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How these notes came to be 4

How these notes came to be

Among the Berkeley professors, there was once Allen Knutson, who
would teach Math 261. But it happened that professor Knutson was
on sabbatical at UCLA, and eventually went there for good. During this
turbulent time, Maths 261AB were cancelled two years in a row. The
last of these four semesters (Spring 2006), some graduate students gath-
ered together and asked Nicolai Reshetikhin to teach them Lie theory in
a giant reading course. When the dust settled, there were two other pro-
fessors willing to help in the instruction of Math 261A, Vera Serganova
and Richard Borcherds. Thus Tag Team 261A was born.

After a few lectures, professor Reshetikhin suggested that the stu-
dents write up the lecture notes for the benefit of future generations.
The first four lectures were produced entirely by the “editors”. The re-
maining lectures were LATEXed by Anton Geraschenko in class and then
edited by the people in the following table. The columns are sorted by
lecturer.

Nicolai Reshetikhin Vera Serganova Richard Borcherds

1 Anton Geraschenko 11 Sevak Mkrtchyan 21 Hanh Duc Do
2 Anton Geraschenko 12 Jonah Blasiak 22 An Huang
3 Nathan George 13 Hannes Thiel 23 Santiago Canez
4 Hans Christianson 14 Anton Geraschenko 24 Lilit Martirosyan
5 Emily Peters 15 Lilit Martirosyan 25 Emily Peters
6 Sevak Mkrtchyan 16 Santiago Canez 26 Santiago Canez
7 Lilit Martirosyan 17 Katie Liesinger 27 Martin Vito-Cruz
8 David Cimasoni 18 Aaron McMillan 28 Martin Vito-Cruz
9 Emily Peters 19 Anton Geraschenko 29 Anton Geraschenko
10 Qingtau Chen 20 Hanh Duc Do 30 Lilit Martirosyan

31 Sevak Mkrtchyan

Richard Borcherds then edited the last third of the notes. The notes
were further edited (and often expanded or rearranged) by Crystal Hoyt,
Sevak Mkrtchyan, and Anton Geraschenko.

Send corrections and comments to anton@math.berkeley.edu.

mailto:anton@math.berkeley.edu
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Dependence of results and other informa-

tion

Within a lecture, everything uses the same counter, with the exception
of exercises. Thus, item a.b is the b-th item in Lecture a, whether it is
a theorem, lemma, example, equation, or anything else that deserves a
number and isn’t an exercise.
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Lecture 1

Definition 1.1. A Lie group is a smooth manifold G with a group
structure such that the multiplication µ : G × G → G and inverse map
ι : G→ G are smooth maps.

◮ Exercise 1.1. If we assume only that µ is smooth, does it follow that
ι is smooth?

Example 1.2. The group of invertible endomorphisms of Cn, GLn(C),
is a Lie group. The automorphisms of determinant 1, SLn(C), is also a
Lie group.

Example 1.3. If B is a bilinear form on Cn, then we can consider the
Lie group

{A ∈ GLn(C)|B(Av,Aw) = B(v, w) for all v, w ∈ Cn}.

If we take B to be the usual dot product, then we get the group On(C).
If we let n = 2m be even and set B(v, w) = vT

(
0 1m

−1m 0

)
w, then we get

Sp2m(C).

Example 1.4. SUn ⊆ SLn(C) is a real form (look in lectures 27,28, and
29 for more on real forms).

Example 1.5. We’d like to consider infinite matrices, but the multi-
plication wouldn’t make sense, so we can think of GLn ⊆ GLn+1 via
A 7→ ( A 0

0 1 ), then define GL∞ as
⋃

nGLn. That is, invertible infinite
matrices which look like the identity almost everywhere.

Lie groups are hard objects to work with because they have global
characteristics, but we’d like to know about representations of them.
Fortunately, there are things called Lie algebras, which are easier to work
with, and representations of Lie algebras tell us about representations of
Lie groups.

Definition 1.6. A Lie algebra is a vector space V equipped with a Lie
bracket [ , ] : V × V → V , which satisfies

1. Skew symmetry: [a, a] = 0 for all a ∈ V , and

2. Jacobi identity: [a, [b, c]]+ [b, [c, a]]+ [c, [a, b]] = 0 for all a, b, c ∈ V .

A Lie subalgebra of a Lie algebra V is a subspace W ⊆ V which is closed
under the bracket: [W,W ] ⊆W .
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Example 1.7. If A is a finite dimensional associative algebra, you can
set [a, b] = ab − ba. If you start with A = Mn, the algebra of n × n
matrices, then you get the Lie algebra gln. If you let A ⊆ Mn be the
algebra of matrices preserving a fixed flag V0 ⊂ V1 ⊂ · · ·Vk ⊆ Cn, then
you get parabolicindexparabolic subalgebras Lie sub-algebras of gln.

Example 1.8. Consider the set of vector fields on Rn, Vect(Rn) = {ℓ =
Σei(x) ∂

∂xi
|[ℓ1, ℓ2] = ℓ1 ◦ ℓ2 − ℓ2 ◦ ℓ1}.

◮ Exercise 1.2. Check that [ℓ1, ℓ2] is a first order differential operator.

Example 1.9. If A is an associative algebra, we say that ∂ : A → A is
a derivation if ∂(ab) = (∂a)b + a∂b. Inner derivations are those of the
form [d, ·] for some d ∈ A; the others are called outer derivations. We
denote the set of derivations of A by D(A), and you can verify that it is
a Lie algebra. Note that Vect(Rn) above is just D(C∞(Rn)).

The first Hochschild cohomology, denoted H1(A,A), is the quotient
D(A)/{inner derivations}.

Definition 1.10. A Lie algebra homomorphism is a linear map φ : L→
L′ that takes the bracket in L to the bracket in L′, i.e. φ([a, b]L) =
[φ(a), φ(b)]L′. A Lie algebra isomorphism is a morphism of Lie algebras
that is a linear isomorphism.1

A very interesting question is to classify Lie algebras (up to isomor-
phism) of dimension n for a given n. For n = 2, there are only two: the
trivial bracket [ , ] = 0, and [e1, e2] = e2. For n = 3, it can be done
without too much trouble. Maybe n = 4 has been done, but in general,
it is a very hard problem.

If {ei} is a basis for V , with [ei, ej ] = ckijek (the ckij are called the
structure constants of V ), then the Jacobi identity is some quadratic
relation on the ckij , so the variety of Lie algebras is some quadratic surface
in C3n.

Given a smooth real manifold Mn of dimension n, we can construct
Vect(Mn), the set of smooth vector fields on Mn. For X ∈ Vect(Mn),
we can define the Lie derivative LX by (LX · f)(m) = Xm · f , so LX acts
on C∞(Mn) as a derivation.

◮ Exercise 1.3. Verify that [LX , LY ] = LX ◦LY −LY ◦LX is of the form
LZ for a unique Z ∈ Vect(Mn). Then we put a Lie algebra structure on
Vect(Mn) = D(C∞(Mn)) by [X, Y ] = Z.

1The reader may verify that this implies that the inverse is also a morphism of
Lie algebras.
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There is a theorem (Ado’s Theorem2) that any Lie algebra g is iso-
morphic to a Lie subalgebra of gln, so if you understand everything about
gln, you’re in pretty good shape.

2Notice that if g has no center, then the adjoint representation ad : g → gl(g) is
already faithful. See Example 7.4 for more on the adjoint representation. For a proof
of Ado’s Theorem, see Appendix E of [FH91]
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Lecture 2

Last time we talked about Lie groups, Lie algebras, and gave examples.
Recall that M ⊆ L is a Lie subalgebra if [M,M ] ⊆ M . We say that M
is a Lie ideal if [M,L] ⊆M .

Claim. If M is an ideal, then L/M has the structure of a Lie algebra
such that the canonical projection is a morphism of Lie algebras.

Proof. Take l1, l2 ∈ L, check that [l1 +M, l2 +M ] ⊆ [l1, l2] +M .

Claim. For φ : L1 → L2 a Lie algebra homomorphism,

1. ker φ ⊆ L1 is an ideal,

2. imφ ⊆ L2 is a Lie subalgebra,

3. L1/ kerφ ∼= imφ as Lie algebras.

◮ Exercise 2.1. Prove this claim.

Tangent Lie algebras to Lie groups

Let’s recall some differential geometry. You can look at [Lee03] as a
reference. If f : M → N is a differentiable map, then df : TM → TN is
the derivative. If G is a group, then we have the maps lg : x 7→ gx and
rg : x 7→ xg. Recall that a smooth vector field is a smooth section of the
tangent bundle TM →M .

Definition 2.1. A vector field X is left invariant if (dlg) ◦X = X ◦ lg
for all g ∈ G. The set of left invariant vector fields is called VectL(G).

TG
dlg

// TG

G

X

OO

lg
// G

X

OO

Proposition 2.2. VectL(G) ⊆ Vect(G) is a Lie subalgebra.

Proof. We get an induced map l∗g : C∞(G) → C∞(G), and X is left
invariant if and only if LX commutes with l∗G. Then
X, Y left invariant ⇐⇒ [LX , LY ] invariant ⇐⇒ [X, Y ] left invariant.

All the same stuff works for right invariant vector fields VectR(G).

Definition 2.3. g = VectL(G) is the tangent Lie algebra of G.
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Proposition 2.4. There are vector space isomorphisms VectL(G) ≃ TeG
and VectR(G) ≃ TeG. Moreover, the Lie algebra structures on TeG in-
duced by these isomorphisms agree.

Note that it follows that dim g = dimG.

Proof. Recall fibre bundles. dlg : TeG
∼−→ TgG, so TG ≃ Te ×G. X is a

section of TG, so it can be thought of as X : G → TeG, in which case
the left invariant fields are exactly those which are constant maps, but
the set of constants maps to TeG is isomorphic to TeG.

If G is an n dimensional Cω Lie group, then g is an n dimensional
Lie algebra. If we take local coordinates near e ∈ G to be x1, . . . , xn :
Ue → Rn with m : Rn × Rn → Rn the multiplication (defined near 0).
We have a power series for m near 0,

m(x, y) = Ax+By + α2(x, y) + α3(x, y) + · · ·

where A,B : Rn → Rn are linear, αi is degree i. Then we can consider
the condition that m be associative (only to degree 3): m(x,m(y, z)) =
m(m(x, y), z).

m(x,m(y, z)) = Ax+Bm(y, z) + α2(x,m(y, z)) + α3(x,m(y, z)) + · · ·
= Ax+B(Ay +Bz + α2(y, z) + α3(y, z)))

+ α2(x,Ay +Bz + α2(y, z)) + α3(x,Ay +Bz)

m(m(x, y), z) =

Comparing first order terms (remember that A,B must be non-singular),
we can get that A = B = In. From the second order term, we can get
that α2 is bilinear! Changing coordinates (φ(x) = x+φ2(x)+φ3(x)+· · · ,
with φ−1(x) = x− φ2(x) + φ̃3(x) + · · · ), we use the fact that mφ(x, y) =
φ−1m(φx, φy) is the new multiplication, we have

mφ(x, y) = x+ y + (φ2(x) + φ2(y) + φ2(x+ y)
︸ ︷︷ ︸

can be any symm form

) + α2(x, y) + · · ·

so we can tweak the coordinates to make α2 skew-symmetric. Looking
at order 3, we have

α2(x, α2(y, z)) + α3(x, y + z) = α2(α2(x, y), z) + α3(x+ y, z) (2.5)

◮ Exercise 2.2. Prove that this implies the Jacobi identity for α2. (hint:
skew-symmetrize equation 2.5)

Remarkably, the Jacobi identity is the only obstruction to associativ-
ity; all other coefficients can be eliminated by coordinate changes.
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Example 2.6. Let G be the set of matrices of the form
(
a b
0 a−1

)
for a, b

real, a > 0. Use coordinates x, y where ex = a, y = b, then

m((x, y), (x′, y′)) = (x+ x′, exy′ + ye−x
′

)

= (x+ x′, y + y′ + (xy′ − x′y
︸ ︷︷ ︸

skew

) + · · · ).

The second order term is skew symmetric, so these are good coordinates.
There are H,E ∈ TeG corresponding to x and y respectively so that
[H,E] = E1.

◮ Exercise 2.3. Think about this. If a, b commute, then eaeb = ea+b.
If they do not commute, then eaeb = ef(a,b). Compute f(a, b) to order 3.

1what does this part mean?
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Lecture 3

Last time we saw how to get a Lie algebra Lie(G) from a Lie group G.

Lie(G) = VectL(G) ≃ VectR(G).

Let x1, ..., xn be local coordinates near e ∈ G, and let m(x, y)i be
the ith coordinate of (x, y) 7→ m(x, y). In this local coordinate
system, m(x, y)i = xi + yi + 1

2

∑
cijkx

jyk + · · · . If e1, ..., en ∈ TeG
is the basis induced by x1, ..., xn, (ei ∼ ∂i), then

[ei, ej ] =
∑

k

ckijek.

Example 3.1. Let G be GLn, and let (gij) be coordinates. Let X :
GLn → TGLn be a vector field.

LX(f)(g) =
∑

i,j

Xij(g)
∂f(g)

∂gij

, where LX(l∗h(f))(g) =

{
lh : g 7→ hg
l∗h(f)(g) = f(h−1g)

}

=
∑

i,j

Xij(g)
∂f(h−1g)

∂gij
=
∑

i,j

Xij(g)
∂(h−1g)kl
∂gij

∂f(x)

∂xkl
|x=h−1g

= 〈∂(h
−1g)kl
∂gij

=
∑

m

(h−1)km
∂gml
∂gij
︸ ︷︷ ︸

=δimδlj

= (h−1)kiδjl〉

=
∑

i,j,k

Xij(g)(h
−1)ki

∂f

∂xkj
|x=h−1g

=
∑

j,k

(
∑

i

(h−1)kiXij(g)

)

∂f

∂xkj
|x=h−1g

If we want X to be left invariant,
∑

i(h
−1)kiXij(g) = Xkj(h

−1g), then
LX(l∗h(f)) = l∗h(LX(f)), (left invariance of X).

Example 3.2. All solutions are Xij(g) = (g ·M)ij , M-constant n × n
matrix. gives that left invariant vector fields on GLn ≈ n × n matrices
= gln. The “Natural Basis” is eij = (Eij), Lij =

∑

m(g)mj
∂

∂gmi
.

Example 3.3. Commutation relations between Lij are the same as com-
mutation relations between eij .
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Take τ ∈ TeG. Define the vector field: vτ : G → TG by vτ (g) =
dlg(τ), where lg : G → G is left multiplication. vτ is a left invariant
vector field by construction.

Consider φ : I → G, dφ(t)
dt

= vτ (φ(t)), φ(0) = e.

Proposition 3.4.

1. φ(t+ s) = φ(t)φ(s)

2. φ extends to a smooth map φ : R→ G.

Proof. 1. Fix s and α(t) = φ(s)φ(t), β(t) = φ(s+ t).

– α(0) = φ(s) = β(0)

– dβ(a)
dt

= dφ(s+t)
dt

= vτ (β(t))

– dα(t)
dt

= d
dt

(φ(s)φ(t)) = dlφ(s)·vτ (φ(t)) = vτ (φ(s)φ(t)) = vτ (α(t)),
where the second equality is because vτ is linear.

=⇒ α satisfies same equation as β and same initial conditions, so
by uniqueness, they coincide for |t| < ǫ.

2. Now we have (1) for |t+ s| < ǫ, |t| < ǫ, |s| < ǫ. Then extend φ to
|t| < 2ǫ. Continue this to cover all of R.

This shows that for all τ ∈ TeG, we have a mapping R→ G and it’s
image is a 1-parameter (1 dimensional) Lie subgroup in G.

exp : g = TeG → G

τ 7→ φτ (1) = exp(τ)

Notice that λτ 7→ exp(λτ) = φλτ (1) = φτ (λ)

Example 3.5. GLn, τ ∈ gln = TeGLn,
dφ(t)
dt

= vτ (φ(t)) ∈ Tφ(t)GLn ≃
gln.

vτ (φ(t)) = φ(t) · τ, dφ(t)

dt
= φ(t) · τ, φ(0) = I,

φ(t) = exp(tI) =
∞∑

n=0

tnτn

n!

exp : gln → GLn
[

Lγ(0)=g(f)(g) =
d

dt
f(γ(t))|t=0

]



Lecture 3 14

Baker-Campbell-Hausdorff formula:

eX · eY = eH(X,Y )

H(X, Y ) = X + Y
︸ ︷︷ ︸

sym

+
1

2
[X, Y ]
︸ ︷︷ ︸

skew

+
1

12
([X[X, Y ]] + [Y [Y,X]])

︸ ︷︷ ︸
symmetric

+ · · ·

Proposition 3.6. 1. Let f : G→ H be a Lie group homomorphism,

then the diagram G
f

//
OO

exp

HOO
exp

Lie(G)
dfe

// Lie(H)

is commutative.

2. If G is connected, then (df)e defines the Lie group homomorphism
f uniquely.

Proof. Next time.

Proposition 3.7. G,H Lie groups, G simply connected, then α : Lie(G) →
Lie(H) is a Lie algebra homomorphism if and only if there is a Lie group
homomorphism A : G→ H lifting α.

Proof. Next time.

{Lie algebras } exp−−→ { Lie groups(connected, simply connected)} is
an equivalence of categories.
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Lecture 4

Theorem 4.1. Suppose G is a topological group. Let U ⊂ G be an open
neighbourhood of e ∈ G. If G is connected, then

G =
⋃

n≥1

Un.

Proof. Choose a non-empty open set V ⊂ U such that V = V −1, for
example V = U ∩ U−1. Define H = ∪n≥1V

n, and observe H is an
abstract subgroup, since V nV m ⊆ V n+m. H is open since it is the union
of open sets. If σ /∈ H , then σH 6⊂ H , since otherwise if h1, h2 ∈ H
satisfy σh1 = h2, then σ = h2h

−1
1 ∈ H . Thus H is a complement of

the union of all cosets not containing H . Hence H is closed. Since G is
connected, H = G.

Theorem 4.2. Let f : G → H be a Lie group homomorphism. Then
the following diagram commutes:

Te
(df)e

//

exp

��

TeH

exp

��

G
f

//H

Further, if G is connected, (df)e determines f uniquely.

Proof. 1) Commutative diagram. Fix τ ∈ TeG and set η = dfeτ ∈ TeH .
Recall we defined the vector field Vτ (g) = (dlg)(τ), then if φ(t) solves

dφ

dt
= Vτ (φ(t)) ∈ Tφ(t)G,

we have exp(τ) = φ(1). Let ψ solve

dψ

dt
= Vη(ψ(t)),

so that exp(η) = ψ(1). Observe ψ̃(t) = f(φ(t)) satisfies

dψ̃

dt
= (df)

(
dφ

dt

)

= Vη(ψ̃),

so by uniqueness of solutions to ordinary differential equations, ψ = ψ̃.
2) Uniqueness of f . The exponential map is an isomorphism of a

neighborhood of 0 ∈ g and a neighborhood of e ∈ G. But if G is
connected, G = ∪n≥1(nbd e)n.
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Theorem 4.3. Suppose G is a topological group, with G0 ⊂ G the con-
nected component of e. Then 1) G0 is normal and 2) G/G0 is discrete.

Proof. 2) G0 ⊂ G is open implies pr−1([e]) = eG0 is open in G, which in
turn implies pr−1([g]) ∈ G/G0 is open for every g ∈ G. Thus each coset
is both open and closed, hence G/G0 is discrete.

1) Fix g ∈ G and consider the map G → G defined by x 7→ gxg−1.
This map fixes e and is continuous, which implies it maps G0 into G0.
In other words, gG0g−1 ⊂ G0, or G0 is normal.

We recall some basic notions of algebraic topology. Suppose M is a
connected topological space. Let x, y ∈M , and suppose γ(t) : [0, 1] →M
is a path from x to y in M . We say γ̃(t) is homotopic to γ if there is a
continuous map h(s, t) : [0, 1]2 →M satisfying

•h(s, 0) = x, h(s, 1) = y

•h(0, t) = γ(t), h(1, t) = γ̃(t).

We call h the homotopy. On a smooth manifold, we may replace h with
a smooth homotopy. Now fix x0 ∈ M . We define the first fundamental
group of M

π1(M,x0) = { homotopy classes of loops based at x0} .

It is clear that this is a group with group multiplication composition of
paths. It is also a fact that the definition does not depend on the base
point x0:

π1(M,x0) ≃ π1(M,x′0).

By π1(M) we denote the isomorphism class of π1(M, ·). Lastly, we say
M is simply connected if π1(M) = {e}, that is if all closed paths can be
deformed to the trivial one.

Theorem 4.4. Suppose G and H are Lie groups with Lie algebras g, h
respectively. If G is simply connected, then any Lie algebra homomor-
phism ρ : g → h lifts to a Lie group homomorphism R : G→ H.

In order to prove this theorem, we will need the following lemma.

Lemma 4.5. Let ξ : R→ g be a smooth mapping. Then

dg

dt
= (dlg)(ξ(t))

has a unique solution on all of R with g(t0) = g0.
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For convenience, we will write gξ := (dlg)(ξ).

Proof. Since g is a vector space, we identify it with Rn and for sufficiently
small r > 0, we identify Br(0) ⊂ g with a small neighbourhood of e,
Ue(r) ⊂ G, under the exponential map. Here Br(0) is measured with the
usual Euclidean norm ‖·‖. Note for any g ∈ Ue(r) and |t−t0| sufficiently
small, we have ‖gξ(t)‖ ≤ C. Now according to Exercise 4.1, the solution
with g(t0) = e exists for sufficiently small |t− t0| and

g(t) ∈ Ue(r) ∀|t− t0| <
r

C ′ .

Now define h(t) = g(t)g0 so that h(t) ∈ Ug0(r) for |t− t0| < r/C ′. That
is, r and C ′ do not depend on the choice of initial conditions, and we
can cover R by intervals of length, say r/C ′.

◮ Exercise 4.1. Verify that there is a constant C ′ such that if |t− t0|
is sufficiently small, we have

‖g(t)‖ ≤ C ′|t− t0|.

Proof of Theorem 4.4. We will construct R : G → H . Beginning with
g(t) : [0, 1] → G satisfying g(0) = e, g(1) = g, define ξ(t) ∈ g for each t
by

g(t)ξ(t) =
d

dt
g(t).

Let η(t) = ρ(ξ(t)), and let h(t) : [0, 1] → H satisfy

d

dt
h(t) = h(t)η(t), h(0) = e.

Define R(g) = h(1).
Claim: h(1) does not depend on the path g(t), only on g.

Proof of Claim. Suppose g1(t) and g2(t) are two different paths con-
necting e to g. Then there is a smooth homotopy g(t, s) satisfying
g(t, 0) = g1(t), g(t, 1) = g2(t). Define ξ(t, s) and η(t, s) by

∂g

∂t
= g(t, s)ξ(t, s);

∂g

∂s
= g(t, s)η(t, s).

Observe

∂2g

∂s∂t
= gη ◦ ξ + g

∂ξ

∂t
and (4.6)

∂2g

∂t∂s
= gξ ◦ η + g

∂η

∂s
, (4.7)
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and (4.6) is equal to (4.7) since g is smooth. Consequently

∂η

∂t
− ∂ξ

∂s
= [η, ξ].

Now define an s dependent family of solutions h(·, s) to the equations

∂h

∂t
(t, s) = h(t, s)ρ(ξ(t, s)), h(0, s) = e.

Define θ(t, s) by

{
∂θ

∂t
− ∂ρ(ξ)

∂s
= [ρ(ξ), θ] ,

θ(0, s) = 0.
(4.8)

Observe θ̃(t, s) = ρ(η(t, s)) also satisfies equation (4.8), so that θ = θ̃ by
uniqueness of solutions to ODEs. Finally,

gη(1, s) =
∂g

∂s
(1, s) = 0 =⇒ θ(1, s) = 0 =⇒ ∂h

∂s
(1, s) = 0,

justifying the claim.
We need only show R : G → H is a homomorphism. Let g1, g2 ∈ G

and set g = g1g2. Let g̃i(t) be a path from e to gi in G for each i = 1, 2.
Then the path g̃(t) defined by

g̃(t) =

{
g̃1(2t), 0 ≤ t ≤ 1

2
,

g1g̃2(2t− 1), 1
2
≤ t ≤ 1

goes from e to g. Let h̃i for i = 1, 2 and h̃ be the paths inH corresponding
to g̃1, g̃2, and g̃ respectively and calculate

R(g1g2) = R(g) = h̃(1) = h̃1(1)h̃2(1) = R(g1)R(g2).
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Lecture 5

Last time we talked about connectedness, and proved the following things:

- Any connected topological group G has the property that G =
⋃

n V
n, where V is any neighborhood of e ∈ G.

- If G is a connected Lie group, with α : Lie(G) → Lie(H) a Lie
algebra homomorphism, then if there exists f : G→ H with dfe =
α, it is unique.

- If G is connected, simply connected, with α : Lie(G) → Lie(H)
a Lie algebra homomorphism, then there is a unique f : G → H
such that dfe = α.

Simply Connected Lie Groups

The map p in Z → X
p−→ Y is a covering map if it is a locally trivial fiber

bundle with discrete fiber Z. Locally trivial means that for any y ∈ Y
there is a neighborhood U such that if f : U ×Z → Z is the map defined
by f(u, z) = u, then the following diagram commutes:

p−1U

��

≃ U × Z

f
yyttttttttttt

Y ⊇ U

The exact sequence defined below is an important tool. Suppose we
have a locally trivial fiber bundle with fiber Z (not necessarily discrete),
with X, Y connected. Choose x0 ∈ X, z0 ∈ Z, y0 ∈ Y such that p(x0) =
y0, and i : Z → p−1(y0) is an isomorphism such that i(z0) = x0:

x0 ∈ π−1(y0)

��

Z
ioo

y0

We can define p∗ : π1(X, x0) → π1(Y, y0) in the obvious way (π1 is a
functor). Also define i∗ : π1(Z, z0) → π1(X, x0). Then we can define
∂ : π1(Y, y0) → π0(Z) = {connected components of Z} by taking a loop
γ based at y0 and lifting it to some path γ̃. This path is not unique, but
up to fiber-preserving homotopy it is. The new path γ̃ starts at x0 and
ends at x′0. Then we define ∂ to be the map associating the connected
component of x′0 to the homotopy class of γ.
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Claim. The following sequence is exact:

π1(Z, z0)
i∗ // π1(X, x0)

p∗
// π1(Y, y0)

∂ // π0(Z) // {0}

1. im i∗ = ker p∗

2. {fibers of ∂} ≃ π1(Y, y0)/ im p∗

3. ∂ is surjective.

Proof.

1. ker p∗ is the set of all loops which map to contractible loops in Y ,
which are loops which are homotopic to a loop in π−1(y0) based at
x0. These are exactly the loops of im i∗.

2. The fiber of ∂ over the connected component Zz ⊆ Z is the set
of all (homotopy classes of) loops in Y based at y0 which lift to
a path connecting x0 to a point in the connected component of
π−1(y0) containing i(Zz). If two loops β, γ based at y0 are in the
same fiber, homotope them so that they have the same endpoint.
Then γ̃β̃−1 is a loop based at x0. So fibers of ∂ are in one to
one correspondence with loops in Y based at y0, modulo images of
loops in X based at x0, which is just π1(Y, y0)/ im p∗.

3. This is obvious, since X is connected.

Now assume we have a covering space with discrete fiber, i.e. maps

X

p

��

Zoo

Y

such that π1(Z, z0) = {e} and π0(Z) = Z. Then we get the sequence

{e} i∗ // π1(X, x0)
p∗

// π1(Y, y0)
∂ // Z // {0}

and since p∗ is injective, Z = π1(Y )/π1(X).
Classifying all covering spaces of Y is therefore the same as describing

all subgroups of π1(Y ). The universal cover of Y is the space Ỹ such
that π1(Ỹ ) = {e}, and for any other covering X, we get a factorization

of covering maps Ỹ
f−→ X

p−→ Y .
We construct X̃, the universal cover, in the following way: fix x0 ∈ X,

and define X̃x0 to be the set of basepoint-fixing homotopy classes of paths
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connecting x0 to some x ∈ X. We have a natural projection [γx0,x] 7→ x,
and the fiber of this projection (over x0) can be identified with π1(X, x0).
It is clear for any two basepoints x0 and x′0, X̃x0 ≃ X̃x′0

via any path
γx0,x′0

. So we have

X̃x0

p

��

π1(X)oo

X

Claim. X̃x0 is simply connected.

Proof. We need to prove that π1(X̃x0) is trivial, but we know that the
fibers of p can be identified with both π1(X) and π1(X)/π1(X̃x0), so
we’re done.

Let G be a connected Lie group. We would like to produce a simply
connected Lie group which also has the Lie algebra Lie(G). It turns out
that the obvious candidate, G̃e, is just what we are looking for. It is not
hard to see that G̃e is a smooth manifold (typist’s note: it is not that
easy either. See [Hat02], pp. 64-65, for a description of the topology
on G̃e. Once we have a topology and a covering space map, the smooth
manifold structure of G lifts to G̃e. – Emily). We show it is a group as
follows.

Write γg for γ : [0, 1] → G with endpoints e and g. Define multiplica-
tion by [γg][γ

′
h] := [{γg(t)γ′h(t)}t∈[0,1]]. The unit element is the homotopy

class of a contractible loop, and the inverse is given by [{γ(t)−1}t∈[0,1]].

Claim.

1. G̃ = G̃e is a group.

2. p : G̃→ G is a group homomorphism.

3. π1(G) ⊆ G̃ is a normal subgroup.

4. Lie(G̃) = Lie(G).

5. G̃→ G is the universal cover (i.e. π1(G) is discrete).

Proof. 1. Associativity is inherited from associativity in G, compo-
sition with the identity does not change the homotopy class of a
path, and the product of an element and its inverse is the identity.

2. This is clear, since p([γg][γ̃h]) = gh.

3. We know π1(G) = ker p, and kernels of homomorphisms are normal.
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4. The topology on G̃ is induced by the topology of G in the following
way: If U is a basis for the topology on G then fix a path γe,g for
all g ∈ G. Then Ũ = {Ũγe,g} is a basis for the topology on G̃ with

Ũγe,g defined to be the set of paths of the form γ−1
e,gβγe,g with β a

loop based at g contained entirely in U .

Now take U a connected, simply connected neighborhood of e ∈ G.
Since all paths in U from e to a fixed g ∈ G are homotopic, we
have that U and Ũ are diffeomorphic and isomorphic, hence Lie
isomorphic. Thus Lie(G̃) = Lie(G).

5. As established in (4), G and G̃ are diffeomorphic in a neighborhood
of the identity. Thus all points x ∈ p−1(e) have a neighborhood
which does not contain any other inverse images of e, so p−1(e) is
discrete; and p−1(e) and π1(G) are isomorphic.

We have that for any Lie groupG with a given Lie algebra Lie(G) = g,
there exists a simply connected Lie group G̃ with the same Lie algebra,
and G̃ is the universal cover of G.

Lemma 5.1. A discrete normal subgroup H ⊆ G of a connected topo-
logical group G is always central.

Proof. For any fixed h ∈ H , consider the map φh : G → H, g 7→
ghg−1h−1, which is continuous. Since G is connected, the image is also
connected, but H is discrete, so the image must be a point. In fact, it
must be e because φh(h) = e. So H is central.

Corollary 5.2. π1(G) is central, because it is normal and discrete. In
particular, π1(G) is commutative.

Corollary 5.3. G ≃ G̃/π1(G), with π1(G) discrete central.

The following corollary describes all (connected) Lie groups with a
given Lie algebra.

Corollary 5.4. Given a Lie algebra g, take G̃ with Lie algebra g. Then
any other connected G with Lie algebra g is a quotient of G̃ by a discrete
central subgroup of G̃.

Suppose G is a topological group and G0 is a connected component
of e.

Claim. G0 ⊆ G is a normal subgroup, and G/G0 is a discrete group.
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If we look at {Lie groups} → {Lie algebras}, we have an “inverse”
given by exponential: exp(g) ⊆ G. Then G0 =

⋃

n(exp g)n. So for a
given Lie algebra, we can construct a well-defined isomorphism class of
connected, simply connected Lie groups. When we say “take a Lie group
with this Lie algebra”, we mean to take the connected, simply connected
one.

Coming Attractions: We will talk about Ug, the universal envelop-
ing algebra, C(G), the Hopf algebra, and then we’ll do classification of
Lie algebras.
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Lecture 6 - Hopf Algebras

Last time: We showed that a finite dimensional Lie algebra g uniquely
determines a connected simply connected Lie group. We also have a
“map” in the other direction (taking tangent spaces). So we have a nice
correspondence between Lie algebras and connected simply connected
Lie groups.

There is another nice kind of structure: Associative algebras. How
do these relate to Lie algebras and groups?

Let Γ be a finite group and let C[Γ] := {∑g cgg|g ∈ Γ, cg ∈ C} be
the C vector space with basis Γ. We can make C[Γ] into an associative
algebra by taking multiplication to be the multiplication in Γ for basis
elements and linearly extending this to the rest of C[Γ].1

Remark 6.1. Recall that the tensor product V and W is the linear span
of elements of the form v⊗w, modulo some linearity relations. If V and
W are infinite dimensional, we will look at the algebraic tensor product
of V and W , i.e. we only allow finite sums of the form

∑
ai ⊗ bi.

We have the following maps

Comultiplication: ∆ : C[Γ] → C[Γ] ⊗ C[Γ], given by ∆(
∑
xgg) =

∑
xgg ⊗ g

Counit: ε : C[Γ] → C, given by ε(
∑
xgg) =

∑
xg.

Antipode: S : C[Γ] → C[Γ] given by S(
∑
xgg) =

∑
xgg

−1.

You can check that

– ∆(xy) = ∆(x)∆(y) (i.e. ∆ is an algebra homomorphism),

– (∆⊗ Id) ◦∆ = (Id⊗∆) ◦∆. (follows from the associativity of ⊗),

– ε(xy) = ε(x)ε(y) (i.e. ε is an algebra homomorphism),

– S(xy) = S(y)S(x) (i.e. S is an algebra antihomomorphism).

Consider

C[Γ]
∆−→ C[Γ] ⊗C[Γ]

S⊗Id,Id⊗S−−−−−−→ C[Γ] ⊗ C[Γ]
m−→ C[Γ].

You get
m(S ⊗ Id)∆(g) = m(g−1 ⊗ g) = e

so the composition sends
∑
xgg to (

∑

g xg)e = ε(x)1A.
So we have

1“If somebody speaks Danish, I would be happy to take lessons.”
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1. A = C[Γ] an associative algebra with 1A

2. ∆ : A → A ⊗ A which is coassociative and is a homomorphism of
algebras

3. ε : A→ C an algebra homomorphism, with (ε⊗Id)∆ = (Id⊗ε)∆ =
Id.

Definition 6.2. Such an A is called a bialgebra, with comultiplication
∆ and counit ε.

We also have S, the antipode, which is an algebra anti-automorphism,
so it is a linear isomorphism with S(ab) = S(b)S(a), such that

A⊗ A
S⊗Id

Id⊗S
// A⊗ A

m

��

A

∆

OO

ε // C
1A // A

Definition 6.3. A bialgebra with an antipode is a Hopf algebra.

If A is finite dimensional, let A∗ be the dual vector space. Define the
multiplication, ∆∗, S∗, ε∗, 1A∗ on A∗ in the following way:

– lm(a) := (l ⊗m)(∆a) for all l,m ∈ A∗

– ∆∗(l)(a⊗ b) := l(ab)

– S∗(l)(a) := l(S(a))

– ε∗(l) := l(1A)

– 1A∗(a) := ε(a)

Theorem 6.4. A∗ is a Hopf algebra with this structure, and we say it
is dual to A. If A is finite dimensional, then A∗∗ = A.

◮ Exercise 6.1. Prove it.

We have an example of a Hopf algebra (C[Γ]), what is the dual Hopf
algebra?2 Let’s compute A∗ = C[Γ]∗.

Well, C[Γ] has a basis {g ∈ Γ}. Let {δg} be the dual basis, so
δg(h) = 0 if g 6= h and 1 if g = h. Let’s look at how we multiply such
things

– δg1δg2(h) = (δg1 ⊗ δg2)(h⊗ h) = δg1(h)δg2(h).

2 If you want to read more, look at S. Montgomery’s Hopf algebras, AMS, early
1990s. [Mon93]
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– ∆∗(δg)(h1 ⊗ h2) = δg(h1h2)

– S∗(δg)(h) = δg(h
−1)

– ε∗(δg) = δg(e) = δg,e

– 1A∗(h) = 1.

It is natural to think of A∗ as the set of functions Γ → C, where
(
∑
xgδg)(h) =

∑
xgδg(h). Then we can think about functions

– (f1f2)(h) = f1(h)f2(h)

– ∆∗(f)(h1 × h2) = f(h1h2)

– S∗(f)(h) = f(h−1)

– ε∗(f) = f(e)

– 1A∗ = 1 constant.

So this is the Hopf algebra C(Γ), the space of functions on Γ. If Γ is any
affine algebraic group, then C(Γ) is the space of polynomial functions
on Γ, and all this works. The only concern is that we need C(Γ × Γ) ∼=
C(Γ)⊗C(Γ), which we only have in the finite dimensional case; you have
to take completions of tensor products otherwise.

So we have the notion of a bialgebra (and duals), and the notion
of a Hopf algebra (and duals). We have two examples: A = C[Γ] and
A∗ = C(Γ). A natural question is, “what if Γ is an infinite group or a
Lie group?” and “what are some other examples of Hopf algebras?”

Let’s look at some infinite dimensional examples. If A is an infinite
dimensional Hopf algebra, and A ⊗ A is the algebraic tensor product
(finite linear combinations of formal a⊗ b s). Then the comultiplication
should be ∆ : A→ A⊗A. You can consider cases where you have to take
some completion of the tensor product with respect to some topology,
but we won’t deal with this kind of stuff. In this case, A∗ is too big, so
instead of the notion of the dual Hopf algebra, we have dual pairs.

Definition 6.5. A dual pairing of Hopf algebras A and H is a pair with
a bilinear map 〈 , 〉 : A⊗H → C which is nondegenerate such that

(1) 〈∆a, l ⊗m〉 = 〈a, lm〉

(2) 〈ab, l〉 = 〈a⊗ b,∆∗l〉

(3) 〈Sa, l〉 = 〈a, S∗l〉

(4) ε(a) = 〈a, 1H〉, εH(l) = 〈1A, l〉
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Exmaple: A = C[x], then what is A∗? You can evaluate a polynomial
at 0, or you can differentiate some number of times before you evaluate
at 0. A∗ = span of linear functionals on polynomial functions of C of the
form

ln(f) =

(
d

dx

)n

f(x)
∣
∣
x=0

.

A basis for C[x] is 1, xn with n ≥ 1, and we have

ln(x
m) =

{
m! , n = m
0 , n 6= m

What is the Hopf algebra structure on A? We already have an algebra
with identity. Define ∆(x) = x⊗ 1 + 1 ⊗ x and extend it to an algebra
homomorphism, then it is clearly coassociative. Define ε(1) = 1 and
ε(xn) = 0 for all n ≥ 1. Define S(x) = −x, and extend to an algebra
homomorphism. It is easy to check that this is a Hopf algebra.

Let’s compute the Hopf algebra structure on A∗. We have

lnlm(xN) = (ln ⊗ lm)(∆(xN))

= (ln ⊗ lm)(
∑

(
N

k

)

xN−k ⊗ xk)

◮ Exercise 6.2. Compute this out. The answer is that A∗ = C[y = d
dx

],
and the Hopf algebra structure is the same as A.

This is an example of a dual pair: A = C[x], H = C[y], with 〈xn, ym〉 =
δn,mm!.

Summary: If A is finite dimensional, you get a dual, but in the infinite
dimensional case, you have to use dual pairs.

The universal enveloping algebra

The idea is to construct a map from Lie algebras to associative algebras
so that the representation theory of the associative algebra is equivalent
to the representation theory of the Lie algebra.

