

ML(n)oo

��

� � //

·
Mp(n)

2

��

C× R×oo GL(n)oo � � // Sp(n)

So we get the non-trivial extension R> × Z/4 of R× ∼= R> × Z/2.
If En → X is a vector bundle with metalinear structure, then∧n
(E∗) ⊗R C has a canonical square root: half forms (if E = TX).

TX → X , then L → X is a line bundle such that L⊗2 ∼=ρ
∧n(T ∗X).

Then we get a pairing Γ(L)×Γ(L)→ C, given by (s1, s2) 7→
∫
X ρ(s1⊗s2)

(if X is oriented).

Spin structures on inner product spaces

Let (W, b) be a real inner product space (i.e. finite dimensional with pos-
itive definite symmetric bilinear form). We know

– O
(
(W1, b1), (W2, b2)

)
= {f : W1

∼−→ W2 linear|f∗b2 = b1},

– orientations o1 and o2 on W1 and W2 are equivalence classes of or-
thonormal bases, so we know what SO

(
(W1, b1, o1), (W2, b2, o2)

)
⊆

O
(
(W1, b1), (W2, b2)

)
.

Question: define a notion of “spin structure” σ on (W, b) such that
Spin

(
(Rn, std), (Rn, std)

) ∼= Spin(n) canonically. Bruce: left ideal in
Cl(W, b)? PT: maybe.

Definition 25.1. A spin structure on (W, b) is a graded irreducible
Cl(W, b)-Cln-bimodule (where Cln = Cl(Rn, std), where e2i = −1). The
Cl(W, b) are ∗-algebras, and modules should come equipped with an inner
product such that Cl(W, b)→ End(M) is a morphism of ∗-algebras. ⋄
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[[⋆⋆⋆ HW 6: there are exactly two isomorphism classses of such
bimodules, and they correspond canonically to orientations on W . So
an orientation is a choice of isomorphism class of such a bimodule, but
a spin structure is an actual choice of bimodule. Since you only care
about isoclasses for this homework, it is enough to do it for Rn with the
standard spin structure.]]

Example 25.2. Let (W, b) = (Rn, std). If you ignore the grading, there
is only one irreducible Cln-Cln-bimodule (if you don’t take grading into
account). ChrisSP: A is only irreducible as an A-A-bimodule if A is
simple. PT: yes, ok. If A if finite dimensional simple, then it is End(D)
for some division ring D, and then A is the only irreducible bimodule
[[⋆⋆⋆ ]]. Cln is simple as a super algebra, so therefore a spin structure
on Rn, called the standard spin structure on Rn. The isomorphism class
is given by πCln, the parity reversed bimodule. ⋄

Theo: where is the orientation? Andy: it comes from the right action
of Cln. The right action by e1 · · · en (note that we make this one choice
once and for all) is equivalent to the left action of some orientation.

Definition 25.3. Spin
(
(W1, b1, σ1), (W2, b2, σ2)

)
:= {(f, F )|f ∈

O(W1,W2), F : Cl(W1,b1)σ1Cln
∼−→ Cl(W1,b1)Cl(f)∗σ2Cln even bimodule

iso} ⋄

Theorem 25.4. The map Spin
(
(W1, b1, σ1), (W2, b2, σ2)

)
→

SO
(
(W1, b1, oσ1), (W2, b2, oσ2)

)
, given by (f, F ) 7→ f is a connected

double cover.

[[break]]

Proof. [[⋆⋆⋆ HW 2]]

The idea is Schur’s lemma. In the easiest case, where W1 = W2, then
let’s check that over f = id, there are two points. By Schur’s lemma,
an isomorphism must be a multiple of the identity, and it must be ± id
because it has to respect the inner product on the module.
Classical (Lagrangian) field theory L:

– space-time Σd

– classical fields Φ(Σ)

– classical action A : Φ(Σ) → R (could depend on a finite number of
deriviatives at a point)

(Step 1) From this we can get a classical Hamiltonian field theory HL
using the Euler-Lagrange equations. this is a functor from RBΣ

d (where
all the d-manifolds are submanifolds of Σ) to Symp, the category of sym-
plectic manifolds (with a potential) with morphisms Lagrangians (with
a function) (not quite a category because to compose Lagrangians, you
need them to intersect cleanly). It is give by taking HL(Y ) to be the
set of solutions of the Euler-Lagrange equations on Y for variations with
compact support. Notice that this is a subset of Φ(Y ) (sections of the
pull-back bundle giving Φ(Σ)). HL(Y ) comes equipped with a 1-form α,
coming from variations on δpermY , as NR discussed. In good cases, dα is
a symplectic structure. Let’s assume that we’re in a good case.
Given a morphism M from Y0 to Y1, then HL(M) (solutions to the

Euler-Lagrange equations onM) is a Lagrangian in HL(∂M). The punch
line is that α|HL(M) = dA|Φ(M).
(Step 2) Quantization. Given any functor H : RBd → Symp, you want

to quantize to a functor QH : RBd → ProjHilb (projective Hilbert spaces).
Note that we’re throwing out the dependence on Σ. On objects, (M,α),
you choose a polarization P (this is why it’s an art, not a functor). NR
picked one or two Lagrangians (L1 and L2); I’m picking a whole foliation
by Lagrangians. Then you get V = C∞(M/P ) (whereM/P is the space of
leaves). If you assume existence of a polarization, then we want any other
one will be connected to it (using the Hichen connection, for example).
On morphisms, Q uses the functional integral (path integral, but

we’re in higher dimensions). It isn’t good enough to just compose with
H : Symp → ProjHilb by taking solutions because you have to subdivide
your morphism arbitrarily and then use the functor H . NR: there is
functoriality in the other direction; semi-classical limit is functorial.
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13 RB 11-20

[[⋆⋆⋆ Using absent-mindedness, I missed this class.]]

36 NR 11-26

[[⋆⋆⋆ Kolya was ill, so there was no class]]
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Projects 11, 12: Stuff about spin structures.
Recall that if you have an inner product space W of dimension n, then

a spin structure is a graded irreducible Cl(W )-Cln-∗-bimodule. There are
exactly two isomorphism classes of these bimodules. If you pick a spin
structure, it makes sense to talk about a two-fold covering. In the case
W = Rn, you get the usual Spin(n). The reason this is good is that you
can now define spin strucutures on vector bundles. If E → X is a vector
bundle with fiberwise inner product, then a spin structure on E is an
irreducible bimodule bundle S → X over the algebra bundles Cl(E) and
Cln (this one is trivial) which gives spin structures Sx on the fibers Ex.
The good thing about this is that this bimodule bundle can be equipped
with a natural connection as soon as you have a connection on E. Project
11 is to show that these are good definitions, and Project 12 is to show
that if ∇ is a metric-preserving connection on E, then there is a unique
connections ∇S on any spin structure S on E (with some compatibility
conditions, spelled out in the statement of the project).
The consequence is that it is very easy to write the Dirac operator on

a spin manifold. Say X is a Riemannian spin manifold (i.e. we have a
spin structure on the tangent bundle TX) and corresponding connection
(coming from the Levi-Civita connection) ∇S . Then the Dirac operator

on X 6 DX : Γ(S)
∇S

−−→ Ω1X ⊗ Γ(S) ∼=g V ect(X)⊗ Γ(S)
left Cl(TX) action−−−−−−−−−−−−→

Γ(S). This is the Cln-linear Dirac operator (also called the Atiyah-Singer
operator). The nice thing about having a Cln-linear operator is that
ker 6 DX is a finite dimensional graded Cln-module. The Dirac operator
is an odd operator, so the kernel is actually graded. Finite dimensional
comes from ellipticity. Usually, you define the index to be the dimension
of this kernel. Here we take the dimension of the even part of the kernel
minus the dimension of the odd part. This is not a good definition,
because it totally ignores the Cln action. This is the right invariant if
you use the usual Dirac operator. The real thing to do is take the kernel
itself, and consider it as ker 6 DX ∈ {isoclasses of finite dimensional graded
Cln-modules}. This will depend on the metric. What if we change the
metric on the same topological manifold? Because you impose this Cln
action, the isomorphism class of ker 6 DX will only change by restrictions
of finite dimensional Cln+1-modules. Thus, you can think of [ker 6 DX ] ∈

{f.d. Cln-mods}/{f.d. Cln+1-mods} ∼= KOn(pt) ∼= KO−n(pt), which is Z
if n|4, Z/2 if n ≡ 1, 2-mod4, and 0 otherwise.

Theorem 26.1. If the scalar curvature of g is positive, then [ker 6 DX ] =
0.

So we get some obstruction to having positive scalar curvature. For
example, there are 9-dimensional Riemannian manifolds which are home-
omorphic to S9, but do not have positive scalar curvature.

Now I’d like to go back to the first class, where I told you that this stuff
is related to cohomology theories. I’ll start in arbitrary dimension (I think
we’ll eventually figure out how to do everything in arbitrary dimension).
Plan for the next lectures.
Explain (d|1)-dimensional (if you change the 1 to a 0, you get bor-

ing zeros for everything) Euclidean (Euclidean signature) field theories
over X of degree n. We’ll call this EFTn

d|1(X). Then EFTn
d|1[X ] =

EFTn
d|1(X)/concordance∼=





Hn
dR(X) d = 0

KOn(X) d = 1

TMFn(X)? d = 2

. Today, we’ll do n = 0

and (d|0)-dimensional stuff (that is, show that it’s boring). We’ll do
TFT d(X), topological field theory.
Reminder: there is a symmetric monoidal bicategory Bd, whose objects

are closed oriented smooth (n − 1)-manifolds Y with germy collars (but
no metric). The 1-morphisms Bd(Y0, Y1) are bordisms with the usual
embeddings. The 2-morphisms are diffeomorphisms relative boundary.
You can mod out by 2-morphisms to get a category, but I don’t want to
do that. The symmetric monoidal structure is disjoint union.
There is a very easy variation of the theme. Given a manifold X (which

you think of as the target thing that you’re trying to compute the coho-
mology of), we can define Bd(X) by adding smooth maps to X to ever-
thing in sight (i.e. an object is a manifold with a smooth map to X , a
morphism is a bordism with a smooth map to X , and a 2-morphism is a
diffeomorphism commuting with the maps to X).

Remark 26.2. A smooth map φ : X1 → X2 induces a symmetric
monoidal bifunctor Bd(X1) → Bd(X2) by composing everything with φ.
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So roughly speaking, a field theory is a representation of this category.
Recall that given a group G (or a monoid or something), then a repre-
sentation is the same thing as a functor from CG → Vect, where CG is
the category with one object ∗ and C(∗, ∗) = G. Bordism categories are
covariant, but we’re going to take representations, so we’ll get something
contravariant. ⋄

Instead of Vect, the target bicategory is Fr2, whose objects are separable
Frechét spaces, morphisms are continuous linear maps, and the only 2-
morphisms are identities.