1) let V be a vector space, then we can form the free associative alge-
bra (or tensor algebra) of V : T (V ) = C⊕(⊕n≥1V

⊗n). The multiplication
is given by concatenation: (v1 ⊗ · · · ⊗ vn) · (w1 ⊗ · · · ⊗wm) = v1 ⊗ · · · ⊗
vn⊗w1⊗· · ·wm. It is graded: Tn(V )Tm(V ) ⊆ Tn+m(V ). It is also a Hopf
algebra, with ∆(x) = x⊗1+1⊗x, S(x) = −x, ε(1) = 1 and ε(x) = 0. If
you choose a basis e1, . . . , en of V , then T (V ) is the free associative alge-
bra 〈e1, . . . , en〉. This algebra is Z+-graded: T (V ) = ⊕n≥0Tn(V ), where
the degree of 1 is zero and the degree of each ei is 1. It is also a Z-graded
bialgebra: ∆(Tn(V )) ⊆ ⊕(Ti ⊕ Tn−i), S(Tn(V )) ⊂ Tn(V ), ε : T (V ) → C
is a mapping of graded spaces ((C)n = {0}).
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Definition 6.6. Let A be a Hopf algebra. Then a two-sided ideal I ⊆ A
is a Hopf ideal if ∆(I) ⊆ A⊗ I + I ⊗ A, S(I) = I, and ε(I) = 0.

You can check that the quotient of a Hopf algebra by a Hopf ideal is
a Hopf algebra (and that the kernel of a map of Hopf algebras is always
a Hopf ideal).

◮ Exercise 6.3. Show that I0 = 〈v ⊗ w − w ⊗ v|v, w ∈ V = T1(V ) ⊆
T (V )〉 is a homogeneous Hopf ideal.

Corollary 6.7. S(V ) = T (V )/I0 is a graded Hopf algebra.

Choose a basis e1, . . . , en in V , so that T (V ) = 〈e1, . . . , en〉 and
S(V ) = 〈e1, . . . , en〉/〈eiej − ejei〉

◮ Exercise 6.4. Prove that the Hopf algebra S(V ) is isomorphic to
C[e1] ⊗ · · · ⊗ C[en].

Remark 6.8. From the discussion of C[x], we know that S(V ) and S(V ∗)
are dual.

◮ Exercise 6.5. Describe the Hopf algebra structure on T (V ∗) that is
determined by the pairing 〈v1⊗· · ·⊗vn, l1⊗· · ·⊗lm〉 = δm,nl1(v1) · · · ln(vn).
(free coalgebra of V ∗)

Now assume that g is a Lie algebra.

Definition 6.9. The universal enveloping algebra of g is U(g) = T (g)/〈x⊗
y − y ⊗ x− [x, y]〉.

Exercise: prove that 〈x⊗ y − y ⊗ x− [x, y]〉 is a Hopf ideal.

Corollary 6.10. Ug is a Hopf algebra.

If e1, . . . , en is a basis for V . Ug = 〈e1, . . . , en|eiej − ejei =
∑

k c
k
ijek〉,

where ckij are the structure constants of [ , ].

Remark 6.11. The ideal 〈eiej − ejei〉 is homogeneous, but 〈x ⊗ y − y ⊗
x− [x, y]〉 is not, so Ug isn’t graded, but it is filtered.
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Lecture 7

Last time we talked about Hopf algebras. Our basic examples were
C[Γ] and C(Γ) = C[Γ]∗. Also, for a vector space V , T (V ) is a Hopf
algebra. Then S(V ) = T (V )/〈x⊗ y− y⊗x|x, y ∈ V 〉. And we also have
Ug = Tg/〈x⊗ y − y ⊗ x− [x, y]|x, y ∈ g〉.

Today we’ll talk about the universal enveloping algebra. Later, we’ll
talk about deformations of associative algebras because that is where
recent progress in representation theory has been.

Universality of Ug

We have that g →֒ Tg → Ug. And σ : g →֒ Ug canonical embedding (of
vector spaces and Lie algebras). Let A be an associative algebra with
τ : g → L(A) = {A|[a, b] = ab − ba} a Lie algebra homomorphism such
that τ([x, y]) = τ(x)τ(y) − τ(y)τ(x).

Proposition 7.1. For any such τ , there is a unique τ ′ : Ug → A homo-
morphism of associative algebras which extends τ :

Ug
τ ′ // A

g

σ

OO

τ

>>}}}}}}}}

Proof. Because T (V ) is generated (freely) by 1 and V , Ug is generated
by 1 and the elements of g. Choose a basis e1, . . . , en of g. Then we
have that τ(ei)τ(ej) − τ(ej)τ(ei) =

∑

k c
k
ijτ(ek). The elements ei1 · · · eik

(this is a product) span Ug for indices ij. From the commutativity of the
diagram, τ ′(ei) = τ(ei). Since τ ′ is a homomorphism of associative alge-
bras, we have that τ ′(ei1 · · · eik) = τ ′(ei1) · · · τ ′(eik), so τ ′ is determined
by τ uniquely: τ ′(ei1 · · · eik) = τ(ei1) · · · τ(eik). We have to check that
the ideal we mod out by is in the kernel. But that ideal is in the kernel
because τ is a mapping of Lie algebras.

Definition 7.2. A linear representation of g in V is a pair (V, φ : g →
End(V )), where φ is a Lie algebra homomorphism. If A is an associative
algebra, then (V, φ : A→ End(V )) a linear representation of A in V .

Corollary 7.3. There is a bijection between representations of g (as a
Lie algebra) and representations of Ug (as an associative algebra).

Proof. (⇒) By the universality, A = End(V ), τ = φ. (⇐)g ⊂ L(Ug) is
a Lie subalgebra.
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Example 7.4 (Adjoint representation). ad : g → End g given by x :
y 7→ [x, y]. This is also a representation of Ug. Let e1, . . . , en be a
basis in g. Then we have that adei

(ej) = [ei, ej ] =
∑

k c
k
ijek, so the

matrix representing the adjoint action of the element ei is the matrix
(adei

)jk = (ckij) of structural constants. You can check that ad[ei,ej ] =
(adei

)(adej
) − (adej

)(adei
) is same as the Jacobi identity for the ckij. We

get ad : Ug → End(g) by defining it on the monomials ei1 · · · eik as
adei1

···eik
= (adei1

) · · · (adeik
) (the product of matrices).

Let’s look at some other properties of Ug.

Gradation in Ug

Recall that V is a Z+-graded vector space if V = ⊕∞
n=0Vn. A linear

map f : V → W between graded vector spaces is grading-preserving
if f(Vn) ⊆ Wn. If we have a tensor product V ⊗ W of graded vector
spaces, it has a natural grading given by (V ⊗W )n = ⊕n

i=0Vi ⊗Wn−i.
The “geometric meaning” of this is that there is a linear action of C on
V such that Vn = {x|t(x) = tn · x for all t ∈ C}. A graded morphism
is a linear map respecting this action, and the tensor product has the
diagonal action of C, given by t(x⊗ y) = t(x) ⊗ t(y).

Example 7.5. If V = C[x], d
dx

is not grading preserving, x d
dx

is.

We say that (V, [ , ]) is a Z+-graded Lie algebra if [ , ] : V ⊗ V → V
is grading-preserving.

Example 7.6. Let V be the space of polynomial vector fields on C =
Span(zn d

dz
)n≥0. Then Vn = Czn d

dz
.

An associative algebra (V,m : V ⊗ V → V ) is Z+-graded if m is
grading-preserving.

Example 7.7.

(1) V = C[x], where the action of C is given by x 7→ tx.

(2) V = C[x1, . . . , xn] where the degree of each variable is 1 ... this is
the n-th tensor power of the previous example.

(3) Lie algebra: Vect(C) = {
∑

n≥0 anx
n+1 d

dx
} with Vectn(C) = Cxn+1 d

dx
,

deg(x) = 1. You can embed Vect(C) into polynomial vector fields
on S1 (Virasoro algebra).

(4) T(V) is a Z+-graded associative algebra, as is S(V ). However, Ug

is not because we have modded out by a non-homogeneous ideal.
But the ideal is not so bad. Ug is a Z+-filtered algebra:
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Filtered spaces and algebras

Definition 7.8. V is a filtered space if it has an increasing filtration

V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ V

such that V =
⋃
Vi, and Vn = is a subspace of dimension less than

or equal to n. f : V → W is a morphism of filtered vector spaces if
f(Vn) ⊆Wn.

We can define filtered Lie algebras and associative algebras as such
that the bracket/multiplication are filtered maps.

There is a functor from filtered vector spaces to graded associative
algebras Gr : V → Gr(V ), where Gr(V ) = V0 ⊕ V1/V0 ⊕ V2/V1 · · · . If
f : V → W is filtration preserving, it induces a map Gr(f) : Gr(V ) →
Gr(W ) functorially such that this diagram commutes:

V
f

//

Gr
��

W

Gr
��

Gr(V )
Gr(f)

// Gr(W )

Let A be an associative filtered algebra (i.e. AiAj ⊆ Ai+j) such that
for all a ∈ Ai, b ∈ Aj, ab− ba ∈ Ai+j−1.

Proposition 7.9. For such an A,

(1) Gr(A) has a natural structure of an associative, commutative al-
gebra (that is, the multiplication in A defines an associative, com-
mutative multiplication in Gr(A)).

(2) For a ∈ Ai+1, b ∈ Aj+1, the operation {aAi, bAj} = aAibAj −
bAjaAi mod Ai+j is a lie bracket on Gr(A).

(3) {x, yz} = {x, y}z + y{x, z}.

Proof. Exercise1. You need to show that the given bracket is well defined,
and then do a little dance, keeping track of which graded component you
are in.

Definition 7.10. A commutative associative algebra B is called a Pois-
son algebra if B is also a Lie algebra with lie bracket { , } (called a
Poisson bracket) such that {x, yz} = {x, y}z + y{x, z} (the bracket is a
derivation).
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Example 7.11. Let (M,ω) be a symplectic manifold (i.e. ω is a closed
non-degenerate 2-form on M), then functions on M form a Poisson al-
gebra. We could have M = R2n with coordinates p1, . . . , pn, q1, . . . , qn,
and ω =

∑

i dpi ∧ dqi. Then the multiplication and addition on C∞(M)
is the usual one, and we can define {f, g} =

∑

ij p
ij ∂f
∂xi

∂g
∂xj , where ω =

∑
ωijdx

i ∧ dxj and (pij) is the inverse matrix to (ωij). You can check
that this is a Poisson bracket.

Let’s look at Ug = 〈1, ei|eiej − ejei =
∑

k c
k
ijek〉. Then Ug is filtered,

with (Ug)n = Span{ei1 · · · eik |k ≤ n}. We have the obvious inclusion
(Ug)n ⊆ (Ug)n+1 and (Ug)0 = C · 1.

Proposition 7.12.

(1) Ug is a filtered algebra (i.e. (Ug)r(Ug)s ⊆ (Ug)r+s)

(2) [(Ug)r, (Ug)s] ⊆ (Ug)r+s−1.

Proof. 1) obvious. 2) Exercise2 (almost obvious).

Now we can consider Gr(Ug) = C · 1 ⊕ (
⊕

r≥1(Ug)r/(Ug)r−1)

Claim. (Ug)r/(Ug)r−1 ≃ Sr(g) = symmetric elements of (C[e1, . . . , en])r.

Proof. Exercise3.

So Gr(Ug) ≃ S(g) as a commutative algebra.
S(g) ∼= Polynomial functions on g∗ = HomC(g,C).
Consider C∞(M). How can we construct a bracket { , } which sat-

isfies Liebniz (i.e. {f, g1g2} = {f, g1}g2 + {f, g2}g1). We expect that
{f, g}(x) = pij(x) ∂f

∂xi
∂g
∂xj = 〈p(x), df(x) ∧ dg(x)〉. Such a p is called a

bivector field (it is a section of the bundle TM ∧ TM → M). So a
Poisson structure on C∞(M) is the same as a bivector field p on M sat-
isfying the Jacobi identity. You can check that the Jacobi identity is
some bilinear identity on pij which follows from the Jacobi identity on
{ , }. This is equivalent to the Schouten identity, which says that the
Schouten bracket of some things vanishes [There should be a reference
here]. This is more general than the symplectic case because pij can be
degenerate.

Let g have the basis e1, . . . , en and corresponding coordinate functions
x1, . . . , xn. On g∗, we have that dual basis e1, . . . , en (you can identify
these with the coordinates x1, . . . , xn), and coordinates x1, . . . , xn (which
you can identify with the ei). The bracket on polynomial functions on
g∗ is given by

{p, q} =
∑

ckijxk
∂p

∂xi

∂q

∂xj
.



Lecture 7 33

This is a Lie bracket and clearly acts by derivations.
Next we will study the following. If you have polynomials p, q on g∗,

you can try to construct an associative product p ∗t q = pq+ tm1(p, q) +
· · · . We will discuss deformations of commutative algebras. The main
example will be the universal enveloping algebra as a deformation of
polynomial functions on g∗.
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Lecture 8 - The PBW Theorem and Defor-

mations

Last time, we introduced the universal enveloping algebra Ug of a Lie
algebra g, with its universality property. We discussed graded and fil-
tered spaces and algebras. We showed that under some condition on a
filtered algebra A, the graded algebra Gr(A) is a Poisson algebra. We
also checked that Ug satisfies this condition, and that Gr(Ug) ≃ S(g)
as graded commutative algebras. The latter space can be understood as
the space Pol(g∗) of polynomial functions on g∗. It turns out that the
Poisson bracket on Gr(Ug), expressed in Pol(g∗), is given by

{f, g}(x) = x([dfx, dgx])

for f, g ∈ Pol(g∗) and x ∈ g∗. Note that f is a function on g∗ and x an
element of g∗, so dfx is a linear form on Txg

∗ = g∗, that is, dfx ∈ g.
Suppose that V admits a filtration V0 ⊂ V1 ⊂ V2 ⊂ · · · . Then, the

associated graded space Gr(V ) = V0 ⊕
⊕

n≥1(Vn/Vn+1) is also filtered.
(Indeed, every graded space W =

⊕

n≥0Wn admits the filtration W0 ⊂
W0 ⊕W1 ⊂ W0 ⊕W1 ⊕W2 ⊂ · · · ) A natural question is: When do we
have V ≃ Gr(V ) as filtered spaces ?

For the filtered space Ug, the answer is a consequence of the following
theorem.

Theorem 8.1 (Poincaré-Birkhoff-Witt). Let e1, . . . , en be any linear ba-
sis for g. Let us also denote by e1, . . . , en the image of this basis in the
universal enveloping algebra Ug. Then the monomials em1

1 · · · emn
n form

a basis for Ug.

Corollary 8.2. There is an isomorphism of filtered spaces Ug ≃ Gr(Ug).

Proof of the corollary. In S(g), em1
1 · · · emn

n also forms a basis, so we get
an isomorphism Ug ≃ S(g) of filtered vector spaces by simple identifica-
tion of the bases. Since Gr(Ug) ≃ S(g) as graded algebras, the corollary
is proved.

Remark 8.3. The point is that these spaces are isomorphic as filtered
vector spaces. Saying that two infinite dimensional vector spaces are
isomorphic is totally useless.

Proof of the theorem. By definition, the unordered monomials ei1 · · · eik
for k ≤ p span the subspace T0⊕· · ·⊕Tp of T (g), where Ti = g⊗i. Hence,
they also span the quotient (Ug)p := T0⊕· · ·⊕Tp/〈x⊗y−y⊗x− [x, y]〉.
The goal is now to show that the ordered monomials em1

1 · · · emn
n for m1 +

· · · + mn ≤ p still span (Ug)p. Let’s prove this by induction on p ≥ 0.
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The case p = 0 being trivial, consider ei1 · · · eia · · · eik , with k ≤ p, and
assume that ia has the smallest value among the indices i1, . . . , ik. We
can move eia to the left as follows

ei1 · · · eia · · · eik = eiaei1 · · · êia · · · eik +
a−1∑

b=1

ei1 · · · eib−1
[eib , eia] · · · êia · · · eik .

Using the commutation relations [eib , eia ] =
∑

ℓ c
ℓ
ibia
eℓ, we see that the

term to the right belongs to (Ug)k−1. Iterating this procedure leads to
an equation of the form

ei1 · · · eia · · · eik = em1
1 · · · emn

n + terms in (Ug)k−1,

with m1 + · · · + mn = k ≤ p. We are done by induction. The proof of
the theorem is completed by the following homework.[This should really
be done here]

◮ Exercise 8.1. Prove that these ordered monomials are linearly inde-
pendant.

Let’s “generalize” the situation. We have Ug and S(g), both of which
are quotients of T (g), with kernels 〈x⊗y−y⊗x−[x, y]〉 and 〈x⊗y−y⊗x〉.
For any ε ∈ C, consider the associative algebra Sε(g) = T (g)/〈x ⊗ y −
y ⊗ x− ε[x, y]〉. By construction, S0(g) = S(g) and S1(g) = Ug. Recall
that they are isomorphic as filtered vector spaces.

Remark 8.4. If ε 6= 0, the linear map φε : Sε(g) → Ug given by φε(x) =
εx for all x ∈ g is an isomorphism of filtered algebras. So, we have
nothing new here.

We can think of Sε(g) as a non-commutative deformation of the asso-
ciative commutative algebra S(g). (Note that commutative deformations
of the algebra of functions on a variety correspond to deformations of the
variety.)

Deformations of associative algebras

Let (A,m : A ⊗ A → A) be an associative algebra, that is, the linear
map m satisfies the quadratic equation

m(m(a, b), c) = m(a,m(b, c)). (8.5)

Note that if ϕ : A → A is a linear automorphism, the multiplication
mϕ given by mϕ(a, b) = ϕ−1(m(ϕ(a), ϕ(b))) is also associative. We like
to think of m and mϕ as equivalent associative algebra structures on A.
The “moduli space” of associative algebras on the vector space A is the
set of solutions to equation 8.5 modulo this equivalence relation.
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One can come up with a notion of deformation for almost any kind
of object. In these deformation theories, we are interested in some coho-
mology theories because they parameterize obstructions to deformations.
The knowledge of the cohomology of a given Lie algebra g, enables us
say a lot about the deformations of g. We’ll come back to this question
in the next lecture.

Let us turn to our original example: the family of associative alge-
bras Sε(g). Recall that by the PBW theorem, we have an isomorphism

of filtered vector spaces Sε(g)
ψ→ S(g) = Pol(g∗), but this is not an iso-

morphisms of associative algebras. Therefore, the multiplication defined
by f ∗ g := ψ(ψ−1(f) · ψ−1(g)) is not the normal multiplication on S(g).
We claim that the result is of the form

f ∗ g = fg +
∑

n≥1

εnmn(f, g),

where mn is a bidifferential operator of order n, that is, it is of the form

mn(f, g) =
∑

I,J

pI,Jn ∂If∂Jg,

where I and J are multi-indices of length n, and pI,Jn ∈ Pol(g∗). The idea
of the proof is to check this for f = ψ(er11 · · · ernn ) and g = ψ(el11 · · · elnn )
by writing

er11 · · · ernn · el11 · · · elnn = el1+r1
1 · · · eln+rn

n +
∑

k≥1

εkmk(e
r1
1 · · · ernn , el11 · · · elnn )

in Sε(g) using the commuting relations.

◮ Exercise 8.2. Compute the pI,Jn for the Lie algebra g generated by
X, Y , and H with bracket [X, Y ] = H, [H,X] = [H, Y ] = 0. This is
called the Heisenberg Lie algebra.

So we have a family of products on Pol(g∗) which depend on ε in the
following way:

f ∗ g = fg +
∑

n≥1

εnmn(f, g)

Since f, g are polynomials and mn is a bidifferential operator of order
n, this series terminates, so it is a polynomial in ε. If we try to extend
this product to C∞(g∗), then there are questions about the convergence
of the product ∗. There are two ways to deal with this problem. The
first one is to take these matters of convergence seriously, consider some
topology on C∞(g∗) and demand that the series converges. The other
solution is to forget about convergence and just think in terms of formal
power series in ε. This is the so-called “formal deformation” approach.
As we shall see, there are interesting things to say with this seemingly
rudimentary point of view.



Lecture 8 - The PBW Theorem and Deformations 37

Formal deformations of associative algebras

Let (A,m0) be an associative algebra over C. Then, a formal deformation
of (A,m0) is a C[[h]]-linear map m : A[[h]] ⊗C[[h]] A[[h]] → A[[h]] such
that

m(a, b) = m0(a, b) +
∑

n≥1

hnmn(a, b)

for all a, b ∈ A, and such that (A[[h]], m) is an associative algebra. We
say that two formal deformations m and m̃ are equivalent if there is a
C[[h]]-automorphism A[[h]]

ϕ−→ A[[h]] such that m̃ = mϕ, with ϕ(x) =
x+

∑

n≥1 h
nϕn(x) for all x ∈ A, where ϕn is an endomorphism of A.

Question: Describe the equivalence classes of formal deformations of a
given associative algebra.

When (A,m0) is a commutative algebra, the answer is known. Philo-
sophically and historically, this case is relevant to quantum mechanics.
In classical mechanics, observables are smooth functions on a phase space
M , i.e they form a commutative associative algebra C∞(M). But when
you quantize this system (which is needed to describe something on the
order of the Planck scale), you cannot think of observables as functions
on phase space anymore. You need to deform the commutative algebra
C∞(M) to a noncommutative algebra. And it works...

From now on, let (A,m0) be a commutative associative algebra. Let’s
write m0(a, b) = ab, and m(a, b) = a ∗ b. (This is called a star product,
and the terminology goes back to the sixties and the work of J. Vey).
Then we have

a ∗ b = ab+
∑

n≥1

hnmn(a, b).

Demanding the associativity of ∗ imposes an infinite number of equations
for the mn’s, one for each order:

h0: a(bc) = (ab)c

h1: am1(b, c) +m1(a, bc) = m1(a, b)c+m1(ab, c)

h2: . . .

...

◮ Exercise 8.3. Show that the bracket {a, b} = m1(a, b) − m1(b, a)
defines a Poisson structure on A. This means that we can think of a
Poisson structure on an algebra as the remnants of a deformed product
where a ∗ b− b ∗ a = h{a, b} +O(h).
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One easily checks that if two formal deformations m and m̃ are equiv-
alent via ϕ (i.e: m̃ = mϕ), then the associated m1, m̃1 are related by
m1(a, b) = m̃1(a, b) +ϕ1(ab)−ϕ1(a)b− aϕ1(b). In particular, two equiv-
alent formal deformations induce the same Poisson structure. Also, it
is possible to choose a representative in an equivalence class such that
m1 is skew-symmetric (and then, m1(a, b) = 1

2
{a, b}). This leads to the

following program for the classification problem:

1. Classify all Poisson structures on A.

2. Given a Poisson algebra (A, { , }), classify all equivalence classes
of star products on A such that m1(a, b) = 1

2
{a, b}.

Under some mild assumption, it can be assumed that a star product is
symmetric, i.e. that it satisfies the equation mn(a, b) = (−1)nmn(b, a) for
all n. The program given above was completed by Maxim Kontsevitch
for the algebra of smooth functions on a manifold M . Recall that Poisson
structures on C∞(M) are given by bivector fields on M that satisfy the
Jacobi identity.

Theorem 8.6 (Kontsevich, 1994). Let A be the commutative associative
algebra C∞(M), and let us fix a Poisson bracket { , } on A. Equivalence
classes of symmetric star products on A with m1(a, b) = 1

2
{a, b} are in bi-

jection with formal deformations of { , } modulo formal diffeomorphisms
of M .

A formal deformation of { , } is a Poisson bracket { , }h on A[[h]]
such that

{a, b}h = {a, b} +
∑

n≥1

hnµn(a, b)

for all a, b in A. A formal diffeomorphism of M is an automorphism ϕ
of A[[h]] such that ϕ(f) = f +

∑

n≥1 h
nϕn(f) and ϕ(fg) = ϕ(f)ϕ(g) for

all f, g in A.
We won’t prove the theorem (it would take about a month) . As

Poisson algebras are Lie algebras, it relates deformations of associative
algebras to deformations of Lie algebras.

Formal deformations of Lie algebras

Given a Lie algebra (g, [ , ]), you want to know how many formal defor-
mations of g there are. Sometimes, there are none (like in the case of
sln, as we will see later). Sometimes, there are plenty (as for triangular
matrices). The goal is now to construct some invariants of Lie algebras
which will tell you whether there are deformations, and how many of
them there are. In order to do this, we should consider cohomology
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theories for Lie algebras. We will focus first on the standard complex

C·(g, g) =
⊕

n≥0C
n(g, g), where Cn(g, g) = Hom(Λng, g).
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Lecture 9

Let’s summarize what has happened in the last couple of lectures.

1. We talked about T (g), and then constructed three algebras:

– Ug = T (g)/〈x⊗ y − y ⊗ x− [x, y]〉, with Ug = S1(g) ≃ Sε(g)
as filtered associative algebras, for all non-zero ε ∈ C.

– Sε(g) = T (g)/〈x⊗y−y⊗x−ε[x, y]〉 is a family of associative
algebras, with Sε(g) ≃ S0(g) as filtered vector spaces.

– S0(g) ∼= Pol(g∗) = T (g)/〈x ⊗ y − y ⊗ x〉 = S0(g) is an asso-
ciative, commutative algebra with a Poisson structure defined
by the Lie bracket.

2. We have two “pictures” of deformations of an algebra

(a) There is a simple “big” algebra B (such as B = T (g)) and a
family of ideals Iε. Then we get a family B/Iε = Aε. This
becomes a deformation family of the associative algebra A0 if
we identify Aε ≃ A0 as vector spaces (these are called torsion
free deformations). Fixing this isomorphism gives a family of
associative products on A0.

We can think of this geometrically as a family of (embedded)
varieties.

(b) Alternatively, we can talk about deformations intrinsically
(i.e., without referring to some bigger B). Suppose we have
A0 and a family of associative products a ∗ε b on A0.

Example 9.1. Let Pol(g∗)
φ−→ Sε(g) be the isomorphism of

the PBW theorem. Then define f ∗ g = φ−1(φ(f) · φ(g)) =
fg +

∑

n≥1 ε
nmn(f, g).

Understanding deformations makes a connection between repre-
sentation theory and Poisson geometry. A second course on Lie
theory should discuss symplectic leaves of Pol(g∗), which happen
to be coadjoint orbits and correspond to representations. This is
why deformations are relevant to representation theory.

Let A be a Poisson algebra with bracket { , }, so it is a commu-
tative algebra, and a Lie algebra, with the bracket acting by deriva-
tions. Typically, A = C∞(M). Equivalence classes of formal (i.e., formal
power series) symmetric (i.e.,mn(f, g) = (−1)nmn(g, f) ) star products
on C∞(M) are in bijection with equivalence classes of formal deforma-
tions of { , } on C∞(M)[[h]].
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Apply this to the case A = C∞(g∗). The associative product on
Sε(g) comes from the product on T (g). The question is, “how many
equivalence classes of star products are there on A?” Any formal de-
formation of the Poisson structure on (A, { , }g) is a PBW deformation
of some formal deformation of the Lie algebra C∞(g∗) (with Lie bracket
{f, g}(x) = x(df ∧ dg)). Such a deformation is equivalent to a formal
deformation of the Lie algebra structure on g. This is one of the reasons
that deformations of Lie algebras are important — they describe defor-
mations of certain associative algebras. When one asks such questions,
some cohomology theory always shows up.

Lie algebra cohomology

Recall that (M,φ) is a g-module if φ : g → End(M) is a Lie alge-

bra homomorphism. We will write xm for φ(x)m. Define C·(g,M) =
⊕

q≥0C
q(g,M) where Cq(g,M) = Hom(Λqg,M) (linear maps). We de-

fine d : Cq → Cq+1 by

dc(x1 ∧ · · · ∧ xq+1) =

=
∑

1≤s<t≤q+1

(−1)s+t−1c([xs, xt] ∧ x1 ∧ · · · ∧ x̂s ∧ · · · ∧ x̂t ∧ · · · ∧ xq+1)

+

q+1∑

s=1

(−1)sxsc(x1 ∧ · · · ∧ x̂s ∧ · · · ∧ xq+1)

◮ Exercise 9.1. Show that d2 = 0.

Motivation: If g = Vect(M), M = C∞(M), then Cq(g,M) =
Ωq(M), with the Cartan formula

(dω)(ξ1 ∧ · · · ∧ ξq+1) =

=
∑

1≤s<t≤q+1

(−1)s+t−1ω([ξs, ξt] ∧ ξ1 ∧ · · · ∧ ξ̂s ∧ · · · ∧ ξ̂t ∧ · · · ∧ ξq+1)

+

q+1
∑

s=1

(−1)sξsω(ξ1 ∧ · · · ∧ ξ̂s ∧ · · · ∧ ξq+1)

for vector fields ξi.
Another motivation comes from the following proposition.

Proposition 9.2. C·(g,C) ≃ Ω·R(G) ⊆ Ω·(G) where C is the 1 dimen-
sional trivial module over g (so xm = 0).

◮ Exercise 9.2. Prove it.
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Remark 9.3. This was Cartan’s original motivation for Lie algebra co-

homology. It turns out that the inclusion Ω·R(G) →֒ Ω·(G) is a homo-
topy equivalence of complexes (i.e. the two complexes have the same

homology), and the proposition above tells us that C·(g,C) is homotopy
equivalent to ΩR(G). Thus, by computing the Lie algebra cohomology

of g (the homology of the complex C·(g,C)), one obtains the De Rham

cohomology of G (the homology of the complex Ω·(G)).

Define Hq(g,M) = ker(d : Cq → Cq+1)/ im(d : Cq−1 → Cq) as
always. Let’s focus on the case M = g, the adjoint representation:
x ·m = [x,m].

H0(g, g) We have that C0 = Hom(C, g) ∼= g, and

dc(y) = y · c = [y, c].

so ker(d : C0 → C1) is the set of c ∈ g such that [y, c] = 0
for all y ∈ g. That is, the kernel is the center of g, Z(g). So
H0(g, g) = Z(g).

H1(g, g) The kernel of d : C1(g, g) → C2(g, g) is

{µ : g → g|dµ(x, y) = µ([x, y])−[x, µ(y)]−[µ(x), y] = 0 for all x, y ∈ g},

which is exactly the set of derivations of g. The image of d :
C0(g, g) → C1(g, g) is the set of inner derivations, {dc : g →
g|dc(y) = [y, c]}. The Liebniz rule is satisfied because of the Jacobi
identity. So

H1(g, g) = {derivations}/{inner derivations} =: outer derivations.

H2(g, g) Let’s compute H2(g, g). Suppose µ ∈ C2, so µ : g ∧ g → g is a
linear map. What does dµ = 0 mean?

dµ(x1, x2, x3) = µ([x1, x2], x3) − µ([x1, x3], x2) + µ([x2, x3], x1)

− [x1, µ(x2, x3)] + [x2, µ(x1, x3)] − [x3, µ(x1, x2)]

= −µ(x1, [x2, x3]) − [x1, µ(x2, x3)] + cyclic permutations

Where does this kind of thing show up naturally?

Consider deformations of Lie algebras:

[x, y]h = [x, y] +
∑

n≥1

hnmn(x, y)

where the mn : g× g → g are bilinear. The deformed bracket [ , ]h
must satisfy the Jacobi identity,

[a, [b, c]h]h + [b, [c, a]h]h + [c, [a, b]h]h = 0
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which gives us relations on the mn. In degree hN , we get

[a,mN (b, c)] +mN(a, [b, c]) +

N−1∑

k=1

mk(a,mN−k(b, c))+

[b,mN (c, a)] +mN(b, [c, a]) +
N−1∑

k=1

mk(b,mN−k(c, a))+

[c,mN(a, b)] +mN(c, [a, b]) +

N−1∑

k=1

mk(c,mN−k(a, b)) = 0 (9.4)

◮ Exercise 9.3. Derive equation 9.4.

Define [mK , mN−K ](a, b, c) as

mK

(
a,mN−K(b, c)

)
+mK

(
b,mN−K(c, a)

)
+mK

(
c,mN−K(a, b)

)
.

Then equation 9.4 can be written as

dmN =

N−1∑

k=1

[mk, mN−k] (9.5)

Theorem 9.6. Assume that for all n ≤ N−1, we have the relation
dmn =

∑n−1
k=1[mk, mn−k]. Then d(

∑N−1
k=1 [mk, mN−k]) = 0.

◮ Exercise 9.4. Prove it.

The theorem tells us that if we have a “partial deformation” (i.e. we
have found m1, . . . , mN−1), then the expression

∑N−1
k=1 [mk, mN−k]

is a 3-cocycle. Furthermore, equation 9.5 tells us that if we are
to extend our deformation to one higher order,

∑N−1
k=1 [mk, mN−k]

must represent zero in H3(g, g).

Taking N = 1, we get dm1 = 0, so ker(d : C2 → C3) = space of
first coefficients of formal deformations of [ , ]. It will turn out that
H2 is the space of equivalence classes of m1.

It is worth noting that the following “pictorial calculus” may make
some of the above computations easier. In the following pictures, arrows
are considered to be oriented downwards, and trivalent vertices with two
lines coming in and one going out represent the Lie bracket. So, for
example, the antisymmetry of the Lie bracket is expressed as

= − //
//

��
��

and the Jacobi identity is
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We can also use pictures to represent cocycles. Take µ ∈ Hn(g, g). Then
we draw µ as

µ(/).*-+,
??? ���
. . .

with n lines going in. Then, the Cartan formula for the differential says
that

d

(

µ(/).*-+,
??? ���
. . . )

=
∑

1≤i≤j≤n+1

(−1)i+j+1

i

		
		

j

ssssss

µ(/).*-+,??
?

//////

������
+

∑

1≤i≤n+1

µ(/).*-+,
??? ���

��
�

i

and the bracket of two cocycles µ ∈ Hm and ν ∈ Hn is

[µ, ν] =
∑

1≤i≤n

µ(/).*-+,
i555 			

ν(/).*-+,

999999999

00000000

��������

���������
−
∑

1≤i≤m

ν(/).*-+,
i555 			

µ(/).*-+,

999999999

00000000

��������

���������

◮ Exercise 9.5. Use pictures to show that d[µ, ν] = ±[dµ, ν] ± [µ, dν].

Also, these pictures can be used to do the calculations in Exercises
9.3 and 9.4.
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Lecture 10

Here is the take-home exam, it’s due on Tuesday:

(1) B ⊂ SL2(C) are upper triangular matrices, then

– Describe X = SL2(C)/B

– SL2(C) acts on itself via left multiplication implies that it
acts on X. Describe the action.

(2) Find exp








0 x1 0
. . .

. . .

0 xn−1

0 0








(3) Prove that if V,W are filtered vector spaces (with increasing filtra-
tion) and φ : V → W satisfies φ(Vi) ⊆ Wi, and Gr(φ) : Gr(V )

∼−→
Gr(W ) an isomorphism, then φ is a linear isomorphism of filtered
spaces.

Lie algebra cohomology

Recall C·(g,M) from the previous lecture, forM a finite dimensional rep-
resentation of g (and g finite dimensional). There is a book by D. Fuchs,
Cohomology of ∞ dimensional Lie algebras [Fuc50].

We computed that H0(g, g) = Z(g) ≃ g/[g, g] and that H1(g, g) is
the space of exterior derivations of g. Say c ∈ Z1(g, g),1 so [c] ∈ H1(g, g).
Define g̃c = g ⊕ C∂c with the bracket [(x, t), (y, s)] = ([x, y] − tc(y) +
sc(x), 0). So if e1, . . . , en is a basis in g with the usual relations [ei, ej] =
ckijek, then we get one more generator ∂c such that [∂c, x] = c(x). Then
H1(g, g) is the space of equivalence classes of extensions

0 → g → g̃ → C→ 0

up to the equivalences f such that the diagram commutes:

0 // g //

Id

��

g̃ //

f
��

C

Id

��

// 0

0 // g // g̃′ // C // 0

This is the same as the space of exterior derivations.

1Zn(g, M) is the space of n-cocycles, i.e. the kernel of d : Cn(g, M) → Cn+1(g, M).
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H2(g, g) and Deformations of Lie algebras

A deformation of g is the vector space g[[h]] with a bracket [a, b]h =
[a, b] +

∑

n≥1 h
nmn(a, b) such that mn(a, b) = −mn(b, a) and

[a, [b, c]h]h + [b, [c, a]h]h + [c, [a, b]h]h = 0.

The hN order term of the Jacobi identity yields equation 9.4, which was

[a,mN (b, c)] +mN(a, [b, c]) +
N−1∑

k=1

mk(a,mN−k(b, c)) + cycle = 0

where “cycle” is the same thing, with a, b, and c permuted cyclically.
For µ ∈ C2(g, g), we compute

dµ(a, b, c) = −[a, µ(b, c)] − µ(a, [b, c]) + cycle.

Define
{mk, mN−k}(a, b, c)

def
= mk(a,mN−k(b, c)) + cycle

This is called the Gerstenhaber bracket ... do a Google search for it if
you like ... it is a tiny definition from a great big theory.

Then we can rewrite equation 9.4 as equation 9.5, which was

dmN =
N−1∑

k=1

{mk, mN−k}.

In partiular, dm1 = 0, so m1 is in Z2(g, g).
Equivalences: [a, b]′h ≃ [a, b]h if [a, b]′h = φ−1([φ(a), φ(b)]h) for some

φ(a) = a+
∑

n≥1 h
nφn(a). then

m′
1(a, b) = m1(a, b) − φ1([a, b]) + [a, φ1(b)] + [φ1(a), b].

which we can write as m′
1 = m1 + dφ1. From this we can conclude

Claim. The space of equivalence classes of possiblem1 is exactlyH2(g, g).

Claim (was HW). If m1 is a 2-cocycle, and mN−1, . . . , m2 satisfy the
equations we want, then

d

(
N−1∑

k=1

{mk, mN−k}
)

= 0.

This is not enough; we know that
∑N+1

k=1 {mk, mN−k} is in Z3(g, g),
but to find mN , we need it to be trivial in H3(g, g) because of equation
9.5. If the cohomology class of

∑N+1
k=1 {mk, mN−k} is non-zero, it’s class in
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H3(g, g) is called an obstruction to n-th order deformation. If H3(g, g) is
zero, then any first order deformation (element of H2(g, g)) extends to a
deformation, but if H3(g, g) is non-zero, then we don’t know that we can
always extend. Thus, H3(g, g) is the space of all possible obstructions to
extending a deformation.

Let’s keep looking at cohomology spaces. Consider C·(g,C), where
C is a one dimensional trivial representation of g given by x 7→ 0 for any
x ∈ g.

First question: take Ug, with the corresponding 1 dimensional rep-
resentation ε : Ug → C given by ε(x) = 0 for x ∈ g.

◮ Exercise 10.1. Show that (Ug, ε,∆, S) is a Hopf algebra with the ε
above, ∆(x) = 1⊗x+x⊗1, and S(x) = −x for x ∈ g. Remember that ∆
and ε are algebra homomorphisms, and that S is an anti-homomorphism.

Let’s computeH1(g,C) (H0 is boring, just a point). This is ker(C1 d−→
C2). Well, C1(g,C) = Hom(g,C), C2(g,C) = Hom(Λ2g,C), and

dc(x, y) = c([x, y]).

So the kernel is the set of c such that c([x, y]) = 0 for all x, y ∈ g. Thus,
ker(d) ⊆ C1(g,C) is the space of g-invariant linear functionals. Recall
that g acts on g by the adjoint action, and on g∗ = C1(g, g) by the
coadjoint action (x : l 7→ lx where lx(y) = l([x, y])). Under the coadjoint
action, l ∈ g∗ is g-invariant if lx = 0. Note that C0 is just one point, so
its image doesn’t have anything in it.