Remark 26.3. bifun(Bd(X),Fr2) =fun(Bd(X)/2-morphisms,Fr) (actu-
ally an isomorphism of categories), so we’re not changing the definition
of a QFT, just making things more complicated. But this complication
is important. ⋄

[[break]]
Over the break, we decided there is an adjunction between taking a cat-

egory and thinking of it as a bicateogry and collapsing all 2-morphisms.
The functors forms a category, and the bifunctors form a bicategory
(which turns out just to be a category), and you get an isomorphism
of categories.
Now we have to do the major additional step, which is to formulate the

smoothness condition on such a bifunctor from Bd(X) to Fr2.

Example 26.4. Let’s do d = 0 right now. B0(X)/2-mor→ Fr. The
unique object in B0(X) is ∅. B0(X)(∅,∅) = {Σ0 → X}/diffeo⊇ X ,
where Σ0 is a compact 0-manifold (a bunch of points). We have that
∅ 7→ C because the functor must be monoidal. If Σ0 is a single point,
then we get a copy of X in the hom set. Since the functor must be
monoidal, the whole functor is determined by where the points in X go
(they go to some scalar in C). Thus, symmetric monoidal functors from
B0(X)/2-mor to Fr is the same thing as Map(X,C).
We want to do two things. First, we really want to restrict to smooth

functors, so we want to restrict to C∞(X). Secondly, we really want
closed forms on X , and this will come from the supersymmetry. Ω∗(X) ∼=
C∞(πTX) ∼= C∞(SMan(R0|1, X)) (C∞ on the super points of X). Just
the smoothness gives us TFT . ⋄

So what does it mean that a functor is smooth? We have to put more
structure on these categories. The idea is that a smooth map is some-
thing which takes smooth functions to smooth functions. If we enrich the
categories a bit to say that some of the morphisms are smooth, then we
can use this as a definition. First, we need to make family versions of
these (bi)categories Bd(X) and Fr2 over Man2. This is like in algebraic
geometry, where you always work over some base scheme.
First we define a Grothendieck site Man2, and put smooth structures

(fiber functors) Bd(X)fam → Man2 and Fr
fam
2 → Man2. Then a smooth

functor is one which respects these extra maps to Man2. If we look at the
fiber over the point in Man2, we get the old story.
To define Man2, we have to be a little more clever than the stupid

adding of identity 2-morphisms. Man2 is the bicategory of correspon-
dences between smooth manifolds. The objects are smooth manifolds S
(because there will be obvious generalizations to super manifolds). The 1-
morphisms from S0 to S1 are correspondences between S0 and S1. A cor-
respondence is a third manifold S, with maps f : S → S1 and p : S ։ S0

(we require p to be a submersion). The 2-morphisms from (S1
f←− S p−→ S0)

to (S1
f ′
←− S′ p′−→ S0) is a morphism φ : S → S′ making the two triangles

commute. The vertical composition is easy. The horizontal composition
of 1-morphisms is more interesting; you take pull-back:

S20

##●
●

{{✇✇

S21

||②②② ##●
●●

S10

{{✇✇✇ ""❊
❊❊

S2 S1 S0

There is a sub-bicategory where you require p = id. That is the category
of smooth manifolds!
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Today’s lecture will be on the following question: how do you reconstruct
a QFT from Feynman diagrams? First I’ll explain what the problem is.
We’ve more or less shown how to define Feynman diagrams. For each
diagram, we’ve shown how to construct some kind of distribution (in a
way that depends on the choice of Gaussian Feynman measure which
is quite complicated to construct). Assume we’ve solved the problems
of constructing the Feynman measure. Then we can construct Green’s
functions, defined as

∫
φ(f1)φ(f2) · · · eiL(φ)Dφ

Where L is a Lagrangian of the form (free part) + λ(integral part). This
is a formal power series in λ with coefficients which are distributions on
Mn.
But a QFT isn’t a bunch of distributions. A QFT consists of a space

H (which is something like a Hilbert space) which is a module over C[[λ]]
with a sesquilinear pairing (, ), with operators φ(f) for every smooth fun-
cion f of compact support. These φ(f) should satisfy some axioms, which
we listed earlier. Once you construct H and φ(f), it usually isn’t too bad
to check the axioms. So how do we go from a pile of Green’s functions to
a Hilbert space with some operators? First of all, we use the GNS con-
struction, or the Wightman reconstruction theorem. Recall that Wight-
man distributions on Mn are W (f1, . . . , fn) = 〈vac|φ(f1) · · ·φ(fn)|vac〉.
From these distributions, you can reconstruct the QFT. The Wightman
distributions give a “state” (morally, but not really) on the free algebra
A generated by all operators φ(fi) (i.e. a linear map ω : A → C, given
by ω(φf1 . . . , φfn) 7→ W (f1, . . . , fn). Now we can reconstruct H by the
GNS construction. We define the inner product on A by (a, b) = ω(ab∗).
Then H = A/ ker(, ). So to reconstruct the field theory, it is enough to
reconstruct the Wightman distributions.
Feynman diagrams give you loads of distributions (Green’s functions)

G(f1, . . . , fn). The Wightman reconstruction theorem says that by start-
ing with loads of distributions W (f1, . . . , fn), we can get a QFT. This
suggests that we construct the QFT by taking W (f1, . . . , fn) to be
G(f1, . . . , fn). This doesn’t work for a very simple reason. The Green’s

functions are obviously symmetric in the fi. PT: there are two meanings
of φ(f) here. One is an operator on H . What is the other meaning? RB:
the integral defining the Green’s function is just obtained by integrating
the distribution coming from the Feynman diagram against the functions
f1, . . . , fn. On the other hand, the Wightman distributions are not sym-
metric because the operators φ(fi) do not commute (unless the supports
are spacelike separated.
However, the idea is not completely stupid and it nearly works, but

needs some modification. If f1 and f2 have spacelike separated supports,
then the operators φ(f1) and φ(f2) commute. So the Wightman distri-
butions W (f1, . . . , fn) are symmetric if the supports of the fi are space-
like separated. In this case, we can identify Wightman distributions with
Green’s functions. The key point is that if you know the Wightman distri-
butions on spacelike points, this determines the Wightman distributions
at all points as follows.
Wightman distributions W (x1, . . . , xn) (pretend they are functions)

are in fact boundary values of holomorphic Wightman functions
W (z1, . . . , zn), where zi ∈ M ⊗ C and Im(zj − zi) ∈ C (positive cone)
(see some basic book on QFT, like Streater-Wightman). Moreover, these
holomorphic functions can be analytically continued to a larger region, in-
cluding all totally spacelike points, and we know they have to be Green’s
functions on totally spacelike points.
Schematically, we have (symmetric) Green’s functions, which are dis-

tributions on Mn. These give you Wightman functions W (z1, . . . , zn)
by analytic continuation from spacelike points (completely ignore what
the Green’s functions do on non-spacelike points). These Wightman func-
tions are symmetric (because they are analytic continuations of symmetric
functions). Taking certain boundary values, you get Wightman distribu-
tions. Finally, applying the GNS construction (Wightman reconstruction
theorem), we get the QFT.
The Wightman distributions are not symmetric. Why is the boundary

value of a symmetric function not symmetric? Because there is more than
one way to take a boundary value. For example, suppose you take

√
x,

defined for x 6≤ 0 on the complex plane. It has two possible boundary
values,

√
x+ 0i and

√
x− 0i. Similarly, for Wightman functions, you

can approach from many different directions (this thing is codimension
n, so there are many different ways to approach). PT: which one do you
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pick? RB: given a point (x1, . . . , xn), approach from (z1, . . . , zn) with
Im(zi − zj) ∈ C (positive cone in spacetime tensor C) when i > j.
There are several problems with this approach.

1. We need to show that the analytic continuation exists. If you work
in Minkowski spacetime, you can go through the mess of writing it
out.

2. The analytic continuation doesn’t even make sense on curved space-
times. As far as I know, there is no such thing as the complexification
of a Riemannian manifold.

3. Infrared divergences, which I’ve been brushing under the carpet for
most of the semester.

The problem is that Feynman diagrams give distributions, so we can han-
dle things like interactions of the form

∫
λ(x)φ(x)4 dx where λ is smooth

of compact support. But we want λ to be 1, which is not of compact
support. Interactions usually look like λ

∫
φ(x)4 dx. We want it to be 1

so that it is invariant under the action of the Poincaré group. If you made
λ of compact support, everything would converge nicely, but your theory
wouldn’t be Lorentz invariant.
So we want a way of reconstructing the QFT which doesn’t involve

analytic continuation on the complexification (which may not exist) and
also deals with this infrared divergence.
Recall the two cut propagators ∆+ and ∆−. The ordinary propagator

∆(x) is basically the Fourier transform of ((p+ iε)2) +m2)−2. ∆+ is the
Fourier transform of something with support on p2 = m2 and ∆− similar.
∆(x) = ∆+(x) if x is not in the negative cone and ∆(x) = ∆−(x) is x
is not in the positive cone. Similarly, we have the Feynman propagator
(and its complex conjugate) ∆∗(x) = ∆−(x) if x is not in the negative
cone.
Now I want to introduce some slightly more complicated expressions.

Formally, we have

∫
φ(f1)φ(f2)e

iquadratic+λφ4Dφ =
∑

Feynman diagrams

where the propagators on the right are Feynman propagators. Now I want

to define a sort of generalization of this.

φ(f1)φ(f2)e
iL1

∣∣∣ φ(f3)φ(f4)eiL2

∣∣∣ · · ·

These vertical lines mean the following. Sum over Feynman diagrams in
the usual way, but any line which passes over one of these vertical lines
is going to be a cut propagator instead of a Feynman propagator, unless
I put a minus sign (e−iL2), in which case we use the complex conjugate
of the Feynman propagator. PT: to define the Feynman diagrams, you
had to make choices with Bernstein polynomials. RB: yes, to define these
with just Feynman propagators, there was some ambiguity, but if you
multiplying by some cut propagators is actually easy because of their
wave front sets.
Now I want to define something which is more or less a scattering matrix

with a perturbation by a field. S(f1f2)S(f3f4)S(f5f6) · · · is defined to be
this sum of Feynman diagrams with L1, L3, L5, . . . to be the interaction
and L2, L4, . . . to be the complex conjugates. This S should be thought
of as a scattering matrix.
The Wightman distributions W (f1, . . . , fn) will turn out to be

S1(f1)SS(f2)SS(f3) · · · . There is something funny going on because
we’ve introduced these cut propagators and these inverse scattering ma-
trices. You can think of this as scattering with a source f1, then undo the
scattering, then scatter again with source f2, then undo, and so on. This
will actually work for all x1, . . . , xn, not just those with xi−xj spacelike.
Now we need to check that this definition of W (f1, . . . , fn) satisfies the

Wightman axioms. Most of them are fairly trivial (like Lorentz invari-
ance). The main difficulty is to show that these satisfy locallity, which
says that W (f1, f2, . . . , fn) =W (f2, f1, . . . , fn).
Next week I’ll try to explain why this choice of Wightman distributions

give you a QFT.
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Last time we had a discussion of Heisenberg evolution in quantum me-
chanics and the Schrödinger picture of evolution. In the Heisenberg pic-
ture,

– To a point, we assign an associative ∗-algebra A(pt) = Ch(M).