Now let’s compute H2(g,C) = ker(d : C2 → C3)/ im(d : C1 → C2).
Let c ∈ Z2, then

dc(x, y, z) = c([x, y], z) − c([x, z], y) + c([y, z], x) = 0

for all x, y, z ∈ g. Now let’s find the image of d : C1 → C2: it is the set
of functions of the form dl(x, y) = l([x, y]) where l ∈ g∗. It is clear that
l([x, y]) are (trivial) 2-cocycles because of the Jacobi identity. Let’s see
what can we cook with this H2.

Definition 10.1. A central extension of g is a short exact sequence

0 → C→ g̃ → g → 0.

Two such extensions are equivalent if there is a Lie algebra isomorphism
f : g̃ → g̃′ such that the diagram commutes:

0 // C //

Id

��

g̃ //

f
��

g

Id

��

// 0

0 // C // g̃′ // g // 0
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Theorem 10.2. H2(g,C) is isomorphic to the space of equivalence classes
of central extensions of g.

Proof. Let’s describe the map in one direction. If c ∈ Z2, then consider
g̃ = g ⊕ C with the bracket [(x, t), (y, s)] = ([x, y], c(x, y)). Equivalences
of extensions boil down to c(x, y) 7→ c(x, y) + l([x, y]).

◮ Exercise 10.2. Finish this proof.

Let’s do some (infinite dimensional) examples of central extensions.

Example 10.3. [Affine Kac-Moody algebras] If g ⊆ gln, then we define
the loop space or loop algebra Lg to be the set of maps S1 → g. To
make the space more manageable, we only consider Laurent polynomials,
z 7→

∑

m∈Z
amz

m for am ∈ g with all but finitely many of the am equal
to zero. The bracket is given by [f, g]Lg(z) = [f(z), g(z)]g.

Since g ⊆ gln, there is an induced trace tr : g → C. This gives a
non-degenerate inner product on Lg:

(f, g) :=

∮

|z|=1

tr
(
f(z−1)g(z)

)dz

z
.

There is a natural 2-cocylce on Lg, given by

c(f, g) =
1

2πi

∮

|z|=1

tr
(
f(z)g′(z)

)dz

z
= Res

z=0

(

tr
(
f(z)g′(z)

)
)

,

and a natural outer derivation ∂ : Lg → Lg given by ∂x(z) = ∂x(z)
∂z

.
The Kac-Moody algebra is Lg ⊕ C∂ ⊕ Cc. A second course on Lie

theory should have some discussion of the representation theory of this
algebra.

Example 10.4. Let gl∞ be the algebra of matrices with finitely many
non-zero entries. It is not very interesting. Let gl1∞ be the algebra of
matrices with finitely many non-zero diagonals. gl1∞ is “more infinite
dimensional” than gl∞, and it is more interesting.

◮ Exercise 10.3. Define

J =

(
I 0
0 −I

)

.

For x, y ∈ gl∞, show that

c(x, y) = tr(x[J, y])

is well defined (i.e. is a finite sum).
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This c is a non-trivial 1-cocycle, i.e. [c] ∈ H2(gl1∞,C) is non-zero.
By the way, instead of just using linear maps, we require that the maps
Λ2gl1∞ → C are graded linear maps. This is H2

graded.
Notice that in gln, tr(x[J, y]) = tr(J [x, y]) is a trivial cocycle (it is d

of l(x) = tr(Jx). So we have that H2(gln,C) = {0}.
We can define a∞ = gl∞ ⊕ Cc. This is some non-trivial central

extension.

To summarize the last lectures:

1. We related Lie algebras and Lie Groups. If you’re interested in
representations of Lie Groups, looking at Lie algebras is easier.

2. From a Lie algebra g, we constructed Ug, the universal enveloping
algebra. This got us thinking about associative algebras and Hopf
algebras.

3. We learned about dual pairings of Hopf algebras. For example,
C[Γ] and C(Γ) are dual, and Ug and C(G) are dual (if G is affine
algebraic and we are looking at polynomial functions). This pairing
is a starting point for many geometric realizations of representa-
tions of G. Conceptually, the notion of the universal enveloping
algebra is closely related to the notion of the group algebra C[Γ].

4. Finally, we talked about deformations.
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Lecture 11 - Engel’s Theorem and Lie’s The-

orem

In the next ten lectures, we will cover

1. Classification of semisimple Lie algebras. This will include root
systems and Dynkin diagrams.

2. Representation theory of semisimple Lie algebras and the Weyl
character formula.

3. Compact connected Lie Groups.

A reference for this material is Fulton and Harris [FH91].
The first part is purely algebraic: we will study Lie algebras. g will

be a Lie algebra, usually finite dimensional, over a field k (usually of
characteristic 0).

Any Lie algebra g contains the ideal D(g) = [g, g], the vector subspace
generated by elements of the form [X, Y ] for X, Y ∈ g.

◮ Exercise 11.1. Show that Dg is an ideal in g.

◮ Exercise 11.2. Let G be a simply connected Lie group with Lie
algebra g. Then [G,G] is the subgroup of G generated by elements of
the form ghg−1h−1 for g, h ∈ G. Show that [G,G] is a connected closed
normal Lie subgroup of G, with Lie algebra Dg.

� Warning 11.1. Exercise 11.2 is a tricky problem. Here are some
potential pitfalls:

1. For G connected, we do not necessarily know that the exponential
map is surjective, because G may not be complete. For example,
exp : sl2(C) → SL2(C) is not surjective.1

2. If H ⊆ G is a subgroup with Lie algebra h, then h ⊆ g closed is
not enough to know that H is closed in G. For example, take G to
be a torus, and H to be a line with irrational slope.

3. The statement is false if we relax the condition that G is simply
connected. Let

H :=

{



1 x y
0 1 z
0 0 1





}

× S1

K :=

{(




1 0 n
0 1 0
0 0 1



, cn

) ∣
∣
∣
∣
n ∈ Z

}

⊆ H

1Assume
(
−1 1
0 −1

)
is in the image, then its pre-image must have eigenvalues (2n+

1)iπ and −(2n+1)iπ for some integer n. So the pre-image has distinct eigenvalues, so
it is diagonalizable. But that implies that

(
−1 1
0 −1

)
is diagonalizable, contradiction.



Lecture 11 - Engel’s Theorem and Lie’s Theorem 51

where c is an element of S1 of infinite order. Then K is normal in
H and G = H/K is a counterexample.

Definition 11.2. Define D0g = g, and Dng = [Dn−1g,Dn−1g]. This is
called the derived series of g. We say g is solvable if Dng = 0 for some
n sufficiently large.

Definition 11.3. We can also define D0g = g, and Dng = [g,Dn−1g].
This is called the lower central series of g. We say that g is nilpotent if
Dng = 0 for some n sufficiently large.

Note that D1g = D1g by Dg. Solvable and nilpotent Lie algebras are
hard to classify. Instead, we will do the classification of semisimple Lie
algebras (see Definition 11.15).

The following example is in some sense universal (see corollaries 11.7
and 11.12):

Example 11.4. Let gl(n) be the Lie algebra of all n× n matrices, and
let b be the subalgebra of upper triangular matrices. I claim that b

is solvable. To see this, note that Db is the algebra of strictly upper
triangular matrices, and in general, Dkb has zeros on the main diagonal
and the 2k−2 diagonals above the main diagonal (for k ≥ 2). Let n = Db.
You can check that n is in fact nilpotent.

Useful facts about solvable/nilpotent Lie algebras:

1. If you have an exact sequence of Lie algebras

0 → a → g → g/a → 0

then g is solvable if and only if a and g/a are solvable.

2. If you have an exact sequence of Lie algebras

0 → a → g → g/a → 0

then if g is nilpotent, so are a and g/a.

� Warning 11.5. The converse is not true. Diagonal matrices d is
nilpotent, and we have

0 → n → b → d → 0.

Note that b is not nilpotent, because Db = Dnb = ( 0 ∗
0 0 ).
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3. If a, b ⊂ g are solvable ideals, then the sum a + b is solvable. To
see this, note that we have

0 → a → a + b → (a + b)/a
︸ ︷︷ ︸

≃b/(a∩b)

→ 0

a is solvable by assumption, and b/(a∩b) is a quotient of a solvable
algebra, so it is solvable by (1). Applying (1) again, a+b is solvable.

4. If k ⊆ F is a field extension, with a Lie algebra g over k, we can
make a Lie algebra g ⊗k F over F . Note that g ⊗k F is solvable
(nilpotent) if and only if g is.

We will now prove Engel’s theorem and Lie’s theorem.
For any Lie algebra g, we have the adjoint representation: X 7→

adX ∈ gl(g) given by adX(Y ) = [X, Y ]. If g is nilpotent, then adX is a
nilpotent operator for any X ∈ g. The converse is also true as we will
see shortly (Cor. 11.9).

Theorem 11.6 (Engel’s Theorem). Let g ⊆ gl(V ), and assume that X
is nilpotent for any X ∈ g. Then there is a vector v ∈ V such that
g · v = 0.

Note that the theorem holds for any representation ρ of g in which
every element acts nilpotently; just replace g in the statement of the
theorem by ρ(g).

Corollary 11.7. If V is a representation of g in which every element
acts nilpotently, then one can find {0} = V0 ( V1 ( · · · ( Vn = V a
complete flag such that g(Vi) ⊆ Vi−1. That is, there is a basis in which
all of the elements of g are strictly upper triangular.

� Warning 11.8. Note that the theorem isn’t true if you say “suppose
g is nilpotent” instead of the right thing. For example, the set of

diagonal matrices d ⊂ gl(V ) is nilpotent.

Proof. Let’s prove the theorem by induction on dim g.We first show that
g has an ideal a of codimension 1. To see this, take a maximal proper
subalgebra a ⊂ g. Look at the representation of a on the quotient space
g/a. This representation, a → gl(g/a), satisfies the condition of the
theorem,2 so by induction, there is some X ∈ g such that ada(X) = 0
modulo a. So [a, X] ⊆ a, so b = kX ⊕ a is a new subalgebra of g which
is larger, so it must be all of g. Thus, a must have had codimension 1.
Therefore, a ⊆ g is actually an ideal (because [X, a] = 0).

2For any X ∈ a, since X is nilpotent, adX is also nilpotent.
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Next, we prove the theorem. Let V0 = {v ∈ V |av = 0}, which is
non-zero by the inductive hypothesis. We claim that gV0 ⊆ V0. To see
this, take x ∈ g, v ∈ V0, and y ∈ a. We have to check that y(xv) = 0.
But

yxv = x yv
︸︷︷︸

0

+ [y, x]
︸︷︷︸
∈a

v = 0.

Now, we have that g = kX ⊕ a, and a kills V0, and that X : V0 → V0 is
nilpotent, so it has a kernel. Thus, there is some v ∈ V0 which is killed
by X, and so v is killed by all of g.

Corollary 11.9. If adX is nilpotent for every X ∈ g, then g is nilpotent
as a Lie algebra.

Proof. Let V = g, so we have ad : g → gl(g), which has kernel Z(g). By
Engel’s theorem, we know that there is an x ∈ g such that (ad g)(x) = 0.
This implies that Z(g) 6= 0. By induction we can assume g/Z(g) is nilpo-
tent. But then g itself must be nilpotent as well because Dn(g/Z(g)) = 0
implies Dn+1(g) = 0.

� Warning 11.10. If g ⊆ gl(V ) is a nilpotent subalgebra, it does not
imply that every X ∈ g is nilpotent (take diagonal matrices for

example).

Theorem 11.11 (Lie’s Theorem). Let k be algebraically closed and of
characteristic 0. If g ⊆ gl(V ) is a solvable subalgebra, then all elements
of g have a common eigenvector in V .

This is a generalization of the statement that two commuting operators
have a common eigenvector.

Corollary 11.12. If g is solvable, then there is a complete flag {0} =
V0  V1  · · ·  Vn = V such that g(Vi) ⊆ Vi. That is, there is a basis
in which all elements of g are upper triangular.

Proof. If g is solvable, take any subspace a ⊂ g of codimension 1 con-
taining Dg, then a is an ideal. We’re going to try to do the same kind
of induction as in Engel’s theorem.

For a linear functional λ : a → k, let

Vλ = {v ∈ V |Xv = λ(X)v for all X ∈ a}.

Vλ 6= 0 for some λ by induction hypothesis.

Claim. g(Vλ) ⊆ Vλ.



Lecture 11 - Engel’s Theorem and Lie’s Theorem 54

Proof of Claim. Choose v ∈ Vλ and X ∈ a, Y ∈ g. Then

X(Y v) = Y ( Xv
︸︷︷︸

λ(X)v

) + [X, Y ]v
︸ ︷︷ ︸

λ([X,Y ])v

We want to show that λ[X, Y ] = 0. There is a trick. Let r be the largest
integer such that v, Y v, Y 2v, . . . , Y rv is a linearly independent set. We
know that Xv = λ(X)v for any X ∈ a. We claim that XY jv ≡ λ(X)Y jv
mod (span{v, Y v, . . . , Y j−1v}). This is clear for j = 0, and by induction,
we have

XY jv = YXY j−1v
︸ ︷︷ ︸

≡λ(X)Y j−1v
mod span{v,...,Y j−2v}

+ [X, Y ]Y j−1v
︸ ︷︷ ︸

≡λ([X,Y ])Y j−1v
mod span{v,...,Y j−2v}

≡ λ(X)Y jv mod span{v, . . . , Y j−1v}

So the matrix for X can be written as λ(X) on the diagonal and stuff
above the diagonal (in this basis). So the trace of X is (r+1)λ(X). Then
we have that tr([X, Y ]) = (r+1)λ([X, Y ]), since the above statement was
proved for any X ∈ a and [X, Y ] ∈ a. But the trace of a commutator
is always 0. Since the characteristic of k is 0, we can conclude that
λ[X, Y ] = 0. �Claim

To finish the proof, write g = kT ⊕ a, with T : Vλ → Vλ (we can do
this because of the claim). Since k is algebraically closed, T has a non-
zero eigenvector w in Vλ. This w is the desired common eigenvector.

Remark 11.13. If k is not algebraically closed, the theorem doesn’t hold.
For example, consider the (one dimensional) Lie algebra generated by a
rotation of R2.

The theorem also fails if k is not characteristic 0. Say k is charac-
teristic p, then let x be the permutation matrix of the p-cycle (p p −
1 · · · 2 1) (i.e. the matrix

(
0 Ip−1

1 0

)
), and let y be the diagonal matrix

diag(0, 1, 2, . . . , p − 1). Then [x, y] = x, so the Lie algebra generated
by x and y is solvable. However, y is diagonal, so we know all of its
eigenvectors, and none of them is an eigenvector of x.

Corollary 11.14. Let k be of characteristic 0. Then g is solvable if and
only if Dg is nilpotent.

If Dg is nilpotent, then g is solvable from the definitions. If g is
solvable, then look at everything over the algebraic closure of k, where
g looks like upper triangular matrices, so Dg is nilpotent. All this is
independent of coefficients (by useful fact (4)).
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The radical

There is a unique maximal solvable ideal in g (by useful fact (3): sum of
solvable ideals is solvable), which is called the radical of g.

Definition 11.15. We call g semisimple if rad g = 0.

◮ Exercise 11.3. Show that g/rad g is always semisimple.

If g is one dimensional, generated by X, then we have that [g, g] = 0,
so g cannot be semisimple.

If g is two dimensional, generated byX and Y , then we have that [g, g]
is one dimensional, spanned by [X, Y ]. Thus, g cannot be semisimple
because Dg is a solvable ideal.

There is a semisimple Lie algebra of dimension 3, namely sl2.
Semisimple algebras have really nice properties. Cartan’s criterion

(Theorem 12.7) says that g is semisimple if and only if the Killing form
(see next lecture) is non-degenerate. Whitehead’s theorem (Theorem
12.10) says that if V is a non-trivial irreducible representation of a
semisimple Lie algebra g, then H i(g, V ) = 0 for all i. Weyl’s theorem
(Theorem 12.14) says that every finite dimensional representation of a
semisimple Lie algebra is the direct sum of irreducible representations.
If G is simply connected and compact, then g is semisimple (See Lecture
20).
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Lecture 12 - Cartan Criterion, Whitehead

and Weyl Theorems

Invariant forms and the Killing form

Let ρ : g → gl(V ) be a representation. To make the notation cleaner, we
will write X̄ for ρ(X). We can define a bilinear form on g by BV (X, Y ) :=
tr(X̄Ȳ ). This form is symmetric because tr(AB) = tr(BA) for any linear
operators A and B.

We also have that

BV ([X, Y ], Z) = tr(X̄Ȳ Z̄ − Ȳ X̄Z̄) = tr(X̄Ȳ Z̄) − tr(X̄Z̄Ȳ )

= tr(X̄Ȳ Z̄ − X̄Z̄Ȳ ) = BV (X, [Y, Z]),

so B satisfies
B([X, Y ], Z) = B(X, [Y, Z]).

Such a form is called an invariant form. It is called invariant because
it is implied by B being Ad-invariant.1 Assume that for any g ∈ G and
X,Z ∈ g, we B(AdgX,AdgZ) = B(X,Z). Let γ be a path in G with
γ′(0) = Y . We get that

B([Y,X], Z) +B(X, [Y, Z]) =
d

dt

∣
∣
∣
∣
t=0

B
(
Adγ(t)(X), Adγ(t)(Z)

)
= 0.

Definition 12.1. The Killing form, denoted by B, is the special case
where ρ is the adjoint representation. That is, B(X, Y ) := tr(adX ◦adY ).

◮ Exercise 12.1. Let g be a simple Lie algebra over an algebraically
closed field. Check that two invariant forms on g are proportional.

◮ Exercise 12.2 (In class). If g is solvable, then B(g,Dg) = 0.

Solution. First note that if Z = [X, Y ] ∈ Dg, then adZ = [adX , adY ] ∈
D(ad g) since the adjoint representation is a Lie algebra homomorphism.
Moreover, g solvable implies that the image of the adjoint representation,
ad(g) ≃ g/Z(g), is solvable. Therefore, in some basis of V of a repre-
sentation of ad(g), all matrices of ad(g) are upper triangular (by Lie’s
Theorem), and those of D(adg) are all strictly upper triangular. The
product of an upper triangular matrix and a strictly upper triangular
matrix will be strictly upper triangular and therefore have trace 0. �

The converse of this exercise is also true. It will follow as a corollary
of our next theorem (Corollary 12.6 below).

1If G is connected, the two versions of invariance are equivalent.
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Theorem 12.2. Suppose g ⊆ gl(V ), char k = 0, and BV (g, g) = 0.
Then g is solvable.

For the proof, we will need the following facts from linear algebra.

Lemma 12.3.2 Let X be a diagonalizable linear operator in V , with k
algebraically closed. If X = A · diag(λ1, . . . , λn) · A−1 and f : k → k is
a function, we define f(X) as A · diag(f(λ1), . . . , f(λn)) · A−1. Suppose
tr(X · f(X)) = 0 for any Q-linear map f : k → k such that f is the
identity on Q, then X = 0.

Proof. Consider only f such that the image of f is Q. Let λ1, . . . , λm be
the eigenvalues ofX with multiplicities n1, . . . , nm. We obtain tr(X·f(X)) =
n1λ1f(λ1) + . . . + nmλmf(λn) = 0. Apply f to this identity to obtain
n1f(λ1)

2 + . . .+nmf(λm)2 = 0 which implies f(λi) = 0 for all i. If some
λi is not zero, we can choose f so that f(λi) 6= 0, so λi = 0 for all i.
Since X is diagonalizable, X = 0.

Lemma 12.4 (Jordan Decomposition). Given X ∈ gl(V ), there are
unique Xs, Xn ∈ gl(V ) such that Xs is diagonalizable, Xn is nilpotent,
[Xs, Xn] = 0, and X = Xn + Xs. Furthermore, Xs and Xn are polyno-
mials in X.

Proof. All but the last statement is standard; see, for example, Corollay
2.5 of Chapter XIV of [Lan02]. To see the last statement, let the char-
acteristic polynomial of X be

∏

i(x − λi)
ni. By the chinese remainder

theorem, we can find a polynomial f such that f(x) ≡ λi mod (x−λi)ni.
Choose a basis so that X is in Jordan form and compute f(X) block by
block. On a block with λi along the diagonal (X−λiI)ni is 0, so f(X) is
λiI on this block. Then f(X) = Xs is diagonalizable andXn = X−f(X)
is nilpotent.

Lemma 12.5. Let g ⊆ gl(V ). The adjoint representation ad : g → gl(g)
preserves Jordan decomposition: adXs = (adX)s and adXn = (adX)n. In
particular, adXs is a polynomial in adX .

Proof. Suppose the eigenvalues ofXs are λ1, . . . , λm, and we are in a basis
where Xs is diagonal. Check that adXs(Eij) = [Xs, Eij] = (λi − λj)Eij .
SoXs diagonalizable implies adXs is diagonalizable (because it has a basis
of eigenvectors). We have that adXn is nilpotent because the monomials
in the expansion of (adXn)k(Y ) have Xn to at least the k/2 power on one
side of Y . So we have that adX = adXs +adXn , with adXs diagonalizable,
adXn nilpotent, and the two commute, so by uniqueness of the Jordan
decomposition, adXs = (adX)s and adXn = (adX)n.

2This is different from what we did in class. There is an easier way to do this if
you are willing to assume k = C and use complex conjugation. See Fulton and Harris
for this method.
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Proof of Theorem 12.2. It is enough to show that Dg is nilpotent. Let
X ∈ Dg, so X =

∑
[Yi, Zi]. It suffices to show that Xs = 0. To do this,

let f : k → k be any Q-linear map fixing Q.

BV (f(Xs), Xs) = BV (f(Xs), X) (Xn doesn’t contribute)

= BV

(

f(Xs),
∑

i

[Yi, Zi]
)

=
∑

i

BV ([f(Xs), Yi]
︸ ︷︷ ︸

∈g?

, Zi) (BV invariant)

= 0 (assuming [f(Xs), Yi] ∈ g)

Then by Lemma 12.3, Xs = 0.
To see that [f(Xs), Yi] ∈ g, suppose the eigenvalues ofXs are λ1, . . . , λm.

Then the eigenvalues of f(Xs) are f(λi), the eigenvalues of adXs are of the
form µij := λi−λj , and eigenvalues of adf(Xs) are νij := f(λi)− f(λj) =
f(µij). If we define g to be a polynomial such that g(µij) = νij , then
adf(Xs) and g(adXs) are diagonal (in some basis) with the same eigenval-
ues in the same places, so they are equal. So we have

[f(Xs), Yi] = g(adXs)(Yi)

= h(adX)(Yi) ∈ g (using Lemma 12.5)

for some polynomial h.
The above arguments assume k is algebraically closed, so if it’s not

apply the above to g ⊗k k̄. Then g ⊗k k̄ solvable implies g solvable as
mentioned in the previous lecture.

Corollary 12.6. g is solvable if and only if B(Dg, g) = 0.

Proof. (⇐) We have that B(Dg, g) = 0 implies B(Dg,Dg) = 0 which
implies that ad(Dg) is solvable. The adjoint representation of Dg gives
the exact sequence

0 → Z(Dg) → Dg → ad(Dg) → 0.

Since Z(Dg) and ad(Dg) are solvable, Dg is solvable by useful fact (1)
of Lecture 11, so g is solvable.

(⇒) This is exercise 12.2.

Theorem 12.7 (Cartan’s Criterion). The Killing form is non-degenerate
if and only if g is semisimple.

Proof. Say g is semisimple. Let a = kerB. Because B is invariant, we
get that a is an ideal, and B|a = 0. By the previous theorem (12.2), we
have that a is solvable, so a = 0 (by definition of semisimple).
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Suppose that g is not semisimple, so g has a non-trivial solvable ideal.
Then the last non-zero term in its derived series is some abelian ideal
a ⊆ g.3 For any X ∈ a, the matrix of adX is of the form ( 0 ∗

0 0 ) with
respect to the (vector space) decomposition g = a⊕ g/a, and for Y ∈ g,
adY is of the form ( ∗ ∗

0 ∗ ). Thus, we have that tr(adX ◦ adY ) = 0 so
X ∈ kerB, so B is degenerate.

Theorem 12.8. Any semisimple Lie algebra is a direct sum of simple
algebras.

Proof. If g is simple, then we are done. Otherwise, let a ⊆ g be an ideal.
By invariance of B, a⊥ is an ideal. On a∩a⊥, B is zero, so the intersection
is a solvable ideal, so it is zero by semisimplicity of g. Thus, we have
that g = a ⊕ a⊥. The result follows by induction on dimension.

Remark 12.9. In particular, if g =
⊕

gi is semisimple, with each gi
simple, we have that Dg =

⊕Dgi. But Dgi is either 0 or gi, and it
cannot be 0 (lest gi be a solvable ideal). Thus Dg = g.

Theorem 12.10 (Whitehead). If g is semisimple and V is an irreducible
non-trivial representation of g, then H i(g, V ) = 0 for all i ≥ 0.

Proof. The proof uses the Casimir operator, CV ∈ gl(V ). Assume for
the moment that g ⊆ gl(V ). Choose a basis e1, . . . , en in g, with dual
basis f1, . . . , fn in g (dual with respect to BV , so BV (ei, fj) = δij). It
is necessary that BV be non-degenerate for such a dual basis to exist,
and this is where we use that g is semisimple. The4 Casimir operator is
defined to be CV =

∑
ei ◦ fi ∈ gl(V ) (where ◦ is composition of linear

operators on V ). The main claim is that [CV , X] = 0 for any X ∈ g.
This can be checked directly: put [X, fi] =

∑
aijfj, [X, ei] =

∑
bijej ,

then apply BV to obtain aji = BV (ei, [X, fj]) = BV ([ei, X], fj) = −bij ,
where the middle equality is by invariance of BV .

[X,CV ] =
∑

i

Xeifi − eiXfi + eiXfi − eifiX

=
∑

i

[X, ei]fi + ei[X, fi]

=
∑

i

∑

j

bijejfi + aijeifj

=
∑

i

∑

j

(aij + bji)eifj = 0.

3Quick exercise: why is a an ideal?
4We will soon see that CV is independent of the basis e1, . . . , en, so the article

“the” is apropriate.
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Suppose V is irreducible, and k is algebraically closed. Then the
condition [CV , X] = 0 means precisely that CV is an intertwiner so by
Schur’s lemma, CV = λId. We can compute

trVCV =

dimg∑

i=1

tr(eifi)

=
∑

BV (ei, fi) = dim g.

Thus, we have that λ = dim g

dimV
, in particular, it is non-zero.

For any representation ρ : g → gl(V ), we can still talk about CV ,

but we define it for the image ρ(g), so CV = dim ρ(g)
dimV

Id. We get that
[CV , ρ(X)] = 0. The point is that if V is non-trivial irreducible, we have
that CV is non-zero.

Now consider the complex calculating the cohomology:

Hom(Λkg, V )
d−→ Hom(Λk+1g, V )

We will construct a chain homotopy5 γ : Ck+1 → Ck between the zero
map on the complex and the map CV = dim ρ(g)

dimV
Id:

γc(x1, . . . , xk) =
∑

i

eic(fi, x1, . . . , xk)

◮ Exercise 12.3. Check directly that (γd+ dγ)c = CV c.

Thus γd+ dγ = CV = λId (where λ = dim ρ(g)
dimV

). Now suppose dc = 0.

Then we have that dγ(c) = λc, so c = d(γ(c))
λ

. Thus, ker d/ im d = 0, as
desired.

Remark 12.11. What is H1(g, k), where k is the trivial representation of
g? Recall that the cochain complex is

k → Hom(g, k)
d−→ Hom(Λ2g, k) → · · · .

If c ∈ Hom(g, k) and c ∈ ker d, then dc(x, y) = c([x, y]) = 0, so c is 0 on
Dg = g. So we get that H1(g, k) = (g/Dg)∗ = 0.

However, it is not true that H i(g, k) = 0 for i ≥ 2. Recall from
Lecture 10 that H2(g, k) parameterizes central extensions of g (Theorem
10.2).

◮ Exercise 12.4. Compute Hj(sl2, k) for all j.

5Don’t worry about the term “chain homotopy” for now. It just means that
γ satisfies the equation in Exercise 12.3. See Proposition 2.12 of [Hat02] if you’re
interested.
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Remark 12.12. Note that for g semisimple, we have H1(g,M) = 0 for
any finite dimensional representation M (not just irreducibles). We have
already seen that this holds when M is trivial and Whitehead’s Theorem
shows this when M is non-trivial irreducible. If M is not irreducible, use
short exact sequences to long exact sequences in cohomology: if

0 → W →M → V → 0

is an exact sequence of representations of g, then

→ H1(g, V ) → H1(g,M) → H1(g,W ) →

is exact. The outer guys are 0 by induction on dimension, so the middle
guy is zero.

We need a lemma before we do Weyl’s Theorem.

Lemma 12.13. Say we have a short exact sequence

0 →W → M → V → 0.

If H1(g,Homk(V,W )
︸ ︷︷ ︸

V ∗⊗W

) = 0, then the sequence splits.

Proof. Let X ∈ g. Let XW represent the induced linear operator on

W . Then we can write XM =
(
XW c(X)
0 XV

)

. What is c(X)? It is an

element of Homk(V,W ). So c is a linear function from g to Homk(V,W ).
It will be a 1-cocycle: we have [XM , YM ] = [X, Y ]M because these are
representations, which gives us

XW c(Y ) − c(Y )XV −
(
YW c(X) − c(X)YV

)
= c([X, Y ]).

In general, dc(X, Y ) = c([X, Y ])−Xc(Y )+Y c(X), where Xc(Y ) is given
by the action of X ∈ g on V ∗⊗W , which is not necessarily composition.
In our case this action is by commutation, where c(Y ) is extended to an
endomorphism of V ⊕W by writing it as

(
0 c(Y )
0 0

)
. The line above says

exactly that dc = 0.
Put Γ =

(
1W K
0 1V

)
. Conjugating by Γ gives an equivalent representa-

tion. We have

ΓXMΓ−1 =

(
XW c(X) +KXV −XWK
0 XV

)

We’d like to kill the upper right part (to show that X acts on V and W
separately). We have c ∈ Hom(g, V ∗ ⊗W ), K ∈ V ∗ ⊗W . Since the first
cohomology is zero, dc = 0, so we can find a K such that c = dK. Since
c(X) = dK(X) = X(K) = XWK−KXV , the upper right part is indeed
0.
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Theorem 12.14 (Weyl). If g is semisimple and V is a finite dimensional
representation of g, then V is semisimple6 (i.e. completely reducible).

Proof. The theorem follows immediately from Lemma 12.13 and Remark
12.12.

Weyl proved this using the unitary trick, which involves knowing
about compact real forms.

Remark 12.15. We know from Lecture 10 that deformations of g are
enumerated by H2(g, g). This means that semisimple Lie algebras do
not have any deformations! This suggests that the variety of semisimple
Lie algebras is discrete. Perhaps we can classify them.

Aut g is a closed Lie subgroup of GL(g). Let X(t) be a path in Aut g

such that X(0) = 1, and let d
dt
X(t)

∣
∣
t=0

= φ be an element of the Lie
algebra of Aut g. We have that

[X(t)Y,X(t)Z] = X(t)([Y, Z])

[φY, Z] + [Y, φZ] = φ[Y, Z] (differentiating at t = 0)

so Lie(Aut g) = Der(g), the algebra of derivations of g. (We get equality
because any derivation can be exponentiated to an automorphism.)

By the Jacobi identity, adX is a derivation on g. So ad(g) ⊆ Der(g).

◮ Exercise 12.5. Check that ad(g) is an ideal.

We have seen in lecture 9 (page 42) that Der(g)/ad(g) ≃ H1(g, g).
The conclusion is that Der(g) = ad(g) ∼= g—that is, all derivations on a
semisimple Lie algebra are inner.

Now we know that G and Aut g have the same Lie algebras. If f ∈
Aut g is central (i.e. commutes with all automorphisms), then we have

(
exp(t · adx)

)
y = f ◦

(
exp(t · adx)

)
◦ f−1y (f is central)

= exp(t · adf(x))y (f an automorphism of g)

Comparing the t1 coefficients, we see that adf(x) = adx for all x. Since g

has no center, f(x) = x for all x. Therefore, Aut g has trivial center.
It follows that the connected component of the identity of Aut g is

AdG.

6For any invariant subspace W ⊆ V , there is an invariant W ′ ⊆ V so that V =
W ⊕ W ′.
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Lecture 13 - The root system of a semisim-

ple Lie algebra

The goal for today is to start with a semisimple Lie algebra over a field
k (assumed algebraically closed and characteristic zero), and get a root
system.

Recall Jordan decomposition. For g ⊆ gl(V ), any x ∈ g can be
written (uniquely) as x = xs + xn, where xs is semisimple and xn is
nilpotent, both of which are polynomials in x. In general, xs and xn are
in gl(V ), but not necessarily in g.

Proposition 13.1. If g ⊆ gl(V ) is semisimple, then xs, xn ∈ g.

Proof. Notice that g acts on gl(V ) via commutator, and g is an invari-
ant subspace. By complete reducibility (Theorem 12.14), we can write
gl(V ) = g ⊕ m where m is g-invariant, so

[g, g] ⊆ g and [g,m] ⊆ m.

We have that adxs and adxn are polynomials in adx (by Lemma 12.5), so

[xn, g] ⊆ g , [xs, g] ⊆ g and [xn,m] ⊆ m , [xs,m] ⊆ m.

Take xn = a+ b ∈ g⊕m, where a ∈ g and b ∈ m. We would like to show
that b = 0, for then we would have that xn ∈ g, from which it would
follow that xs ∈ g.

Decompose V = V1 ⊕ · · · ⊕ Vn with the Vi irreducible. Since xn is a
polynomial in x, we have that xn(Vi) ⊆ Vi, and a(Vi) ⊆ Vi since a ∈ g,
so b(Vi) ⊆ Vi. Moreover, we have that

[xn, g] = [a, g]
︸︷︷︸
∈g

+ [b, g]
︸︷︷︸
∈m

⊆ g,

so [b, g] = 0 (i.e. b is an intertwiner). By Schur’s lemma, b must be a
scalar operator on Vi (i.e. b|Vi

= λiId). We have trVi
(xn) = 0 because xn

is nilpotent. Also trVi
(a) = 0 because g is semisimple implies Dg = g, so

a =
∑

[xk, yk], and the traces of commutators are 0. Thus, trVi
(b) = 0,

so λi = 0 and b = 0. Now xn = a ∈ g, and so xs ∈ g.

Since the image of a semisimple Lie algebra is semisimple, the proposi-
tion tells us that for any representation ρ : g → gl(V ), the semisimple and
nilpotent parts of ρ(x) are in the image of g. In fact, the following corol-
lary shows that there is an absolute Jordan decomposition x = xs + xn
within g.
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Corollary 13.2. If g is semisimple, and x ∈ g, then there are xs, xn ∈ g

such that for any representation ρ : g → gl(V ), we have ρ(xs) = ρ(x)s
and ρ(xn) = ρ(x)n.

Proof. Consider the (faithful) representation ad : g → gl(g). By the
proposition, there are some xs, xn ∈ g such that (adx)s = adxs and
(adx)n = adxn. Since ad is faithful, adx = adxn + adxs and ad[xn,xs] =
[adxn, adxs] = 0 tell us that x = xn + xs and [xs, xn] = 0. These are our
candidates for the absolute Jordan decomposition.

Given any surjective Lie algebra homomorphism σ : g → g′, we
have that adσ(y)(σ(z)) = σ(ady(z)), from which it follows that adσ(xs) is
diagonalizable and adσ(xn) is nilpotent (note that we’ve used surjectivity
of σ). Thus, σ(x)n = σ(xn) and σ(x)s = σ(xs). That is, our candidates
are preserved by surjective homomorphisms.

Now given any representation ρ : g → gl(V ), the previous paragraph
allows us to replace g by its image, so we may assume ρ is faithful. By the
proposition, there are some y, z ∈ g such that ρ(x)s = ρ(y), ρ(x)n = ρ(z).
Then [ρ(y),−]gl(ρ(g)) is a diagonalizable operator on gl

(
ρ(g)

) ∼= gl(g),
and [ρ(z),−]gl(ρ(g)) is nilpotent. Uniqueness of the Jordan decomposition
implies that ρ(y) = ρ(xs) and ρ(z) = ρ(xn). Since ρ is faithful, it follows
that y = xs and z = xn.

Definition 13.3. We say x ∈ g is semisimple if adx is diagonalizable.
We say x is nilpotent if adx is nilpotent.

Given any representation ρ : g → gl(V ) with g semisimple, the corol-
lary tells us that if x is semisimple, then ρ(x) is diagonalizable, and if x
is nilpotent, then ρ(x) is nilpotent. If ρ is faithful, then x is semisimple
(resp. nilpotent) if and only if ρ(x) is semisimple (resp. nilpotent).

Definition 13.4. We denote the set of all semisimple elements in g

by gss. We call an x ∈ gss regular if dim(ker adx) is minimal (i.e. the
dimension of the centralizer is minimal).

Example 13.5. Let g = sln. Semisimple elements of sln are exactly the
diagonalizable matrices, and nilpotent elements are exactly the nilpotent
matrices. If x ∈ g is diagonalizable, then the centralizer is minimal
exactly when all the eigenvalues are distinct. So the regular elements are
the diagonalizable matrices with distinct eigenvalues.

Let h ∈ gss be regular. We have that adh is diagonalizable, so we can
write g =

⊕

µ∈k gµ, where gµ = {x ∈ g|[h, x] = µx} are eigenspaces of
adh. We know that g0 6= 0 because it contains h. There are some other
properties:

1. [gµ, gν ] ⊆ gµ+ν .
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2. g0 ⊆ g is a subalgebra.

3. B(gµ, gν) = 0 if µ 6= −ν (here, B is the Killing form, as usual).

4. B|gµ⊕g−µ is non-degenerate, and B|g0 is non-degenerate.

Proof. Property 1 follows from the Jacobi identity: if x ∈ gµ and y ∈ gν ,
then

[h, [x, y]] = [[h, x], y] + [x, [h, y]] = µ[x, y] + ν[x, y],

so [x, y] ∈ gµ+ν . Property 2 follows immediately from 1. Property 3
follows from 1 because adx ◦ ady : gγ → gγ+µ+ν , so B(x, y) = tr(adx ◦
ady) = 0 whenever µ + ν 6= 0. Finally, Cartan’s criterion says that B
must be non-degenerate, so property 4 follows from 3.

Proposition 13.6. In the situation above (g is semisimple and h ∈ gss
is regular), g0 is abelian.

Proof. Take x ∈ g0, and write x = xs + xn. Since adxn is a polynomial
of adx, we have [xn, h] = 0, so xn ∈ g0, from which we get xs ∈ g0. Since
[xs, h] = 0, we know that adxs and adh are simultaneously diagonalizable
(recall that adxs is diagonalizable). Thus, for generic t ∈ k, we have
that ker adh+txs ⊆ ker adh. Since h is regular, ker adxs = ker adh = g0.
So [xs, g0] = 0, which implies that g0 is nilpotent by Corollary 11.9 to
Engel’s Theorem. Now we have that adx : g0 → g0 is nilpotent, and we
want adx to be the zero map. Notice that B(g0,Dg0) = 0 since g0 is
nilpotent, but B|g0 is non-degenerate by property 4 above, so Dg0 = 0,
so g0 is abelian.

Definition 13.7. We call h := g0 the Cartan subalgebra of g (associated
to h).

In Theorem 14.1, we will show that any two Cartan subalgebras of a
semisimple Lie algebra g are related by an automorphism of g, but for
now we just fix one. See [Hum78, §15] for a more general definition of
Cartan subalgebras.

◮ Exercise 13.1. Show that if g is semisimple, h consists of semisimple
elements.

All elements of h are simultaneously diagonalizable because they are
all diagonalizable (by the above exercise) and they all commute (by the
above proposition). For α ∈ h∗ r {0} consider

gα = {x ∈ g|[h, x] = α(h)x for all h ∈ h}

If this gα is non-trivial, it is called a root space and the α is called a
root . The root decomposition (or Cartan decomposition) of g is g =
h ⊕

⊕

α∈h∗r{0} gα.
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Example 13.8. g = sl(2). Take H = ( 1 0
0 −1 ), a regular element. The

Cartan subalgebra is h = k · H , a one dimensional subspace. We have
g2 =

{
( 0 t

0 0 )
}

and g−2 =
{
( 0 0
t 0 )
}
, and g = h ⊕ g2 ⊕ g−2.