– To an interval [t1, t2], we assign the LR ideal It1,t2 ⊆ A⊗A. This is
the quantization of the vanishing ideal for the Lagrangian Lt1,t2 ⊆
M ×Mop (which appears in Hamilton-Jacobi). This is if there is a
unique solution to the Euler-Lagrange equations. If there are serveral
solutions, Lt1,t2 =

⋃
γ L

γ
t1,t2 .

In the Schrödinger picture,

– To a point, we assign a vector space H (thought of as Ch(M)/IL,
where L ⊆M is the Lagrangian submanifold of boundary conditions.
There are two kinds of points: in points and out points. To a point
with opposite orientation, we assign the dual representation H∨.

– To the interval [t1, t2], we assign the 1-dimensional subspace Cvt1,t2 ⊆
H1 ⊗ H2 (the zero subspace for It1,t2), where Hi corresponds to
(ILi , Li ⊆ M). So we are looking at Hamiltonian flows connect-
ing the two Lagrangians L1 and L2. The H is a representation of
A = Ch(M). If A were not a ∗-algebra, we would not have the notion
of a dual representation. Since A is a ∗-algebra, we have the dual
representation (π∨, H∨), where H∨ is the dual vector space to H ,
and π∨(a) = π(a∗)t.

Semiclassically, this means the following. As h → 0, H → C(L). First,
the classical picture. We have a Hamiltonian H. The Heisenberg picture:
to a point, we assign C(M), and to an interval [t1, t2], we assign It1,t2 ⊆
C(M×Mop). The Schrödinger picture: to a point, we assign a Lagrangian
L ⊆ M , and to an interval, we assign the intersection Lt1,t2 ∩ (L1 ∪ L2),
where the L1 and L2 are boundary condition Lagrangians. PT: so this is
an extra choice? NR: yes. PT: for geometric quantization, you choose a
polarization. NR: geometric quantization gives you a hilbert space given
a polarization. This is a different procedure. The problem is this. If
we already know Ch(M), then we can construct this H , but this is quite

rare. Geometric quantization constructs the H without giving you the
algebra Ch which it represents. PT: so you don’t quantize the observables,
you only get some of them. Are there examples where you don’t get a
polarization, but this Ch(M) thing works. NR: yes. The simplest example
is the quantum torus T2.
How can we connect the quantum picture with the classical picture?

This is the semiclassical picture. We have a nondegenerate Lagrangian L,
and H is the Legendre transform of L. First the Schrödinger picture (and
only for the case where M = T ∗N , “Lagrangian quantum mechanics”).
To a point, we assign the space H = C(L) for the classical L ⊆M . This
L is extra boundary condition data . . . think of it as the zero section N ⊆
T ∗N . We’ll assume L is parallel to the zero section (i.e. L = {(p, q)|p =
dF (q)} for F ∈ C∞N). To the interval, we get vt1,t2 ∈ C(L1×L2). That

is, for each L1, L2, t1, t2, we get UL1,L2

t1,t2 (q1, q2) for qi ∈ Li. The formula
for this function is a sum of Feynman diagrams.

UL1,L2

t1,t2 (q1, q2) =
∑

γ

exp
(
iSL1L2
γ (q1, q2)/h

)
(Hes?γ)

−1/2
∑

Γ

FΓ

|Aut Γ|

where γ varies over solutions to the Euler-Lagrange equations (we as-
sume there are a finite number of solutions) and where SL1L2

γ (q1, q2) =
Sγ(q1, q2) + F1(q1)− F2(q2). The composition (gluing) rule is that

∫

L2

UL1,L2

t1,t2 (q1, q2)U
L2,L3

t2,t3 (q2, q3) dq2 = UL1,L3

t1,t3 (q1, q3).

In the example where all Li = N , then the F ’s are zero, and this is the
usual composition. PT: is this a theorem or a conjecture? NR: it is a
conjecture; I couldn’t find it in the litarature. PT: I don’t think this
is true; you should have to use the path integral to define the U ’s. It
looks like you’re just taking classical solutions. NR: The question is how
to define the path integral. Here is another conjecture. You can try to
approximate the paths by piecewise geodesics and take a limit. What
is known about this? Bruce: I’m not sure about the i in the exp. NR:
[[⋆⋆⋆ I didn’t catch all this stuff]] In the cases where you have another
definition of these U ’s, the conjecture is that it will agree with this one.
PT: could you remind me how you compute the FΓ? What do you put

on the edges and vertices? NR: If there are n edges coming from a vertex
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(labelled t), you assign ∂nV (q)
∂qi1 ···∂qin

∣∣∣
q=γ(t)

. To an edge between vertex i

(with t1) and j (with t2), we assign K−1, where Kij(t) =
(
− d2

dt2 δij +
∂2V
∂qi∂qj

γ(t)
)
, t1 ≤ t ≤ t2 action on L2[t1, t2]. Ut1t2 = exp(iH(t2 − t2)/h)

acts on L2(N).
You can try to get rid of the condition M = T ∗N . It is natural to

assume that (with some corrections), this kind of procedure should work.
You should expect that to ta point, we assign H = C(L) for a fixed L ⊆
M , and to the interval, we assign UL1L2

t1t2 (q1, q2). There should be some
composition law, but it will be more complicated for a general symplectic
manifold.
Now we have some idea of what is quantum mechanics. What is quan-

tum field theory? It can be considered as a functor from the cobordism
category of Riemannian manifolds to some other category (like Vect or
SVect). Let me describe the ingredients. The Heisenberg picture is the
following. To a (d− 1)-dimensional manifold Nd−1, we assign an associa-
tive ∗-algebra A(Nd−1). To the same manifold with opposite orientation,
we assign the opposite algebra (using the ∗ structure). To a d-dimensional
manifold Md, we assign an ideal I(Md) ⊆

⊗
iA((∂M)i) (connected com-

ponents of boundary of M). We also have a gluing axiom.
The Schrödinger picture. To Nd−1, we assign a vector space H(Nd−1).

The opposite orientation gives the dual vector space. To Md, we assign a
1-dimensional subspace Cv(Md) ⊆

⊗
iH((∂M)i). We also have a gluing

axiom.
Semiclassical (Schrödinger). Given a classical Lagrangian field the-

ory, which means that to Md, we assign Φ(Md), and L a function on
the jet space of fields. Remember I discussed the classical Bose field
and I discussed how the Lagrangian picture gives the Hamiltonian pic-
ture. Roughly, the symplectic manifold we assign to Nd−1 (think of
N as part of ∂M) is T ∗Φ(Nd−1). Classically, we have to choose a
Lagrangian subspace L ⊆ S(Nd−1) (e.g. the zero section). Then the
picture is very similar to classical mechanics. To Nd−1, we assign
H = functionals on L (on Φ(Nd−1)) on boundary values of fields. To
Md, we assign the 1-dimensional space Cv(Md) ⊆

⊗
H((∂M)i), with

v(Md)[b] =
∫
exp(iA(φ)/h)Dφ where the integral is over fields φ in Φ(Md)

with given boundary values b. When A is non-degenerate, we can try to
define this integral as a formal sum over solutions to the Euler-Lagrange

equations and Feynman diagrams.
Next time I’ll keep discussing this subject.
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Definition 27.1. TFT d(X) = smBiFunpbMan2
(Bd(x)

fam,Frfam2 ) (sym-
metric monoidal bifunctors; pullback preserving)

EFT d(X) = smBiFunpbMan2
(RBd(x)

fam,Frfam2 )

TFT d|1(X) = smBiFunpbSMan2
(Bd|1(x)

fam,Frfam2 )

EFT d|1(X) = smBiFunpbSMan2
(RBd|1(x)

fam,Frfam2 ) ⋄

I have to explain this family stuff. Fr
fam
2 has objects smooth Frechét

bundles V → S over manifolds S. We have the forgetful bifunctor
Fr
fam
2 → Man2. Recall that the 1-morphisms inMan2 are correspondences

S1 ← S ։ S0. A 1-morphism in Fr
fam
2 is a bundle map f̃ : p∗V0 → V1

lying over f : S → S1.

V1

��

p∗V0
·

f̃
oo

��

// V0

��

S1 S
f

oo
p

// // S0

2-morphisms are just morphisms S → S′ as in Man2 (i.e. all the data of
the 2-morphisms is preserved under the forgetful functor to Man2).
What is missing so far is “what are symmetric monoidal bicategories?”

This is a subtle question. It is not totally obvious. What are symmetric
monoidal categories? If you write it down very carefully, there are lots of
natural transformations we left out (like the associator). If you’re willing
to go into higher categories, then a monoidal category is the same thing as
a bicategory with one object. Remember that a bicategory has objects C0,
1-morphisms C1, and 2-morphisms C2, with maps C2 //

// C1
uu

//
// C0

uu
.

If C0 = {∗}, then C1(∗, ∗) is a cateogry (using C2 as morphisms). Hori-
zontal composition is exactly a monoidal structure on this category.
A braided monoidal category is one where there is a preffered isomor-

phism between X⊗Y and Y ⊗X (in general, they need not be isomorphic
at all). This is exactly a tricategory with one object and one 1-morphism!
Again, there is no reason for the tensor structure to be symmetric. A
quad-category with one object, one 1-morphism, and one 2-morphism is
a symmetric monoidal category.

If we want to talk about monoidal categories, we have to shift ev-
erything by one. A symmetric monoidal category is therefore a penta-
category with one object, 1-morphism, and 2-morphism. This looks like
a mess, but it turns out that you can define n-categories using simplicial
sets. Some people (with first names Chris and Andre) came up with an
interpretation which only uses bicategories, but they have to be internal
to some other category. In their language, the pullback preserving part
is built in. I don’t want to go into this right now. Maybe next week.

Definition 27.2. If C is a bicategory and x ∈ C, then the loop category
at x is ΩxC is C(x, x). Note that this ΩxC is a monoidal category. ⋄

Today, I want to apply the loop functor to the things in the first defi-
nition.

Example 27.3. Ω∅Bd has objects closed oriented smooth d-manifolds
and Ω∅Bd(Σ0,Σ1) = Diff (Σ0,Σ1). The monoidal structure is disjoint
union. We used to say that disjoint union is the monoidal structure on
the bicategory Bd, but now we’re just thinking of Bd as a bicategory
(without any monoidal structure) and the disjoint union structure pops
out (though we don’t get disjoint union of (d− 1)-manifolds)
If we loop Bd(X), you get closed manifolds with maps to X and diffeo-

morphisms respecting the map to X . ⋄

Example 27.4. Ω∅Man2 is boring because there are no maps to ∅, so
there aren’t any non-trivial correspondances. Let’s look at Ω∗Man2. It
has objects ∗ ← S ։ ∗ and morphisms are just morphisms of the S’s. So
Ω∗Man2 = Man. The monoidal structure is product.
In topology, you sometimes ask if one space is the loop space of another,

and the answer is usually no (e.g. π1(ΩX) = π2(X) is abelian). Here we
find that we can “de-loop” Man. ⋄

Example 27.5. ΩCFr2 has objects morphisms from C to C, and 2-
morphisms are all identities. So this is the set C, with only identity
morphisms. ⋄

Now let’s start looping some stuff. A symmetric monoidal bifunctor
must take the monoidal unit to the monoidal unit, so we’ll loop everthing
at the monoidal unit. TFT d(X) = smBiFunMan2(Bd(X)fam,FrfamX ) gives
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smFunMan(Ω∅Bd(X)fam,ΩCFr
fam
2 ). What are these things? Let’s do

ΩCFr
fam
2 first. Our object is the vector bundle C → pt. The objects are

pairs (S, f) where f : S → C. The morphisms from (S0, f0) to (S1, f1)
are maps g : S0 → S1 so that f1 ◦ g = f0. This is C(C), where C(X)
is the category with objects (S, f : S → X) and morphisms g : S0 → S1

with f1 ◦ g = f0. This is the “functor of points”. Later, we’ll change
Man to SMan. So an element of smFunMan(Ω∅Bd(X)fam, C(C)) is a num-
ber for every closed manifold. Restricting to connected closed manifolds
(and using the fact that the functors are monoidal), we see that this is
FunMan(Ω∅B

conn
d (X)fam, CMan(C)).

We loose information about the (d − 1)-manifolds, but for d = 0, we
don’t loose any information by taking the loops. Moreover, for d = 0,
there is only one connected d-manifold, a point. So in this case, we have
Fun

(
CMan(X), CMan(C)

)
. After the break, we’ll calculate this thing.

[[break]]
Arturo pointed out the following. The category CMan(X) is a well-

known thing. If you have a category D and x ∈ D, then you can define
the over category D(x), whose objects are morphisms to x and whose mor-
phisms are commutative diagrams. CMan(X) is exactly the over category
Man(x). Note that D(x) has a forgetful functor to D.
So the thing we’re interested in is FunMan(Man(X),Man(C)).

Lemma 27.6 (2-Yoneda lemma). D(X,Y ) ∼=Φ FunD
(
D(X),D(Y )

)
,

given by g 7→ (f 7→ g ◦ f), and the inverse is given by F 7→ F (idX).

So We have Man(X,C) = C∞(X). Thus, 0-dimensional topological
field theories over X are just functions on X . This is probably the most
complicated way to explain what a function is. The power of this is
that we can change d to 1, 2, 3, etc.. When you take d = 1, you get
connections; when d = 2, there isn’t already a name for it. Since we don’t
want functions (we want forms), we’ll use super manifolds.
If we change B0 to RB0, nothing changes because we’re just

adding a Riemannian metric to a point. This is very different
if you take d = 1 because a circle has a length. Now let’s
do TFT d|1. As before, we loop our definition (not loosing any-

thing since d = 0) to get smFunSMan(Ω∅B0|1(X)fam,ΩCFr
fam
2 ) =

FunSMan(Ω∅B
conn
0|1 (X)fam,ΩCFr

fam
2 ). We have that Ω∅B

conn
0|1 (X)fam

has objects S
p1←− S × R0|1 f−→ X , or pairs (S, f̃), where f̃ : S →

SMan(R0|1, X) ∼= πTX . So we might think that this category is

SMan(πTX). This is not true. As before, ΩCFr
fam
2 = SMan(C). If

we did get SMan(πTX), we would get that TFT 0|1(X) are forms on X ,
and we want closed forms on X , so it would be the wrong answer anyway.
What is a morphism in Ω∅B

conn
0|1 (X)fam? They are

X

S0 × R0|1

::✉✉✉✉✉✉✉✉✉

��

G
// S1 × R0|1

��

dd■■■■■■■■■

S0
g

// S1

where G is a fiberwise automorphism of R0|1. This is where it depends
if we’re doing TFT or EFT . If you don’t put an inner product on R0|1,
dilation is an automorphism. It turns out that TFT will only give you
closed 0-forms and EFT gives you all closed forms. So topological field
theories give you boring constant functions. To get de Rham cohomology,
you need to use EFT .
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Lagrangian QFT. I want to keep track of the quantization procedure, so
this is the semiclassical view of QFT. To a compact oriented Riemannian
(d − 1)-manifold Nd−1 we assign a vector space H(Nd−1), and to a d-
manifoldMd we assign Cv(Md) ⊆

⊗
iH((∂Md)i). To the manifold Nd−1,

we assign the dual vector space H(Nd−1)
∨.

Recall classical field theory. The idea is this. In the Hamiltonian pic-
ture, to Nd−1 we assign a symplecic manifold S(Nd−1) and to the opposite
orientation, we assign the same manifold with opposite symplectic struc-
ture. To Md, we assign a Lagrangian L(Md) ⊆ S(∂M). We require that
S(N1 ⊔N2) = S(N1)× S(N2), and the other axioms.
An example of such a construction comes from Lagrangian mechanics.

We have

– Φ, the space of fields on Md, and

– the Lagrangian function L, a local function on Φ (we assume it de-
pends only on the first jet L(φ, dφ)).

Then we have the action functional A[φ] =
∫
Md
L(φ, dφ) (if the volume

form on Md is not given, we have to take the output of L to be a top
form). Classical trajectories are solutions to the Euler-Lagrange equations
δA = 0. So where is the classical field theory in this? The idea is this.
We can restrict Φ to Φb(∂M), fields on the boundary of M (fields are
usually sections of a bundle). Now let S(Nd−1) is T

∗Φb(Nd−1). PT: this
is where collars are really useful; you don’t have any trouble restricting
anything to a collar because it is an open subset. In my class, we take
S(Nd−1) to be the space of solutions to the Euler-Lagrange equations
on the collar. In the case where fields on the boundary make sense, the
two definitions agree. NR: yes, collars do the job quite nicely. Collars
are absolutely natural, even in classical mechanics, but because of the
lack of time, we won’t do it. For me, it is easier to think about fields
on the boundary because of one example: field theory on graphs. We
let L(Md) = {solutions to the Euler-Lagrange equations} ⊆ S(∂Md).
PT: in my language, the restriction to the collar is the inclusion of this
Lagrangian into the symplectic manifold. NR: ok.
So this is the classical Hamiltonian picture coming from Lagrangian

mechanics (with a non-degenerate Lagrangian). Fix the boundary condi-

tions. For eachNd−1, we fix a boundary Lagrangian L(Nd−1) ⊆ S(Nd−1),
requiring that L(N1 ⊔N2) = L(N1)×L(N2). Then L(Md)∩L(∂Md) is a
collection of points. We can modify the action to

AL[φ] =
∫

Md

L(φ, dφ) + FL[φ]

where F is the generating function for L. Solutions of δAL = 0 are then
points of L(Md) ∩ L(∂Md).
If we are on a cotangent bundle, taking L = {p = dF (q)}, then L0 gives

a representation of [p̂, q̂] = ih on C∞(R) given by p̂ = ih ∂
∂q and q̂ = q.

LF gives the representation p̂ = ∂F
∂q + ih ∂

∂q , q̂ = q.

The “näıve” quantization. Let L = L0. We can choose H(Nd−1) =
C[L(Nd−1)], so v(Md) ∈ C[L(∂Md)]. Let’s denote points of L(∂Md) by
b.

v(Md)(b) =

∫

φ|∂M=b

eiA/hDφ.

This is the “näıve” quantization because we don’t know what this integral
is. In the finite-dimensional case, we can make sense of it. If the spaces are
infinite-dimensional, we can sometimes employ some functional analysis
(at least in the non-oscillating case, where we don’t have the i and the
exponenential is rapidly decreasing). This v should be thought of as a
quantization of the points in L(Md) ∩ L(∂Md).
Let’s consider the formal asymptotics of this integral as h → 0. Re-

member that we just want to get something which satisfies all the axioms
of quantum field theory. We can try to construct formal power series that
do this.

∫

φ|∂M=b

eiA/hDφ =
∑

γ

eiAγ(b)/h det ′(Kγ(b))
−1/2

∑

Γ

F (Γ)(b)

|AutΓ|

where γ is a solution to the Euler-Lagrange equations with bound-
ary condition b. We expand A[γ + ψ]/h = A[γ]/h + (Kγψ, ψ)/h +

(higher order terms)/h. We scale ψ by
√
h, so the higher order terms

have h
n
2 −1 with n ≥ 3, so they are small.

If we want to be consistantly näıve, we have to tensor ourH with C[[h]].
We now want to check if this satisfies gluing axiom. Consider Lagrangian
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mechanics on N with non-degenerate Lagrangian L(ξ, q). Exercising this
philosophy, we get

Ut(q1, q2) = (eiĤt/h)(q1, q2)

where Ĥ is the quantization of the Legendre transform of L. I want
to emphasize that we don’t need to choose a Riemannian structure on
N . Since L is non-degenerate, it gives a metric on the tangent space,
d2ξL(ξ, q). I want to use this to define a natual measure on Lagrangian
submanifolds. PT: in geometric quantization, you use the metaplectic
structure on S and use half-forms. NR:
If we have M , and we want to glue together two parts of the boundary

(b and b′; call the rest of the boundary b′′). We want critical points
δb′AMγ (b′, b′′) = 0.

∫
v(Md)(b

′, b′′)Db′ =
∑

γ

· · ·
∑

Γint

∑

Γb

(b′′)

you get Feynman diagrams from the interior and Feynman diagrams from
the boundary. We then would like to check the gluing rule.
Next time I’ll say what to do if the Lagrangian is degenerate. We’ll

end up with super spaces with differentials which annihilate v(Md).

39 NR 12-03

Last time we discussed quantum field theory in terms of path integrals.
Today I want to return to the degenerate systems and give a more con-
ceptual look at Fadeev-Popov quantization.

Cohomological Field Theories

1. In the Schrödinger picture, we assign to Nd−1 a vector space H(Nd−1)
and toMd a vector (really a 1-dimensional subspace) Cv(Md) ⊆ H(∂Md).
Cohomological field theory simply means that we have one more opera-
tion. In addition, we have a differential d : H(Nd−1)→ H(Nd−1) (which
depends on Nd−1) with d2 = 0. H(N) is a super vector space and d is
odd. Furthermore, we require that d(v(M)) = 0.
2. We can construct QFTs on cohomologies. We can assign to Nd−1

the cohomology H∗(Nd−1) (unfortunately, this is H
∗(H(N))), and to Md

we assign [v(M)] ∈ H∗(∂M).
3. Two cohomological QFTs are quasi-isomorphic if the resulting co-

homology QFTs are isomorphic.
If we start with a guage theory, it is impossible to use the Feynman di-

agram technique because the theory is degenerate. The idea is to replace
the guage theory, which doesn’t have any fermionic part, thought of as
a cohomology QFT. Suppose G acts on a variety X (let’s assume X is
linear), then you can construct C·(g, X), and then C(X/G) ∼= H0(g;X)
in many interesting cases. We know that C·(g, X) is functions on X⊕g[1]
(the [1] means to shift the grading, so think of the g as odd). The differ-
ential is the odd vector field Q =

∑
α c

αxα +
∑

α,β,γ c
γ
αβc

αcβ ∂
∂cγ , where

{eα} is a basis for g and {xi} are coordinates on X (and xα = xiα(x)
∂
∂xi ).