Example 13.9. g = sl(3). Take

h =











x1 0
x2

0 x3





∣
∣
∣
∣
x1 + x2 + x3 = 0






.

Let Eij be the elementary matrices. We have that [diag(x1, x2, x3), Eij] =
(xi − xj)Eij . If we take the basis εi(x1, x2, x3) = xi for h∗, then we have
roots εi − εj. They can be arranged in a diagram:

ε188
ε2 ff

ε3
��

ε1 − ε2
//

ε1 − ε3FFε2 − ε1
oo

ε2 − ε3 XX11111111111

ε3 − ε1

��






ε3 − ε2

��
11

11
11

11
11

1

This generalizes to sl(n).

The rank of g is defined to be dim h. In particular, the rank of sl(n)
is going to be n− 1.

Basic properties of the root decomposition are:

1. [gα, gβ] ⊆ gα+β.

2. B(gα, gβ) = 0 if α+ β 6= 0.

3. B|gα⊕g−α is non-degenerate.

4. B|h is non-degenerate

Note that 3 implies that α is a root if and only if −α is a root.

◮ Exercise 13.2. Check these properties.

Now let’s try to say as much as we can about this root decomposition.
Define hα ⊆ h as [gα, g−α]. Take x ∈ gα and y ∈ g−α and h ∈ h. Then
compute

B(

∈hα
︷︸︸︷

[x, y], h) = B(x,

∈gα
︷︸︸︷

[y, h]) (B is invariant)

= α(h)B(x, y) (since y ∈ gα)

It follows that h⊥
α = ker(α), which is of codimension one. Thus, hα is

one dimensional.
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Proposition 13.10. If g is semisimple and α is a root, then α(hα) 6= 0.

Proof. Assume that α(hα) = 0. Then pick x ∈ gα, y ∈ g−α such that
[x, y] = h 6= 0. If α(h) = 0, then we have that [h, x] = α(h)x = 0, [h, y] =
0. Thus 〈x, y, h〉 is a copy of the Heisenberg algebra, which is solvable (in
fact, nilpotent). By Lie’s Theorem, adg(x) and adg(y) are simultaneously
upper triangularizable, so adg(h) = [adg(x), adg(y)] is nilpotent. This is
a contradiction because h is an element of the Cartan subalgebra, so it
is semisimple.

For each root α, we will take Hα ∈ hα such that α(Hα) = 2 (we can
always scale Hα to get this). We can choose Xα ∈ gα and Yα ∈ g−α
such that [Xα, Yα] = Hα. We have that [Hα, Xα] = α(Hα)Xα = 2Xα

and [Hα, Yα] = −2Yα. That means we have a little copy of sl(2) ∼=
〈Hα, Xα, Yα〉. Note that this makes g a representation of sl2 via sl2 →֒
g

ad→֒ gl(g).
We normalize α(hα) to 2 so that we get the standard basis of sl2. This

way, the representations behave well (namely, that various coefficients are
integers). Next we study these representations.

Irreducible finite dimensional representations of sl(2)

Let H,X, Y be the standard basis of sl(2), and let V be an irreducible
representation. By Corollary 13.2, the action of H on V is diagonalizable
and the actions of X and Y on V are nilpotent. By Lie’s Theorem
(applied to the solvable subalgebra generated by H and X), X and
H have a common eigenvector v: Hv = λv and Xv = 0 (since X is
nilpotent, its only eigenvalues are zero). Verify by induction that

HY rv = Y HY r−1v + [H, Y ]Y r−1v =
(
λ− 2(r − 1)

)
Y rv + 2Y rv

= (λ− 2r)Y rv (13.11)

XY rv = Y XY r−1v + [X, Y ]Y r−1v

= (r − 1)
(
λ− (r − 1) + 1

)
Y r−1v +

(
λ− 2(r − 1)

)
Y r−1v

= r(λ− r + 1)Y r−1v (13.12)

Thus, the span of v, Y v, Y 2v, . . . is a subrepresentation, so it must be
all of V (since V is irreducible). Since Y is nilpotent, there is a minimal
n such that Y nv = 0. From (13.12), we get that λ = n − 1 is a non-
negative integer. Since v, Y v, . . . , Y n−1v have distinct eigenvalues (under
H), they are linearly independent.

Conclusion: For every non-negative integer n, there is exactly one
irreducible representation of sl2 of dimension n+1, and theH-eigenvalues
on that representation are n, n− 2, n− 4, . . . , 2 − n,−n.
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Remark 13.13. As a consequence, we have that in a general root decom-
position, g = h ⊕

⊕

α∈∆ gα, each root space is one dimensional. Assume
that dim g−α > 1. Consider an sl(2) in g, generated by 〈Xα, Yα, Hα =
[Xα, Yα]〉 where Yα ∈ g−α and Xα ∈ gα. Then there is some Z ∈ g−α such
that [Xα, Z] = 0 (since hα is one dimensional). Hence, Z is a highest
vector with respect to the adjoint action of this sl(2). But we have that
adHα(Z) = −2Z, and the eigenvalue of a highest vector must be positive!
This shows that the choice of Xα and Yα is really unique.

Definition 13.14. Thinking of g as a representation of sl2 = 〈Xα, Yα, Hα〉,
the irreducible subrepresentation containing gβ is called the α-string
through β.

Let ∆ denote the set of roots. Then ∆ is a finite subset of h∗ with
the following properties:

1. ∆ spans h∗.

2. If α, β ∈ ∆, then β(Hα) ∈ Z, and β −
(
β(Hα)

)
α ∈ ∆.

3. If α, cα ∈ ∆, then c = ±1.

◮ Exercise 13.3. Prove these properties.
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Lecture 14 - More on Root Systems

Assume g is semisimple. Last time, we started with a regular element
h ∈ gss and constructed the decomposition g = h ⊕

⊕

α∈∆ gα, where
∆ ⊆ h∗ is the set of roots. We proved that each gα is one dimensional
(we do not call 0 a root). For each root, we associated an sl(2) subalgebra.
Given Xα ∈ gα, Yα ∈ g−α, we set Hα = [Xα, Yα], and normalized so that
α(Hα) = 2.

Furthermore, we showed that

1. ∆ spans h∗,

2. α(Hβ) ∈ Z, with α− α(Hβ)β ∈ ∆ for all α, β ∈ ∆, and

3. if α, kα ∈ ∆, then k = ±1.

How unique is this decomposition? We started with some choice of a
regular semisimple element. Maybe a different one would have produced
a different Cartan subalgebra.

Theorem 14.1. Let h and h′ be two Cartan subalgebras of a semisimple
Lie algebra g (over an algebraically closed field of characteristic zero).
Then there is some φ ∈ AdG such that φ(h) = h′. Here, G is the Lie
group associated to g.

Proof. Consider the map

Φ : hreg × gα1 × · · · × gαN
→ g

(h, x1, . . . , xN) 7→ exp(adx1) · · · exp(adxN
)h.

Note that adxi
h is linear in both xi and h, and each adgαi

is nilpotent,
so the power series for exp is finite. It follows that Φ is a polynomial
function. Since d

dt
exp(adtxi

)h
∣
∣
t=0

= αi(h)xi ∈ gαi
, the differential if Φ at

(h, 0, . . . , 0) is

DΦ|(h,0,...,0) =








Idh 0
α1(h) 0

0
. . .

0 αN(h)








with respect to the decomposition g = h ⊕ gα1 ⊕ · · · ⊕ gαN
. DΦ|(h,0,...,0)

is non-degenerate because h ∈ hreg implies that αi(h) 6= 0. So im Φ
contains a Zariski open set.1 Let Φ′ be the analogous map for h′. Since
Zariski open sets are dense, we have that im Φ∩ im Φ′ 6= ∅. So there are
ψ, ψ′ ∈ AdG, and h ∈ h, h′ ∈ h′ such that ψ(h) = ψ′(h′). Thus, we have
that h = ψ−1ψ′(h).

1This is a theorem from algebraic geometry. [FH91] claims in §D.3 that this result
is in [Har77], but I cannot find it.
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Abstract Root systems

We’d like to forget that any of this came from a Lie algebra. Let’s just
study an abstract set of vectors in h∗ satisfying some properties. We
know that B is non-degenerate on h, so there is an induced isomorphism
s : h → h∗. By definition, 〈s(h), h′〉 = B(h, h′).

Let’s calculate

〈sHβ, Hα〉 = B(Hβ, Hα) = B(Hα, Hβ) (B symmetric)

= B(Hα, [Xβ, Yβ]) = B([Hα, Xβ], Yβ) (B invariant)

= B(Xβ, Yβ)β(Hα)

=
1

2
B([Hβ, Xβ], Yβ)β(Hα) (2Xβ = [Hβ, Xβ])

=
1

2
B(Hβ, Hβ)β(Hα) (B invariant)

Thus, we have that s(Hβ) =
B(Hβ ,Hβ)

2
β. Also, compute

(α, β) := 〈α, s−1β〉

= α

(
2Hβ

B(Hβ, Hβ)

)

=
2α(Hβ)

B(Hβ, Hβ)
. (14.2)

In particular, letting α = β, we get s(Hβ) = 2β
(β,β)

. This is sometimes

called the coroot of β, and denoted β̌. We may use (14.2) to rewrite fact
2 from last time as:

For α, β ∈ ∆,
2(α, β)

(β, β)
∈ Z, and α− 2(α, β)

(β, β)
β ∈ ∆. (2′)

Now you can define rβ : h∗ → h∗ by rβ(x) = x − 2(x,β)
(β,β)

β. This is the
reflection through the hyperplane orthogonal to β in h∗. The group
generated by the rβ for β ∈ ∆ is a Coxeter group. If we want to study
Coxeter groups, we’d better classify root systems.2

We want to be working in Euclidean space, but we are now in h∗.
Let hr be the real span3 of the Hα’s. We claim that B is positive def-
inite on hr. To see this, note that Xα, Yα, Hα make a little sl(2) in g,
and that g is therefore a representation of sl(2) via the adjoint actions
adXα, adYα, adHα. But we know that in any representation of sl(2), the
eigenvalues of Hα must be integers. so adHα ◦ adHα has only positive
eigenvalues, so B(Hα, Hα) = tr(adHα ◦ adHα) > 0.

2We will not talk about Coxeter groups in depth in this class.
3Assuming we are working over C. Otherwise, we can use the Q span.
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Thus, we may think of our root systems in Euclidean space, where the

inner product on h∗ is given by (µ, ν)
def
= B(s−1(µ), s−1(ν)) = 〈µ, s−1ν〉.

Definition 14.3. An abstract reduced root system is a finite set ∆ ⊆
Rn r {0} which satisfies

(RS1) ∆ spans Rn,

(RS2) if α, β ∈ ∆, then 2(α,β)
(β,β)

∈ Z, and rβ(∆) = ∆

(i.e. α, β ∈ ∆ ⇒ rβ(α) ∈ ∆, with α− rβ(α) ∈ Zβ ), and

(RS3) if α, kα ∈ ∆, then k = ±1 (this is the “reduced” part).

The number n is called the rank of ∆.

Notice that given root systems ∆1 ⊂ Rn, and ∆2 ⊂ Rm, we get that
∆1

∐
∆2 ⊂ Rn ⊕Rm is a root system.

Definition 14.4. A root system is irreducible if it cannot be decomposed
into the union of two root systems of smaller rank.

◮ Exercise 14.1. Let g be a semisimple Lie algebra and let ∆ be its
root system. Show that ∆ is irreducible if and only if g is simple.

Now we will classify all systems of rank 2. Observe that 2(α,β)
(α,α)

2(α,β)
(β,β)

=

4 cos2 θ, where θ is the angle between α and β. This thing must be an
integer. Thus, there are not many choices for θ:

cos θ 0 ±1
2

± 1√
2

±
√

3
2

θ π
2

π
3
, 2π

3
π
4
, 3π

4
π
6
, 5π

6

Choose two vectors with minimal angle between them. If the minimal
angle is π/2, then the system is reducible.

α//oo

β
OO

��

Notice that α and β can be scaled independently.
If the minimal angle is smaller than π/2, then rβ(α) 6= α, so the

difference α−rβ(α) is a non-zero integer multiple of β (in fact, a positive
multiple of β since θ < π/2). If we assume ‖α‖ ≤ ‖β‖ (we can always
switch them), we get that ‖α − rβ(α)‖ < 2‖α‖ ≤ 2‖β‖. It follows that
α− rβ(α) = β.

Remark 14.5. Observe that we have shown that for any roots α and β,
if θα,β < π/2, then α− β is a root.
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Remark 14.6. We have also shown that once we set the direction of the
longer root, β (thus determining rβ), its length is determined relative to
the length of α.

Now we can obtain the remaining elements of the root system from
the condition that ∆ is invariant under rα and rβ, observing that no
additional vectors can be added without violating RS2, RS3, or the pre-
scribed minimal angle. Thus, all the irreducible rank two root systems
are

A2, θ = π/3 B2, θ = π/4 G2, θ = π/6

α//

βFF

XX11111111
oo

rβ(α)
��
11

11
11

11

��




α//

β??���������

OO__?????????
oo

����
��

��
��

�

rβ(α)
�� ��

??
??

??
??

? α//

ffMMMMMMMMM

XX11111

FF

β88qqqqqqqqq

OO

oo

&&MMMMMMMMM

��
11

11
1

rβ(α)
��



xxqqqqqqqqq

��

The Weyl group

Given a root system ∆ = {α1, . . . , αN}, we call the group generated by
the rαi

s the Weyl group, denoted W.

Remark 14.7. If G is a Lie group with Lie algebra g, then for each
rα ∈ W, there is a group element Sα ∈ G, such that AdSα takes h to
itself, and induces rα. Consider the sl2 ⊆ g generated by Xα, Yα, and
Hα. The embedding sl2 → g induces a homomorphism SL(2) → G, and
Sα is the image of ( 0 1

−1 0 ) under this homomorphism.

◮ Exercise 14.2. Let g be a semisimple Lie algebra, and let h be a
Cartan subalgebra. For each root α define

Sα = exp(Xα) exp(−Yα) exp(Xα).

Prove that AdSα(h) = h and that

〈λ,AdSα(h)〉 = 〈rα(λ), h〉

for any h ∈ h and λ ∈ h∗, where rα is the reflection in α⊥.

If G is a connected group with Lie algebra g, then define the Cartan
subgroup H ⊆ G to be the subgroup generated by the image of h under
the exponential map exp : g → G. Let

N(H) = {g ∈ G|gHg−1 = H}
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be the normalizer of H . Then we get a sequence of homomorphisms

N(H) → AutH →Aut h → Aut h∗

g 7−−−−−−−−−−→ Adg 7−→ Ad∗g.

The first map is given by conjugation, the second by differentiation at
the identity, and the third by the identification of h with h∗ via the
Killing form. The final map is given by g 7→ Ad∗g, where

(
Ad∗g(l)

)
(h) =

l(Adg−1h).

Proposition 14.8. The kernel of the composition above is exactly H,
and the image is the Weyl group. In particular, W ∼= N(H)/H.

Before we prove this proposition, we need a lemma.

Lemma 14.9. The centralizer of H is H.

Proof. If g centralizes H , then Adg is the identity on h. Furthermore,
for any h ∈ h and x ∈ gα,

[h,Adgx] = Adg([h, x]) = Adg(α(h)x) = α(h) · Adgx

so Adg(gα) = gα. Say Adg(Xi) = ciXi, where Xi spans the simple root
space gαi

. Then Adg(Yi) = 1
c
Yi. Since the simple roots are linearly

independent, we can find an h ∈ h such that AdexphXi = ciXi. Now we
have that Adg·(exp h)−1 is the identity on g, so g · (exph)−1 is in the center
of G, which is in H , so g ∈ H , as desired.

Proof of Proposition 14.8. It is clear that H is in the kernel of the com-
position. To see that H is exactly the kernel, observe that Ad∗g can only
be the identity map if Adg is the identity map, which can only happen if
conjugation by g is the identity map on H , i.e. if g is in the centralizer
of H . By Lemma 14.9, g ∈ H .

Since the Sα in the previous exercise preserves h under the Ad action,
it is in the normalizer of H . It is easy to see (given Exercise 14.2) that
the image of Sα in Aut h∗ is exactly rα. Thus, every element of the Weyl
group is in the image.

We can show that the map preserves the set of roots. If α is a root,
with a root vector x, then we have adh(x) = α(h)x for all h ∈ h. We
would like to show that Ad∗gα is also a root. It is enough to observe that
Adgx is a root vector:

adh(Adgx) = [h,Adgx] = Adg
(
[Adg−1h, x]

)

= Adg
(
α(Adg−1h)x)

)
= α(Adg−1h)Adg(x)

=
(
Ad∗g(α)

)
(h) (Adgx)
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Therefore, we can find some element w in the Weyl group so that
w ◦ Ad∗g preserves the set Π of simple roots. Since w is in the image
of Ad∗, it is enough to show that whenever Ad∗g preserves Π, it is the
identity map on h∗.

Example 14.10 (Also see Example 13.9). The root system of sln+1 is
called An. We pick an orthonormal basis ε1, . . . , εn+1 of Rn+1, the the
root system is the set of all the differences: ∆ = {εi − εj|i 6= j}. We
have that

rεi−εj
(εk) =







εk k 6= i, j
εj k = i
εi k = j

is a transposition, so we have that W ≃ Sn+1.

Now back to classification of abstract root systems.
Draw a hyperplane in general position (so that it doesn’t contain any

roots). This divides ∆ into two parts, ∆ = ∆+
∐

∆−. The roots in
∆+ are called positive roots, and the elements of ∆− are called negative
roots. We say that α ∈ ∆+ is simple if it cannot be written as the sum of
other positive roots. Let Π be the set of simple roots, sometimes called
a base. It has the properties

1. Any α ∈ ∆+ is a sum of simple roots (perhaps with repitition):
α =

∑

β∈Πmββ where mβ ∈ Z≥0.

2. If α, β ∈ Π, then (α, β) ≤ 0.

This follows from the fact that if (α, β) > 0, then α−β and β−α are
again roots (as we showed when we classified rank 2 root systems),
and one of them is positive, say α − β. Then α = β + (α − β),
contradicting simplicity of α.

3. Π is a linearly independent set.

If they were linearly dependent, the relation
∑

αi∈Π aiαi = 0 must
have some negative coefficients (because all of Π is in one half
space), so we can always write

0 6= a1α1 + · · ·+ arαr = ar+1αr+1 + · · · + anαn

with all the ai ≥ 0. Taking the inner product with the left hand
side, we get

‖a1α1+ · · ·+ arαr‖2

= (a1α1 + · · ·+ arαr, ar+1αr+1 + · · · + anαn) ≤ 0

by 2, which is absurd.
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Remark 14.11. Notice that the hyperplane is t⊥ for some t, and the
positive roots are the α ∈ ∆ for which (t, α) > 0. This gives an order on
the roots. You can inductively prove 1 using this order.

Remark 14.12. Notice that when you talk about two roots, they always
generate one of the rank 2 systems, and we know what all the rank 2
systems are.

Lemma 14.13 (Key Lemma). Suppose we have chosen a set of positive
roots ∆+, with simple roots Π. Then for α ∈ Π, we have that rα(∆

+) =
∆+ ∪ {−α}r {α}.

Proof. For a simple root β 6= α, we have rα(β) = β + kα for some non-
negative k; this must be on the positive side of the hyperplane, so it
is a positive root. Now assume you have a positive root of the form
γ = mα +

∑

αi 6=αmiαi, with m,mi ≥ 0. Then we have that rα(γ) =
−mα +

∑

αi 6=αmi(αi − kiα) ∈ ∆. If any of the mi are strictly positive,
then the coefficient of αi in ri(γ) is positive, so rα(γ) must be positive
because every root can be (uniquely) written as either a non-negative or
a non-positive combination of the simple roots.

Proposition 14.14. The group generated by simple reflections (with
respect to some fixed Π = {α1, . . . , αn}) acts transitively on the set of
sets of positive roots.

Proof. It is enough to show that we can get from ∆+ to any other set of
simple roots ∆̄+.

If ∆̄+ contains Π, then ∆̄+ = ∆+ and we are done. Otherwise, there
is some αi 6∈ ∆̄+ (equivalently, −αi ∈ ∆̄+). Applying ri, Lemma 14.13
tells us that

∣
∣ri(∆

+)r ∆̄+
∣
∣ <

∣
∣∆+ r ∆̄+

∣
∣.

If we can show for any root α which is simple with respect to ri(∆), that rα
is a product of simple reflections, then we are done by induction. But we
have that α = ri(αj) for some j, from which we get that rα = rirjri.

Corollary 14.15. W is generated by simple reflections.

Proof. Any root α is a simple root for some choice of positive roots. To
see this, draw the hyperplane really close to the given root. Then we
know that α is obtained from our initial set Π by simple reflections. We
get that if α = ri1 · · · rik(αj), then rα = (ri1 · · · rik)rj(ri1 · · · rik)−1.

We define the length of an element w ∈ W to be the smallest number
k so that w = ri1 · · · rik , for some simple reflections rij .

Next, we’d like to prove that W acts simply transitively on the set
of sets of simple roots. To do this, we need the following lemma, which
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essentially says that if you have a string of simple reflections so that
some positive root becomes negative and then positive again, then you
can get the same element of W with fewer simple reflections.

Lemma 14.16. Let β1, β2, . . . , βt be a sequence in Π (possibly with rep-
etition) with t ≥ 2. Let ri = rβi

. If r1r2 · · · rt(βt) ∈ ∆+, then there is
some s < t such that

r1 · · · rt = r1 · · · rs−1rs+1 · · · rt−1.

(Note that the right hand side omits rs and rt.)

Proof. Note that βt is positive and r1 · · · rt−1(βt) is negative, so there is a
smallest number s for which rs+1 · · · rt−1(βt) = γ is positive. Then rs(γ)
is negative, so by Lemma 14.13, we get γ = βs. This gives us

rs = (rs+1 · · · rt−1)rt(rs+1 · · · rt−1)
−1

rsrs+1 · · · rt−1 = rs+1 · · · rt−1rt.

Multiplying both sides of the second equation on the left by r1 · · · rs−1

to get the result.

Proposition 14.17. W acts simply transitively on the set of sets of
positive roots.

Proof. Proposition 14.14 shows that the action is transitive, so we need
only show that any w ∈ W which fixes ∆+ must be the identity element.
If w is a simple reflection, then it does not preserve ∆+. So we may
assume that the shortest way to express w as a product simple reflections
uses at least two simple reflections, say w = ri1 · · · rit . Then by Lemma
14.16, we can reduce the length of w by two, contradicting the minimality
of t.

Corollary 14.18. The length of an element w ∈ W is exactly
∣
∣w(∆+)r

∆+
∣
∣.

Proof. By Proposition 14.17, w is the unique element taking ∆+ to
w(∆+). Say we are building a word, as in Proposition 14.14, to get
from ∆+ to w(∆+). Assume we’ve already applied ri1 · · · rik , and next
we are going to reflect through ri1 · · · rik(αj). Then we will have applied
the element

(ri1 · · · rik)rj(ri1 · · · rik)−1(ri1 · · · rik) = ri1 · · · rikrj.
Thus, each time we reduce

∣
∣ri1 · · · rik(∆+) r w(∆+)

∣
∣ by one, we add

one simple reflection. This shows that we can express w in the desired
number of simple reflections.

On the other hand, Lemma 14.13 tells us that for any sequence of
simple reflections ri1 ,. . . , rik ,

∣
∣ri1 · · · rik(∆+)r∆+

∣
∣ ≤ k, so w cannot be

written as a product of fewer than
∣
∣w(∆+)r∆+

∣
∣ simple reflections.
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Lecture 15 - Dynkin diagrams, Classifica-

tion of root systems

Last time, we talked about root systems ∆ ⊂ Rn. We constructed the
Weyl group W, the finite group generated by reflections. We considered
Π ⊂ ∆, the simple roots. We showed that Π forms a basis for Rn, and
that every root is a non-negative (or non-positive) linear combination of
simple roots.

If α, β ∈ Π, then define nαβ = 2(α,β)
(β,β)

. We showed that nαβ is a non-

positive integer. Since nαβnβα = 4 cos2 θαβ , nα,β can only be 0,−1,−2,
or −3. If nαβ = 0, the two are orthogonal. If nαβ = −1, then the angle
must be 2π/3 and the two are the same length. If nαβ = −2, the angle
must be 3π/4 and ||β|| =

√
2 ||α||. If nαβ = −3, the angle is 5π/6 and

||β|| =
√

3 ||α||. Thus we get:

nβα nαβ relationship Dynkin picture

0 0 α//

β
OO

α ��	�
�� β��	�
��

−1 −1 α//

β
XX11111

α ��	�
�� β��	�
��

−2 −1 α//

β __??????
α ��	�
�� β��	�
��oo

−3 −1 α//
β ffMMMMMMMM α ��	�
�� β��	�
��oo

Definition 15.1. Given a root system, the Dynkin diagram of the root
system is obtained in the following way. For each simple root, draw a
node. We join two nodes by nαβnβα lines. If there are two or three lines
(i.e. if the roots are not the same length), then we draw an arrow from
the longer root to the shorter root. (As always, the alligator eats the big
one.)

The Dynkin diagram is independent of the choice of simple roots.
For any other choice of simple roots, there is an element of the Weyl
group that translates between the two, and the Weyl group preserves
inner products.

We would really like to classify Dynkin diagrams. To aid the classi-
fication, we define an undirected version of the Dynkin diagram. Define
ei = αi

(αi,αi)1/2 , for αi ∈ Π. Then the number of lines between two vertices

is nαiαj
nαjαi

= 4 · (αi,αj)2

(αi,αi)(αj ,αj)
= 4(ei, ej)

2.
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Definition 15.2. Given a set {e1, . . . , en} of linearly independent unit
vectors in some Euclidean space with the property that (ei, ej) ≤ 0 and
4(ei, ej)

2 ∈ Z for all i and j, the Coxeter diagram associated to the set is
obtained in the following way. For each unit vector, draw a node. Join
the nodes of ei and ej by 4(ei, ej)

2 lines.

Since every Dynkin diagram gives a Coxeter diagram, understanding
Coxeter diagrams is a good start in classifying Dynkin diagrams.

Example 15.3. An has n simple roots, given by εi−εi+1. So the graphs
are

Dynkin ��	�
�� ��	�
�� ... ��	�
�� ��	�
��
Coxeter • • ... • •

Let’s prove some properties of Coxeter diagrams.

(CX1) A subgraph of a Coxeter diagram is a Coxeter diagram. This is
obvious from the definition.

(CX2) A Coxeter diagram is acyclic.

Proof. Let e1, . . . , ek be a cycle in the Coxeter diagram. Then

(∑

ei,
∑

ei

)

= k +
∑

i<j
i,j adjacent

2(ei, ej)
︸ ︷︷ ︸

≤−1

≤ 0

which contradicts that the inner product is positive definite.

(CX3) The degree of each vertex in a Coxeter diagram is less than or equal
to 3, where double and triple edges count as two and three edges,
respectively.

Proof. Let e0 have e1, . . . , ek adjacent to it. Since there are no
cycles, e1, . . . , ek are orthogonal to each other. So we can compute

(

e0 −
∑

(e0, ei)ei, e0 −
∑

(e0, ei)ei

)

> 0

1 −
∑

(e0, ei)
2 > 0

but (e0, ei)
2 is one fourth of the number of edges connecting e0 and

ei. So k cannot be bigger than 3.



Lecture 15 - Dynkin diagrams, Classification of root systems 79

(CX4) Suppose a Coxeter diagram has a subgraph of type An, and only
the endpoints of this subgraph have additional edges (say Γ1 at one
end and Γ2 at the other end). Then we can “contract” the stuff
in the middle and just fuse Γ1 with Γ2, and the result is a Coxeter
diagram.

Γ1
8?9>:=;< e1• ... •ek Γ2

8?9>:=;<WWWWW

ggggg WWWWW
ggggg −→ Γ1

8?9>:=;< •e0 Γ2
8?9>:=;<WWWWW

gggggWWWWW
ggggg

Proof. Let e1, . . . , ek be the vertices in the Ak. Let e0 = e1+· · ·+ek.
Then we can compute that (e0, e0) = 1. If es ∈ Γ1 and et ∈ Γ2, we
get that (e0, es) = (e1, es) and (e0, et) = (ek, et).

Thus, a connected Coxeter diagram can have at most one fork (two could
be glued to give valence 4), at most one double edge, and if there is a
triple edge, nothing else can be connected to it.

So the only possible connected Coxeter diagrams (an therefore Dynkin
diagrams) so far are of the form

• •\\\\\\ \\\ ... •\\\bbb. . .•bbb•bbbbbb ... • •
• • ... • • ... • •

• •
Now we switch gears back to Dynkin diagrams. Note that a subgraph
of a Dynkin diagram is a Dynkin diagram. We will calculate that some
diagrams are forbidden. We label the vertex corresponding to αi with a
number mi, and check that

(∑

miαi,
∑

miαi

)

= 0.

1��	�
�� 2��	�
�� 3��	�
�� 4��	�
��// 2��	�
�� 1��	�
�� 2��	�
�� 3��	�
�� 2��	�
��oo 1��	�
��
1��	�
�� 2��	�
�� 3��	�
��

2��	�
��

1��	�
��

2��	�
�� 1��	�
�� 1��	�
�� 2��	�
�� 3��	�
�� 4��	�
��

2��	�
��

3��	�
�� 2��	�
�� 1��	�
��

2��	�
�� 4��	�
�� 6��	�
��

3��	�
��

5��	�
�� 4��	�
�� 3��	�
�� 2��	�
�� 1��	�
��

Thus we have narrowed our list of possible Dynkin diagrams to a
short list.
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The “classical” connected Dynkin diagrams are shown below (n is
the total number of vertices).

��	�
�� ��	�
�� ... ��	�
�� ��	�
�� (An)
��	�
�� ��	�
�� ... ��	�
�� ��	�
��// (Bn)
��	�
�� ��	�
�� ... ��	�
�� ��	�
��oo (Cn)

��	�
�� ��	�
�� ... ��	�
��
��	�
��nnnnnn

��	�
��PPP
PPP (Dn)

The “exceptional” Dynkin diagrams are

��	�
�� ��	�
��// (G2)
��	�
�� ��	�
�� ��	�
��// ��	�
�� (F4)

��	�
�� ��	�
�� ��	�
��

��	�
��

��	�
�� ��	�
�� (E6)

��	�
�� ��	�
�� ��	�
�� ��	�
��

��	�
��

��	�
�� ��	�
�� (E7)

��	�
�� ��	�
�� ��	�
�� ��	�
�� ��	�
��

��	�
��

��	�
�� ��	�
�� (E8)

It remains to show that each of these is indeed the Dynkin diagram of
some root system.

We have already constructed the root system An in Example 14.10.
Next we construct Dn. Let ε1, . . . , εn be an orthonormal basis for Rn.

Then let the roots be

∆ = {±(εi ± εj)|i < j ≤ n}.
We choose the simple roots to be

ε1 − ε2 ... εn−2 − εn−1

εn−1 + εn

εn−1 − εn (Dn)

To get the root system for Bn, take Dn and add {±εi|i ≤ n}, in which
case the simple roots are

ε1 − ε2 ... εn−1 − εn εn// (Bn)

To get Cn, take Dn and add {±2εi|i ≤ n}, then the simple roots are

ε1 − ε2 ... εn−1 − εn 2εnoo (Cn)
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Remark 15.4. Recall that we can define coroots α̌ = 2α
(α,α)

. Replacing
all the roots with their coroots will reverse the arrows in the Dynkin
diagram. The dual root system is usually the same as the original, but
is sometimes different. For example, Cn and Bn are dual.

Now let’s construct the exceptional root systems.
We constructed G2 when we classified rank two root systems on page

72.
F4 comes from some special properties of a cube in 4-space. Let ε1,

ε2, ε3, ε4 be an orthonormal basis for R4. Then let the roots be
{

±(εi ± εj),±εi,
±(ε1 ± ε2 ± ε3 ± ε4)

2

}

The simple roots are

ε1 − ε2 ε2 − ε3 ε3// ε1+ε2+ε3+ε4
2 (F4)

There are 48 roots total. Remember that the dimension of the Lie al-
gebra (which we have yet to construct) is the number of roots plus the
dimension of the Cartan subalgebra (the rank of g, which is 4 here), so
the dimension is 52 in this case.

To construct E8, look at R9 with our usual orthonormal basis. The
trick is that we are going to project on to the plane orthogonal to ε1 +
· · ·+ ε9. The roots are

{εi − εj|i 6= j} ∪ {±(εi + εj + εk)|i 6= j 6= k}

The total number of roots is |∆| = 9 · 8 + 2
(
9
3

)
= 240. So the dimension

of the algebra is 248! The simple roots are

ε1 − ε2 ε2 − ε3 ε3 − ε4 ε4 − ε5 ε5 − ε6

ε6 + ε7 + ε8

ε6 − ε7 ε7 − ε8 (E8)

The root systems E6 and E7 are contained in the obvious way in the
root system E8.

� Warning 15.5. Remember to project onto the orthogonal comple-
ment of ε1 + · · · + ε9. Thus, ε6 + ε7 + ε8 is really 2

3
(ε6 + ε7 + ε8) −

1
3
(ε1 + · · ·+ ε5 + ε9). There is another way to construct this root system,

which is discussed in Lecture 25.

◮ Exercise 15.1. Verify that F4 and E8 are root systems, and that the
given sets are simple roots.

We have now classified all indecomposable root systems. The diagram
of the root system ∆1

∐
∆2 is the disjoint union of the diagrams of ∆1

and ∆2.
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Construction of the Lie algebras An, Bn, Cn, and Dn

Next lecture, we will prove Serre’s Theorem (Theorem 16.1), which states
that for each irreducible root system and for each algebraically closed
field of characteristic zero, there is a unique simple Lie algebra with the
given root system (it actually gives explicit generators and relations for
this Lie algebra). Meanwhile, we will explicitly construct Lie algebras
with the classical root systems.

An: Example 14.10 shows that sl(n+ 1) has root system An.
Dn: Consider so(2n), the Lie algebra of linear maps of k2n preserving

some non-degenerate symmetric form. We can choose a basis for k2n so
that the matrix of the form is I =

(
0 1n
1n 0

)
. Let X ∈ so(2n), then we

have that X tI + IX = 0. It follows that X is of the form

X =

(
A B
C −At

)

, with Bt = −B,Ct = −C.

We guess1 that and element H of the Cartan subalgebra should have
the form A = diag(t1, . . . , tn) and B = C = 0 (to check this guess, it is
enough to demonstrate that we get a root decomposition). To compute
the root spaces, we try bracketing H with various elements of so(2n). We

have that
(
Eij 0
0 −Eji

)

has eigenvalue ti−tj , that
(

0 Eij−Eji

0 0

)
has eigenvalue

ti+tj , and that
(

0 0
Eij−Eji 0

)
eigenvalue −ti−tj . Since these matrices span

so(2n), we know that we are done. Thus, Dn is the root system of so(2n).
Bn: Consider sp(2n), the linear operators on k2n which preserve a

non-degenerate skew-symmetric form. In some basis, the form is J =
(

0 1n
−1n 0

)
, so an element X ∈ sp(2n) satisfies X tJ + JX = 0. It follows

that X is of the form

X =

(
A B
C −At

)

, with Bt = B,Ct = C.

Let the Cartan subalgebra be the diagonal matrices. We get all the
same roots as for so(2n), and a few more.

(
0 Eii
0 0

)
has eigenvalue 2ti, and

(
0 0
Eii 0

)
has eigenvalue −2ti. Thus, Bn is the root system of sp(2n).

Cn: Consider so(2n+ 1). Choose a basis so that the non-degenerate
symmetric form is

I =





1 0 0
0 0 1n
0 1n 0



 .

1This will always be the right guess. The elements of the Cartan are simultaneously
diagonalizable, so in some basis, the Cartan is exactly the set of diagonal matrices in
the Lie algebra. The guess would be wrong if the Lie algebra did not have enough
diagonal elements, but this would just mean that we had chosen the wrong basis.
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Then an element X ∈ so(2n+1), satisfying X tI + IX = 0, has the form

X =





0 u v
−vt A B
−ut C −At



 , with Bt = −B,Ct = −C,

where u and v are row vectors of length n. Again, we take the Cartan
subalgebra to be the diagonal matrices. We get all the same roots as
we for so(2n), and a few more. If ei is the row vector with a one in

the i-th spot and zeros elsewhere, then





0 ei 0
0 0 0

−et
i 0 0



 has eigenvalue ti,

and





0 0 ei

−et
i 0 0

0 0 0



 has eigenvalue −ti. Thus, Cn is the root system of

so(2n+ 1).

Isomorphisms of small dimension

Let’s say that we believe Serre’s Theorem. Then you can see that for
small n some of the Dynkin diagrams coincide, so the corresponding Lie
algebras are isomorphic.

B2 = C2 D2 = A1

∐
A1 D3 = A3

��	�
�� ��	�
��//

��	�
��
��	�
��

��	�
��
��	�
��qqqqqq

��	�
��MMMMMM

so(5) ≃ sp(4) so(4) ≃ sl(2) × sl(2) so(6) ≃ sl(4)

We can see some of these isomorphisms directly on the level of groups!
Let’s construct a map of groups SL(2) × SL(2) → SO(4), whose kernel
is discrete. Let W be the space of 2×2 matrices, then the SL(2)×SL(2)
acts on W by (X, Y )w = XwY −1. This action preserves the determinant
of w = ( a bc d ). That is, the quadratic form ad − bc is preserved, so the
corresponding non-degenerate bilinear form is preserved.2 The Lie group
preserving such a form is SO(4), so we have a map SL(2) × SL(2) →
SO(4). It is easy to check that the kernel is the set {(I, I), (−I,−I)},
and since the domain and range each have dimension 6, we get SL(2)×
SL(2)/(±I,±I) ∼= SO(4) (we are also using that SO(4) is connected).
This yields an isomorphism on the level of Lie algebras.

Now let’s see that so(6) ≃ sl(4). The approach is the same. Let V
be the standard 4 dimensional representation of SL(4). Let W = Λ2V ,

2Given a quadratic form Q, one gets a symmetric bilinear form (w, w′) := Q(w +
w′) − Q(w) − Q(w′). In the case Q(w) = detw, the form is non-degenerate. Indeed,
assume det(w + w′) = det w + detw for all w. Then by choosing a basis so that w′ is
in Jordan form and letting w vary over diagonal matrices, we see that w′ = 0.
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which is a 6 dimensional representation of SL(4). Note that you have a
pairing

W ×W = Λ2V × Λ2V → Λ4V
det≃ k

where the last map is an isomorphism of representations of SL(4) (be-
cause the determinant of any element of SL(4) is 1). Thus, W = Λ2V
has some SL(4)-invariant non-degenerate symmetric bilinear form, so we
have a map SL(4) → SO(W ) ≃ SO(6). It is not hard to check that the
kernel is ±I, and the dimensions match, so we get an isomorphism of
Lie algebras.
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Lecture 16 - Serre’s Theorem

Start with a semisimple Lie algebra g over an algebraically closed field k
of characteristic zero, with Cartan subalgebra h ⊂ g. Then we have the
root system ∆ ⊆ h∗, with a fixed set of simple roots Π = {α1, . . . , αn}.
We have a copy of sl2—generated by Xi, Yi, and Hi—associated to each
simple root.

The Cartan matrix (aij) of g is given by aij = 〈α̌i, αj〉 = αj(Hi) =
2(αi,αj)

(αi,αi)
. From the definition of coroots and from properties of simple

roots, we know that aij ∈ Z≤0 for i 6= j, that aii = 2, and that aij = 0
implies aji = 0.