We can replace the guage theory on X/G by a quasi-isomorphic guage
theory on X ⊕ g[1], which has some odd degrees. This is why there are
fermionic variables in Fadeev-Popov, BRST, BV quantizations. The idea
is to replace these complicated path integrals over complicated spaces by
path integrals over linear spaces. PT: X is the space of fields? Do we as-
sume it is linear? NR: yes. The fields are usually sections of some vector
bundle, so it will be linear. It need not be linear in general.
The second step is to this replacement in such a way that we get a

non-degenerate field theory (the action should be non-degenerate). I will
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return to this (BV quantization) on Wednesday, at which point I will
hopefully have figured out a good way to explain it.

Example of a QFT

Today, I’ll give a finite dimensional model to illustrate how these construc-
tions can be achieved with finite dimensional approximations instead of
Feynman diagrams.
We’ll talk about the “discrete” Bose field. By discrete, I mean that

the spacetime is a (finite) graph Γ. The spacetime category: spaces are
collections of points and spacetimes are graphs Γ. To a collection of points
n points N , we assign H(N) = L2(Rn), and to Γ, we assign v(Γ)(b) =∫
Rvin

exp(−A(φ, b)/h) dφ where vin is the number of interior vertices of
Γ. We assume that A(φ) is a positive polynomial in φ. Locallity of the
action on the graph: A(ψ) =

∑
v∈ΓAv(ψv) +

∑
e∈ΓAe(ψe+ − ψe−) + · · ·

where Ae is an even degree polynomial (this is the analogue of saying that
the action is the integral of a Lagrangian which depends only on the jet).
The natural first order action is given by

A(p[si) =
∑

u,v adjacent

Au,v(ψv, ψu).

We want to check the gluing axiom. Suppose se have Γ, and we want to
glue together parts of the boundary ∂+Γ and ∂−Γ.

v(Γ)(b)|diag =

∫
dψfrom ∂+Γ

∫

Rvin(Γ)

dψu0 exp
(
−

∑

u,v∈∂±Γ

+A(ψu, ψu0)
)

=

∫

Rvin(Γ)

exp
(
−
∑

u,v adj

A(ψu, ψv)
)
dψ.

This graph QFT is like a universal example, thinking of the graphs as
skeletons of spacetimes (and letting them grow infinite). If you want to
do d > 2, you have to allow different things for boundaries of the graphs.
1. How to find the limits |Γ| → ∞. 2. Compute various quantities

(in the limit where |Γ| → ∞). 3. Find functions A(ψ, ψ) such that the
resulting theory is a TQFT for cell complexes. This would mean that
on a surface, this v(Γ) is invariant under the standard moves of the cell

decomposition (thinking of Γ as embedded in M). It is not clear that this
theory exists.
So the idea is to either try to make the theory topological or to make

it approximate something else as |Γ| → ∞.

2-dimensional Yang-Mills theory

Suppose Σ is a compact oriented surface (possibly with boundary). Let Γ
be a spine of a cell decomposition of Σ. Consider a trivialized G-bundle
B over Γ (i.e. a copy of G over each vertex). A connection in B is a map
E(Γ)→ G, which you think of as parallel transport along the edges. You
can think of Γ as a subgroupoid of the fundamental groupoid Γ1(Σ). Let
g = {B(e)}e∈E(Γ) [[⋆⋆⋆ let g(e) = B(e)]], then

A(g) =
∑

f=2-cell
of Σ

w(f) tr(h(f))

where h(f) is the holonomy around f (read the edges around the 2-cell f
using the orientation and take the product of the g(ei)

±1) and the trace
is taken in the adjoint representation.
Spacetime is Σ ⊃ Γ, space is the closed 1-dimensional cell decompo-

sition. H(C) = L2(GE(C)), and v(Σ) =
∫
GEin(Γ) e−A(g) dg, where G is

simple compact.
This action is clearly invariant under GVin(Γ), and the transformation

is h : g(e)→ h(e+)g(e)h(e−)−1, corresponding to changing the trivializa-
tion.
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28 PT 12-04 Next Tuesday, we’ll have the mini-conference in 939.
Degree 0 cohomology groups, non-local for d = 2.

TFT d(X) := smBiFunpbMan2
(Bd(X)fam,Frfam2 )

Ωe−−−−−−−→
conn. bord.

FunMan(Ω∅B
conn
d (X)fam,ΩRFr

fam
2 )

=d=0 Fun(Man(X),Man(R))
∼= Man(X,R) = C∞(X)

Similarly,

TFT d|1(X) := smBiFunpbSMan2
(Bd|1(X)fam,Frfam2 )

Ωe−−−−−−−→
conn. bord.

FunSMan(Ω∅B
conn
d|1 (X)fam,ΩRFr

fam
2 )

= Fun(Ω∅B
conn
d|1 (X)fam,Man(R))

If you weren’t doing family versions, a symmetric monoidal bifunctor
from Bd(X) to Fr2 is the same as a functor from Bd(X)/2-morphisms to
Fr, but this doesn’t work in the family version.
By the way, for d = 0, TFT and EFT agree (since a Riemannian metric

on a point is not extra information). An object in Ω∅Bd|1(X)fam is of
the form

F d|1

��

Σ
f

//

��

X

Sm|n

Since d = 0 and we require connected, F = R0|1. There are non-trivial
R0|1-bundles on S (parity reverses of non-trivial line bundles), but locally
it is trivial (and since we’re working over SMan, it is enough to understand
stuff locally), so we may assume Σ = S ×R0|1. But a map from S ×R0|1

to X is the same as a map from S to SMan(R0|1, X) = πTX .
So the first candidate for TFT 0|1(X) is

FunSMan(SMan(πTX), SMan(R)). If this were true, this would just
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be differential forms on X . This isn’t quite right because the morphisms
in Ω∅B

conn
d|1 (X)fam are not the same as the morphisms in SMan(πTX).

A morphism in Ω∅B
conn
d|1 (X)fam is a fiberwise diffeomorphism over a

map from S0 to S1:

X

S0 × R0|1

��

f0

==⑤⑤⑤⑤⑤⑤⑤⑤
G // S1 × R0|1

��

f1

aa❇❇❇❇❇❇❇❇

S0
g

// S1

This G must be of the form (g◦p1, γ : S0×R0|1 → R0|1) = (g◦p1, γ̃ : S0 →
Aut(R0|1)), where Aut(R0|1) ⊆ SMan(R0|1,R0|1) = πTR0|1 = R1|1 is
R0|1 ⋊ R× (translations times dilations). These are the S-points of a
transport category.
Let’s talk about it for Man first. If I have a manifold Y and a Lie group

G acting on Y (think Y = πTX = SMan(R0|1, X) and G = Aut(R0|1)).
The transport category has object set Y and morphism set Y ×G, where
(y, g) has source and target y and y ·g, respectively. Now we’re taking the
S-points of this [[⋆⋆⋆ This transport category is a groupoid object in
Man, and we take S-points of this object to get a groupoid (but we let S
vary, so we’re probably talking about a category fibered in groupoids)]].
Define Man(Y ;G) to be the category with objects (S, f) where f : S → Y
and morphisms

Y ×G µ
// Y

S0
g

//

f0×γ

OO

S1

f1

OO

The lemma is that Ω∅B
conn
d|1 (X)fam = SMan(πTX,Aut(R0|1)) (to get this

to come out right, we actually have to define γ̃ in the obvious way, but
composing with the inverse map on Aut(R0|1)).
Now we can finish the calculation.

Lemma 28.1. Given Y with a G-action and any Z ∈ SMan,
FunSMan(SMan(Y ;G), SMan(Z)) ∼= SMan(Y, Z)G := {α ∈ SMan(Y, Z)|α ◦

p1 = α ◦ µ} (where SMan(Y ;G) is the transport category and

Y ×G
µ
//

p1 // Y
α // Z ).

So the final outcome is that TFT 0|1(X) = SMan(πTX,R)Aut(R0|1).
We’ll see that this is exactly closed differential forms of degree zero
(i.e. constant functions on X). If we put some geometry on, then we’ll get
all the other closed forms. It will turn out that EFT d|1(X) = Ωevencl (X).
[[break]]
(1) Theo made the comment that when you go from Man to SMan,

you have to take super Frechét spaces in place of Frechét spaces. (2) the
lemma should be that Ω∅ · · · is the stackification of something.
Remember that SMan(πTX,R) = C∞(πTX)ev = Ωeven(X).

Lemma 28.2. µ : πTX × (R0|1 ⋊R×)→ πTX.

C∞(πTX×Aut(R0|1)) ∼= Ω∗(X)⊗
∧

[θ]⊗C∞(R×)
µ∗
←− Ω∗(X) = C∞(πTX)

is given by ω 7→ ω ⊗ 1 ⊗ sn + dω ⊗ θ ⊗ sn, where ω is of degree n. And
p∗1 : ω 7→ ω ⊗ 1⊗ 1

Looking at when µ∗ and p∗1 agree, we see by looking at the degree in θ
and noting that sn 6= 0 that dω = 0 and sn = 1, so n = 0. Thus, we get
closed forms of degree 0.

Corollary 28.3. SMan(πTX,R)Aut(R0|1) = Ω0
cl(X).

Corollary 28.4. SMan(πTX,R)R
0|1⋊{±1} = Ωevcl (X).

From this we get an idea of what a super Riemannian metric on R0|1

should be.

Definition 28.5. A super Riemannian metric on R0|1 is something such
that Isom(R0|1,something) ∼= R0|1)⋊ {±1} ⊆ Aut(R0|1). ⋄

The analogue of a Riemannian structure more or less works.
In the last class (Thursday), we’ll talk about degree n EFTs (we’ve

been doing degree 0). This gives us lots of different things.
d = 0 TFTn

0|1(X) = Ωncl(X)

d = 1 introduces Cln-modules KOn(X)
d = 2 gives modular forms of weight n/2
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This is the last lecture this semester. For next semester, there is a vague
plan to have a seminar on conformal field theory. I’m not really sure what
conformal field theory is, and nobody else seems to know either.
Today I want to finish describing this problem of how to get from

Green’s functions to a quantum field theory. Recall what we did last
week. We had these Green’s functions given by sums of Feynman dia-
grams (assuming you can deal with renormalization and regularization).
The quantum field theory is given by Wightman distributions. We’d like
to take the Wightman distributions to be the Green’s functions, but this
doesn’t work (e.g. Green’s functions are symmetric, but Wightman dis-
tributions aren’t). We take the Wightman distributions to be equal to
the Green’s functions at points (x1, . . . , xn) where xi − xj is spacelike.
There is another way of saying this. Wightman distributions can be

thought of as analytic continuations of Green’s functions. What does this
mean for distributions (analytic continuation only makes sense for ana-
lytic functions). What is the ananlytic continuation of a distribution?
Why does analytic continuation make sense for analytic functions? It is
because of the following uniqueness condition: if f is analytic in a con-
nected open set and zero on a non-empty open subset, then f is identically
zero. This tells you that analytic continuation is unique if it exists.
We want a similar condition for distributions. Obviously, we can’t do

this for arbitrary distributions (it isn’t even true for smooth functions),
so we have to add some condition to the distribution. We could require
that the distribution is analytic, but that is too strong. For QFT, the
correct condition turns out to be the following. Use analytic wave front
sets, which are sort of like wave front sets (which tells you where the
distribution isn’t smooth and the direction in which it isn’t smooth). The
analytic wave front set tells you where the distribution is not analytic and
in what direction it fails to be analytic (so the analytic wave front set is
larger than the wave front set). Suppose we choose a proper (doesn’t
contain a line) closed cone Cx in the cotangent space of each x ∈ M .
Then if f is a distribution with analytic wave front set contained in Cx
at each point x and f = 0 on some open set, then f is identically zero. I
won’t prove this, but I’ll give you some examples. You have to be careful
because the continuation of f may depend on the choices of Cx. Also, if

you start off with a real distribution, its continuation can in general be a
complex distribution.

Example 15.1. Let f =
√
x for x > 0 (on R). We want to analytically

continue it to a distribution on all of R. There are two ways to do this.

1. Take f to be the boundary value of
√
x for Im(x) > 0.

2. Take f to be the boundary value of
√
x for Im(x) > 0.

The difference is that the analytic wave front sets at zero are opposite
cones. ⋄

Example 15.2. SupposeM = Rn and Cx = C ⊆ (Rn)∗ is the same cone
at each point. Then the analytic wave front set of f is in C at each point
x if and only if (more or less) f is the boundary value of a holomorphic
function in the cone Rn ⊕ iĈ. Since the cone C is closed and proper,
the dual cone Ĉ has non-empty interior. In general, M may not have a
complexification, so it isn’t so clear what you mean by saying that f is a
boundary value of a holomorphic function on the complexification. ⋄

Example 15.3. Any distribution is locally a (finite) sum of boundary
values of holomorphic functions. Suppose f is a distribution of compact
support on R. Then set g(z) = 1

2πi

∫
R

1
z−xf(x) dx (this is well defined

provided z is not in the support of f .). Then “f(x) = g(x + iε)− g(x−
iε)”. ⋄

The point is that if you select a proper cone at each point, there is a
way to make sense of analytic continuation of distributions.
We’re trying to find an analytic continuation W of a Green func-

tion such that the analytic wave front set is contianed in the region
{(z1, . . . , zn)|zi − zj ∈cone for i < j}. Last lecture I wrote down a con-
fusing formula for what W is.
G(x1, . . . , xn) is a sum of Feynman diagrams that have a node of va-

lence 1 for each xi and nodes of valence 4 coming from the λφ4 in the
Lagrangian. W (x1, . . . , xn) will be similar sums of Feynman diagrams,
but with slightly different propagators. Instead of summing over all
Feynman diagrams with valence 4 nodes, you sum over diagrams like
x1 × ×| × ×| × ×x2| × ×|x3, where the xi are nodes of valence 1 and
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the × are nodes of valence 4. The propagators in the odd buckets are
Feynman propagators, in the even buckets are conjugates of Feynman
propagators, and the ones that cross buckets are cut propagators.
More generally, let’s define S(f1, f2, . . . , )S(g1, . . . )S(h1, . . . ) to be a

sum of all diagrams as in the previous paragraph, but in the first bucket
we allow nodes for the fi, in the second bucket, we allow some gi, and so
on.
Main properties:

1. S(f1, . . . , fn)S(g, h1, . . . , hm) = S(f1, . . . , fn, g)S(h1, . . . , hm) pro-
vided no element of Supp g is less than or equal to any element of
Supp fi or Supphi.

2. SS = 1 = SS (i.e. if you don’t put any functions, they cancel). This
is assuming you’ve chosen a renormalization already.

Rather than proving these results, let me show you how to use them to
prove that the Wightman distributionsW (f1, f2, . . . ) = S(f1)SS(f2)S · · ·
satisfy locality.

W (f1, f2) = S(f1)SS(f2)S

= S(f1)S(f2)SS

= SS(f1, f2)SS provided Supp f1 6≤ Supp f2

= S(f2)S(f1)SS provided Supp f1 6≥ Supp f2

=W (f2, f1)

So we can switch f1 and f2 provided their supports are spacelike sepa-
rated.
We can also handle infrared divergences. I’ve been saying that these

divergences automatically cancel. Suppose you’re working with a La-
grangian L with compact support. Add to this another Lagrangian M ,
also with compact support. I want to find conditions under which addi-
tion ofM makes no difference to the Wightman distributions. To do this,
we can make the following calculation. The new Wightman distributions
are given by

S(f, eM )S(e−M )S(f2, e
M )S(e−M ) · · · = SS · · ·SSS(f, eM )S(e−M )S(f2, e

M )S(e−M ) · · ·
= S(f1)SSS · · ·S(eM )S(e−M ) · · ·

provided no element of Supp f1 is ≤ anything in SuppM . Keep pulling
the S(fi) through and cancel the left over copies of S(eM )S(e−M ). What
is left is the Wightman distribution for the Lagrangian L. So adding M
to the Lagrangian does not affect the Wightman distributions provided
that no element of Supp fi is less than or equal to anything in SuppM .
A similar argiment shows that the same is true if no element of Supp{fi}

is greater than or equal to anything in SuppM .
[[⋆⋆⋆ picture]]
So suppose the support of M lie in the shaded region, then adding M

doesn’t make a difference. So we’re left with a compact region that we
have to leave alone. We can mess with the Lagrangian outside of this com-
pact region. Suppose the interaction is given by

∫
λ(x)φ(x)4 dx, where

λ(x) has compact support. Then W are independent of λ provided that
λ(x) = 1 inside a certain compact region (that depends on the supports
of the fi). This is essentially the cancellation of IR divergences (which
come from λ having non-compact support).

Example 15.4. Suppose the union of the supports of the fi is S, as in
the picture.[[⋆⋆⋆ picture]] we need to add little bits x such that it is
possible to send a message from x to S and from S to x. ⋄

We need to know that if S is compact, then this larger region is also
compact. For Minkowski spacetime, this is an easy exercise, but it is
not true for all spacetimes. For example, take R1,3 r pt and make it so
that you have to add a neighborhood of the missing point to S. But this
spacetime has a hole in it, and you don’t know what is coming through
the hole, so you don’t expect things to work very well. The compactness
condition is almost equivalent to spacetime being globally hyperbolic.
So on globally hyperbolic spacetimes (which are the only ones anybody

works with), the infrared divergences of quantum field theory automati-
cally cancel.
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Last time I was explaining 2-dimensional discrete Yang-Mills theory. We
started with the classical case. The objects of the spacetime category are
1-dimensional oriented closed manifolds (disjoint unione of copies of S1)
with marked points. The morphisms are cell complex decompositions
Γ of 2-dimensional compact oriented manifolds. You should think of a
morphism as a surface bordism between collections of circles.
Classically, the space of fields is the space of sections of the trivial

principal G-bundle B over Γ (the total space is GV (Γ)). A connection
on this bundle B is a choice of parallel transport isomorphism for each
edge. So a connection is a map E(Γ)→ G, so the space of connections is
GE(Γ). Let g(e) be “parallel transport along the edge e”. A connection
is flat if the ordered product

∏→
e∈∂f g(e)

σ(e,f) = hx0(f) = 1 for each face
f (σ(e, f) = ±1 depending on the relative orientations of f and e).
The classical Yang-Mills theory on Γ ⊆ Σ has the following action.

A(g) =
∑

f⊆(Γ⊆Σ)

w(f) tr(h(f))

where w(f) > 0 is [[⋆⋆⋆ ]]. This action is gauge invariant. The gauge
group can be identified with G(Γ) = GV (Γ). It acts on connections by
h : g(e) 7→ h(e+)g(e)h(e−)−1, where e− is the source vertex and e+ is the
target vertex. I don’t have time to describe the Hamiltonian structure,
but it is a good exercise to describe it.
What is the Quantum version? To 1-dimensional manifolds N1, ob-

jects of the spacetime category, we should identify some space H(N1) =
L2(G

E(N1)) (remember that N1 is a collection of circles with marked
points, so edges are pieces of circle between marked points). To (Γ ⊂ Σ),
we assign a vector v(Γ ⊂ Σ) ∈ L2(G

E(∂(Γ))).
Our path integral philosophy tells us how to choose this vector v(Γ ⊂

Σ).

v(Γ ⊂ Σ)(b) =

∫

GEin(Γ),g|∂Σ=b

exp(−A(g)/h)Dhg

If we have the i in the exp, it is a more realisitc theory (but still not
realistic because Σ should have more structure). Removing the i is more
like statistical mechanics [[⋆⋆⋆ I missed the explanation]].

Let’s recall what we want from this quantum field theory. (1) We want
locallity, which is equivalent to the gluing principle. That is, if we have
two parts of the boundary of Σ and an isomorphism between the two
parts (call fields b, and let b′ denote fields on the rest of the boundary).
We want

∫

GEin(Γ)

exp(−A(g, b, b′))DhgDhb =
∫

GEin(Γ̃)

exp(−A(g, b′)Dhg

(2) We require Guage invariance of v(Γ ⊂ Σ)(b). (3) We can try to find
Dhg such that the result is a TQFT. So v(Γ ⊂ Σ)(b) will only depend on
h(Ci) (Ci are the connected components of the bounary) and the genus
of Σ. Since we require gauge invariance, v should only depend on the
conjugacy classes [h(Ci)], the genus, and the number of components of
∂σ. (4) The classical limit should recover the classical field theory.
There is no reason to expect that we should be able to find such a

thing. A stronger gluing axiom: given two components of the boundary
of Σ and given an isomorphism f between part of the components. For
example, you could take two disks (each with 1 2-cell and a cell decom-
position of the boundary) and try to glue together some of the 1-cells
on the boundary. How about (3), can we choose the measure so that
the result is topological? It turns out the answer is yes. Assume G is
simple compact. Take the measure e−A(g)Dhg =

∏
f w([h(f)]|A)

∏
e dge,

where w([g]|A) = ∑
λ e

−c2(λ)Af dim(Vλ)χλ(g), where the sum is over all
irreducible representations and c2 is the second Casimir.
Then the formula for v(Γ ⊂ Σ) is

v(Γ ⊂ Σ) =

∫

GEin(Γ)

∏

f

w([h(f)]|Af )
∏

e∈Ein(Γ)

dg(e).

Now let me explain where this measure came from. Start with disks
with one 2-cell. Start with one disk, with one real number A. Then
v(Γ ⊂ D) = w([h(∂D)]|A). To glue, we have to choose a measure on the
boundary. We choose Dhb =

∏
e∈gluing edges db(e).

Then you can check the following identity. We want to glue two oriented
disks (with real numbers A and B and opposite orientations on the gluing
edges) along an edge. Say we have b assigned to the edge, the holonomy
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around the rest of the A-disk is g, and the holonomy around the rest of
the B-disk is h. HW: check that

∫

G

w(bg|A)w(b−1h|B) db = w(gh|cA,B)

when cA,B = A + B. So the natural interpretation for the real numbers
A and B is area.

∫

G

χi(bg)χj(b
−1h) db = #(i, j)χ#(gh).

So it is almost topological, except that we have to add up A and B when
we do the gluing. There is a formula

v(Γ ⊂ Σ)(b) =
∑

λ

∏

i∈bd. comp. of Σ

χλ(h(Ci))e
−c2(λ)

∑
f Af (dimVλ)

χ(Σ).