Claim. The following relations (called Serre relations1) are satisfied in
g.

[Hi, Xj] = aijXj (a)
[Hi, Yj] = −aijYj (b)

[Hi, Hj] = 0 (c)
[Xi, Yj] = δijHi (d)

(Ser1)

θ+
ij := (adXi

)1−aijXj = 0
θ−ij := (adYi

)1−aijYj = 0
, for i 6= j. (Ser2)

Proof. (Ser1a), (Ser1b), and (Ser1c) are immediate because Xi ∈ gαi
,

Yi ∈ g−αi
, and Hi = [Xi, Yi] ∈ h. To show (Ser1d), we need to show

that [Xi, Yi] = 0 for i 6= j. This is because [Xi, Yj] ∈ gαi−αj
, which is

not in ∆ because every element of ∆ is a non-negative or non-positive
combination of the αi.

Since adXi
(Yj) = 0, we get that Yj is a highest vector for the sl(2)

generated by Xi, Yi, and Hi. We also have that adHi
(Yj) = −aijYj.

Thus, the αi-string through Yj is spanned by Yj, adYi
Yj, . . . , ad

−aij

Yi
Yj.

In particular, θ−ij = ad
1−aij

Yi
Yj = 0. Similarly, θ+

ij = 0, so the relations
(Ser2) hold.

So far, all we know is that any Lie algebra with root system ∆ satisfies
these relations. We have yet to show that such an algebra exists, that it
is unique, and that these relations define it.

Theorem 16.1 (Serre’s Theorem). Let ∆ be a root system, with a
fixed set of simple roots Π = {α1, . . . , αn}, yielding the Cartan ma-

trix aij =
2(αi,αj)

(αi,αi)
. Let g be the Lie algebra generated by Hi, Xi, Yi for

1 ≤ i ≤ n, with relations (Ser1) and (Ser2). Then g is a finite di-
mensional semisimple Lie algebra with a Cartan subalgebra spanned by
H1, . . . , Hn, and with root system ∆.

1Serre called them Weyl relations.
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Remark 16.2. In order to talk about a Lie algebra given by certain gen-
erators and relations, it is necessary to understand the notion of a free
Lie algebra L(X) on a set of generators X, which is non-trivial (be-
cause of the Jacobi identity). We define L(X) as the Lie subalgebra
of the tensor algebra T (X) generated by the set X. This algebra has
the universal property that for any Lie algebra L′ and for any function
f : X → L′, there is a unique extension of f to a Lie algebra homomor-
phism f̃ : L(X) → L′ (to prove this, one needs the PBW theorem).

To impose a set of relations R, quotient L(X) by the smallest ideal
containing R. The resulting Lie algebra L(X,R) has the universal prop-
erty that for any Lie algebra L′ and for any function f : X → L′ such
that the image satisfies the relations R, there is a unique extension of f
to a Lie algebra homomorphism f̃ : L(X,R) → L′.

Remark 16.3. Serre’s Theorem proves that for any root system ∆ there
is a finite dimensional semisimple Lie algebra g with root system ∆. But
since any other Lie algebra g′ with root system ∆ satisfies (Ser1) and
(Ser2), and since g is the universal Lie algebra satisfying these relations,
we get an induced Lie algebra homomorphism φ : g → g′. This homo-
morphism is surjective because g′ is spanned by φ(Xi), φ(Yi), and φ(Hi).
Moreover, both dim g and dim g′ must be equal to |∆|+rank(∆), so φ
must be an isomorphism. Therefore, we get uniqueness of g.

Proof of Serre’s Theorem.
Step 1. Decompose g̃: Consider the free Lie algebra with generators

Xi, Yi, Hi for 1 ≤ i ≤ n and impose the relations (Ser1). Call the result
g̃. Let h be the abelian Lie subalgebra generated by H1, . . . , Hn, and let
ñ+ (resp. ñ−) be the Lie subalgebra generated by the Xi (resp. Yi). The
goal is to show that g̃ = ñ− ⊕ h ⊕ ñ+ as a vector space.

There is a standard trick for doing such things. It is easy to see from
(Ser1) that U g̃ = U ñ− · Uh · U ñ+.2 Let T (X) be the tensor algebra
on the Xi, let T (Y ) be the tensor algebra on the Yi, and let Sh be
the symmetric algebra on the Hi. We define a representation U g̃ →
End

(
T (Y ) ⊗ Sh ⊗ T (X)

)
. For a ∈ T (Y ), b ∈ Sh, and c ∈ T (X), define

Xi(1 ⊗ 1 ⊗ c) = 1 ⊗ 1 ⊗Xic,

Hi(1 ⊗ b⊗ c) = 1 ⊗Hib⊗ c, and

Yi(a⊗ b⊗ c) = (Yia) ⊗ b⊗ c.

2By U ñ− · Uh ·U ñ+, we mean the set of linear combinations of terms of the form
y · h · x, where y ∈ U ñ−, h ∈ Uh, and x ∈ U ñ+.
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Then extend inductively by

Hi(Yja⊗ b⊗ c) = YjHi(a⊗ b⊗ c) − aijYj(a⊗ b⊗ c)

Xi(1 ⊗Hjb⊗ c) = HjXi(1 ⊗ b⊗ c) − ajiXi(1 ⊗ b⊗ c)

Xi(Yja⊗ b⊗ c) = YjXi(a⊗ b⊗ c) + δijHi(a⊗ b⊗ c).

◮ Exercise 16.1. Check that this is a representation.

Observe that the canonical (graded vector space) homomorphism
T (Y ) ⊗ Sh ⊗ T (X) → U ñ− · Uh · U ñ+ = U g̃ is the inverse of the map
w 7→ w(1⊗ 1⊗ 1), so U g̃ ≃ T (Y )⊗Sh⊗T (X) as graded vector spaces.3

Looking at the degree 1 parts, we get the vector space isomorphism
g̃ ≃ ñ− ⊕ h ⊕ ñ+.

Step 2. Construct g: We have that θ±ij ∈ ñ±. Let j+ (resp. j−) be the

ideal in ñ+ (resp. ñ−) generated by the set {θ+
ij} (resp. {θ−ij}).

◮ Exercise 16.2. Check that

[Yk, θ
+
ij ] = 0 and [Hk, θ

+
ij ] = ckijθ

+
ij

for some constants ckij. Therefore, j± are ideals in g̃.

Now define n+ = ñ+/j+, n− = ñ−/j−, and g = g̃/(j+ + j−) = n− ⊕
h ⊕ n+. From relations (Ser1), we know that h acts diagonalizably on
n+, n−, and h, so we get the decomposition g = h ⊕⊕α∈h∗ gα, where
gα = {x ∈ g|[h, x] = α(h)x}. Note that each gα is either in n+ or in n−.

Define R as the set of non-zero α ∈ h∗ such that gα 6= 0. We know
that ±α1, . . . ,±αn ∈ R because Xi ∈ gαi

and Yi ∈ g−αi
. Since each

gα is either in n+ or in n−, α must be a non-negative or a non-positive
combination of the αi (recalling that [gα, gβ] ⊆ gα+β). This gives us the
decomposition R = R+ ∐ R−.

Since g is generated by theXi and Yi, the relation [gα, gβ] ⊆ gα+β tells
us that R is contained in the lattice

∑n
i=1 Zαi. Since n+ =

⊕

α∈R+ gα
is a quotient of ñ+, it is generated as Lie algebra by the Xi. Together
with the relation [gα, gβ] ⊆ gα+β and the linear independence of the
αi, this tells us that gαi

is one dimensional, spanned by Xi, and that
gnαi

= [gαi
, g(n−1)αi

] = 0 for n > 1.
Step 3. R is W-invariant: Let W be the Weyl group of the root sys-

tem ∆, generated by the simple reflections ri : λ 7→ λ − λ(Hi)αi. We
would like to show that R is invariant under the action of W. To do this,
we need to make sense of the element si = exp(adXi

) exp(−adYi
) exp(adXi

) ∈
Aut g.

3U g̃ is graded as a vector space, but only filtered as an algebra.
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The main idea is that (Ser1) and (Ser2) imply that adXi
, adYi

are
locally nilpotent operators on g.4 The Serre relations say that adXi

and
adYi

are nilpotent on generators, and then the Jacobi identity implies that
they are locally nilpotent. Thus, si = exp(adXi

) exp(−adYi
) exp(adXi

) is
a well-defined automorphism of g because each power series is (locally)
finite.

As in Exercise 14.2, we get si(h) ⊆ h and

λ
(
si(h)

)
= 〈λ, si(h)〉 = 〈ri(λ), h〉 = (riλ)(h) (16.4)

for any h ∈ h and any λ ∈ h∗.
Now we are ready to show that R is W-invariant. If α ∈ R, with

X ∈ gα, then we will show that s−1
i X is a root vector for riα. For h ∈ h,

we have

[h, s−1
i X] = s−1

i ([sih,X]) = s−1
i

(
α(sih)X

)

= α(sih) s
−1
i X = (riα)(h) s−1

i X, (by 16.4)

so riα ∈ R. So W preserves R.
On the other hand, we know that ±αi ⊆ R from the end of Step 2,

so we get ∆ ⊆ R. Moreover, for any α ∈ ∆, we have that dim gα = 1
because we can choose w = ri1 · · · rik and s = si1 · · · sik so that α = w(αi)
for some i; then gα = s(gαi

) has dimension one by the last sentence of
Step 2.

Step 4. Prove that ∆ = R: Let λ ∈ R r ∆. Then λ is not pro-
portional to any α ∈ ∆. One can find some h in the real span of
the Hi such that 〈λ, h〉 = 0 and 〈α, h〉 6= 0 for all α ∈ ∆. This
decomposes ∆ as ∆+′

∐
∆−′

, and gives a new basis of simple roots
{β1, . . . , βn} = Π′ ⊆ ∆+′

. By Proposition 14.14, W acts transitively on
the sets of simple roots, so we can find some w ∈ W such that w(αi) = βi
(after permutation of the βi, if necessary). Then look at w−1(λ) ∈ R.

By construction λ is neither in the non-negative span nor the non-
positive span of the βi, so w−1(λ) is neither in the non-negative nor the
non-positive span of the αi. But we had the decomposition R = R+

∐
R−

from Step 2, so this is a contradiction. Hence ∆ = R.
Step 5. Check that g is semisimple: It is enough to show that h has

no nontrivial abelian ideals. We already know that g = h ⊕
⊕

α∈∆ gα
and that each gα is 1 dimensional. In particular, g is finite dimensional.
We also know that the Serre relations hold. Notice that for any ideal
a, adh-invariance implies that a = h′ ⊕α∈S gα for some subspace h′ ⊆ h

and some subset S ⊆ ∆. If gα ⊆ a, then Xα ∈ a, so [Xα, Yα] = Hα ∈ a

(a is an ideal), and [Yα, Hα] = 2Yα ∈ a. Thus, we have the whole sl(2)

4An operator A on V is locally nilpotent if for any vector v ∈ V , there is some
n(v) such that An(v)v = 0.
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in a, so it cannot be abelian. So a = h′ ⊆ h. Take a nonzero element
h ∈ h′. Since {α1, . . . , αn} spans h∗, there is some αi with αi(h) 6= 0,
then [h,Xi] = αi(h)Xi ∈ a, contradicting a ⊆ h.

In the non-exceptional cases, we have nice geometric descriptions of
these Lie algebras. Next time, we will explicitly construct the exceptional
Lie algebras.
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Lecture 17 - Constructions of Exceptional

simple Lie Algebras

We’ll begin with the construction of G2.
We saw here that G2 is isomorphic to the Lie algebra of automor-

phisms of a generic 3-form in 7 dimensional space. The picture of the
projective plane is related to Cayley numbers, an important nonassocia-
tive division algebra, of which G2 is the algebra of automorphisms.

Consider the picture

v1• w2
• v3•

w3•

v2•

w1•u
•



FF

11
11

11
11

11
11

11
11

11

��

oo

qqqqqqqqqqqqqqqq

88

MMMMMMMMMMMMMMMM

ff

��

//

XX

��

//

This is the projective plane over F2.
Consider the standard 7 dimensional representation of gl(7), call it

E. Take a basis given by points in the projective plane above.

◮ Exercise 17.1. Consider the following element of Λ3E.

ω = v1 ∧ v2 ∧ v3 +w1 ∧w2 ∧w3 + u ∧ v1 ∧w1 + u ∧ v2 ∧w2 + u∧ v3 ∧w3

Prove that gl(7)ω = Λ3E.

� Warning 17.1. Don’t forget that gl(7) acts on Λ3E as a Lie algebra,
not as an associative algebra. That is, x(a ∧ b ∧ c) = (xa) ∧ b ∧ c+

a∧xb∧c+a∧b∧xc. In particular, the action of x followed by the action
of y is not the same as the action of yx.

Claim. g = {x ∈ gl(7)|xω = 0} is a simple Lie algebra with root system
G2.

Proof. It is immediate that g is a Lie algebra. Let’s pick a candidate for
the Cartan subalgebra. Consider linear operators which are diagonal in
the given basis u, v1, v2, v3, w1, w2, w3, take h = diag(c, a1, a2, a3, b1, b2, b3).
If we want h ∈ g, we must have

hω = (a1 + a2 + a3)v1v2v3 + (b1 + b2 + b3)w1w2w3+

+ (c+ a1 + b1)uv1w1 + (c+ a2 + b2)uv2w2 + (c + a3 + b3)uv3w3 = 0

which is equivalent to c = 0, a1 + a2 + a3 = 0, and bi = −ai. So our
Cartan subalgebra is two dimensional.
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If you consider the root diagram for G2 and look at only the long
roots, you get a copy of A2. This should mean that you have an embed-
ding A2 ⊆ G2,

1 so we should look for a copy of sl(3) in our g. We can
write E = ku ⊕ V ⊕W , where V = 〈v1, v2, v3〉 and W = 〈w1, w2, w3〉.
Let’s consider the subalgebra which not only kills ω, but also kills u. Let
g0 = {x ∈ g|xu = 0}.

Say x ∈ g0 is of the form

x =





0 a b
0 A B
0 C D



 ,

where a, b are row vectors, then

0 = x · ω = x(v1v2v3)
vvv
uvv 3

wvv 1

+ x(w1w2w3)
www
uww 3

vww 1

+ u ∧ x(v1w1 + v2w2 + v3w3)
uvw 4
uuw
uuv
uvv
uww 2

where each term lies in the span of the basis vectors below it. Since
the terms in boxes labelled 1 appear in only one way, we must have
B = C = 0. From that, it follows that the terms boxed an labelled 2
cannot appear. Thus, the terms in boxes labelled 3 only appear in one
way, so we must have a = b = 0. Since the terms in boxes labelled 2
appear in only one place (though in two ways), we must have D = −At.
Finally, since vvv only appears in one place (in three different ways), we
must have tr A = 0.

For x ∈ g0 we have x(v1 ∧ v2 ∧ v3) = 0 and x(w1 ∧w2 ∧w3) = 0, so x
preserves V and W . It also must kill the 2-form α = v1 ∧w1 + v2 ∧w2 +
v3 ∧ w3, since 0 = x(u ∧ α) = xu ∧ α + u ∧ xα = u ∧ xα forces xα = 0.
This 2-form gives a pairing, so that V ∗ ≃ W . We can compute exactly
what the pairing is, 〈vi, wj〉 = δij . Therefore the operator x must be of
the form

x =





0 0 0
0 A 0
0 0 −At



 , where tr(A) = 0.

The total dimension of G2 is 14, which we also know by the exercise
is the dimension of g. We saw the Cartan subalgebra has dimension 2,
and this g0 piece has dimension 8 (two of which are the Cartan). So we
still need another 6 dimensional piece.

1Note that this is not true of the short roots because the bracket of elements in
“adjacent” short root spaces produces an element in a long root space, so the short
root spaces will generate all of G2.
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For each v ∈ V , define a linear operator Xv which acts by Xv(u) = v.
Λ2V ≃γ W is dual to V (since Λ3V = C). Then Xv acts by Xv(v

′) =
γ(v ∧ v′) and Xv(w) = 2〈v, w〉u. Check that this kills ω, and hence is in
g.

Similarly, you can defineXw for each w ∈W byXw(u) = w,Xw(w′) =
γ(w ∧ w′), Xw(v) = 2〈w, v〉u.

If you think about a linear operator which takes u 7→ vi, it must be
in some root space, this tells you about how it should act on V and W .
This is how we constructed Xv and Xw, so we know that Xvi

and Xwi

are in some root spaces. We can check that their roots are the short
roots in the diagram,

Xv1
88qqqqqqoo

Xv2
ffMMMMMM

Xw3OO

FF

XX11111111111

Xw1
xxqqqqqq //

Xw2
&&M

MMMMM

Xv3

��

��






��
11

11
11

11
11

1

and so they span the remaining 6 dimensions ofG2. To properly complete
this construction, we should check that this is semisimple, but we’re not
going to.

Let’s analyze what we did with G2, so that we can do a similar
thing to construct E8. We discovered certain phenomena, we can write
g = g0

︸︷︷︸

sl(3)

⊕ g1
︸︷︷︸
V

⊕ g2
︸︷︷︸
W

. This gives us a Z/3-grading: [gi, gj ] ⊆ gi+j(mod 3).

As an sl(3) representation, it has three components: ad, standard, and
the dual to the standard. We get that W ∼= V ∗ ≃ Λ2V . Similarly,
V ≃ Λ2W . This is called Triality .

More generally, say we have g0 a semisimple Lie algebra, and V,W
representations of g0, with intertwining maps

α : Λ2V →W

β : Λ2W → V

V ≃W ∗.

We also have γ : V ⊗W ≃ V ⊗V ∗ → g0 (representations are semisimple,
so the map g0 → gl(V ) ≃ V ⊗V ∗ splits). We normalize γ in the following
way. Let B be the Killing form, and normalize γ so thatB(γ(v⊗w), X) =
〈w,Xv〉. Make a Lie algebra g = g0 ⊕ V ⊕W by defining [X, v] = Xv
and [X,w] = Xw for X ∈ g0, v ∈ V, w ∈ W . We also need to define
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[ , ] on V ,W and between V and W . These are actually forced, up to
coefficients:

[v1, v2] = aα(v1 ∧ v2)

[w1, w2] = bβ(w1 ∧ w2)

[v, w] = cγ(v ⊗ w).

There are some conditions on the coefficients a, b, c imposed by the Jacobi
identity; [x, [y, z]] = [[x, y], z] + [y, [x, z]]. Suppose x ∈ g0, with y, z ∈ gi
for i = 0, 1, 2, then there is nothing to check, these identities come for
free because α, β, γ are g0-invariant maps. There are only a few more
cases to check, and only one of them gives you a condition. Look at

[v0, [v1, v2]] = caγ(v0 ⊗ α(v1 ∧ v2)) (RHS)

and it must be equal to

[[v0, v1], v2]+[v1, [v0, v2]] =

− acγ(v2 ⊗ α(v0 ∧ v1)) + acγ(v1 ⊗ α(v0 ∧ v1)) (LHS)

This doesn’t give a condition on ac, but we need to check that it is
satisfied. It suffices to check that B(RHS,X) = B(LHS,X) for any
X ∈ g0. This gives us the following condition:

〈α(v1 ∧ v2), Xv0〉 = 〈α(v0 ∧ v2), Xv1〉 − 〈α(v0 ∧ v1), Xv2〉

The fact that α is an intertwining map for g0 gives us the identity:

〈α(v1 ∧ v2), Xv0〉 = 〈α(Xv1 ∧ v2), v0〉 − 〈α(v1 ∧Xv2), v0〉

and we also have that

〈α(v1 ∧ v2), v0〉 = 〈α(v0 ∧ v2), v1〉 = 〈α(v0 ∧ v1), v2〉

With these two identities it is easy to show that the equation (and hence
this Jacobi identity) is satisfied.

We also get the Jacobi identity on [w, [v1, v2]], which is equivalent to:

abβ(w ∧ α(v1 ∧ v2)) = c(γ(v1 ⊗ w)v2 − γ(v2 ⊗ w)v1)

It suffices to show for any w′ ∈ W that the pairings of each side with w′

are equal,

ab〈w′, β(w ∧ α(v1 ∧ v2)〉 = cB(γ(v1 ⊗ w), γ(v2 ⊗ w′))

− cB(γ(v2 ⊗ w), γ(v1 ⊗ w′))
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This time we will get a condition on a, b, and c. You can check that any
of the other cases of the Jacobi identity give you the same conditions.

Now we will use this to construct E8. Write g = g0 ⊕ V ⊕ W ,
where we take g0 = sl(9). Let E be the 9 dimensional representation
of g0. Then take V = Λ3E and W = Λ3E∗ ≃ Λ6E. We have a pairing
Λ3E ⊗ Λ6E → k, so we have V ≃ W ∗. We would like to construct
α : Λ2 → W , but this is just given by v1 ∧ v2 including into Λ6E ≃ W .
Similarly, we get β : Λ2W → V . You get that the rank of g is 8 (= rank
of g0). Notice that dimV =

(
9
3

)
= 84, which is the same as dimW , and

dim g0 = dim sl(9) = 80. Thus, we have that dim g = 84+84+80 = 248,
which is the dimension of E8, and this is indeed E8.

Remember that we previously got E7 and E6 from E8. Look at the
diagram for E8:

ε1 − ε2��	�
��
ε2 − ε3

��	�
�� ε3 − ε4��	�
��
ε4 − ε5

��	�
�� ε5 − ε6��	�
��

ε6 + ε7 + ε8

��	�
��
ε6 − ε7

��	�
�� ε7 − ε8��	�
��

The extra guy, ε6 + ε7 + ε8, corresponds to the 3-form. When you cut
out ε1 − ε2, you can figure out what is left and you get E7. Then you
can additionally cut out ε2 − ε3 and get E6.

Fianally, we construct F4: ��	�
�� ��	�
�� ��	�
��// ��	�
��
We know that any simple algebra can be determined by generators

and relations, with a Xi, Yi, Hi for each node i. But sometimes our
diagram has a symmetry, like switching the horns on a Dn, which induces
an automorphism of the Lie algebra given by γ(Xi) = Xi for i < n−1 and
switches Xn−1 and Xn. Because the arrows are preserved, you can check
that the Serre relations still hold. Thus, in general, an automorphism
of the diagram induces an automorphism of the Lie algebra (in a very
concrete way).

Theorem 17.2. (Aut g)/(Aut0 g) = AutΓ. So the connected component
of the identity gives some automorphisms, and the connected components
are parameterized by automorphisms of the diagram.

Dn is the diagram for SO(2n). We have that SO(2n) ⊂ O(2n),
and the group of automorphisms of SO(2n) is O(2n). This isn’t true of
SO(2n+1), because the automorphisms given by O(2n+1) are the same
as those from SO(2n+ 1). This corresponds the the fact that Dn has a
nontrivial automorphism, but Bn doesn’t.

Notice that E6 has a symmetry; the involution:

��	�
�� ��	�
�� ��	�
��

��	�
��

��	�
�� ��	�
��zz $$}} !!



Lecture 17 - Constructions of Exceptional simple Lie Algebras 95

Define X ′
1 = X1 + X5, X

′
2 = X2 + X4, X

′
3 = X3, X

′
6 = X6, and the

same with Y ’s, the fixed elements of this automorphism. We have that
H ′

1 = H1 + H5 (you have to check that this works), and similarly for
the other H ’s. As the set of fixed elements, you get an algebra of rank
4 (which must be our F4). You can check that α′

1(H
′
2) = −1, α′

2(H
′
1) =

−1, α′
3(H

′
1) = 0, α′

3(H
′
2) = −2, α′

2(H
′
3) = −1, so this is indeed F4 as

desired. In fact, any diagram with multiple edges can be obtained as the
fixed algebra of some automorphism:

◮ Exercise 17.2. Check that G2 is the fixed algebra of the automor-
phism of D4:

��	�
��

��	�
��
��	�
��

��	�
��11
11

11
��

00

ZZ

Check that Bn, Cn can be obtained from A2n, A2n+1

��	�
�� ��	�
�� ... ��	�
�� ��	�
��zz $$}} !!
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Lecture 18 - Representations of Lie algebras

Let g be a semisimple Lie algebra over an algebraically closed field k of
characteristic 0. Then we have the root decomposition g = h ⊕

⊕

α gα.
Let V be a finite dimensional representation of g. Because all elements
of h are semisimple, and because Jordan decomposition is preserved, the
elements of h can be simultaneously diagonalized. That is, we have
a weight decomposition V =

⊕

µ∈h∗ Vµ, where Vµ = {v ∈ V |hv =
µ(h)v for all h ∈ h}. We call Vµ a weight space, and µ a weight . Define
P (V ) = {µ ∈ h∗|Vµ 6= 0}. The multiplicity of a weight µ ∈ P (V ) is
dimVµ, and is denoted mµ.

Example 18.1. You can take V = k (the trivial representation). Then
P (V ) = {0} and m0 = 1.

Example 18.2. If V = g and we take the adjoint representation, then
we have that P (V ) = ∆ ∪ {0}, with mα = 1 for α ∈ ∆, and m0 is equal
to the rank of g.

Example 18.3. Let g = sl(3). The weights of the adjoint representation
are shown by the solid arrows (together with zero, which has multiplicity
two).

ε188
ε2 ff

ε3
��

−ε1

xxq
q

q

−ε2

&&M
M

M

−ε3OO�

�

�
ε1 − ε2
//

ε1 − ε3FFε2 − ε1
oo

ε2 − ε3 XX11111111111

ε3 − ε1

��






ε3 − ε2

��
11

11
11

11
11

1

The weights of the standard 3-dimensional representation are {ε1, ε2, ε3},
shown in dotted lines.

In general, the weights of the dual of a representation are the nega-
tives of the original representation because 〈hφ, v〉 is defined as −〈φ, hv〉.
Thus, the dashed lines show the weights of the dual of the standard rep-
resentation.

If V is a finite dimensional representation, then its weight decompo-
sition has the following are properties.

1. For any root α and µ ∈ P (V ), µ(Hα) ∈ Z.

To see this, consider V as a representation of the sl(2) spanned
by Xα, Hα, and Yα. Our characterization of finite dimensional
representations of sl(2) implies the result.
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2. For α ∈ ∆ and µ ∈ P (V ), gαVµ ⊆ Vµ+α

This follows from the standard calculation:

h(xαv) = xαhv + [h, xα]v

= xαµ(h)v + α(h)xαv

= (µ+ α)(h)xαv.

3. If µ ∈ P (V ) and w ∈ W, then w(µ) ∈ P (V ) and mµ = mw(µ).

It is sufficient to check this when w is a simple reflection ri. Con-
sider V as a representation of the copy of sl(2) spanned by Xi,
Yi, and Hi. If v ∈ Vµ, then we have that h · v = µ(h)v for all
h ∈ h. By property 1, we know that µ(Hi) = l is a non-negative
integer. From the characterization of finite dimensional represen-
tations of sl(2), we know that there is a corresponding vector with
Hi-eigenvalue −l, namely u = Y l

i v. By property 2, u ∈ Vµ−lαi
.

But µ − lαi = µ − µ(Hi)αi = µ − 2(µ,αi)
(αi,αi)

αi = riµ. Putting it all

together, if we consider the sl(2) subrepresentation of V generated
by Vµ and Vriµ, the symmetry of finite dimensional representations
of sl(2) tells us that dimVriµ = dimVµ, as desired.

Remark 18.4. Note that the proof of property 2 did not require that
V be finite dimensional. Properties 1 and 3 used finite dimensionality,
but in a weak way. Consider the sl(2) spanned by Xi, Yi, and Hi. It
is enough for each vector v in a weight space of V to be contained in a
finite dimensional sl(2) subrepresentation. In particular, if each Xi and
Yi act locally nilpotently,1 then all three properties hold.

Example 18.5. If g = sl(3), then we get W = D2·3 = S3. The orbit of a
point can have a couple of different forms. If the point is on a hyperplane
orthogonal to a root, then you get a triangle. For a generic point, you
get a hexagon (which is not regular, but still symmetric).
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It is pretty clear that knowing the weights and multiplicities gives us a
lot of information about the representation, so we’d better find a good
way to exploit this information.

1We say that a linear operator A is locally nilpotent if for each vector v there is
an integer n(v) such that An(v)v = 0.



Lecture 18 - Representations of Lie algebras 98

Let V be a representation of g. Then V is also a representation of
the associated simply connected group G, and we get the commutative
square

G // GL(V )

g //

exp

OO

gl(V )

exp

OO

If h ∈ h, then exph ∈ G, and we can evaluate the group character of the
representation V on exp h as

χV (exp h) = tr(exp h) =
∑

µ∈P (V )

mµe
µ(h)

where the second equality is because every eigenvalue µ(h) of h yields
an eigenvalue eµ(h) of exp h. Since characters tell us a lot about finite
dimensional representations, it makes sense to consider the following
definition.

Definition 18.6. The character of the representation V is the formal
sum

ch V =
∑

µ∈P (V )

mµe
µ.

You can and multiply these (formal) expressions; ch is additive with
respect to direct sum and multiplicative with respect to tensor products:

ch(V ⊕W ) = ch V + chW

ch(V ⊗W ) = (ch V )(chW )

This is because Vµ ⊗Wν ⊆ (V ⊗W )µ+ν (or you can use the relationship
with group characters). You can also check that the ch V ∗ is

∑
mµe

−µ.

Remark 18.7. We only evaluated χV on the image of the Cartan subal-
gebra. Is it possible that we’ve lost some information about the behavior
of χV on the rest of G? The answer is no. Since χV is constant on conju-
gacy classes, and any Cartan subalgebra is conjugate to any other Cartan
subalgebra (Theorem 14.1), we know how χV behaves on the union of all
Cartan subalgebras. Since the union of all Cartan subalgebras is dense
in g, exp g is dense in G, and χV is continuous, the behavior of χV on
the image of a single Cartan determines it completely.

◮ Exercise 18.1. Show that the union of all Cartan subalgebras is dense
in g.
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Highest weights

Fix a set of simple roots Π = {α1, . . . , αn}. A highest weight of a repre-
sentation V is a λ ∈ P (V ) such that αi + λ 6∈ P (V ) for all αi ∈ Π. A
highest weight vector is a vector in Vλ.

Let V be irreducible, let λ be a highest weight, and let v ∈ Vλ be a
highest weight vector. Since V is irreducible, v generates: V = (Ug)v.
We know that n+v = 0 and that h acts on v by scalars. By PBW,
Ug = Un− ⊗ Uh ⊗ Un+, so V = Un−v. Thus, V is generated from v by
applying various Yα, where α ∈ ∆+. In particular, the multiplicity mλ

is one. This also tells us that any other weight µ is “less than” λ in the
sense that λ− µ =

∑

α∈∆+ lαα, where the lα are non-negative.
It follows that in an irreducible representation, the highest weight is

unique. If µ is another highest weight, then we get λ ≤ µ and µ ≤ λ,
which implies µ = λ.

Remark 18.8. If V is an irreducible finite dimensional representation
with highest weight λ, then for any w ∈ W, property 3 tells us that w(λ)
is a highest weight with respect to the set of simple roots {wα1, . . . , wαn}.
So P (V ) is contained in the convex hull of the set {wλ}w∈W.

We also know that λ is a highest weight for each sl(2) spanned by
Xα, Yα, and Hα, with α ∈ ∆+ (from the definition of highest weight).
So λ(Hi) = (λ, α̌i) ∈ Z≥0 for each i.

Definition 18.9. The lattice generated by the roots, Q = Zα1 ⊕ · · · ⊕
Zαn, is called the root lattice.

Definition 18.10. The lattice P = {µ ∈ h∗|(µ, α̌i) ∈ Z for 1 ≤ i ≤ n}
is called the weight lattice.

Definition 18.11. The set {µ ∈ h∗|(µ, α̌i) ≥ 0 for 1 ≤ i ≤ n} is called
the Weyl chamber , and the intersection of the Weyl chamber with the
weight lattice is called the set of dominant integral weights, and is de-
noted P+.

P and Q have the same rank. It is clear that Q is contained in P ,
and in general this containment is strict.

P/Q is isomorphic to the center of the simply connected group cor-
responding to g.

Example 18.12. For g = sl(2), the root lattice is 2Z (because [H,X] =
2X), and the weight lattice is Z.

Example 18.13. In the three rank two cases, the weight lattices and
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Weyl chambers are

sl(3) so(5) ∼= sp(4) G2
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◮ Exercise 18.2. Show that P+ is the fundamental domain of the
action of W on P . That is, show that for every µ ∈ P , the W-orbit of µ
intersects P+ in exactly one point. (Hint: use Proposition 14.17)

We have already shown that the highest weight of an irreducible finite
dimensional representation is an element of P+ (this is exactly the second
part of Remark 18.8). The rest of the lecture will be devoted to proving
the following remarkable theorem.

Theorem 18.14. There is a bijection between P+ and the set of (iso-
morphism classes of) finite dimensional irreducible representations of g,
in which an irreducible representation corresponds to its highest weight.

It remains to show that two non-isomorphic finite dimensional irre-
ducible representations cannot have the same highest weight, and that
any element of P+ appears as the highest weight of some finite dimen-
sional representation. To prove these things, we will use Verma modules.

Let V be an irreducible representation with highest weight λ. Then
Vλ is a 1-dimensional representation of the subalgebra b+ := h⊕n+ ⊆ g.
There is an induced representation Ug ⊗Ub+ Vλ of g, and an induced
homomorphism Ug ⊗Ub+ Vλ → V given by x⊗ v 7→ x · v.

Definition 18.15. A Verma module is M(λ) = Ug ⊗Ub+ Vλ.

The Verma module is universal in the sense that for any represen-
tation V with highest weight vector v of weight λ, there is a unique
homomorphism of representations M(λ) → V sending the highest vector
of M(λ) to v. However, there is a problem: M(λ) is infinite dimensional.

To understand M(λ) as a vector space, we use PBW to get that
Ug = Un− ⊗k Uh ⊗k Un+ = U(n−) ⊗k Ub+. Since Ub+ acts on Vλ by
scalars, we get

M(λ) = Un− ⊗k Ub+ ⊗Ub+ Vλ = Un− ⊗k Vλ.
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If ∆+ = {α1, . . . , αN}, with Π = {α1, . . . , αn}, then by PBW, {Y k1
α1

· · ·Y kN
αN

}
is a basis for Un−, so {Y k1

α1
· · ·Y kN

αN
v} is a basis for M(λ) = U(n−)⊗k Vλ.

Thus, even though the Verma module is infinite dimensional, it still has
a weight decomposition with finite dimensional weight spaces:

h(Y k1
α1

· · ·Y kN
αN
v) = (λ− k1α1 − · · · − kNαN)(h)(Y k1

α1
· · ·Y kN

αN
v).

In particular, we get a nice formula for the multiplicity of a weight. The
multiplicity of µ is given by the number of different ways λ − µ can be
written as a non-negative sum of positive roots, corresponding to the
number of basis vectors Y k1

α1
· · ·Y kN

αN
v lying in Vµ.

mµ = #
{

λ− µ =
∑

αi∈∆+

kiαi

∣
∣
∣ ki ∈ Z≥0

}

.

This is called the Kostant partition function.

Example 18.16. We are now in a position to calculate the characters
of Verma modules. In the rank two cases, we get the characters below.
For example, since 2α3 = α3 + α2 + α1 = 2α1 + 2α2 can be written in
these three ways as a sum of positive roots, the circled multiplicity (in
the sl(3) case) is 3.

sl(3) so(5) ∼= sp(4)

α1//

α2 XX111
α3FF

1 1 1 1 1

2 2 2 2 1

3 3 3 (/).*-+,3 2 1

4 4 4 3 2 1

5 5 5 4 3 2 1

α1//

α2 __?????

α3OO α4??�����
1 1 1 1 1

3 3 3 3 2 1

6 6 6 5 4 2 1

10 10 9 8 6 4 2 1

15 14 13 11 9 6 4 2 1

G2

α1//

α2 ffMMMMMM

α3 XX111

α4OO

α5FF
α688qqqqqq

1 1 1 1 1 1 1

4 4 4 4 4 3 2 1

11 11 11 11 10 9 7 4 2 1

24 24 23 22 20 16 12 8 4 2 1

46 45 44 42 38 33 27 19 13 8 4 2 1

◮ Exercise 18.3. Check that the characters in Example 18.16 are cor-
rect. (Hint: For so(5), at each lattice point, keep track of four numbers:
the number of ways to write λ − µ as a non-negative sum in the sets
{α1, . . . , α4}, {α2, α3, α4}, {α2, α3}, and {α2})
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Lemma 18.17. A Verma module M(λ) has a unique proper maximal
submodule N(λ).

Proof. N being proper is equivalent to N ∩ Vλ = 0. This property
is clearly preserved under taking sums, so you get a unique maximal
submodule.

Remark 18.18. If V and W are irreducible representations with the same
highest weight, then they are both isomorphic to the unique irreducible
quotient M(λ)/N(λ), so they are isomorphic.

Lemma 18.19. If λ ∈ P+, then the quotient V (λ) = M(λ)/N(λ) is
finite dimensional.

Proof. If w is a weight vector (but not the highest weight vector) in
M(λ) such that Xiw = 0 for i = 1, . . . , n, then we claim that w ∈ N(λ).
To see this, you note that

(Ug)w = (Un− ⊗ Uh ⊗ Un+)w = (Un−)w

so the submodule generated by w contains only lower weight spaces. In
particular, the highest weight space Vλ cannot be obtained from w.

Fix an i ≤ n. By assumption, λ(Hi) = 〈λ, α̌i〉 = li ∈ Z≥0. Letting
w = Y li+1

i v, we get that

Xiw = (li + 1)
(
li − (li + 1) + 1

)
Y li+1
i w = 0 (by Equation 13.12)

Xjw = Y li+1
i Xjw = 0 (since [Xj , Yi] = 0)

so w ∈ N(λ). It follows from the Serre relations that in the quotient
V (λ), the Yi act locally nilpotently. The Xi act locally nilpotently on
M(λ), so they act locally nilpotently on V (λ). By Remark 18.4, P

(
V (λ)

)

is invariant under W, so it is contained in the convex hull of the orbit of
λ. Since each weight space is finite dimensional, it follows that V (λ) is
finite dimensional.

Putting it all together, we can prove the Theorem.

Proof of Theorem 18.14. By Remark 18.8, the highest weight of an irre-
ducible finite dimensional representation is an element of P+. By Remark
18.18, non-isomorphic representations have distinct highest weights. Fi-
nally, by Lemmas 18.17 and 18.19, every element of P+ appears as the
highest weight of some finite dimensional irreducible representation.

Corollary 18.20. If V and W are finite dimensional representations,
and if ch V = chW , then V ≃ W .
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Proof. Since their characters are equal, V and W have a common highest
weight λ, so they both contain a copy of V (λ). By complete reducibil-
ity (Theorem 12.14), V (λ) is a direct summand in both V and W . It is
enough to show that the direct complements are isomorphic, but this fol-
lows from the fact that they have equal characters and fewer irreducible
components.

So it is desirable to be able to compute the character of V (λ). This
is what we will do next lecture.
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Lecture 19 - The Weyl character formula

If λ ∈ P+ (i.e. (λ, α̌i) ∈ Z≥0 for all i), then we can construct an irre-
ducible representation with highest weight λ, which we called V (λ). We
define the fundamental weights ω1, . . . , ωn of a Lie algebra to be those
weights for which (ωi, α̌j) = δij . It is clear that any dominant integral
weight can be written as λ = λ1ω1 + · · · + λnωn for λi ≥ 0, so people
often talk about V (λ) by drawing the Dynkin diagram with the the i-th
vertex labelled by λi.

With this notation, the first fundamental representation V (ω1) for

sl(n) is written 1��	�
�� 0��	�
�� ... 0��	�
�� 0��	�
�� , which happens to be the stan-
dard representation (see Example 19.2 below). Similarly, the adjoint

representation is 1��	�
�� 0��	�
�� ... 0��	�
�� 1��	�
�� .
� Warning 19.1. Another common notation (incompatible with this

one) is to write λ =
∑
kiαi and label the i-th vertex by ki. In this

notation, the standard representation is 1 0 ... 0 0 and the
adjoint representation is 1 1 ... 1 1 . In these notes, we will
draw the diagram differently to distinguish between the two notations.

Observe that if v ∈ V a highest vector of weight λ, and w ∈ W
another highest weight vector of weight µ in another representation, then
v⊗w ∈ V ⊗W is a highest weight vector of weight λ+µ. It follows that
every finite dimensional irreducible representation can be realized as a
subrepresentation of a tensor product of fundamental representations.

Example 19.2. Let’s calculate the fundamental weights for sl(n + 1).
Recall that we have simple roots ε1 − ε2, . . . , εn − εn+1, and they are
equal to their coroots (since they have length

√
2). It follows that ωi =

ε1 + · · · + εi for i = 1, . . . , n.
Let E be the standard (n+1)-dimensional representation of sl(n+1).

Let e1, . . . , en+1 be a basis for E. Note that ei has weight εi, and εi − εj
can be written as a non-negative sum of positive roots exactly when
i ≤ j. Thus, the weights of E, in decreasing order, are ε1, ε2, . . . , εn+1.

Consider the representation ΛkE. We’d like to write down its weights.
Note that ΛkE is spanned by the vectors ei1∧· · ·∧eik , which have weights
εi1 + · · ·+ εik . Thus, the highest weight is ε1 + · · ·+ εk = ωk, so we know
that V (ωk) ⊆ ΛkE.

Note also that W ∼= Sn+1 acts by permutation of the ei, so it can
take any weight space to any other weight space. Such a representation
(where all the weight spaces form a single orbit of the Weyl group) is
called minuscule. Since the character of any subrepresentation must
be W-invariant, minuscule representations are always irreducible. So
ΛkE = V (ωk) is a fundamental representation.
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Remark 19.3 (Highest weights of duals). One of the weights of V (λ)∗ is
−λ, but to compute the highest weight, we need to get back into P+,
so we apply the longest word w in the Weyl group. Thus, −w(λ) is the
highest weight of V (λ)∗. This means that there is a fixed involution of
the Weyl chamber (namely, −w) which takes the highest weight of a rep-
resentation to the highest weight of its dual. It is clear that −w preserves
the set of simple roots and preserves inner products, so it corresponds
to an involution of the Dynkin diagram.

In the case of sl(n + 1), the involution is ��	�
�� ��	�
�� ... ��	�
�� ��	�
��ss ++ss ++ .
In particular, the dual of the standard representation V (ω1) is V (ωn).

The key to computing the character of V (λ) is to write it as a linear
combination of characters of Verma modules, as in the following example.

Example 19.4. Let g = sl(3) and let λ = 2ω1 + ω2. We try to write
ch V (λ) as a linear combination of characters of Verma modules in the
näıve way. We know that M(λ) must appear once and that ch V (λ) must
end up symmetric with respect to the Weyl group. We must subtract off
two Verma modules to keep the symmetry. Then we find that we must
add back two more and subtract one in order to get zeros outside of the
hexagon. In the picture below, each dot can be read as a zero.
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For now, just observe that if we shift the weights that appear (by some-
thing we will call the Weyl vector), we get an orbit of the Weyl group,
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with signs alternating according to the length of the element of the Weyl
group.

Some notation: if w ∈ W, we define (−1)w := det(w). Since each
simple reflection has determinant −1, this is the same as (−1)length(w).
Note that (−1)w

′w = (−1)w
′

(−1)w.
The Weyl vector is ρ = 1

2

∑

α∈∆+ α. Note that ri(ρ) = ρ − αi by
Lemma 14.13. On the other hand, ri(ρ) = ρ− (ρ, α̌i)αi, so we know that
(ρ, α̌i) = 1 for all i. Thus, ρ is the sum of all the fundamental weights.

Theorem 19.5 (Weyl Character Formula). For λ ∈ P+, the character
of the irreducible finite dimensional representation with highest weight λ
is1

ch V (λ) =

∑

w∈W(−1)wew(λ+ρ)

∑

w∈W(−1)wew(ρ)
.

The denominator is called the Weyl denominator . It is not yet obvi-
ous that the Weyl denominator divides the numerator (as formal sums),
so one may prefer to rewrite the equation as ch V (λ)·

∑

w∈W(−1)wew(ρ) =
∑

w∈W(−1)wew(λ+ρ).

Proof. Step 1. Compute chM(γ): Recall from the previous lecture that
the multiplicity of µ in M(γ) is the number of ways γ−µ can be written
as a sum of positive roots. Thus, it is easy to see that chM(γ) is given
by the following generating function.

chM(γ) = eγ
∏

α∈∆+

(1 + e−α + e−2α + · · · )

=
eγ

∏

α∈∆+(1 − e−α)

=
eγ+ρ

∏

α∈∆+(eα/2 − e−α/2)
(
∏

α∈∆+ eα/2 = eρ)

1 This formula may look ugly, but it is sweet. It says that you can compute the
character of V (λ) in the following way. Translate the Weyl vector ρ around by the
Weyl group; this will form some polytope. Make a piece of cardboard shaped like
this polytope (ok, so maybe this is only practical for rank 2), and put (−1)w at the
vertex w(ρ). This is your cardboard denominator. Now the formula tells you that
when you center your cardboard denominator around any weight, and then add the
multiplicities of the weights of V (λ) at the vertices with the appropriate sign, you’ll
get zero (unless you centered your cardboard
at w(λ+ρ), in which case only one non-zero multiplicity shows up in the sum, so you’ll
get ±1). Since we know that the highest weight has multiplicity
1, we can use this to compute the rest of the character.
For sl(3), your cardboard denominator will be a hexagon, and
one step of computing the character of V2ω1+ω2

might look like:
0 = 0 − 1+ ?− 1 + 0− 0, so ? = 2. Since ch V is symmetric with

0
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1

1

1
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1

1
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1

1

1

1



11 

11

respect to W, all three of the ?s must be 2.
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Step 2. The action of the Casimir operator: Recall the Casimir op-
erator from the proof of Whitehead’s Theorem (Theorem 12.10). If {ei}
is a basis for g, and {fi} is the dual basis (with respect to the Killing
form), then Ω =

∑
eifi ∈ Ug. We showed that Ω is in the center of Ug

(i.e. that Ωx = xΩ for all x ∈ g).

Claim. Ω acts on M(γ) as (γ, γ + 2ρ)Id.

Proof of Claim. Since Ω is in the center of Ug, it is enough to show that
Ωv = (γ + 2ρ, γ)v for a highest weight vector v ∈ Vγ .

Let {ui} be an orthonormal basis for h, and let {Xα}α∈∆ be a basis

for the rest of g. The dual basis is
{

Yα

(Xα,Yα)

}

. Then we get

Ω =
n∑

i=1

u2
i +

∑

α∈∆

XαY α

(Xα, Yα)

=

n∑

i=1

u2
i +

∑

α∈∆+

XαY α

(Xα, Yα)
+

YαXα

(Xα, Yα)
(X−αY−α = YαXα).

Using the equalities

uiv = γ(ui)v,
Xαv = 0,

XαYαv = Hαv − YαXαv
= γ(Hα)v,

γ(Hα) = 2(γ,α)
(α,α)

,

(γ, γ) =
∑n

i=1 γ(ui)
2, and

(Xα, Yα) = 1
2
([Hα, Xα], Yα)

= 1
2
(Hα, [Xα, Yα])

= 1
2
(Hα, Hα) = 1

2
· 2α(Hα)

(α,α)

= 2
(α,α)

we get

Ωv =
( n∑

i=1

γ(ui)
2
)

v +
∑

α∈∆+

γ(Hα)

(Xα, Yα)
v

= (γ, γ)v +
∑

α∈∆+

(γ, α)v = (γ, γ + 2ρ)v �Claim

Note that the universal property of Verma modules implies that the
action of Ω on any representation generated by a highest vector of weight
γ is given by (γ, γ + 2ρ)Id.

Finally, consider the set

Ωγ = {µ ∈ P |(µ+ ρ, µ+ ρ) = (γ + ρ, γ + ρ)}.

This is the intersection of the weight lattice P with the sphere of radius
‖γ + ρ‖ centered at −ρ. In particular, it is a finite set. On the other
hand, since (γ, γ+2ρ) = (γ+ρ, γ+ρ)−(ρ, ρ), it is also the set of weights
µ such that Ω acts on M(µ) in the same way it acts on M(γ).
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Step 3. Filter M(γ) for another formula: We say that a weight vec-

tor v is a singular vector if n+v = 0. If a representation is generated by
some highest vector v, and if all singular vectors are proportional to v,
then the representation is irreducible. To see this, note that a highest
weight vector of any proper subrepresentation must be singular, and it
cannot be proportional to v, lest it generate the whole representation.

Now let w be a singular vector of weight µ inM(γ). Then w generates
a subrepresentation which is a quotient of M(µ). By the claim in Step
2, Ω acts on this subrepresentation by (µ, µ + 2ρ). On the other hand,
since we are in M(γ), Ω must act by (γ, γ + 2ρ). It follows that µ ∈ Ωγ .

In particular, since Ωγ is finite, there is a minimal singular vector
w, which generates some irreducible subrepresentation; we will call that
representation F1M(γ). Mod out my F1M(γ) and repeat the process.
Any singular vector in M(γ)/FiM(γ) must be in Ωγ, so there is a min-
imal one, w, which generates an irreducible subrepresentation. Define
Fi+1M(γ) ⊆ M(γ) to be the pre-image of that representation. Since Ωγ

is finite and each Vµ is finite dimensional, the process terminates. The
result is a filtration

0 = F0M(γ) ⊆ F1M(γ) ⊆ · · · ⊆ FkM(γ) = M(γ)

such that FiM(γ)/Fi+1M(γ) is isomorphic to the irreducible representa-
tion V (µ) for some µ ∈ Ωγ .2 We also know that each µ that appears is
less than or equal to λ.

This gives us the nice formula

chM(γ) =
∑

µ≤γ, µ∈Ωγ

bγµch V (µ)

for some non-negative integers bγµ.
3 Moreover, V (γ) appears as a quo-

tient exactly once, so bγγ = 1.
Step 4. Invert and simplify the equation: We’ve shown that the ma-

trix (bγµ)γ,µ∈Ωλ is lower triangular with ones on the diagonal, so it has
a lower triangular inverse (cγµ)γ,µ∈Ωλ with ones on the diagonal.4 This
gives us the formula

ch V (λ) =
∑

µ≤λ, µ∈Ωλ

cλµchM(µ).

2We showed in Lecture 18 that for every µ ∈ h∗, there is a unique irreducible
representation V (µ) with highest weight µ. However, we only showed that V (µ)
is finite dimensional when µ ∈ P+. In general, it is infinite dimensional. In fact,
sometimes it happens that V (µ) = M(µ).

3These bγµ are called Kazhdan-Luztig multiplicities, and they are hard to compute
for general γ and µ.

4We will prove that each non-zero cγµ is ±1. It was once conjectured that even if
λ 6∈ P+, each non-zero cγµ is ±1, but this is false.
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Using Step 1, we can rewrite this as

ch V (λ) ·
∏

α∈∆+

(eα/2 − e−α/2) =
∑

µ≤λ, µ∈Ωλ

cλµe
µ+ρ.

For any element w of the Weyl group, we know thatw(LHS) = (−1)wLHS,
so the same must be true of the RHS, i.e.

∑

cλµe
w(µ+ρ) =

∑

(−1)wcλµe
µ+ρ.

This is equivalent to the condition cλ,w(µ+ρ)−ρ = cλµ. Since P+ is the
fundamental domain of W, and since cλλ = 1, we get

ch V (λ) ·
∏

α∈∆+

(eα/2 − e−α/2) =
∑

w∈W

(−1)wew(λ+ρ) +
∑

µ<λ, µ∈Ωλ

µ+ρ∈P+

(−1)wcλµe
w(µ+ρ).

We would like to eliminate the second sum on the right hand side.
The following claim does that nicely by showing that the sum is empty.

Claim. If µ ≤ λ, µ ∈ Ωλ, and µ+ ρ ≥ 0, then µ = λ.

Proof. We assume that (µ+ρ, µ+ρ) = (λ+ρ, λ+ρ) and λ−µ =
∑n

i=1 kiαi
for some non-negative ki. Then we get

0 =
(
(λ+ ρ) − (µ+ ρ), (λ+ ρ) + (µ+ ρ)

)

= (λ− µ, λ+ µ+ 2ρ)

=

n∑

i=1

ki(αi, λ+ µ+ 2ρ)

But λ ≥ 0 and µ + ρ ≥ 0, so (αi, λ + µ + ρ) ≥ 0. Also, (αi, ρ) > 0 for
each i, so (αi, λ+µ+2ρ) > 0. It follows that each ki is zero. �Claim

Now we have

ch V (λ) ·
∏

α∈∆+

(eα/2 − e−α/2) =
∑

w∈W

(−1)wew(λ+ρ).

Specializing to the case λ = 0, we know that V (0) is the trivial repre-
sentation, so ch V (0) = 1. This tells us that

∏

α∈∆+

(eα/2 − e−α/2) =
∑

w∈W

(−1)wew(ρ), (19.6)

so we get the desired

ch V (λ) =

∑

w∈W(−1)wew(λ+ρ)

∑

w∈W(−1)wew(ρ)
.
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Corollary 19.7 (Weyl dimension formula). dimV (λ) =
∏

α∈∆+

(λ+ ρ, α)

(ρ, α)
.

Proof. The point is that eµ is a formal expression. The only property
that we use is eµeγ = eµ+γ , so everything we’ve ever done with characters
works if we replace eµ by any other expression satisfying that relation.
In particular, if replace eµ with 6t(γ+ρ,µ), where t is a real number,5 then
Equation 19.6 says

∏

α∈∆+

(

6t(γ+ρ,α/2) − 6−t(γ+ρ,α/2)
)

=
∑

w∈W

(−1)w6t(γ+ρ,w(ρ))

=
∑

w∈W

(−1)w6t(w(γ+ρ),ρ) (19.8)

where the second equality is obtained by replacing w by w−1 and observ-
ing that (x, w−1y) = (w x, y) and that (−1)w

−1
= (−1)w.

Now we switch things up and replace eµ by 6t(µ,ρ), so the character
formula becomes

ch V (λ) =

∑

w∈W(−1)w6t(w(λ+ρ),ρ)

∑

w∈W(−1)w6t(w(ρ),ρ)
.

Applying Equation 19.8 to the numerator (with γ = λ) and to the de-
nominator (with γ = 0), we get

ch V (λ) =
∏

α∈∆+

(
6t(λ+ρ,α/2) − 6−t(λ+ρ,α/2)

)

(
6t(ρ,α/2) − 6−t(ρ,α/2)

) .

The dimension of V (λ) is equal to the expression ch V (λ) with eµ replaced
by 1. We can obtain this by letting t tend to zero in 6t(µ,ρ). This gives

dimV (λ) = lim
t→0

∏

α∈∆+

(
6t(λ+ρ,α/2) − 6−t(λ+ρ,α/2)

)

(
6t(ρ,α/2) − 6−t(ρ,α/2)

)

=
∏

α∈∆+

(λ+ ρ, α)

(ρ, α)
. (By l’Hôpital’s rule)

Example 19.9. Let g = sl(n+1). We choose the standard set of simple
roots Π = {α1, . . . , αn} so that ∆+ = {αi+αi+1+· · ·+αj}1≤i≤j≤n. Recall

5Obviously, there is nothing special about the base 6; just about any number
would work. It is important to understand that for any µ, t 7→ 6t(γ+ρ,µ) is an honest
real-valued function in t. Equation 19.8 is an equality of real-valued functions in t!
Similarly, ch V (λ) becomes a real-valued function in t.
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that (ρ, αi) = 1 for 1 ≤ i ≤ n and that (ωi, αj) = δij. If λ+ρ =
∑n

i=1 aiωi,
the dimension formula tells us that

dimV (λ) =
∏

α∈∆+

(λ+ ρ, α)

(ρ, α)

=
∏

1≤i≤j≤n

ai + ai+1 + · · · + aj−1 + aj
j − i+ 1

=
1

n!!

∏

1≤i≤j≤n

j
∑

k=i

ak

where n!! := n! (n− 1)! · · · 3! 2! 1!.
If g = sl(3), and if λ + ρ = 3ω1 + 2ω2, we get dim V (λ) = 1

2!!
· 2 · 3 ·

(2+3) = 15, computing the dimension of the representation in Example
19.4. This formula is nice because the calculation does not get big as λ
gets big. If λ+ ρ = 20ω1 +91ω2, it would be really annoying to compute
ch V (λ) completely, but we can get dimV (λ) = 1

2
20 · 91 · 111 = 101010

easily.
Even for larger n, this formula is pretty good. Say we want the

dimension of 1��	�
�� 2��	�
�� 0��	�
�� 6��	�
�� , then λ + ρ = 2ω1 + 3ω2 + 1ω3 + 7ω4,
so we get

1

4!!
2 · 3 · 1 · 7 · (2 + 3)(3 + 1)(1 + 7)(2 + 3 + 1)(3 + 1 + 7)(2 + 3 + 1+ 7) = 20020.

Remark 19.10. Given complete reducibility, knowing the characters of
all irreducible representations allows you to decompose tensor products,
just like in representation theory of finite groups. That is, we can now
compute the coefficients in V (λ)⊗V (µ) =

⊕
bνλµV (ν). In the finite group

case, we make this easier by choosing an inner product on class functions
so that characters of irreducible representations form an orthonormal
basis. Now we would like to come up with an inner product on formal
expressions

∑
mµe

µ so that characters of irreducible representations are
orthonormal.

The obvious inner product is 〈eλ, eµ〉 = δλ,µ, under which the eµ are
an orthonormal basis. There is no hope for the ch V (λ) to be orthogonal,
but we can tweak it. Another inner product is

(eλ, eµ) =
1

|W| 〈D · eλ, D · eµ〉

where D is the Weyl denominator. The character formula tells us that
under this inner product, the ch V (λ) are orthonormal, and form a basis
for W-symmetric expressions where mµ = 0 for µ 6∈ P .
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As with the character formula, this may not look so impressive, but
it makes decomposing tensor products very fast. We want to compute

(
ch V (λ) · ch V (µ), ch V (γ)

)
=

1

|W|
〈
D · ch V (λ)
︸ ︷︷ ︸
∑

(−1)wew(λ+ρ)

·ch V (µ), D · ch V (γ)
︸ ︷︷ ︸
∑

(−1)wew(γ+ρ)

〉

for all γ ∈ P+. Since we know that the result must be W-symmetric,
we can remove the 1

|W| and restrict our attention to the Weyl chamber.

That is, we can just compute
〈∑

(−1)wew(λ+ρ) · ch V (µ), eγ+ρ
〉
, which is

the multiplicity of γ in
∑

(−1)wew(λ+ρ)−ρch V (µ). In practice, we choose
|µ| ≤ |λ|, so most of the summands lie outside of the Weyl chamber, so
we can ignore them.

Example 19.11 (For those who know about gl(n)). We know that gl(n+
1) is the direct sum (as a Lie algebra) of its center, k · Id, and sl(n +
1).6 Let {ε1, . . . , εn+1} be the image of an orthonormal basis of kn+1

in kn (under the usual projection, so that
∑
εi = 0). Let zi = eεi, so

z1 · · · zn+1 = 1. The Weyl groupW ≃ Sn+1 acts on the zi by permutation.
We have that

ρ =
1

2

∑

i<j

εi − εj

=
n

2
ε1 +

n− 2

2
ε2 + · · ·+ −n

2
εn+1

= nε1 + (n− 1)ε2 + · · ·+ 2εn−1 + εn + 0εn+1

(∑
εi = 0

)

so
eρ = zn1 z

n−1
2 · · · z1

nz
0
n+1.

If λ =
∑n+1

i=1 aiεi (with
∑
ai = 0) is a dominant integral weight, we have

(λ, α̌i) = ai − ai+1 ≥ 0. The character formula says that

ch V (λ) =

∑

σ∈Sn+1
(−1)σza1+n

σ(1) · · · zan+1
σ(n) z

an+1

σ(n+1)
∑

σ∈Sn+1
(−1)σznσ(1) · · · z1

σ(n)z
0
σ(n+1)

The denominator (call it D) is the famous Vandermonde determinant,

det













zn1 zn2 · · · znn+1

zn−1
1 zn−1

2 · · · zn−1
n+1

...
...

. . .
...

z1 z2 · · · zn+1

1 1 · · · 1













=
∑

σ∈Sn+1

(−1)σznσ(1) · · · z1
σ(n)z

0
σ(n+1)

=
∏

1≤i<j≤n+1

(zj − zi)

6 In general, a Lie algebra which is the the direct sum of its center and its semisim-
ple part is called reductive.
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The numerator is

Dλ = det













za1+n
1 za1+n

2 · · · za1+n
n+1

za2+n−1
1 za2+n−1

2 · · · za2+n+1
n−1

...
...

. . .
...

zan+1
1 zan+1

2 · · · zan+1
n+1

z
an+1

1 z
an+1

1 · · · z
an+1

1













So the character is the Schur polynomial.
Usually, the representations are encoded as Young diagrams. The

marks on the dynkin diagram are the differences in consecutive rows in
the young diagram.
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Lecture 20 - Compact Lie groups

So far we classified semisimple Lie algebras over an algebraically closed
field characteristic 0. Now we will discuss the connection to compact
groups. Representations of Lie groups are always taken to be smooth.

Example 20.1. SU(n) = {X ∈ GL(n,C)|X̄ tX = Id and detX = 1} is
a compact connected Lie group over R. It is the group of linear trans-
formations of Cn preserving some hermitian form.

You may already know that SU(2) is topologically a 3-sphere.

◮ Exercise 20.1. If G is an abelian compact connected Lie group, then
it is a product of circles, so it is Tn.

There exists the G-invariant volume form1 ω satisfying

1. The volume of G is one:
∫

G
ω = 1, and

2. ω is left invariant:
∫

G
fω =

∫

G
L∗
hf ω for all h ∈ G. Recall that

L∗
hf is defined by (L∗

hf)(g) = f(hg).

To construct ω pick ωe ∈ Λtop(TeG)∗ and define ωg = L∗
g−1ωe.

◮ Exercise 20.2. If G is connected, show that this ω is also right
invariant. Even if G is not connected, show that the measure obtained
from a right invariant form agrees with the measure obtained from a left
invariant form.

Theorem 20.2. If G is a compact group and V is a real representation
of G, then there exists a positive definite G-invariant inner product on
V . That is, (gv, gw) = (v, w).

Proof. Pick any positive definite inner product2 〈v, w〉, and define

(v, w) =

∫

G

〈gv, gw〉ω

which is positive definite and invariant.

It follows that any finite dimensional representation of a compact
group G is completely reducible (i.e. splits into a direct sum of irre-
ducibles) because the orthogonal complement to a subrepresentation is
a subrepresentation.

In particular, the representation Ad : G → GL(g) is completely re-
ducible, and the irreducible subrepresentations are exactly the irreducible

1A volume form is a non-vanishing top degree form.
2Pick any basis, and declare it to be orthonormal.
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subrepresentations of the derivative, ad : g → gl(g). Thus, we get the
decomposition g = g1 ⊕ · · · gk ⊕ a, with each gi is a one dimensional or
simple ideal. We dump all the one dimensional gi into a, which is then
the center of g. Thus, the Lie algebra of a compact group is the direct
sum of its center and a semisimple Lie algebra. Such a Lie algebra is
called reductive.

If G is simply connected, then I claim that a is trivial. This is because
the simply connected group connected to a must be a torus, so a center
gives you some fundamental group. Thus, if G is simply connected, then
g is semisimple.

Theorem 20.3. If the Lie group G of g is compact, then the Killing
form B on g is negative semi-definite. If the Killing form on g is negative
definite, then there is some compact group G with Lie algebra g.

Proof. If you have g → gl(g), and you know that g has an ad-invariant
positive definite product, so it lies in so(g). Here you have At = −A,
so you have to check that tr(A2) < 0. It is not hard to check that the
eigenvalues of A are imaginary (as soon as At = −A), so we have that
the trace of the square is negative (or zero).

If B is negative definite, then it is non-degenerate, so g is semisimple
by Theorem 12.7, and −B is an inner product. Moreover, we have that

−B(adXY, Z) = B(Y, adXZ)

so adX = −adtX with respect to this inner product. That is, the image
of ad lies in so(g). It follows that the image under Ad of the simply
connected group G̃ with Lie algebra g lies in SO(g). Thus, the image is
a closed subgroup of a compact group, so it is compact. Since Ad has a
discrete kernel, the image has the same Lie algebra.

How to classify compact Lie algebras? We know the classification over
C, so we can always take g  gC = g ⊗R C, which remains semisimple.
However, this process might not be injective. For example, take su(2) =
{
(
a b
−b̄ a

)
|a ∈ Ri, b ∈ C} and sl(2,R), then they complexify to the same

thing.
g in this case is called a real form of gC. So you can start with gC

and classify all real forms.

Theorem 20.4 (Cartan). Every semisimple Lie algebra has exactly one
(up to isomorphism) compact real form.

For example, for sl(2) it is su(2).
Classical Lie groups: SL(n,C), SO(n,C) (SO has lots of real forms of

this, because in the real case, you get a signiture of a form; in the complex
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case, all forms are isomorphic), Sp(2n,C). What are the corresponding
compact simple Lie groups?

Compact real forms: SU(n) = the group of linear operators on Cn

preserving a positive definite Hermitian form. SL(n) = the group of
linear operators on Rn preserving a positive definite symmetric bilinear
form. Sp(2n) =the group of linear operators on Hn preserving a positive
definite Hermitian form

We’re not going to prove this theorem because we don’t have time,
but let’s show existence.

Proof of existence. Suppose gC = g ⊗R C = g ⊕ ig. Then you can con-
struct σ : gC → gC “complex conjugation”. Then σ preserves the commu-
tator, but it is an anti-linear involution. Classifying real forms amounts
to classifying all anti-linear involutions. There should be one that corre-
sponds to the compact algebra. Take X1, . . . , Xn, H1, . . . , Hn, Y1, . . . , Yn
generators for the algebra. Then we just need to define σ on the genera-
tors: σ(Xi) = −Yi, σ(Yi) = −Xi, σ(Hi) = −Hi, and extend anti-linearly.
This particular σ is called the Cartan involution.

Now we claim that g = (gC)σ = {X|σ(X) = X} is a compact simple
Lie algebra. We just have to check that the Killing form is negative
definite. If you take h ∈ h, written as h =

∑
aiHi, then σ(h) = h implies

that all the ai are purely imaginary. This implies that the eigenvalues of
h are imaginary, which implies that B(h, h) < 0. You also have to check
it on Xi, Yi. The fixed things will be of the form (aXi − āYi) ∈ g. The
Weyl group action shows that B is negative on all of the root space.

Look at exp hσ ⊂ G (simply connected), which is called the maximal
torus T . I’m going to tell you several facts now. You can always think of
T as Rn/L. The point is that Rn can be identified with hre, and h∗

re has
two natural lattices: Q (the root lattice) and P (the weight lattice). So
one can identify T = Rn/L = hre/P̌ , where P̌ is the natural dual lattice
to P , the set of h ∈ h such that 〈ω, h〉 ∈ Z for all ω ∈ P . G is simply
connected, and when you quotient by the center, you get AdG, and all
other groups with the same algebra are in between. AdT = hre/Q̌. We
have the sequence {1} → Z(G) → T → AdT → {1}. You can check
that any element is semisimple in a compact group, so the center of G is
the quotient P/Q ≃ Q̌/P̌ . Observe that |P/Q| = the determinant of the
Cartan matrix. For example, if g = sl(3), then we have det

(
2 −1
−1 2

)
= 3,

and the center of SU(3) is the set of all elements of the form diag(ω, ω, ω)
where ω3 = 1.

G2 has only one real form because the det is 1?
Orthogonality relations for compact groups:

∫

G

χ(g)ψ̄(g−1)ω = δχ,ψ
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where χ and ψ are characters of irreducible representations. You know
that the character is constant on conjugacy classes, so you can integrate
over the conjugacy classes. There is a nice picture for SU(2).

T

•

••

•

The integral can be written as

1

|W|

∫

T

χ(t)ψ̄(t)V ol(C(t))dt

And V ol(C(t)) = D(t)D̄(t). You divide by |W| because that is how
many times each class hits T .
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Lecture 21 - An overview of Lie groups

The (unofficial) goal of the last third of the course is to prove no theo-
rems. We’ll talk about

1. Lie groups in general,

2. Clifford algebras and Spin groups,

3. Construction of all Lie groups and all representations. You might
say this is impossible, so let’s just try to do all simple ones, and in
particular E8, E7, E6.

4. Representations of SL2(R).

Lie groups in general

In general, a Lie group G can be broken up into a number of pieces.
The connected component of the identity, Gconn ⊆ G, is a normal

subgroup, and G/Gconn is a discrete group.

1 −→ Gconn −→ G −→ Gdiscrete −→ 1

The maximal connected normal solvable subgroup of Gconn is called
Gsol. Recall that a group is solvable if there is a chain of subgroups Gsol ⊇
· · · ⊇ 1, where consecutive quotients are abelian. The Lie algebra of a
solvable group is solvable (by Exercise 11.2), so Lie’s theorem (Theorem
11.11) tells us that Gsol is isomorphic to a subgroup of the group of upper
triangular matrices.

Every normal solvable subgroup of Gconn/Gsol is discrete, and there-
fore in the center (which is itself discrete). We call the pre-image of the
center G∗. Then G/G∗ is a product of simple groups (groups with no
normal subgroups).

Gsol ⊆














∗ ∗
. . .

∗
0 ∗














Gnil ⊆














1 ∗
. . .

1
0 1














Since Gsol is solvable, Gnil := [Gsol, Gsol] is nilpotent, i.e. there is a chain
of subgroups Gnil ⊇ G1 ⊇ · · · ⊇ Gk = 1 such that Gi/Gi+1 is in the
center of Gnil/Gi+1. In fact, Gnil must be isomorphic to a subgroup of
the group of upper triangular matrices with ones on the diagonal. Such
a group is called unipotent.



Lecture 21 - An overview of Lie groups 119

We have the picture

G

Gconn

G∗

Gsol

Gnil

1


discrete; classification hopeless



∏

connected simples; classified


abelian discrete

abelian




classification trivial


nilpotent; classification a mess






connected

The classification of connected simple Lie groups is quite long. There are
many infinite series and a lot of exceptional cases. Some infinite series
are PSU(n), PSLn(R), and PSLn(C).1

One way to get many connected simple Lie groups is not observe
that there is a unique connected simple Lie group for each simple Lie
algebra. We’ve already classified complex Lie algebras, and it turns
out that there a finite number of real Lie algebras which complexify to
any given complex Lie algebra. We will classify all such real forms in
Lecture 29.

For example, sl2(R) 6≃ su2(R), but sl2(R)⊗C ≃ su2(R)⊗C ≃ sl2(C).
By the way, sl2(C) is simple as a real Lie algebra, but its complexification
is sl2(C) ⊕ sl2(C), which is not simple. Thus, we cannot obtain all
connected simple groups this way.

Example 21.1. Let G be the group of all shape-preserving transforma-
tions of R4 (i.e. translations, reflections, rotations, and scaling). It is
sometimes called R4 · GO4(R). The R4 stands for translations, the G
means that you can multiply by scalars, and the O means that you can
reflect and rotate. The R4 is a normal subgroup. In this case, we have

Gconn/Gsol

= SO4(R)







R4 ·GO4(R) = G

R4 ·GO+
4 (R) = Gconn

R4 · R× = G∗

R4 · R+ = Gsol

R4 = Gnil

G/Gconn = Z/2Z

Gconn/G∗ = PSO4(R)
(
≃ SO3(R) × SO3(R)

)

G∗/Gsol = Z/2Z

Gsol/Gnil = R+

1The P means “mod out by the center”.
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where GO+
4 (R) is the connected component of the identity (those trans-

formations that preserve orientation), R× is scaling by something other
than zero, and R+ is scaling by something positive. Note that SO3(R) =
PSO3(R) is simple.

SO4(R) is “almost” the product SO3(R)×SO3(R). To see this, con-
sider the associative (but not commutative) algebra of quaternions, H.
Since qq̄ = a2 +b2 +c2 +d2 > 0 whenever q 6= 0, any non-zero quaternion
has an inverse (namely, q̄/qq̄). Thus, H is a division algebra. Think of H
as R4 and let S3 be the unit sphere, consisting of the quaternions such
that ‖q‖ = qq̄ = 1. It is easy to check that ‖pq‖ = ‖p‖ · ‖q‖, from which
we get that left (right) multiplication by an element of S3 is a norm-
preserving transformation of R4. So we have a map S3 × S3 → O4(R).
Since S3 ×S3 is connected, the image must lie in SO4(R). It is not hard
to check that SO4(R) is the image. The kernel is {(1, 1), (−1,−1)}. So
we have S3 × S3/{(1, 1), (−1,−1)} ≃ SO4(R).

Conjugating a purely imaginary quaternion by some q ∈ S3 yields
a purely imaginary quaternion of the same norm as the original, so we
have a homomorphism S3 → O3(R). Again, it is easy to check that the
image is SO3(R) and that the kernel is ±1, so S3/{±1} ≃ SO3(R).

So the universal cover of SO4(R) (a double cover) is the cartesian
square of the universal cover of SO3(R) (also a double cover). Orthog-
onal groups in dimension 4 have a strong tendency to split up like this.
Orthogonal groups in general tend to have these double covers, as we
shall see in Lectures 23 and 24. These double covers are important if
you want to study fermions.

Lie groups and Lie algebras

Let g be a Lie algebra. We can set gsol = rad g to be the maximal solvable
ideal (normal subalgebra), and gnil = [gsol, gsol]. Then we get the chain

g

gsol

gnil

0



∏

simples; classification known


abelian; easy to classify


nilpotent; classification a mess

We have an equivalence of categories between simply connected Lie
groups and Lie algebras. The correspondence cannot detect

– Non-trivial components of G. For example, SOn and On have the
same Lie algebra.
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– Discrete normal (therefore central, Lemma 5.1) subgroups of G. If
Z ⊆ G is any discrete normal subgroup, then G and G/Z have the
same Lie algebra. For example, SU(2) has the same Lie algebra as
PSU(2) ≃ SO3(R).

If G̃ is a connected and simply connected Lie group with Lie algebra g,
then any other connected group G with Lie algebra g must be isomorphic
to G̃/Z, where Z is some discrete subgroup of the center. Thus, if you
know all the discrete subgroups of the center of G̃, you can read off all
the connected Lie groups with the given Lie algebra.

Let’s find all the groups with the algebra so4(R). First let’s find a
simply connected group with this Lie algebra. You might guess SO4(R),
but that isn’t simply connected. The simply connected one is S3 × S3

as we saw earlier (it is a product of two simply connected groups, so it
is simply connected). The center of S3 is generated by −1, so the center
of S3 × S3 is (Z/2Z)2, the Klein four group. There are three subgroups
of order 2

(Z/2Z)2

ww
ww

ww
GG

GG
GG

(−1, 1)

GG
GG

GG
GG

(−1,−1) (1,−1)

ww
ww

ww
ww

1

PSO4(R)

pppppppp

NNNNNNNN

SO3(R) × S3

NNNNNNNN
SO4(R) S3 × SO3(R)

pppppppp

S3 × S3

Therefore, there are 5 groups with Lie algebra so4.

Lie groups and finite groups

1. The classification of finite simple groups resembles the classification
of connected simple Lie groups when n ≥ 2.

For example, PSLn(R) is a simple Lie group, and PSLn(Fq) is a
finite simple group except when n = q = 2 or n = 2, q = 3. Simple
finite groups form about 18 series similar to Lie groups, and 26 or
27 exceptions, called sporadic groups, which don’t seem to have
any analogues for Lie groups.

2. Finite groups and Lie groups are both built up from simple and
abelian groups. However, the way that finite groups are built is
much more complicated than the way Lie groups are built. Finite
groups can contain simple subgroups in very complicated ways; not
just as direct factors.

For example, there are wreath products. Let G and H be finite
simple groups with an action of H on a set of n points. Then H



Lecture 21 - An overview of Lie groups 122

acts on Gn by permuting the factors. We can form the semi-direct
product Gn⋉H , sometimes denoted G≀H . There is no analogue for
(finite dimensional) Lie groups. There is an analogue for infinite
dimensional Lie groups, which is why the theory becomes hard in
infinite dimensions.

3. The commutator subgroup of a solvable finite group need not be
a nilpotent group. For example, the symmetric group S4 has com-
mutator subgroup A4, which is not nilpotent.

Lie groups and Algebraic groups (over R)

By algebraic group, we mean an algebraic variety which is also a group,
such as GLn(R). Any algebraic group is a Lie group. Probably all the
Lie groups you’ve come across have been algebraic groups. Since they
are so similar, we’ll list some differences.

1. Unipotent and semisimple abelian algebraic groups are totally dif-
ferent, but for Lie groups they are nearly the same. For example
R ≃ {( 1 ∗

0 1 )} is unipotent and R× ≃
{(

a 0
0 a−1

)}
is semisimple. As

Lie groups, they are closely related (nearly the same), but the Lie
group homomorphism exp : R→ R× is not algebraic (polynomial),
so they look quite different as algebraic groups.

2. Abelian varieties are different from affine algebraic groups. For
example, consider the (projective) elliptic curve y2 = x3+x with its
usual group operation and the group of matrices of the form

(
a b
−b a

)

with a2 + b2 = 1. Both are isomorphic to S1 as Lie groups, but
they are completely different as algebraic groups; one is projective
and the other is affine.

3. Some Lie groups do not correspond to ANY algebraic group. We
give two examples here.

The Heisenberg group is the subgroup of symmetries of L2(R) gen-
erated by translations (f(t) 7→ f(t + x)), multiplication by e2πity

(f(t) 7→ e2πityf(t)), and multiplication by e2πiz (f(t) 7→ e2πizf(t)).
The general element is of the form f(t) 7→ e2πi(yt+z)f(t+ x). This
can also be modelled as
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It has the property that in any finite dimensional representation,
the center (elements with x = y = 0) acts trivially, so it cannot be
isomorphic to any algebraic group.
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The metaplectic group. Let’s try to find all connected groups with
Lie algebra sl2(R) = {( a bc d ) |a + d = 0}. There are two obvious
ones: SL2(R) and PSL2(R). There aren’t any other ones that can
be represented as groups of finite dimensional matrices. However,
if you look at SL2(R), you’ll find that it is not simply connected.
To see this, we will use Iwasawa decomposition (without proof).

Theorem 21.2 (Iwasawa decomposition). If G is a (connected)
semisimple Lie group, then there are closed subgroups K, A, and
N , with K compact, A abelian, and N unipotent, such that the
multiplication map K×A×N → G is a surjective diffeomorphism.
Moreover, A and N are simply connected.

In the case of SLn, this is the statement that any basis can be
obtained uniquely by taking an orthonormal basis (K = SOn),
scaling by positive reals (A is the group of diagonal matrices with

positive real entries), and shearing (N is the group
(

1. . .
∗

0 1

)

). This

is exactly the result of the Gram-Schmidt process.

The upshot is that G ≃ K × A×N (topologically), and A and N
do not contribute to the fundamental group, so the fundamental
group of G is the same as that of K. In our case, K = SO2(R) is
isomorphic to a circle, so the fundamental group of SL2(R) is Z.

So the universal cover S̃L2(R) has center Z. Any finite dimensional

representation of S̃L2(R) factors through SL2(R), so none of the
covers of SL2(R) can be written as a group of finite dimensional
matrices. Representing such groups is a pain.

The most important case is the metaplectic group Mp2(R), which
is the connected double cover of SL2(R). It turns up in the theory
of modular forms of half-integral weight and has a representation
called the metaplectic representation.

Important Lie groups

Dimension 1: There are just R and S1 = R/Z.
Dimension 2: The abelian groups are quotients of R2 by some discrete

subgroup; there are three cases: R2, R2/Z = R × S1, and R2/Z2 =
S1 × S1.