This is kind of an amazing identity showing that v doesn’t depend on Γ at
all. This is called 2-dimensional QCD (reference is Witten, 2D Yang-Mills
theory revisited).
This demonstrates that using the ideology of the path integral, one can

construct 2-dimensional TQFTs. By allowing Γ to get finer and finer,
Witten argues that as the size of the approximation grows, this goes to
the Yang-Mills path integral and the weight goes to eAY M , where AYM
is the smooth Yang-Mills action. Smooth Yang-Mills theory is almost
topological. You don’t need a metric, just a volume form (just like we
needed the area).
It turns out that 3-dimensional Yang-Mills theory is not topological,

but there is a 3-dimensional TQFT, which is Chern-Simons theory. Un-
fortunately, it is not known how to replace the infinite-dimensional path
integral by a finite-dimensional one for Chern-Simons theory. We can try
to develop some formal power series which resembles what we have. The
power series should (1) satisfy gluing, (2) be gauge invariant, (3) topo-
logical, and (4) classical limit reproduces the classical field theory. In
Chern-Simons, it is possible to find such perturbative expansions.
Nobody has produces a gluing procedure for these invariants yet. All

of these results were developed for closed 3-manifolds, but not for 3-
manifolds with boundary. Even for closed manifolds, the results that
exist are for “acyclic flat connections”.

Based on surgery, with Turaev we developed [[⋆⋆⋆ didn’t catch all
of this]].
Next time I’ll return to BV quantization.
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Tuesday’s mini-conference in 939 starts at 9:00. It will probably go til
17:00. There will be 10 speakers. Bring lunch. There will be a sponsored
dinner.
I was going to explain twisted field theory, but I decided that would just

be more definitions. So instead, let’s use the definitions we have already.
Recall that we found a very complicated way to talk about constant

functions Ω0
cl(X) = TFT 0|1(X) = SMan

(
πTX/Aut(R0|1),C

)
. πTX is

a super manifold with a Lie group acting on it, so you get a quotient
stack, and we’re considering functions on this stack. Being invariant under
translations makes the forms closed and being invariant under dilations
makes them degree 0. I wanted to do twisted stuff, which would be
Ωncl(X) ∼= TFTn

0|1(X).

If you put a geometry on a super point (so that Aut(R0|1) is only
translations), you get EFT 0|1(X) = Ωevcl (X). Consider the map

EFT 0|1(X)
×S1

−−−→ EFT 1|1(X). There is a nice map (due to Florin
Damitrescu), which is super parallel transport from vector bundles with
connection to EFT 1|1(X). Fei Han’s thesis shows that the map from vec-
tor bundles with connection to Ωevcl (X ;C) is the Chern character form.
Fei will talk about this in the student seminar next semester. Andy: what
happens when you twist? PT: you get mod 2 periodicity, and if you put
1, you get odd forms.
Today I want to explain how the usual “susy cancellations” lead to

modularity of the partition function (d = 1, 2). We’ll take degree 0, and
assume X is a point.

EFT 1 = smBiFunMan2(RB
fam
1 ,Frfam2 )

Ω∅−−−→
conn

FunMan(Ω
conn
∅ RB

fam
1 ,ΩCFr

fam)

= FunMan

(
Ωconn

∅ RB
fam
1 ,Man(C)

)

What is Ωconn
∅ RB

fam
1 ? The objects are Riemannian S1-bundles Σ → S

and the morphisms are bundle maps that are fiberwise isometries. This is
the moduli stack of Riemannian circles. Riemannian circles are classified
by their length, so this stack is R+/SO(2) (the action is trivial). Thus,
this functor space is just Man(R+/C) = C∞(R+) (you don’t see the

rotations when you map to a representable stack). So given E ∈ EFT 1,
you get the 1-dimensional partition function ZE(t) ∈ C∞(R+), given by
E(S1

t ). If E is the σ-model of a compact Riemannian manifold M , then
ZE(t) = tr(e−t∆).
An element of EFT 1 assigns to a point a Hilbert space and to intervals

linear maps. When you glue the two ends of the interval together, you
get a circle. The value of the theory on a circle is given by the parti-
tion function. But from the gluing law, you know it will be the trace
tr(E([0, t])).

Theorem 29.1. If E is susy (i.e. E ∈ EFT 1|1, not just EFT 1), then ZE
is a constant integer. That is, ∂

∂tZE = 0 and ZE is an integer.

Before explaining the assumption (that E is susy), let me give an ex-
ample of a supersymmetric field theory.

Example 29.2. SE ∈ EFT 1|1 from a compact Riemannian spin mani-
fold (M,σ, g). I haven’t told you exactly what the geometry on a super
point or a super interval is. Remember that the objects aren’t just points
(they are little collars). Since the geometry on a point is a geometry on an
R0|1 with some thickenning to the collar, it turns out that the isometries
of the thickenned super point are just reflection (so {±1}). The Z/2-
action is the same as a Z/2-grading. So SE(spt) = Z/2-graded Hilbert
(really Frechét) space. So we define SE(spt) to be ΓL2(SM ).
Remember that E ∈ EFT 1 gives a smooth semi-group homomorphism

R+ → Btc(H) (bounded trace class operators) (the R+ comes from the
moduli space of Riemannian circles), given by t 7→ E([0, t]). If you have
a super symmetric SE ∈ EFT 1|1, you get a super semi-group homo-

morphism R+ × R0|1 → Btc(H). The R+ × R0|1 is the moduli stack
of Riemannian intervals, with super group structure (t1, θ1)(t2, θ2) =
(t1 + t2 + θ1θ2, θ1 + θ2); the Lie algebra is free on one odd generator.
[[⋆⋆⋆ from some stuff]] you see that E([0, t]) must be of the form e−tA

and SE(t, θ) must be of the form e−tD
2+θD, where D is an odd operator

on H .
For our example, we take D to be the Dirac operator. We needed

compactness to get e−tD
2+θD to be trace class. ⋄

So now the theorem statement makes sense, taking A = D2. ZSE(t) =
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str(e−tD
2

). Now we’re back to what the physicists showed us a few
decades ago, susy cancellation.
Let’s calculate str(e−tD

2

). Pretend that we can diagonalize D2 (self-
adjointness comes from symmetry if the interval when you reflect), so
H =

⊕
λEλ, where λ are the eigenvalues of D2.

str(e−tD
2

) =
∑

λ

e−tλ sdimEλ = sdimE0 = sdimker(D) = index(D)

We have the operator D : Eλ → Eλ (because D commutes with D2).
The Eλ are graded, and D is an odd operator. If λ 6= 0, then D is an
isomorphism of Eλ, but then the super dimension is zero.
[[break]]
Now consider

EFT 2
Ω∅−−−→
conn

FunMan

(
Ωcl∅RB2,Man(C)

)

= C∞(h× R+) (*)

We assume that we only use flat surfaces because we want to do elliptic
cohomology (the only compact flat manifolds are tori, which are exactly
the elliptic curves). Maybe this should be called FFT . We also restrict
to flat Riemannian manifolds in RBcl2 . So Ω∅RB2 is the moduli space of
flat tori, which is h × R+/SL2(Z) (where h is the upper half plane, the
conformal part, and the R+ is the area of the torus). The SL2(Z) action
is given by

(
a b
c d

)
(τ, ℓ) =

(
aτ+b
cτ+d , |cτ + d| · ℓ

)
. Note that you change the

area of the torus when you act, so you can’t just say “I’ll just work with
area 1 tori”.
The map in (∗) is given by E 7→ E(Tτ,ℓ) =: ZE(τ, ℓ), which is called

the partition function. We have

{integral modular fuctions} ⊆d {modular function}
⊆c Hol(h)SL2Z

⊆b C∞(h)SL2Z

⊆a C∞(h× R+)
SL2Z ∋ ZE

(a) says ∂
∂ℓZE = 0. (b) says ∂

∂qZE.

There is a map h → D2 r 0 (interior of the disk minus the center),
given by τ 7→ e2πiτ =: q. f(τ) is a function of q if f is invariant under(
1 k
0 1

)
⊆ SL2Z. f is modular if f(q) can be extended to 0 with a pole of

finite order. (c) says ZE is modular.

Theorem 29.3. If SE ∈ EFT 2|1, then ZE(τ, ℓ) is an integral modular
function (i.e. statements a,b,c, and d are true).

For the proof for d = 1, we realized that

ZE(t) = E(S1
t ) =gluing strE([0, 1]) = str(e−tD

2

).

For d = 2, let Aτ,ℓ be the annulus (don’t identify the top and bottom of
the parallelogram).

ZE(τ, ℓ) = E(Tτ,ℓ) = str(E(Aτ,ℓ)︸ ︷︷ ︸
∈Btc(H)

) = str(qL0 q̄L0)

=
∑

λ(ℓ),µ(ℓ)

qλq̄µ sdimEλ,µ =susy
∑

λ

qλ sdimEλ,0︸ ︷︷ ︸
an:=

Hℓ = E(S1
ℓ ). [L0, L0] = 0. λ and µ are eigenvalues of L0, L0.

If we fix the length ℓ, we get a 2-dimensional semigroup with 2 infinites-
imal generators. Now the super symmetry tells me that L0(ℓ) = G0(ℓ)

2

for some odd operator G0(ℓ) on Hℓ ([G0, G0] = 0). If we had two square
roots, the function would have to be constant. λ ∈ Z because L0 − L0

generates a circle action. Since everthing is smooth in ℓ, and things are in-
tegers, so they are independent of ℓ. From something, the sum is bounded
from below (starts at some point, bigger than −∞).