There is also a non-abelian group, the group of all matrices of the
form

(
a b
0 a−1

)
, where a > 0. The Lie algebra is the subalgebra of 2 × 2

matrices of the form
(
h x
0 −h

)
, which is generated by two elements H and

X, with [H,X] = 2X.
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Dimension 3: There are some boring abelian and solvable groups,
such as R2⋉R1, or the direct sum of R1 with one of the two dimensional
groups. As the dimension increases, the number of boring solvable groups
gets huge, and nobody can do anything about them, so we ignore them
from here on.

You get the group SL2(R), which is the most important Lie group of
all. We saw earlier that SL2(R) has fundamental group Z. The double
cover Mp2(R) is important. The quotient PSL2(R) is simple, and acts
on the open upper half plane by linear fractional transformations

Closely related to SL2(R) is the compact group SU2. We know that
SU2 ≃ S3, and it covers SO3(R), with kernel ±1. After we learn about
Spin groups, we will see that SU2

∼= Spin3(R). The Lie algebra su2 is
generated by three elements X, Y , and Z with relations [X, Y ] = 2Z,
[Y, Z] = 2X, and [Z,X] = 2Y .2

The Lie algebras sl2(R) and su2 are non-isomorphic, but when you
complexify, they both become isomorphic to sl2(C).

There is another interesting 3 dimensional algebra. The Heisenberg
algebra is the Lie algebra of the Heisenberg group. It is generated by
X, Y, Z, with [X, Y ] = Z and Z central. You can think of this as strictly
upper triangular matrices.

Dimension 6: (nothing interesting happens in dimensions 4,5) We get
the group SL2(C). Later, we will see that it is also called Spin1,3(R).

Dimension 8: We have SU3(R) and SL3(R). This is the first time we
get a non-trivial root system.

Dimension 14: G2, which we will discuss a little.
Dimension 248: E8, which we will discuss in detail.

This class is mostly about finite dimensional algebras, but let’s men-
tion some infinite dimensional Lie groups or Lie algebras.

1. Automorphisms of a Hilbert space form a Lie group.

2. Diffeomorphisms of a manifold form a Lie group. There is some
physics stuff related to this.

3. Gauge groups are (continuous, smooth, analytic, or whatever) maps
from a manifold M to a group G.

4. The Virasoro algebra is generated by Ln for n ∈ Z and c, with
relations [Ln, Lm] = (n−m)Ln+m+ δn+m,0

n3−n
12

c, where c is central
(called the central charge). If you set c = 0, you get (complexified)
vector fields on S1, where we think of Ln as ieinθ ∂

∂θ
. Thus, the

2An explicit representation is given by X =
(

0 1
−1 0

)
, Y = ( 0 i

i 0 ), and Z =
(

i 0
0 −i

)
.

The cross product on R3 gives it the structure of this Lie algebra.
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Virasoro algebra is a central extension

0 → cC→ Virasoro → Vect(S1) → 0.

5. Affine Kac-Moody algebras, which are more or less central exten-
sions of certain gauge groups over the circle.
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Lecture 22 - Clifford algebras

With Lie algebras of small dimensions, there are accidental isomor-
phisms. Almost all of these can be explained with Clifford algebras
and Spin groups.

Motivational examples that we’d like to explain:

1. SO2(R) = S1: S1 can double cover S1 itself.

2. SO3(R): has a simply connected double cover S3.

3. SO4(R): has a simply connected double cover S3 × S3.

4. SO5(C): Look at Sp4(C), which acts on C4 and on Λ2(C4), which
is 6 dimensional, and decomposes as 5⊕1. Λ2(C4) has a symmetric
bilinear form given by Λ2(C4)⊗Λ2(C4) → Λ4(C4) ≃ C, and Sp4(C)
preserves this form. You get that Sp4(C) acts on C5, preserving
a symmetric bilinear form, so it maps to SO5(C). You can check
that the kernel is ±1. So Sp4(C) is a double cover of SO5(C).

5. SO5(C): SL4(C) acts on C4, and we still have our 6 dimensional
Λ2(C4), with a symmetric bilinear form. So you get a homomor-
phism SL4(C) → SO6(C), which you can check is surjective, with
kernel ±1.

So we have double covers S1, S3, S3×S3, Sp4(C), SL4(C) of the orthog-
onal groups in dimensions 2,3,4,5, and 6, respectively. All of these look
completely unrelated. By the end of the next lecture, we will have an
understanding of these groups, which will be called Spin2(R), Spin3(R),
Spin4(R), Spin5(C), and Spin6(C), respectively.

Example 22.1. We have not yet defined Clifford algebras, but here are
some examples of Clifford algebras over R.

– C is generated by R, together with i, with i2 = −1

– H is generated by R, together with i, j, each squaring to −1, with
ij + ji = 0.

– Dirac wanted a square root for the operator ∇ = ∂2

∂x2 + ∂2

∂y2
+ ∂2

∂z2
− ∂2

∂t2

(the wave operator in 4 dimensions). He supposed that the square
root is of the form A = γ1

∂
∂x

+ γ2
∂
∂y

+ γ3
∂
∂z

+ γ4
∂
∂t

and compared

coefficients in the equation A2 = ∇. Doing this yields γ2
1 = γ2

2 =
γ2

3 = 1, γ2
4 = −1, and γiγj + γjγi = 0 for i 6= j.

Dirac solved this by taking the γi to be 4× 4 complex matrices. A
operates on vector-valued functions on space-time.
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Definition 22.2. A general Clifford algebra over R should be generated
by elements γ1, . . . , γn such that γ2

i is some given real, and γiγj+γjγi = 0
for i 6= j.

Definition 22.3 (better definition). Suppose V is a vector space over
a field K, with some quadratic form1 N : V → K. Then the Clifford
algebra CV (K) is generated by the vector space V , with relations v2 =
N(v).

We know that N(λv) = λ2N(v) and that the expression (a, b) :=
N(a+ b)−N(a)−N(b) is bilinear. If the characteristic of K is not 2, we

have N(a) = (a,a)
2

. Thus, you can work with symmetric bilinear forms
instead of quadratic forms so long as the characteristic of K is not 2.
We’ll use quadratic forms so that everything works in characteristic 2.

� Warning 22.4. A few authors (mainly in index theory) use the
relations v2 = −N(v). Some people add a factor of 2, which usually

doesn’t matter, but is wrong in characteristic 2.

Example 22.5. Take V = R2 with basis i, j, and with N(xi + yj) =
−x2 − y2. Then the relations are (xi + yj)2 = −x2 − y2 are exactly the
relations for the quaternions: i2 = j2 = −1 and (i+j)2 = i2+ij+ji+j2 =
−2, so ij + ji = 0.

Remark 22.6. If the characteristic of K is not 2, a “completing the
square” argument shows that any quadratic form is isomorphic to c1x

2
1 +

· · ·+ cnx
2
n, and if one can be obtained from another other by permuting

the ci and multiplying each ci by a non-zero square, the two forms are
isomorphic.

It follows that every quadratic form on a vector space over C is iso-
morphic to x2

1+ · · ·+x2
n, and that every quadratic form on a vector space

over R is isomorphic to x2
1 + · · ·+x2

m−x2
m+1 −· · ·−x2

m+n (m pluses and
n minuses) for some m and n. One can check that these forms over R
are non-isomorphic.

We will always assume that N is non-degenerate (i.e. that the as-
sociated bilinear form is non-degenerate), but one could study Clifford
algebras arising from degenerate forms.

� Warning 22.7. The criterion in the remark is not sufficient for clas-
sifying quadratic forms. For example, over the field F3, the forms

x2+y2 and −x2−y2 are isomorphic via the isomorphism ( 1 1
1 −1 ) : F2

3 → F2
3,

but −1 is not a square in F3. Also, completing the square doesn’t work
in characteristic 2.

1N is a quadratic form if it is a homogeneous polynomial of degree 2 in the
coefficients with respect to some basis.
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Remark 22.8. The tensor algebra TV has a natural Z-grading, and to
form the Clifford algebra CV (K), we quotient by the ideal generated by
the even elements v2−N(v). Thus, the algebra CV (K) = C0

V (K)⊕C1
V (K)

is Z/2Z-graded. A Z/2Z-graded algebra is called a superalgebra.

Problem: Find the structure of Cm,n(R), the Clifford algebra over
Rn+m with the form x2

1 + · · · + x2
m − x2

m+1 − · · · − x2
m+n.

Example 22.9.

– C0,0(R) is R.

– C1,0(R) is R[ε]/(ε2 − 1) = R(1 + ε)⊕R(1− ε) = R⊕R. Note that
the given basis, this is a direct sum of algebras over R.

– C0,1(R) is R[i]/(i2 + 1) = C, with i odd.

– C2,0(R) is R[α, β]/(α2 − 1, β2 − 1, αβ + βα). We get a homomor-
phism C2,0(R) → M2(R), given by α 7→ ( 1 0

0 −1 ) and β 7→ ( 0 1
1 0 ).

The homomorphism is onto because the two given matrices gener-
ate M2(R) as an algebra. The dimension of M2(R) is 4, and the
dimension of C2,0(R) is at most 4 because it is spanned by 1, α, β,
and αβ. So we have that C2,0(R) ≃M2(R).

– C1,1(R) is R[α, β]/(α2 − 1, β2 + 1, αβ + βα). Again, we get an
isomorphism with M2(R), given by α 7→ ( 1 0

0 −1 ) and β 7→ ( 0 1
−1 0 )

Thus, we’ve computed the Clifford algebras

m\n 0 1 2
0 R C H
1 R⊕ R M2(R)
2 M2(R)

Remark 22.10. If {v1, . . . , vn} is a basis for V , then {vi1 · · · vik |i1 < · · · <
ik, k ≤ n} spans CV (K), so the dimension of CV (K) is less than or equal
to 2dimV . The tough part of Clifford algebras is showing that it cannot
be smaller.

Now let’s try to analyze larger Clifford algebras more systematically.
What is CU⊕V in terms of CU and CV ? One might guess CU⊕V ∼= CU ⊗
CV . For the usual definition of tensor product, this is false (e.g. C1,1(R) 6=
C1,0(R) ⊗ C0,1(R)). However, for the superalgebra definition of tensor
product, this is correct. The superalgebra tensor product is the regular
tensor product of vector spaces, with the product given by (a⊗b)(c⊗d) =
(−1)deg b·deg cac⊗ bd for homogeneous elements a, b, c, and d.
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Let’s specialize to the case K = R and try to compute CU⊕V (K).
Assume for the moment that dimU = m is even. Take α1, . . . , αm to be
an orthogonal basis for U and let β1, . . . , βn to be an orthogonal basis
for V . Then set γi = α1α2 · · ·αmβi. What are the relations between the
αi and the γj? We have

αiγj = αiα1α2 · · ·αmβj = α1α2 · · ·αmβiαi = γjαi

since dimU is even, and αi anti-commutes with everything except itself.

γiγj = γiα1 · · ·αmβj = α1 · · ·αmγiβj
= α1 · · ·αmα1 · · ·αm βiβj

︸︷︷︸

−βjβi

= −γjγi

γ2
i = α1 · · ·αmα1 · · ·αmβiβi = (−1)

m(m−1)
2 α2

1 · · ·α2
mβ

2
i

= (−1)m/2α2
1 · · ·α2

mβ
2
i (m even)

So the γi’s commute with the αi and satisfy the relations of some Clifford
algebra. Thus, we’ve shown that CU⊕V (K) ∼= CU(K) ⊗ CW (K), where

W is V with the quadratic form multiplied by (−1)
1
2

dimUα2
1 · · ·α2

m =

(−1)
1
2

dimU · discriminant(U), and this is the usual tensor product of al-
gebras over R.

Taking dimU = 2, we find that

Cm+2,n(R) ∼= M2(R) ⊗ Cn,m(R)

Cm+1,n+1(R) ∼= M2(R) ⊗ Cm,n(R)

Cm,n+2(R) ∼= H⊗ Cn,m(R)

where the indices switch whenever the discriminant is positive. Using
these formulas, we can reduce any Clifford algebra to tensor products of
things like R, C, H, and M2(R).

Recall the rules for taking tensor products of matrix algebras (all
tensor products are over R).

– R⊗X ∼= X.

– C⊗H ∼= M2(C).

This follows from the isomorphism C⊗ Cm,n(R) ∼= Cm+n(C).

– C⊗ C ∼= C⊕ C.

– H⊗H ∼= M4(R).

You can see by thinking of the action on H ∼= R4 given by (x⊗ y) ·
z = xzy−1.
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– Mm

(
Mn(X)

) ∼= Mmn(X).

– Mm(X) ⊗Mn(Y ) ∼= Mmn(X ⊗ Y ).

Filling in the middle of the table is easy because you can move di-
agonally by tensoring with M2(R). It is easy to see that C8+m,n(R) ∼=
Cm,n+8(R) ∼= Cm,n⊗M16(R), which gives the table a kind of mod 8 peri-
odicity. There is a more precise way to state this: Cm,n(R) and Cm′,n′(R)
are super Morita equivalent if and only if m− n ≡ m′ − n′ mod 8.
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Lecture 23

Last time we defined the Clifford algebra CV (K), where V is a vector
space over K with a quadratic form N . CV (K) is generated by V with
x2 = N(x). Cm,n(R) uses the form x2

1 + · · · + x2
m − x2

m+1 − · · · − x2
m+n.

We found that the structure depends heavily on m− n mod 8.

Remark 23.1. This mod 8 periodicity turns up in several other places:

1. Real Clifford algebras Cm,n(R) and Cm′,n′(R) are super Morita
equivalent if and only if m− n ≡ m′ − n′ mod 8.

2. Bott periodicity, which says that stable homotopy groups of orthog-
onal groups are periodic mod 8.

3. Real K-theory is periodic with a period of 8.

4. Even unimodular lattices (such as the E8 lattice) exist in Rm,n if
and only if m− n ≡ 0 mod 8.

5. The Super Brauer group of R is Z/8Z. The Super Brauer group
consists of super division algebras over R (algebras in which every
non-zero homogeneous element is invertible) with the operation of
tensor product modulo super Morita equivalence.1

R •

R[ε+]
•

C[ε+]
• H[ε−]•

H•

H[ε+]
•

C[ε−]
•R[ε−]

•

where ε± are odd with ε2
± = ±1, and i ∈ C is odd,2 but i, j, k ∈ H

are even.

Recall that CV (R) = C0
V (R) ⊕ C1

V (R), where C1
V (R) is the odd part

and C0
V (R) is the even part. It turns out that we will need to know the

structure of C0
m,n(R). Fortunately, this is easy to compute in terms of

smaller Clifford algebras. Let dimU = 1, with γ a basis for U and let

1See http://math.ucr.edu/home/baez/trimble/superdivision.html
2One could make i even since R[i, ε±] = R[∓ε±i, ε±], and R[∓ε±i] ∼= C is entirely

even.

http://math.ucr.edu/home/baez/trimble/superdivision.html
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γ1, . . . , γn an orthogonal basis for V . Then C0
U⊕V (K) is generated by

γγ1, . . . , γγn. We compute the relations

γγi · γγj = −γγj · γγi

for i 6= j, and
(γγi)

2 = (−γ2)γ2
i

So C0
U⊕V (K) is itself the Clifford algebra CW (K), where W is V with

the quadratic form multiplied by −γ2 = −disc(U). Over R, this tells us
that

C0
m+1,n(R) ∼= Cn,m(R) (mind the indices)

C0
m,n+1(R) ∼= Cm,n(R).

Remark 23.2. For complex Clifford algebras, the situation is similar, but
easier. One finds that C2m(C) ∼= M2m(C) and C2m+1(C) ∼= M2m(C) ⊕
M2m(C), with C0

n(C) ∼= Cn−1(C). You could figure these out by tensoring
the real algebras with C if you wanted. We see a mod 2 periodicity now.
Bott periodicity for the unitary group is mod 2.

Clifford groups, Spin groups, and Pin groups

In this section, we define Clifford groups, denoted ΓV (K), and find an
exact sequence

1 → K× central−−−→ ΓV (K) → OV (K) → 1.

Definition 23.3. ΓV (K) = {x ∈ CV (K) homogeneous3|xV α(x)−1 ⊆
V } (recall that V ⊆ CV (K)), where α is the automorphism of CV (K)
induced by −1 on V (i.e. the automorphism which acts by −1 on odd
elements and 1 on even elements).

Note that ΓV (K) acts on V by x · v = xvα(x)−1.
Many books leave out the α, which is a mistake, though not a serious

one. They use xV x−1 instead of xV α(x)−1. Our definition is better for
the following reasons:

1. It is the correct superalgebra sign. The superalgebra convention
says that whenever you exchange two elements of odd degree, you
pick up a minus sign, and V is odd.

3We assume that ΓV (K) consists of homogeneous elements, but this can actually
be proven.
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2. Putting α in makes the theory much cleaner in odd dimensions.
For example, we will see that the described action gives a map
ΓV (K) → OV (K) which is onto if we use α, but not if we do not.
(You get SOV (K) without the α, which isn’t too bad, but is still
annoying.)

Lemma 23.4.4 The elements of ΓV (K) which act trivially on V are the
elements of K× ⊆ ΓV (K) ⊆ CV (K).

Proof. Suppose a0 + a1 ∈ ΓV (K) acts trivially on V , with a0 even and
a1 odd. Then (a0 + a1)v = vα(a0 + a1) = v(a0 − a1). Matching up even
and odd parts, we get a0v = va0 and a1v = −va1. Choose an orthogonal
basis γ1, . . . , γn for V .5 We may write

a0 = x+ γ1y

where x ∈ C0
V (K) and y ∈ C1

V (K) and neither x nor y contain a factor
of γ1, so γ1x = xγ1 and γ1y = yγ1. Applying the relation a0v = va0 with
v = γ1, we see that y = 0, so a0 contains no monomials with a factor γ1.

Repeat this procedure with v equal to the other basis elements to
show that a0 ∈ K× (since it cannot have any γ’s in it). Similarly, write
a1 = y + γ1x, with x and y not containing a factor of γ1. Then the
relation a1γ1 = −γ1a1 implies that x = 0. Repeating with the other
basis vectors, we conclude that a1 = 0.

So a0 + a1 = a0 ∈ K ∩ ΓV (K) = K×.

Now we define −T to be the identity on V , and extend it to an anti-
automorphism of CV (K) (“anti” means that (ab)T = bTaT ). Do not
confuse a 7→ α(a) (automorphism), a 7→ aT (anti-automorphism), and
a 7→ α(aT ) (anti-automorphism).

Notice that on V , N coincides with the quadratic form N . Many au-
thors seem not to have noticed this, and use different letters. Sometimes
they use a sign convention which makes them different.

Now we define the spinor norm of a ∈ CV (K) by N(a) = aaT . We
also define a twisted version: Nα(a) = aα(a)T .

Proposition 23.5.

1. The restriction of N to ΓV (K) is a homomorphism whose image
lies in K×. N is a mess on the rest of CV (K).

2. The action of ΓV (K) on V is orthogonal. That is, we have a ho-
momorphism ΓV (K) → OV (K).

4I promised no Lemmas or Theorems, but I was lying to you.
5All these results are true in characteristic 2, but you have to work harder ... you

can’t go around choosing orthogonal bases because they may not exist.
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Proof. First we show that if a ∈ ΓV (K), then Nα(a) acts trivially on V .

Nα(a) v α
(
Nα(a)

)−1
= aα(a)Tv

(

α(a)α
(
α(a)T

)

︸ ︷︷ ︸
=aT

)−1

= aα(a)Tv(a−1)T
︸ ︷︷ ︸
=(a−1vTα(a))T

α(a)−1

= aa−1vα(a)α(a)−1 (T |V = IdV and a−1vα(a) ∈ V )

= v

So by Lemma 23.4, Nα(a) ∈ K×. This implies that Nα is a homomor-
phism on ΓV (K) because

Nα(a)Nα(b) = aα(a)TNα(b)

= aNα(b)α(a)T (Nα(b) is central)

= abα(b)Tα(a)T

= (ab)α(ab)T = Nα(ab).

After all this work with Nα, what we’re really interested is N . On the
even elements of ΓV (K), N agrees with Nα, and on the odd elements,
N = −Nα. Since ΓV (K) consists of homogeneous elements, N is also a
homomorphism from ΓV (K) to K×. This proves the first statement of
the Proposition.

Finally, since N is a homomorphism on ΓV (K), the action on V
preserves the quadratic form N |V . Thus, we have a homomorphism
ΓV (K) → OV (K).

Now let’s analyze the homomorphism ΓV (K) → OV (K). Lemma 23.4
says exactly that the kernel is K×. Next we will show that the image is
all of OV (K). Say r ∈ V and N(r) 6= 0.

rvα(r)−1 = −rv r

N(r)
= v − vr2 + rvr

N(r)

= v − (v, r)

N(r)
r (23.6)

=

{

−r if v = r

v if (v, r) = 0
(23.7)

Thus, r is in ΓV (K), and it acts on V by reflection through the hyper-
plane r⊥. One might deduce that the homomorphism ΓV (K) → OV (K)
is surjective because OV (K) is generated by reflections. This is wrong;
OV (K) is not always generated by reflections!
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◮ Exercise 23.1. Let H = F2
2, with the quadratic form x2 + y2 + xy,

and let V = H ⊕H . Prove that OV (F2) is not generated by reflections.

Remark 23.8. It turns out that this is the only counterexample. For
any other vector space and/or any other non-degenerate quadratic form,
OV (K) is generated by reflections. The map ΓV (K) → OV (K) is surjec-
tive even in the example above. Also, in every case except the example
above, ΓV (K) is generated as a group by non-zero elements of V (i.e.
every element of ΓV (K) is a monomial).

Remark 23.9. Equation 23.6 is the definition of the reflection of v through
r. It is only possible to reflect through vectors of non-zero norm. Reflec-
tions in characteristic 2 are strange; strange enough that people don’t
call them reflections, they call them transvections.

Thus, we have the diagram

1 // K× //

‖

ΓV (K)

N

��

// OV (K) //

N
��

1

1 // ±1 // K× x 7→x2
// K× // K×/(K×)2 // 1

(23.10)

where the rows are exact, K× is in the center of ΓV (K) (this is obvious,
since K× is in the center of CV (K)), and N : OV (K) → K×/(K×)2 is
the unique homomorphism sending reflection through r⊥ to N(r) modulo
(K×)2.

Definition 23.11. PinV (K) = {x ∈ ΓV (K)|N(x) = 1}, and SpinV (K) =
Pin0

V (K), the even elements of PinV (K).

On K×, the spinor norm is given by x 7→ x2, so the elements of spinor
norm 1 are = ±1. By restricting the top row of (23.10) to elements of
norm 1 and even elements of norm 1, respectively, we get exact sequences

1 // ±1 // PinV (K) // OV (K) N // K×/(K×)2

1 // ±1 // SpinV (K) // SOV (K)
N // K×/(K×)2

To see exactness of the top sequence, note that the kernel of φ is K× ∩
PinV (K) = ±1, and that the image of PinV (K) in OV (K) is exactly the
elements of norm 1. The bottom sequence is similar, except that the
image of SpinV (K) is not all of OV (K), it is only SOV (K); by Remark
23.8, every element of ΓV (K) is a product of elements of V , so every
element of SpinV (K) is a product of an even number of elements of V .
Thus, its image is a product of an even number of reflections, so it is in
SOV (K).
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?????????????????????????????????????????????????????????????
These maps are NOT always onto, but there are many important

cases when they are, like when V has a positive definite quadratic form.
The image is the set of elements of OV (K) or SOV (K) which have spinor
norm 1 in K×/(K×)2.

What is N : OV (K) → K×/(K×)2? It is the UNIQUE homomor-
phism such that N(a) = N(r) if a is reflection in r⊥, and r is a vector
of norm N(r).

Example 23.12. Take V to be a positive definite vector space over R.
Then N maps to 1 in R×/(R×)2 = ±1 (because N is positive definite).
So the spinor norm on OV (R) is TRIVIAL.

So if V is positive definite, we get double covers

1 → ±1 → PinV (R) → OV (R) → 1

1 → ±1 → SpinV (R) → SOV (R) → 1

This will account for the weird double covers we saw before.
What if V is negative definite. Every reflection now has image −1

in R×/(R×)2, so the spinor norm N is the same as the determinant map
OV (R) → ±1.

So in order to find interesting examples of the spinor norm, you have
to look at cases that are neither positive definite nor negative definite.

Let’s look at Losrentz space: R1,3.

�����������������

?????????????????

norm>0

norm<0

norm=0uu

Reflection through a vector of norm < 0 (spacelike vector, P : parity
reversal) has spinor norm −1, det −1 and reflection through a vector of
norm > 0 (timelike vector, T : time reversal) has spinor norm +1, det
−1. So O1,3(R) has 4 components (it is not hard to check that these are
all the components), usually called 1, P , T , and PT .

Remark 23.13. For those who know Galois cohomology. We get an exact
sequence of algebraic groups

1 → GL1 → ΓV → OV → 1

(algebraic group means you don’t put a field). You do not necessarily
get an exact sequence when you put in a field.
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If
1 → A→ B → C → 1

is exact,
1 → A(K) → B(K) → C(K)

is exact. What you really get is

1 → H0(Gal(K̄/K), A) → H0(Gal(K̄/K), B) → H0(Gal(K̄/K), C) →
→ H1(Gal(K̄/K), A) → · · ·

It turns out thatH1(Gal(K̄/K), GL1) = 1. However, H1(Gal(K̄/K),±1) =
K×/(K×)2.

So from
1 → GL1 → ΓV → OV → 1

you get

1 → K× → ΓV (K) → OV (K) → 1 = H1(Gal(K̄/K), GL1)

However, taking
1 → µ2 → SpinV → SOV → 1

you get

1 → ±1 → SpinV (K) → SOV (K)
N−→ K×/(K×)2 = H1(K̄/K, µ2)

so the non-surjectivity of N is some kind of higher Galois cohomology.

� Warning 23.14. SpinV → SOV is onto as a map of ALGEBRAIC
GROUPS, but SpinV (K) → SOV (K) need NOT be onto.

Example 23.15. Take O3(R) ∼= SO3(R)× {±1} as 3 is odd (in general
O2n+1(R) ∼= SO2n+1(R) × {±1}). So we have a sequence

1 → ±1 → Spin3(R) → SO3(R) → 1.

Notice that Spin3(R) ⊆ C0
3 (R) ∼= H, so Spin3(R) ⊆ H×, and in fact we

saw that it is S3.
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Lecture 24

Last time we constructed the sequences

1 → K× → ΓV (K) → OV (K) → 1

1 → ±1 → PinV (K) → OV (K)
N−→ K×/(K×)2

1 → ±1 → SpinV (K) → SOV (K)
N−→ K×/(K×)2

Spin representations of Spin and Pin groups

Notice that PinV (K) ⊆ CV (K)×, so any module over CV (K) gives a
representation of PinV (K). We already figured out that CV (K) are direct
sums of matrix algebras over R,C, and H.

What are the representations (modules) of complex Clifford alge-
bras? Recall that C2n(C) ∼= M2n(C), which has a representations of
dimension 2n, which is called the spin representation of PinV (K) and
C2n+1(C) ∼= M2n(C) ×M2n(C), which has 2 representations, called the
spin representations of Pin2n+1(K).

What happens if we restrict these to SpinV (C) ⊆ PinV (C)? To
do that, we have to recall that C0

2n(C) ∼= M2n−1(C) × M2n−1(C) and
C0

2n+1(C) ∼= M2n(C). So in EVEN dimensions Pin2n(C) has 1 spin rep-
resentation of dimension 2n splitting into 2 HALF SPIN representations
of dimension 2n−1 and in ODD dimensions, Pin2n+1(C) has 2 spin rep-
resentations of dimension 2n which become the same on restriction to
SpinV (C).

Now we’ll give a second description of spin representations. We’ll
just do the even dimensional case (odd is similar). Say dimV = 2n,
and say we’re over C. Choose an orthonormal basis γ1, . . . , γ2n for V , so
that γ2

i = 1 and γiγj = −γjγi. Now look at the group G generated by
γ1, . . . , γ2n, which is finite, with order 21+2n (you can write all its elements
explicitly). You can see that representations of CV (C) correspond to
representations of G, with −1 acting as −1 (as opposed to acting as 1).
So another way to look at representations of the Clifford algebra, you
can look at representations of G.

Let’s look at the structure of G:

(1) The center is ±1. This uses the fact that we are in even dimensions,
lest γ1 · · · γ2n also be central.

(2) The conjugacy classes: 2 of size 1 (1 and −1), 22n − 1 of size 2
(±γi1 · · · γin), so we have a total of 22n + 1 conjugacy classes, so
we should have that many representations. G/center is abelian,
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isomorphic to (Z/2Z)2n, which gives us 22n representations of di-
mension 1, so there is only one more left to find! We can figure
out its dimension by recalling that the sum of the squares of the
dimensions of irreducible representations gives us the order of G,
which is 22n+1. So 22n × 11 + 1 × d2 = 22n+1, where d is the di-
mension of the mystery representation. Thus, d = ±2n, so d = 2n.
Thus, G, and therefore CV (C), has an irreducible representation of
dimension 2n (as we found earlier in another way).

Example 24.1. Consider O2,1(R). As before, O2,1(R) ∼= SO2,1(R) ×
(±1), and SO2,1(R) is not connected: it has two components, separated
by the spinor norm N . We have maps

1 → ±1 → Spin2,1(R) → SO2,1(R)
N−→ ±1.

Spin2,1(R) ⊆ C∗
2,1(R) ∼= M2(R), so Spin2,1(R) has one 2 dimensional spin

representation. So there is a map Spin2,1(R) → SL2(R); by counting
dimensions and such, you can show it is an isomorphism. So Spin2,1(R) ∼=
SL2(R).

Now let’s look at some 4 dimensional orthogonal groups

Example 24.2. Look at SO4(R), which is compact. It has a complex
spin representation of dimension 24/2 = 4, which splits into two half spin
representations of dimension 2. We have the sequence

1 → ±1 → Spin4(R) → SO4(R) → 1 (N = 1)

Spin4(R) is also compact, so the image in any complex representation
is contained in some unitary group. So we get two maps Spin4(R) →
SU(2) × SU(2), and both sides have dimension 6 and centers of order
4. Thus, we find that Spin4(R) ∼= SU(2)× SU(2) ∼= S3 × S3, which give
you the two half spin representations.

So now we’ve done the positive definite case.

Example 24.3. Look at SO3,1(R). Notice that O3,1(R) has four com-
ponents distinguished by the maps det, N → ±1. So we get

1 → ±1 → Spin3,1(R) → SO3,1(R)
N−→ ±1 → 1

We expect 2 half spin representations, which give us two homomorphisms
Spin3,1(R) → SL2(C). This time, each of these homomorphisms is an
isomorphism (I can’t think of why right now). The SL2(C)s are double
covers of simple groups. Here, we don’t get the splitting into a product as
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in the positive definite case. This isomorphism is heavily used in quan-
tum field theory because Spin3,1(R) is a double cover of the connected
component of the Lorentz group (and SL2(C) is easy to work with). Note
also that the center of Spin3,1(R) has order 2, not 4, as for Spin4,0(R).
Also note that the group PSL2(C) acts on the compactified C∪{∞} by
( a bc d ) (τ) = aτ+b

cτ+d
. Subgroups of this group are called KLEINIAN groups.

On the other hand, the group SO3,1(R)+ (identity component) acts on
H3 (three dimensional hyperbolic space). To see this, look at

��
��

��

���

??
??

??

???

norm=−1oo

norm=0uu

norm=−1uu

norm=1uu

One sheet of norm −1 hyperboloid is isomorphic to H3 under the in-
duced metric. In fact, we’ll define hyperbolic space that way. If you’re
a topologist, you’re very interested in hyperbolic 3-manifolds, which are
H3/(discrete subgroup of SO3,1(R)). If you use the fact that SO3,1(R) ∼=
PSL2(R), then you see that these discrete subgroups are in fact Klienian
groups.

There are lots of exceptional isomorphisms in small dimension, all of
which are very interesting, and almost all of them can be explained by
spin groups.

Example 24.4. O2,2(R) has 4 components (given by det, N); C0
2,2(R) ∼=

M2(R)×M2(R), which induces an isomorphism Spin2,2(R) → SL2(R)×
SL2(R), which give you the two half spin representations. Both sides
have dimension 6 with centers of order 4. So this time we get two
non-compact groups. Let’s look at the fundamental group of SL2(R),
which is Z, so the fundamental group of Spin2,2(R) is Z ⊕ Z. As we re-
call, Spin4,0(R) and Spin3,1(R) were both simply connected. This shows
that SPIN GROUPS NEED NOT BE SIMPLY CONNECTED. So we
can take covers of it. What do the corresponding covers (e.g. the uni-
versal cover) of Spin2,2(R) look like? This is hard to describe because
for FINITE dimensional complex representations, you get finite dimen-
sional representations of the Lie algebra L, which correspond to the
finite dimensional representations of L ⊗ C, which correspond to the fi-
nite dimensional representations of L′ = Lie algebra of Spin4,0(R), which
correspond to the finite dimensional representations of Spin4,0(R), which
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has no covers because it is simply connected. This means that any fi-
nite dimensional representation of a cover of Spin2,2(R) actually factors
through Spin2,2(R). So there is no way you can talk about these things
with finite matrices, and infinite dimensional representations are hard.

To summarize, the ALGEBRAIC GROUP Spin2,2 is simply con-
nected (as an algebraic group) (think of an algebraic group as a functor
from rings to groups), which means that it has no algebraic central exten-
sions. However, the LIE GROUP Spin2,2(R) is NOT simply connected;
it has fundamental group Z ⊕ Z. This problem does not happen for
COMPACT Lie groups (where every finite cover is algebraic).

We’ve done O4,0, O3,1, and O2,2, from which we can obviously get
O1,3 and O0,4. Note that O4,0(R) ∼= O0,4(R), SO4,0(R) ∼= SO0,4(R),
Spin4,0(R) ∼= Spin0,4(R). However, Pin4,0(R) 6∼= Pin0,4(R). These two are
hard to distinguish. We have

Pin4,0(R)

��

Pin0,4(R)

��

O4,0(R) = O0,4(R)

Take a reflection (of order 2) in O4,0(R), and lift it to the Pin groups.
What is the order of the lift? The reflection vector v, with v2 = ±1 lifts
to the element v ∈ ΓV (R) ⊆ C∗

V (R). Notice that v2 = 1 in the case of
R4,0 and v2 = −1 in the case of R0,4, so in Pin4,0(R), the reflection lifts
to something of order 2, but in Pin0,4(R), you get an element of order 4!.
So these two groups are different.

Two groups are isoclinic if they are confusingly similar. A similar
phenomenon is common for groups of the form 2 ·G · 2, which means it
has a center of order 2, then some group G, and the abelianization has
order 2. Watch out.

◮ Exercise 24.1. Spin3,3(R) ∼= SL4(R).

Triality

This is a special property of 8 dimensional orthogonal groups. Recall
that O8(C) has the Dynkin diagram D4, which has a symmetry of order
three:

��	�
��

��	�
��
��	�
��

��	�
��11
11

11
��

00

ZZ
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But O8(C) and SO8(C) do NOT have corresponding symmetries of
order three. The thing that does have the symmetry of order three is
the spin group! The group Spin8(R) DOES have “extra” order three
symmetry. You can see it as follows. Look at the half spin representa-
tions of Spin8(R). Since this is a spin group in even dimension, there
are two. C8,0(R) ∼= M28/2−1(R) × M28/2−1(R) ∼= M8(R) × M8(R). So
Spin8(R) has two 8 dimensional real half spin representations. But the
spin group is compact, so it preserves some quadratic form, so you get
2 homomorphisms Spin8(R) → SO8(R). So Spin8(R) has THREE 8 di-
mensional representations: the half spins, and the one from the map
to SO8(R). These maps Spin8(R) → SO8(R) lift to Triality automor-
phisms Spin8(R) → Spin8(R). The center of Spin8(R) is (Z/2) + (Z/2)
because the center of the Clifford group is ±1,±γ1 · · · γ8. There are 3
non-trivial elements of the center, and quotienting by any of these gives
you something isomorphic to SO8(R). This is special to 8 dimensions.

More about Orthogonal groups

Is OV (K) a simple group? NO, for the following reasons:

(1) There is a determinant map OV (K) → ±1, which is usually onto,
so it can’t be simple.

(2) There is a spinor norm map OV (K) → K×/(K×)2

(3) −1 ∈ center of OV (K).

(4) SOV (K) tends to split if dimV = 4, abelian if dimV = 2, and
trivial if dimV = 1.

It turns out that they are usually simple apart from these four reasons
why they’re not. Let’s mod out by the determinant, to get to SO,
then look at SpinV (K), then quotient by the center, and assume that
dimV ≥ 5. Then this is usually simple. The center tends to have order
1,2, or 4. If K is a FINITE field, then this gives many finite simple
groups.

Note that SOV (K) is NOT a subgroup of OV (K), elements of deter-
minant 1 in general, it is the image of Γ0

V (K) ⊆ ΓV (K) → OV (K), which
is the correct definition. Let’s look at why this is right and the definition
you know is wrong. There is a homomorphism ΓV (K) → Z/2Z, which
takes Γ0

V (K) to 0 and Γ1
V (K) to 1 (called the DICKSON INVARIANT).

It is easy to check that det(v) = (−1)dickson invariant(v). So if the char-
acteristic of K is not 2, det = 1 is equivalent to dickson = 0, but in
characteristic 2, determinant is the wrong invariant (because determi-
nant is always 1).
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Special properties of O1,n(R) and O2,n(R). O1,n(R) acts on hyperbolic
space Hn, which is a component of norm −1 vectors in Rn,1. O2,n(R) acts
on the “Hermitian symmetric space” (Hermitian means it has a complex
structure, and symmetric means really nice). There are three ways to
construct this space:

(1) It is the set of positive definite 2 dimensional subspaces of R2,n

(2) It is the norm 0 vectors ω of PC2,n with (ω, ω̄) = 0.

(3) It is the vectors x + iy ∈ R1,n−1 with y ∈ C, where the cone C is
the interior of the norm 0 cone.

◮ Exercise 24.2. Show that these are the same.

Next week, we’ll mess around with E8.
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Lecture 25 - E8

In this lecture we use a vector notation in which powers represent repeti-
tions: so (18) = (1, 1, 1, 1, 1, 1, 1, 1) and (±1

2

2
, 06) = (±1

2
,±1

2
, 0, 0, 0, 0, 0, 0).

Recall that E8 has the Dynkin diagram

e1 − e2
��	�
�� e2 − e3��	�
��

e3 − e4
��	�
�� e4 − e5��	�
��

e5 − e6
��	�
��

(−1
2

5
, 1

2

3
)��	�
��

e6 − e7��	�
��
e7 − e8

��	�
��

where each vertex is a root r with (r, r) = 2; (r, s) = 0 when r and s
are not joined, and (r, s) = −1 when r and s are joined. We choose an
orthonormal basis e1, . . . , e8, in which the roots are as given.

We want to figure out what the root lattice L of E8 is (this is the
lattice generated by the roots). If you take {ei−ei+1}∪(−15, 13) (all the
A7 vectors plus twice the strange vector), they generate the D8 lattice
= {(x1, . . . , x8)|xi ∈ Z,

∑
xi even}. So the E8 lattice consists of two

cosets of this lattice, where the other coset is {(x1, . . . , x8)|xi ∈ Z +
1
2
,
∑
xi odd}.

Alternative version: If you reflect this lattice through the hyperplane
e⊥1 , then you get the same thing except that

∑
xi is always even. We will

freely use both characterizations, depending on which is more convenient
for the calculation at hand.