41 NR 12-07, v. 10-4 169

41 NR 12-07

Last time I talked about discrete 2-dimensional Yang-Mills theory.
In 4-dimensional Yang-Mills theory, the fields are connections on a prin-

cipal G-bundle on a 4-dimensional manifoldM . For physical applications,
M is Minkowski (it has a non-degenerate 2-form of signature (1, 3)). The
action functional is

A(A) =
∫

M

tr(F (A)2) dx

matter︷ ︸︸ ︷
+
1

2

∫

M

〈∇φ,∇φ〉 dx +

∫

M

V (φ) dx

+

∫

M

(ψ,Dψ) d2x+m

∫

M

(ψ, ψ)[[mass]] +

∫

M

F ((ψ, ψ)) dx

︸ ︷︷ ︸
fermions

(D the dirac operator) We can add matter fields (add sections of a G-
bundle where fibers are some representations of G). We can add fermions
(sections of a G-bundle of super vector spaces).
Can we quantize this? The machinery for (perturbative) quantizing is

Feynman diagrams. The major obstruction is that the Feynman diagrams
diverge. The question (for physics) is how to fix this to get something that
can be tested. Mathematically, the whole problem requires redefinition.
There are two kinds of divergence. Some of the divergences can be ab-
sorbed in the fact that you have infinitely many degrees of freedom. The
first thing you have to do is deal with the gauge symmetry. This is what
FP, BRST, and BV do. Then you have to deal with renormalization.
The standard game played in high energy physics is to start with a

large symmetry group (G = SU(N), N = 4) and try to break them.
How many orders of perturbation theory should we compute? We know

the series diverges, so you should compute more than, say, 10 orders.
There are also theories that are interesting from the mathematical per-

spective, like Chern-Simons theory. Probably the most interesting is
3-dimensional Chern-Simons. The fields are connections on the trivial
G-bundle on M3.. The action functional is

A(A) =
∫

M

tr
(
A ∧ dA+

2

3
A ∧ A ∧ A

)

This is not invariant, but it is invariant under infinitesimal transforma-
tions A 7→ [γ,A] + dγ, where γ : M → g. e2πiA(A) is invariant under
global transformations because the difference is an integer (if you pick
the coefficients right). One can, for any integer n, try to make sense of

∫

connections

e2πinA(A)DA

If n is finite, it is hard. For n → ∞, first you should find critical points.
(1) it is easy to see that the critical points are flat connections, for which
F (A) = 0. (2) the integral should be the “sum” over all guage classes of
flat connections “

∑∫
exp(2πinA(A+α))Dα”, where α is a 1-form onM

with coefficients in G. α is small in the sense that that

nA(A+α) = nA(A)+
∫

M

tr(α∧dα)+n
∫

M

tr(α∧A∧α)+2

3

∫

M

tr(α∧α∧α)

Rescale α → α/
√
n, and consider the formal power series expansion of

the integral:

“
∑

”e2πinA(A)

∫
e
2πi

∫
(α∧DAα)+2πi 2

3
√

n

∫
tr(α∧α∧α)Dα =

∑

Γ

F (Γ)

|AutΓ|

if such expressions existed. The propagator in the diagrams would be
(DA)−1. If we had expressions that made sense, it would overcome the
problem (by introducing a metric, say) that each diagram diverges (be-
cause of the gauge invariance), then we’d have to show that the result is
independent of metric or whatever. This is how finite type invariants of
3-manifolds were started.
Let’s focus on the problem of how to deal with gauge theory. I promised

to talk about BV, so that’s what I’ll do now. Next time I’ll write the
answer for Feynman diagrams describing Chern-Simons theory.
So what does BV do? It deals with the problem that you might have

integrals ∫

X

eA/h dx

where there is a group G acting (locally freely, say) on X . We want to
find a formal power series expansion for this integral. Assume that X has
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a volume form dx. We can try to write the integral as
∫

X/G

e[A]/h [dx]

The problem is that even if X is a linear space, the quotient can be quite
bad. The idea is to replace the integral using the spirit of cohomological
field theories by an integral over some huge superspace E:

∫

E

eÃ/hdy

where d : F (E) → F (E) is a vector field on E and d(eÃ/h) = 0. Catta-
neo and Felder define BV-style cohomological field theory, Poisson sigma
model, which gives the star product for Poisson manifolds.
What are the main ingredients of BV theory?

– A manifold X with a volume form dx.

– G acting on X , preserving the volume form dx. If {eα} is a ba-
sis for g = Lie(G), let the action be given by vector fields Xα =∑

iX
i
α(x)

∂
∂Xi in local coordinates.

– X̃ = X × g[1], the super manifold where X is the even part and g is
the odd part.

– because G acts on X , it induces an odd vector field Q on X̃ . Q acts

on functions on X̃, which are Fun(X)⊗∧· g∗[1]. As a super vector
space, it is C·(g, Fun(X)). It has a differential, which is Q. We
assume that Hi(g, Fun(X)) = δi,0H0(g, X) = Fun(X/G).

In local coordinates {xi} on X and {cα} on g, with [eα, eβ ] =∑
γ e

γ
αβcγ . In local coordinates, the BRST operator is

Q =
∑

α,i

cαX i
α(x)

∂

∂xi
+

1

2

∑

α,β,γ

cγαβc
αcβ

∂

∂cγ
.

– The odd cotangent bundle E = πT ∗X̃. X has a volume form. [As-

sume g has a g-invariant scalar product, so that X̃ has a volume
form.] We have the odd ω =

∑
i dx

idξi +
∑

α dc
αdλα (ξ and λ are

the cotangent directions to x and c). We have {F,G} on Fun(πT ∗X̃).

– Q lifts of an odd vector field on E. This lift is Hamiltonian, with
hQ =

∑
α c

αX i
α(x)ξi +

1
2

∑
α,β,γ c

γ
αβc

αcβλγ . Denote QE = Q. This

is still odd, and Q2 = 0. So QF = {hQ, F}.

– If A is a G-invariant function on X , it pulls back to a function on X̃
and on E. Let’s denote the pull back to E also by A. What can we
say about it? (i) {hQ, A} = 0 because A is G-invariant. (ii) X̃ is a
Lagrangian in E, so {A,A} = 0. (iii) {hQ, hQ} = 0 because Q2 = 0
(this is non-trivial because Q is odd). So {hQ + A, hQ +A} = 0.

We have an L∞-algebra. We have (E,Q), Ã = A + hQ ∈ Fun(E).

This has the properties that QÃ = 0 and {Ã, Ã} = 0 (this is an
indication that it came from some Lagrangian submanifold).
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42 NR 12-10

I’ll (NR) keep working on the lecture notes. After January, they should
be edited a fair amount.
Today I’ll try to outline the perturbation theory of Chern-Simons.
First let me explain the concept of BV quantization. The problem

whne you read the papers is that you don’t see that this is equal to
that. Instead, you have things that you know don’t quite make sense, like∫
X/G

eA/h[dx], which you have to replace by something else in order to
compute it.
You can have two different quasi-isomorphic field theories. The BV

concept is to replace these integrals
∫
X/G

eA/h[dx] by

∫

L⊆E
eÃ/h dx̃ (∗)

where X̃ = X × g[1] and E = πT ∗X̃. The action of G on X (which

has a volume form) induces an odd vector field Q on X̃. This Q lifts
to a Hamiltonian vector field on the odd cotangent bundle E. E has
the odd symplectic form ω = dα. This lift of Q is Hamiltonian, with
hQ =

∑
α,i c

αX i
α(x)ξi +

1
2

∑
α,β,γ c

γ
αβc

αcβλγ , where x are coordinates on
X , cα are coordinates on g[1], ξ are coordinates on the fibers of T ∗X ,
and λ are coordinates on g∨. [[⋆⋆⋆ some discussion among NR, PT,

and BD]] Given Q : X̃ → T X̃ ∼= T ∗X̃, dQ : T X̃ → TT X̃ ∼= T (T ∗X̃). hQ
should be a canonical construction.
We’re doing all this for one reason. We want to compute

∫
X e

A/h dx
(if G is compact). We cannot compute the perturbative expansion be-
cause the G-symmetry makes stuff degenerate. There are isolated critical
points, and we only need formal neighborhoods of these critical points to
compute with, and in these neighborhoods, we can use local coordinates.
The action A is G-invariant. We can pull it back to X̃ and to E. Let

A also denote the pullback of A to E. G-invariance says that A|X̃ is such
that QA = 0. G-invariance on E means that {hQ, A} = 0, where {F,G}
is the odd Poisson bracket on Fun(E) induced by ω.
Q2 = 0, which means that {hQ, hQ} = 0 (this is non-trivial because

the bracket is odd).

X̃ →֒ E = πT ∗X̃ (the zero section) is a Lagrangian submanifold. This

means that {A,A} = 0. Again, this is non-trivial because the bracket is
odd.
When we combine all this, we have that {hQ + A, hQ + A} = 0. Let

Ã = hQ + A. The goal is to choose Ã so that it is non-degenerate at

critical points and “
∫
L
eÃ/h dx̃ =

∫
X
eA/h dx”. Assume Ã has a critical

point at zero (let X be a pointed manifold). In a neighborhood of this
point, we want to look at Ã(m) = 1

2

(
m, q(m)

)
+ S(m), where S(m) is

O(m3) and
(
m, q(m)

)
is the pairing induced by ω and q is some linear

operator (m is a tangent vector). Let q̂(m) =
(
m, q(m)

)
.

Then we have {Ã, Ã} = 0. This is equivalent to q2 = 0 as a linear
operator, and {q̂, S}+ {S, S} = 0.

Claim. Generically (cohomologies of Fun(E) are non-zero only in degree

0), q is non-degenerate on L. That is,
∫
L
eÃ/h dx̃ defines a formal power

series that is a candidate for (∗).
This handles the problem of degeneracy, but creates another problem.

Such integrals, as they are written, depend on L. We should also argue
why this integral has anything to do with what we started with. There
are two lemmas. [[I’m very happy to have learned all this stuff, but it
is still settling. I advise you to look at the lecture notes at the end of
January.]] We want the integral to only depend on the cohomology class
of Ã. We want to argue that the proposed integral is

∫
L0
eA/h dx̃ where

L0 is X × g[1] = X̃ (the zero section). Then we can argue that this is∫
X
dA/h dx, but not now.
X has a volume form, and G has Haar measure on it, so we get a vol-

ume form on X̃. Locally, assume {ai} are coordinates on X̃ and {αi}
are coordinates in the cotangent direction. Assume a’s are even and α’s
are odd (this is a brave assumption; it is not true in our case). Then

we have the operator (called the BV Laplacian) ∆ =
∑

i
∂2

∂ai∂αi
. Lo-

cally, Fun(πT ∗X̃) = {
∑

{i} f
i1...ik(a)αi1 · · ·αik}, which are forms on X̃.

∆: Ω·(X̃)→ Ω·(X̃) is the Hodge dual of the differential d∗. PT: how do
you get the Hodge operator from just the volume form? I know how to
do it with a metric. NR: We could equip X with a metric, but I think it
is possible to get the Hodge operator just from the volume form.

Lemma 42.1 (α). If ∆F = 0,
∫
L
F ṽol =

∫
Lσ
F ṽol where Lσ is a La-
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grangian homotopic to L. Here F is a function and we integrate against
the volume form on L (and some deformaed volume form on Lσ).

The proof I know is not very satisfactory. Assume L = L0 and let
Lσ = {ξ = dσ(x̃)} for some function σ on X̃.

Lemma 42.2 (β).
∫
L
∆F · vol = 0.

Once we have these two lemmas, we can use Lemma α to get∫
L
eÃ/h dx̃ =

∫
L0
eA/h dx̃, and Lemma β to replace A by anything in

the same cohomology class.
It seems like it isn’t very clear how this formalism works for manifolds

with boundary.
Let me say how this changes the näıve perturbation for Chern-Simons.

We want to make sense of
∫
eikCS(A)DA, where the integral is over con-

nections on a G-bundle on M3. We want to make sense of this integral
as k →∞.

CS(A0 + α)− CS(A0) = S2(α) + S3(α)

gives Feynman diagrams with trivalent vertices. Still some trouble, so we
use BV. BV is too general, so use FP. The Feynman diagrams you get after
applying this machinery will have the same trivalent vertices and the same
propagators. The difference is that they will not be bosonic diagrams.
There will be an extra factor of (−1)#. This happens because we used
the technique of making a perturbative expansion on a theory which is a
quasi-isomorphic theory. You then check that the result is independent of
all the choices you made. This is what is called perturbative, or finite type,
invariants of 3-manifolds. This stuff has only been done for manifolds
without boundary, but for QFT we certainly need to do it for manifolds
with boundary. So many things are still open.
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