We should also work out the weight lattice, which is the vectors s
such that (r, r)/2 divides (r, s) for all roots r. Notice that the weight
lattice of E8 is contained in the weight lattice of D8, which is the union of
four cosets of D8: D8, D8 +(1, 07), D8 +(1

2

8
) and D8 +(−1

2
, 1

2

7
). Which

of these have integral inner product with the vector (−1
2

5
, 1

2

3
)? They are

the first and the last, so the weight lattice of E8 is D8 ∪D8 + (−1
2
, 1

2

7
),

which is equal to the root lattice of E8.
In other words, the E8 lattice L is UNIMODULAR (equal to its dual

L′), where the dual is the lattice of vectors having integral inner product
with all lattice vectors. This is also true of G2 and F4, but is not in
general true of Lie algebra lattices.

The E8 lattice is EVEN, which means that the inner product of any
vector with itself is always even.

Even unimodular lattices in Rn only exist if 8|n (this 8 is the same
8 that shows up in the periodicity of Clifford groups). The E8 lattice is
the only example in dimension equal to 8 (up to isomorphism, of course).
There are two in dimension 16 (one of which is L⊕L, the other is D16∪
some coset). There are 24 in dimension 24, which are the Niemeier
lattices. In 32 dimensions, there are more than a billion!
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The Weyl group of E8 is generated by the reflections through s⊥

where s ∈ L and (s, s) = 2 (these are called roots). First, let’s find all
the roots: (x1, . . . , x8) such that

∑
x2
i = 2 with xi ∈ Z or Z + 1

2
and

∑
xi even. If xi ∈ Z, obviously the only solutions are permutations of

(±1,±1, 06), of which there are
(
8
2

)
× 22 = 112 choices. In the Z + 1

2

case, you can choose the first 7 places to be ±1
2
, and the last coordinate

is forced, so there are 27 choices. Thus, you get 240 roots.
Let’s find the orbits of the roots under the action of the Weyl group.

We don’t yet know what the Weyl group looks like, but we can find
a large subgroup that is easy to work with. Let’s use the Weyl group
of D8, which consists of the following: we can apply all permutations
of the coordinates, or we can change the sign of an even number of
coordinates (e.g., reflection in (1,−1, 06) swaps the first two coordinates,
and reflection in (1, −1, 06) followed by reflection in (1, 1, 06) changes
the sign of the first two coordinates.)

Notice that under the Weyl group of D8, the roots form two orbits:
the set which is all permutations of (±12, 06), and the set (±1

2

8
). Do

these become the same orbit under the Weyl group of E8? Yes; to show
this, we just need one element of the Weyl group of E8 taking some
element of the first orbit to the second orbit. Take reflection in (1

2

8
)⊥

and apply it to (12, 06): you get (1
2

2
,−1

2

6
), which is in the second orbit.

So there is just one orbit of roots under the Weyl group.
What do orbits of W (E8) on other vectors look like? We’re interested

in this because we might want to do representation theory. The character
of a representation is a map from weights to integers, which is W (E8)-
invariant. Let’s look at vectors of norm 4 for example. So

∑
x2
i = 4,

∑
xi even, and xi ∈ Z or xi ∈ Z + 1

2
. There are 8 × 2 possibilities

which are permutations of (±2, 07). There are
(
8
4

)
× 24 permutations of

(±14, 04), and there are 8 × 27 permutations of (±3
2
,±1

2

7
). So there are

a total of 240× 9 of these vectors. There are 3 orbits under W (D8), and
as before, they are all one orbit under the action of W (E8). Just reflect

(2, 07) and (13,−1, 04) through (1
2

8
).

◮ Exercise 25.1. Show that the number of norm 6 vectors is 240× 28,
and they form one orbit

(If you’ve seen a course on modular forms, you’ll know that the num-
ber of vectors of norm 2n is given by 240×

∑

d|n d
3. If you let call these

cn, then
∑
cnq

n is a modular form of level 1 (E8 even, unimodular),
weight 4 (dimE8/2).)

For norm 8 there are two orbits, because you have vectors that are
twice a norm 2 vector, and vectors that aren’t. As the norm gets bigger,
you’ll get a large number of orbits.
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What is the order of the Weyl group of E8? We’ll do this by 4 different
methods, which illustrate the different techniques for this kind of thing:

(1) This is a good one as a mnemonic. The order of E8 is given by

|W (E8)| = 8! ×
∏
(

numbers on the

affine E8 diagram1

)

× Weight lattice of E8

Root lattice of E8

= 8!×
(

1
��	�
��

2
��	�
��

3
��	�
��

4
��	�
��

5
��	�
��

6
��	�
��3 ��	�
��

4
��	�
��

2
��	�
��
)

× 1

= 214 × 35 × 52 × 7

We can do the same thing for any other Lie algebra, for example,

|W (F4)| = 4! × (
1��	�
�� 2��	�
�� 3��	�
�� 4��	�
��// 2��	�
�� ) × 1

= 27 × 32

(2) The order of a reflection group is equal to the products of degrees
of the fundamental invariants. For E8, the fundamental invariants
are of degrees 2,8,12,14,18,20,24,30 (primes +1).

(3) This one is actually an honest method (without quoting weird
facts). The only fact we will use is the following: suppose G acts
transitively on a set X with H = the group fixing some point; then
|G| = |H| · |X|.
This is a general purpose method for working out the orders of
groups. First, we need a set acted on by the Weyl group of E8.
Let’s take the root vectors (vectors of norm 2). This set has 240
elements, and the Weyl group of E8 acts transitively on it. So
|W (E8)| = 240 × |subgroup fixing (1,−1, 06)|. But what is the
order of this subgroup (call it G1)? Let’s find a set acted on by
this group. It acts on the set of norm 2 vectors, but the action
is NOT transitive. What are the orbits? G1 fixes s = (1,−1, 06).
For other roots r, G1 obviously fixes (r, s). So how many roots are
there with a given inner product with s?

(s, r) number choices
2 1 s

1 56 (1, 0,±16), (0,−1,±16), (1
2
,−1

2
, 1

2

6
)

0 126
−1 56
−2 1 −s

1These are the numbers giving highest root.
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So there are at least 5 orbits under G1. In fact, each of these sets
is a single orbit under G1. How can we see this? Find a large
subgroup of G1. Take W (D6), which is all permutations of the last
6 coordinates and all even sign changes of the last 6 coordinates.
It is generated by reflections associated to the roots orthogonal to
e1 and e2 (those that start with two 0s). The three cases with
inner product 1 are three orbits under W (D6). To see that there
is a single orbit under G1, we just need some reflections that mess
up these orbits. If you take a vector (1

2
, 1

2
,±1

2

6
) and reflect norm

2 vectors through it, you will get exactly 5 orbits. So G1 acts
transitively on these orbits.

We’ll use the orbit of vectors r with (r, s) = −1. Let G2 be the
vectors fixing s and r: s��	�
�� r��	�
�� We have that |G1| = |G2| · 56.

Keep going ... it gets tedious, but here are the answers up to the
last step:

Our plan is to chose vectors acted on by Gi, fixed by Gi+1 which
give us the Dynkin diagram of E8. So the next step is to try to

find vectors t that give us the picture s��	�
�� r��	�
�� t��	�
�� , i.e, they have
inner product −1 with r and 0 with s. The possibilities for t are
(−1,−1, 0, 05) (one of these), (0, 0, 1,±1, 04) and permutations of

its last five coordinates (10 of these), and (−1
2
,−1

2
, 1

2
,±1

2

5
) (there

are 16 of these), so we get 27 total. Then we could check that they
form one orbit, which is boring.

Next find vectors which go next to t in our picture:
s��	�
�� r��	�
�� t��	�
�� ��	�
�� , i.e., whose inner product is −1 with t and
zero with r, s. The possibilities are permutations of the last four
coords of (0, 0, 0, 1,±1, 03) (8 of these) and (−1

2
,−1

2
,−1

2
, 1

2
,±1

2

4
) (8

of these), so there are 16 total. Again check transitivity.

Find a fifth vector; the possibilities are (04, 1,±1, 02) and perms of

the last three coords (6 of these), and (−1
2

4
, 1

2
,±1

2

3
) (4 of these) for

a total of 10.

For the sixth vector, we can have (05, 1,±1, 0) or (05, 1, 0,±1) (4

possibilites) or (−1
2

5
, 1

2
,±1

2

2
) (2 possibilities), so we get 6 total.

NEXT CASE IS TRICKY: finding the seventh one, the possibilities
are (06, 1,±1) (2 of these) and ((−1

2
)6, 1

2
, 1

2
) (just 1). The proof

of transitivity fails at this point. The group we’re using by now
doesn’t even act transitively on the pair (you can’t get between
them by changing an even number of signs). What elements of

W (E8) fix all of these first 6 points
s��	�
�� r��	�
�� t��	�
�� ��	�
�� ��	�
�� ��	�
��

? We want to find roots perpendicular to all of these vectors, and
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the only possibility is ((1
2
)8). How does reflection in this root act

on the three vectors above? (06, 12) 7→ ((−1
2
)6, 1

2

2
) and (06, 1,−1)

maps to itself. Is this last vector in the same orbit? In fact they
are in different orbits. To see this, look for vectors

s��	�
�� r��	�
�� t��	�
�� ��	�
�� ��	�
��

?��	�
��

��	�
�� (06, 1,±1)��	�
��

completing the E8 diagram. In the (06, 1, 1) case, you can take the
vector ((−1

2
)5, 1

2
, 1

2
,−1

2
). But in the other case, you can show that

there are no possibilities. So these really are different orbits.

Use the orbit with 2 elements, and you get

|W (E8)| = 240 × 56 ×
order of W (E6)

︷ ︸︸ ︷

27 × 16 × 10 × 6 × 2 × 1
︸ ︷︷ ︸

order of W (E7)

because the group fixing all 8 vectors must be trivial. You also get
that

|W (“E5”)| = 16 × 10 ×
|W (A2×A1)|
︷ ︸︸ ︷

6 × 2 × 1
︸ ︷︷ ︸

|W (A4)|

where “E5” is the algebra with diagram ��	�
�� ��	�
��
��	�
��

��	�
�� ��	�
�� (that is, D5).
Similarly, E4 is A4 and E3 is A2 × A1.

We got some other information. We found that the Weyl group of
E8 acts transitively on all the configurations

��	�
��
��	�
�� ��	�
��
��	�
�� ��	�
�� ��	�
��
��	�
�� ��	�
�� ��	�
�� ��	�
��
��	�
�� ��	�
�� ��	�
�� ��	�
�� ��	�
��
��	�
�� ��	�
�� ��	�
�� ��	�
�� ��	�
�� ��	�
��

but not on
��	�
�� ��	�
�� ��	�
�� ��	�
�� ��	�
�� ��	�
�� ��	�
��

(4) We’ll slip this in to next lecture

Also, next time we’ll construct the Lie algebra E8.
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Lecture 26

Today we’ll finish looking at W (E8), then we’ll construct E8.
Remember that we still have a fourth method of finding the order of

W (E8). Let L be the E8 lattice. Look at L/2L, which has 256 elements.
Look at this as a set acted on by W (E8). There is an orbit of size 1
(represented by 0). There is an orbit of size 240/2 = 120, which are
the roots (a root is congruent mod 2L to it’s negative). Left over are
135 elements. Let’s look at norm 4 vectors. Each norm 4 vector, r,
satisfies r ≡ −r mod 2, and there are 240 · 9 of them, which is a lot,
so norm 4 vectors must be congruent to a bunch of stuff. Let’s look at
r = (2, 0, 0, 0, 0, 0, 0, 0). Notice that it is congruent to vectors of the form
(0 · · · ± 2 . . . 0), of which there are 16. It is easy to check that these are
the only norm 4 vectors congruent to r mod 2. So we can partition the
norm 4 vectors into 240 · 9/16 = 135 subsets of 16 elements. So L/2L
has 1+120+135 elements, where 1 is the zero, 120 is represented by 2
elements of norm 2, and 135 is represented by 16 elements of norm 4. A
set of 16 elements of norm 4 which are all congruent is called a FRAME.
It consists of elements ±e1, . . . ,±e8, where e2i = 4 and (ei, ej) = 1 for
i 6= j, so up to sign it is an orthogonal basis.

Then we have

|W (E8)| = (# frames) × |subgroup fixing a frame|

because we know that W (E8) acts transitively on frames. So we need
to know what the automorphisms of an orthogonal base are. A frame is
8 subsets of the form (r,−r), and isometries of a frame form the group
(Z/2Z)8 ·S8, but these are not all in the Weyl group. In the Weyl group,
we found a (Z/2Z)7 ·S8, where the first part is the group of sign changes
of an EVEN number of coordinates. So the subgroup fixing a frame must
be in between these two groups, and since these groups differ by a factor
of 2, it must be one of them. Observe that changing an odd number of
signs doesn’t preserve the E8 lattice, so it must be the group (Z/2Z)7 ·S8,
which has order 27 · 8!. So the order of the Weyl group is

135 · 27 · 8! = |27 · S8| ×
# norm 4 elements

2 × dimL

Remark 26.1. Similarly, if Λ is the Leech lattice, you actually get the
order of Conway’s group to be

|212 ·M24| ·
# norm 8 elements

2 × dim Λ

where M24 is the Mathieu group (one of the sporadic simple groups).
The Leech lattice seems very much to be trying to be the root lattice of
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the monster group, or something like that. There are a lot of analogies,
but nobody can make sense of it.

W (E8) acts on (Z/2Z)8, which is a vector space over F2, with quadratic

form N(a) = (a,a)
2

mod 2, so you get a map

±1 →W (E8) → O+
8 (F2)

which has kernel ±1 and is surjective. O+
8 is one of the 8 dimensional

orthogonal groups over F2. So the Weyl group is very close to being an
orthogonal group of a vector space over F2.

What is inside the root lattice/Lie algebra/Lie group E8? One obvi-
ous way to find things inside is to cover nodes of the E8 diagram:

��	�
�� ��	�
�� ×��	�
�� ��	�
�� ��	�
��

��	�
��

��	�
�� ��	�
��

If we remove the shown node, you see that E8 contains A2 ×D5. We can
do better by showing that we can embed the affine Ẽ8 in the E8 lattice.

−highest root
��	�
�� ��	�
�� ��	�
�� ��	�
�� ��	�
�� ��	�
��

��	�
��

��	�
�� ��	�
��
︸ ︷︷ ︸

simple roots

Now you can remove nodes here and get some bigger sub-diagrams. For
example, if we cover

��	�
�� ×��	�
�� ��	�
�� ��	�
�� ��	�
�� ��	�
��

��	�
��

��	�
�� ��	�
��

you get that an A1 ×E7 in E8. The E7 consisted of 126 roots orthogonal
to a given root. This gives an easy construction of E7 root system, as all
the elements of the E8 lattice perpendicular to (1,−1, 0 . . . )

We can cover

��	�
�� ��	�
�� ×��	�
�� ��	�
�� ��	�
�� ��	�
��

��	�
��

��	�
�� ��	�
��

Then we get an A2 × E6, where the E6 are all the vectors with the first
3 coordinates equal. So we get the E6 lattice for free too.

If you cover

��	�
�� ��	�
�� ��	�
�� ��	�
�� ��	�
�� ��	�
��

��	�
��

��	�
�� ×��	�
��
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you see that there is a D8 in E8, which is all vectors of the E8 lattice
with integer coordinates. We sort of constructed the E8 lattice this way
in the first place.

We can ask questions like: What is the E8 Lie algebra as a represen-
tation of D8? To answer this, we look at the weights of the E8 algebra,
considered as a module over D8, which are the 112 roots of the form
(· · · ± 1 · · · ± 1 . . . ) and the 128 roots of the form (±1/2, . . . ) and 1 vec-
tor 0, with multiplicity 8. These give you the Lie algebra of D8. Recall
that D8 is the Lie algebra of SO16. The double cover has a half spin
representation of dimension 216/2−1 = 128. So E8 decomposes as a rep-
resentation of D8 as the adjoint representation (of dimension 120) plus a
half spin representation of dimension 128. This is often used to construct
the Lie algebra E8. We’ll do a better construction in a little while.

We’ve found that the Lie algebra of D8, which is the Lie algebra of
SO16, is contained in the Lie algebra of E8. Which group is contained in
the the compact form of the E8? We found that there were groups

Spin16(R)

hhhhhhhhhh
XXXXXXXXXXX

SO16(R)
VVVVVVVVVV Spin16(R)/(Z/2Z) ∼= ?> =<89 :;Spin16(R)/(Z/2Z)

fffffffffff

PSO16(R)

corresponding to subgroups of the center (Z/2Z)2:

1
kkkkkkkkk

SSSSSSSSS

Z/2Z
RRRRRR Z/2Z Z/2Z

llllll

(Z/2Z)2

We have a homomorphism Spin16(R) → E8(compact). What is the ker-
nel? The kernel are elements which act trivially on the Lie algebra of E8,
which is equal to the Lie algebra D8 plus the half spin representation.
On the Lie algebra of D8, everything in the center is trivial, and on the
half spin representation, one of the elements of order 2 is trivial. So the
subgroup that you get is the circled one.

◮ Exercise 26.1. Show SU(2) × E7(compact)/(−1,−1) is a subgroup
of E8 (compact). Similarly, show that SU(9)/(Z/3Z) is also. These are
similar to the example above.

Construction of E8

Earlier in the course, we had some constructions:
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1. using the Serre relations, but you don’t really have an idea of what
it looks like

2. Take D8 plus a half spin representation

Today, we’ll try to find a natural map from root lattices to Lie algebras.
The idea is as follows: Take a basis element eα (as a formal symbol)
for each root α; then take the Lie algebra to be the direct sum of 1
dimensional spaces generated by each eα and L (L root lattice ∼= Cartan
subalgebra) . Then we have to define the Lie bracket by setting [eα, eβ] =
eα+β , but then we have a sign problem because [eα, eβ] 6= −[eβ , eα]. Is
there some way to resolve the sign problem? The answer is that there is
no good way to solve this problem (not true, but whatever). Suppose we
had a nice functor from root lattices to Lie algebras. Then we would get
that the automorphism group of the lattice has to be contained in the
automorphism group of the Lie algebra (which is contained in the Lie
group), and the automorphism group of the Lattice contains the Weyl
group of the lattice. But the Weyl group is NOT usually a subgroup of
the Lie group.

We can see this going wrong even in the case of sl2(R). Remember
that the Weyl group is N(T )/T where T =

(
a 0
0 a−1

)
and N(T ) = T ∪

(
0 b

−b−1 0

)
, and this second part is stuff having order 4, so you cannot

possibly write this as a semi-direct product of T and the Weyl group.
So the Weyl group is not usually a subgroup of N(T ). The best we

can do is to find a group of the form 2n ·W ⊆ N(T ) where n is the rank.
For example, let’s do it for SL(n+1,R) Then T = diag(a1, . . . , an) with
a1 · · ·an = 1. Then we take the normalizer of the torus to be N(T ) =all
permutation matrices with ±1’s with determinant 1, so this is 2n · Sn,
and it does not split. The problem we had with signs can be traced back
to the fact that this group doesn’t split.

We can construct the Lie algebra from something acted on by 2n ·
W (but not from something acted on by W ). We take a CENTRAL
EXTENSION of the lattice by a group of order 2. Notation is a pain
because the lattice is written additively and the extension is nonabelian,
so you want it to be written multiplicatively. Write elements of the lattice
in the form eα formally, so we have converted the lattice operation to
multiplication. We will use the central extension

1 → ±1 → êL → eL
︸︷︷︸
∼=L

→ 1

We want êL to have the property that êαêβ = (−1)(α,β)êβ êα, where êα is
something mapping to eα. What do the automorphisms of êL look like?
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We get
1 → (L/2L)

︸ ︷︷ ︸

(Z/2)rank(L)

→ Aut(êL) → Aut(eL)

for α ∈ L/2L, we get the map êβ → (−1)(α,β)êβ. The map turns out
to be onto, and the group Aut(eL) contains the reflection group of the
lattice. This extension is usually non-split.

Now the Lie algebra is L⊕{1 dimensional spaces spanned by (êα,−êα)}
for α2 = 2 with the convention that −êα (−1 in the vector space)
is −êα (-1 in the group êL). Now define a Lie bracket by the “obvi-
ous rules” [α, β] = 0 for α, β ∈ L (the Cartan subalgebra is abelian),
[α, êβ] = (α, β)êβ (êβ is in the root space of β), and [êα, êβ ] = 0 if
(α, β) ≥ 0 (since (α + β)2 > 2), [êα, êβ] = êαêβ if (α, β) < 0 (product in
the group êL), and [êα, (êα)−1] = α.

Theorem 26.2. Assume L is positive definite. Then this Lie bracket
forms a Lie algebra (so it is skew and satisfies Jacobi).

Proof. Easy but tiresome, because there are a lot of cases; let’s do them
(or most of them).

We check the Jacobi identity: We want [[a, b], c]+[[b, c], a]+[[c, a], b] =
0

1. all of a, b, c in L. Trivial because all brackets are zero.

2. two of a, b, c in L. Say α, β, eγ

[[α, β], eγ]
︸ ︷︷ ︸

0

+ [[β, eγ], α]
︸ ︷︷ ︸

(β,α)(−α,β)eγ

+[[eγ , α], β]

and similar for the third term, giving a sum of 0.

3. one of a, b, c in L. α, eβ, eγ. eβ has weight β and eγ has weight γ
and eβeγ has weight β+γ. So check the cases, and you get Jacobi:

[[α, eβ], eγ ] = (α, β)[eβ, eγ ]

[[eβ , eγ], α] = −[α, [eβ, eγ ]] = −(α, β + γ)[eβ, eγ]

[[eγ , α], eβ] = −[[α, eγ ], eβ] = (α, γ)[eβ, eγ],

so the sum is zero.

4. none of a, b, c in L. This is the really tiresome one, eα, eβ, eγ . The
main point of going through this is to show that it isn’t as tiresome
as you might think. You can reduce it to two or three cases. Let’s
make our cases depending on (α, β), (α, γ), (β, γ).
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(a) if 2 of these are 0, then all the [[∗, ∗], ∗] are zero.

(b) α = −β. By case a, γ cannot be orthogonal to them, so say
(α, γ) = 1 (γ, β) = −1; adjust so that eαeβ = 1, then calculate

[[eγ , eβ], eα] − [[eα, eβ], eγ] + [[eα, eγ ], eβ] = eαeβeγ − (α, γ)eγ + 0

= eγ − eγ = 0.

(c) α = −β = γ, easy because [eα, eγ] = 0 and [[eα, eβ], eγ ] =
−[[eγ , eβ], eα]

(d) We have that each of the inner products is 1, 0 or −1. If some
(α, β) = 1, all brackets are 0.

This leaves two cases, which we’ll do next time
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Lecture 27

Last week we talked about êL, which was a double cover of eL. L is the
root lattice of E8. We had the sequence

1 → ±1 → êL → eL → 1.

The Lie algebra structure on êL was given by

[α, β] = 0

[α, eβ] = (α, β)eβ

[eα, eβ] =







0 if (α, β) ≥ 0

eαeβ if (α, β) = −1

α if (α, β) = −2

The Lie algebra is L⊕
⊕

α2=2 ê
α.

Let’s finish checking the Jacobi identity. We had two cases left:

[[eα, eβ], eγ ] + [[eβ, eγ ], eα] + [[eγ , eα], eβ] = 0

− (α, β) = (β, γ) = (γ, α) = −1, in which case α + β + γ = 0. then
[[eα, eβ], eγ] = [eαeβ , eγ] = α+β. By symmetry, the other two terms
are β + γ and γ+α;the sum of all three terms is 2(α+ β + γ) = 0.

− (α, β) = (β, γ) = −1, (α, γ) = 0, in which case [eα, eγ] = 0. We
check that [[eα, eβ], eα] = [eαeβ, eγ ] = eαeβeγ (since (α + β, γ) =
−1). Similarly, we have [[eβ , eγ], eα] = [eβeγ , eα] = eβeγeα. We
notice that eαeβ = −eβeα and eγeα = eαeγ so eαeβeγ = −eβeγeα;
again, the sum of all three terms in the Jacobi identity is 0.

This concludes the verification of the Jacobi identity, so we have a Lie
algebra.

Is there a proof avoiding case-by-case check? Good news: yes! Bad
news: it’s actually more work. We really have functors as follows:

Dynkin
diagrams

//

%%K
KKKKKKKKKKKKKKKKK

Double
cover L̂

��

elementary,
but tedious

only for positive
definite lattices

//

,,

Lie algebras

Root lattice L Vertex algebras

OO

these work
for any

even lattice

WW

hh
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where L̂ is generated by êαi (the i’s are the dots in your Dynkin diagram),
with êαi êαj = (−1)(αi,αj)êαj êαi , and −1 is central of order 2.

Unfortunately, you have to spend several weeks learning vertex alge-
bras. In fact, the construction we did was the vertex algebra approach,
with all the vertex algebras removed. So there is a more general construc-
tion which gives a much larger class of infinite dimensional Lie algebras.

Now we should study the double cover L̂, and in particular prove its
existence. Given a Dynkin diagram, we can construct L̂ as generated
by the elements eαi for αi simple roots with the given relations. It is
easy to check that we get a surjective homomorphism L̂ → L with kernel
generated by z with z2 = 1. What’s a little harder to show is that z 6= 1
(i.e., show that L̂ 6= L). The easiest way to do it is to use cohomology of
groups, but since we have such an explicit case, we’ll do it bare hands:
Problem: Given Z, H groups with Z abelian, construct central exten-
sions

1 → Z → G→ H → 1

(where Z lands in the center ofG). LetG be the set of pairs (z, h), and set
the product (z1, h1)(z2, h2) = (z1z2c(h1, h2), h1h2), where c(h1, h2) ∈ Z
(c(h1, h2) will be a cocycle in group cohomology). We obviously get a
homomorphism by mapping (z, h) 7→ h. If c(1, h) = c(h, 1) = 1 (normal-
ization), then z 7→ (z, 1) is a homomorphism mapping Z to the center
of G. In particular, (1, 1) is the identity. We’ll leave it as an exercise to
figure out what the inverses are. When is this thing associative? Let’s
just write everything out:

(
(z1, h1)(z2, h2)

)
(z3, h3) = (z1z2z3c(h1, h2)c(h1h2, h3), h1h2h3)

(z1, h1)
(
(z2, h2)(z3, h3)

)
= (z1z2z3c(h1, h2h3)c(h2, h3), h1h2h3)

so we must have

c(h1, h2)c(h1h2, h3) = c(h1h2, h3)c(h2, h3).

This identity is actually very easy to satisfy in one particular case: when
c is bimultiplicative: c(h1, h2h3) = c(h1, h2)c(h1, h3) and c(h1h2, h3) =
c(h1, h3)c(h2, h3). That is, we have a map H ×H → Z. Not all cocycles
come from such maps, but this is the case we care about.

To construct the double cover, let Z = ±1 and H = L (free abelian).
If we write H additively, we want c to be a bilinear map L × L → ±1.
It is really easy to construct bilinear maps on free abelian groups. Just
take any basis α1, . . . , αn of L, choose c(α1, αj) arbitrarily for each i, j
and extend c via bilinearity to L × L. In our case, we want to find a
double cover L̂ satisfying êαêβ = (−1)(α,β)êβ êα where êα is a lift of eα.
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This just means that c(α, β) = (−1)(α,β)c(β, α). To satisfy this, just
choose c(αi, αj) on the basis {αi} so that c(αi, αj) = (−1)(αi,αj)c(αj, αi).
This is trivial to do as (−1)(αi,αi) = 1. Notice that this uses the fact
that the lattice is even. There is no canonical way to choose this 2-
cocycle (otherwise, the central extension would split as a product), but
all the different double covers are isomorphic because we can specify L̂
by generators and relations. Thus, we have constructed L̂ (or rather,
verified that the kernel of L̂→ L has order 2, not 1).

Let’s now look at lifts of automorphisms of L to L̂.

◮ Exercise 27.1. Any automorphism of L preserving ( , ) lifts to an
automorphism of L̂

There are two special cases:

1. −1 is an automorphism of L, and we want to lift it to L̂ explicitly.
First attempt: try sending êα to ê−α := (êα)−1, which doesn’t work
because a 7→ a−1 is not an automorphism on non-abelian groups.

Better: ω : êα 7→ (−1)α
2/2(êα)−1 is an automorphism of L̂. To see

this, check

ω(êα)ω(êβ) = (−1)(α2+β2)/2(êα)−1(êβ)−1

ω(êαêβ) = (−1)(α+β)2/2(êβ)−1(êα)−1

which work out just right

2. If r2 = 2, then α 7→ α− (α, r)r is an automorphism of L (reflection

through r⊥). You can lift this by êα 7→ êα(êr)−(α,r) × (−1)(
(α,r)

2 ).
This is a homomorphism (check it!) of order (usually) 4!

Remark 27.1. Although automorphisms of L lift to automorphisms
of L̂, the lift might have larger order.

This construction works for the root lattices of An, Dn, E6, E7, and
E8; these are the lattices which are even, positive definite, and generated
by vectors of norm 2 (in fact, all such lattices are sums of the given ones).
What about Bn, Cn, F4 and G2? The reason the construction doesn’t
work for these cases is because there are roots of different lengths. These
all occur as fixed points of diagram automorphisms of An, Dn and E6.
In fact, we have a functor from Dynkin diagrams to Lie algebras, so and
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automorphism of the diagram gives an automorphism of the algebra

Involution Fixed points Involution Fixed Points

��	�
�� ��	�
�� ... ��	�
�� ��	�
��zz $$|| !!

= A2n+1

��	�
��
��	�
��
..
.

��	�
��
��	�
��
��

= Cn+1 ��	�
��
��	�
��
D4 = ��	�
��
��	�
��11

11
��

00

ZZ

= G2

��	�
�� ��	�
��//

Dn = ��	�
�� ... ��	�
��
��	�
��

����

��	�
��??
??

YY

��

��	�
�� ... ��	�
�� ��	�
��oo

= Bn

E6 =
��	�
�� ��	�
�� ��	�
��

��	�
��
��	�
�� ��	�
��zz $$|| !!

��	�
��
��	�
��
��	�
��
��	�
��

= F4

A2n doesn’t really give you a new algebra: it corresponds to some
superalgebra stuff.

Construction of the Lie group of E8

It is the group of automorphisms of the Lie algebra generated by the ele-
ments exp(λAd(êα)), where λ is some real number, êα is one of the basis
elements of the Lie algebra corresponding to the root α, and Ad(êα)(a) =
[êα, a]. In other words,

exp(λAd(êα))(a) = 1 + λ[êα, a] +
λ2

2
[êα, [êα, a]].

and all the higher terms are zero. To see that Ad(êα)3 = 0, note that if
β is a root, then β + 3α is not a root (or 0).

� Warning 27.2. In general, the group generated by these automor-
phisms is NOT the whole automorphism group of the Lie algebra.

There might be extra diagram automorphisms, for example.

We get some other things from this construction. We can get simple
groups over finite fields: note that the construction of a Lie algebra above
works over any commutative ring (e.g. over Z). The only place we used
division is in exp(λAd(êα)) (where we divided by 2). The only time
this term is non-zero is when we apply exp(λAd(êα)) to ê−α, in which
case we find that [êα, [êα, ê−α]] = [êα, α] = −(α, α)êα, and the fact that
(α, α) = 2 cancels the division by 2. So we can in fact construct the E8

group over any commutative ring. You can mumble something about
group schemes over Z at this point. In particular, we have groups of
type E8 over finite fields, which are actually finite simple groups (these
are called Chevalley groups; it takes work to show that they are simple,
there is a book by Carter called Finite Simple Groups which you can
look at).
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Real forms

So we’ve constructed the Lie group and Lie algebra of type E8. There
are in fact several different groups of type E8. There is one complex
Lie algebra of type E8, which corresponds to several different real Lie
algebras of type E8.

Let’s look at some smaller groups:

Example 27.3. sl2(R) = ( a bc d ) with a, b, c, d real a + d = 0; this is not
compact. On the other hand, su2(R) = ( a bc d ) with d = −a imaginary
b = −c̄, is compact. These have the same Lie algebra over C.

Let’s look at what happens for E8. In general, suppose L is a Lie
algebra with complexification L⊗C. How can we find another Lie algebra
M with the same complexification? L⊗ C has an anti-linear involution
ωL : l⊗ z 7→ l⊗ z̄. Similarly, it has an anti-linear involution ωM . Notice
that ωLωM is a linear involution of L ⊗ C. Conversely, if we know this
involution, we can reconstruct M from it. Given an involution ω of
L ⊗ C, we can get M as the fixed points of the map a 7→ ωLω(a)“=”
ω(a). Another way is to put L = L+ ⊕ L−, which are the +1 and −1
eigenspaces, then M = L+ ⊕ iL−.

Thus, to find other real forms, we have to study the involutions of
the complexification of L. The exact relation is kind of subtle, but this
is a good way to go.

Example 27.4. Let L = sl2(R). It has an involution ω(m) = −mT .
su2(R) is the set of fixed points of the involution ω times complex con-
jugation on sl2(C), by definition.

So to construct real forms of E8, we want some involutions of the Lie
algebra E8 which we constructed. What involutions do we know about?
There are two obvious ways to construct involutions:

1. Lift −1 on L to êα 7→ (−1)α
2/2(êα)−1, which induces an involution

on the Lie algebra.

2. Take β ∈ L/2L, and look at the involution êα 7→ (−1)(α,β)êα.

(2) gives nothing new ... you get the Lie algebra you started with. (1)
only gives you one real form. To get all real forms, you multiply these
two kinds of involutions together.

Recall that L/2L has 3 orbits under the action of the Weyl group,
of size 1, 120, and 135. These will correspond to the three real forms of
E8. How do we distinguish different real forms? The answer was found
by Cartan: look at the signature of an invariant quadratic form on the
Lie algebra!
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A bilinear form ( , ) on a Lie algebra is called invariant if ([a, b], c) +
(b[a, c]) = 0 for all a, b, c. This is called invariant because it corresponds
to the form being invariant under the corresponding group action. Now
we can construct an invariant bilinear form on E8 as follows:

1. (α, β)in the Lie algebra = (α, β)in the lattice

2. (êα, (êα)−1) = 1

3. (a, b) = 0 if a and b are in root spaces α and β with α + β 6= 0.

This gives an invariant inner product on E8, which you prove by case-
by-case check

◮ Exercise 27.2. do these checks

Next time, we’ll use this to produce bilinear forms on all the real
forms and then we’ll calculate the signatures.
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Lecture 28

Last time, we constructed a Lie algebra of type E8, which was L⊕
⊕

êα,
where L is the root lattice and α2 = 2. This gives a double cover of the
root lattice:

1 → ±1 → êL → eL → 1.

We had a lift for ω(α) = −α, given by ω(êα) = (−1)(α2/2)(êα)−1. So ω be-
comes an automorphism of order 2 on the Lie algebra. eα 7→ (−1)(α,β)eα

is also an automorphism of the Lie algebra.
Suppose σ is an automorphism of order 2 of the real Lie algebra

L = L+ +L− (eigenspaces of σ). We saw that you can construct another
real form given by L+ + iL−. Thus, we have a map from conjugacy
classes of automorphisms with σ2 = 1 to real forms of L. This is not in
general in isomorphism.

Today we’ll construct some more real forms of E8. E8 has an invariant
symmetric bilinear form (eα, (eα)−1) = 1, (α, β) = (β, α). The form
is unique up to multiplication by a constant since E8 is an irreducible
representation of E8. So the absolute value of the signature is an invariant
of the Lie algebra.

For the split form of E8, what is the signature of the invariant bilinear
form (the split form is the one we just constructed)? On the Cartan
subalgebra L, ( , ) is positive definite, so we get +8 contribution to the
signature. On {eα, (eα)−1}, the form is ( 0 1

1 0 ), so it has signature 0 · 120.
Thus, the signature is 8. So if we find any real form with a different
signature, we’ll have found a new Lie algebra.

Let’s first try involutions eα 7→ (−1)(α,β)eα. But this doesn’t change
the signature. L is still positive definite, and you still have ( 0 1

1 0 ) or
(

0 −1
−1 0

)
on the other parts. These Lie algebras actually turn out to be

isomorphic to what we started with (though we haven’t shown that they
are isomorphic).

Now try ω : eα 7→ (−1)α
2/2(eα)−1, α 7→ −α. What is the signature

of the form? Let’s write down the + and − eigenspaces of ω. The +
eigenspace will be spanned by eα − e−α, and these vectors have norm
−2 and are orthogonal. The − eigenspace will be spanned by eα + e−α

and L, which have norm 2 and are orthogonal, and L is positive definite.
What is the Lie algebra corresponding to the involution ω? It will be
spanned by eα − e−α where α2 = 2 (norm −2), and i(eα + e−α) (norm
−2), and iL (which is now negative definite). So the bilinear form is
negative definite, with signature −248( 6= ±8).

With some more work, you can actually show that this is the Lie
algebra of the compact form of E8. This is because the automorphism
group of E8 preserves the invariant bilinear form, so it is contained in
O0,248(R), which is compact.
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Now let’s look at involutions of the form eα 7→ (−1)(α,β)ω(eα). Notice
that ω commutes with eα 7→ (−1)(α,β)eα. The β’s in (α, β) correspond to
L/2L modulo the action of the Weyl group W (E8). Remember this has
three orbits, with 1 norm 0 vector, 120 norm 2 vectors, and 135 norm 4
vectors. The norm 0 vector gives us the compact form. Let’s look at the
other cases and see what we get.

Suppose V has a negative definite symmetric inner product ( , ), and
suppose σ is an involution of V = V+ ⊕ V− (eigenspaces of σ). What is
the signature of the invariant inner product on V+ ⊕ iV−? On V+, it is
negative definite, and on iV− it is positive definite. Thus, the signature
is dim V−−dimV+ = −tr(σ). So we want to work out the traces of these
involutions.

Given some β ∈ L/2L, what is tr(eα 7→ (−1)(α,β)eα)? If β = 0, the
traces is obviously 248 because we just have the identity map. If β2 = 2,
we need to figure how many roots have a given inner product with β.
Recall that this was determined before:

(α, β) # of roots α with given inner product eigenvalue
2 1 1
1 56 -1
0 126 1
-1 56 -1
-2 1 1

Thus, the trace is 1 − 56 + 126 − 56 + 1 + 8 = 24 (the 8 is from the
Cartan subalgebra). So the signature of the corresponding form on the
Lie algebra is −24. We’ve found a third Lie algebra.

If we also look at the case when β2 = 4, what happens? How many
α with α2 = 2 and with given (α, β) are there? In this case, we have:

(α, β) # of roots α with given inner product eigenvalue
2 14 1
1 64 -1
0 84 1
-1 64 -1
-2 14 1

The trace will be 14− 64 + 84− 64 + 14 + 8 = −8. This is just the split
form again.

Summary: We’ve found 3 forms of E8, corresponding to 3 classes
in L/2L, with signatures 8, −24, −248, corresponding to involutions
eα 7→ (−1)(α,β)e−α of the compact form. If L is the compact form of a
simple Lie algebra, then Cartan showed that the other forms correspond
exactly to the conjugacy classes of involutions in the automorphism group
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of L (this doesn’t work if you don’t start with the compact form — so
always start with the compact form).

In fact, these three are the only forms of E8, but we won’t prove that.

Working with simple Lie groups

As an example of how to work with simple Lie groups, we will look at the
general question: Given a simple Lie group, what is its homotopy type?
Answer: G has a unique conjugacy class of maximal compact subgroups
K, and G is homotopy equivalent to K.

Proof for GLn(R). First pretend GLn(R) is simple, even though it isn’t;
whatever. There is an obvious compact subgroup: On(R). Suppose K
is any compact subgroup of GLn(R). Choose any positive definite form
( , ) on Rn. This will probably not be invariant under K, but since
K is compact, we can average it over K get one that is: define a new
form (a, b)new =

∫

K
(ka, kb) dk. This gives an invariant positive definite

bilinear form (since integral of something positive definite is positive
definite). Thus, any compact subgroup preserves some positive definite
form. But the subgroup fixing some positive definite bilinear form is
conjugate to a subgroup of On(R) (to see this, diagonalize the form). So
K is contained in a conjugate of On(R).

Next we want to show that G = GLn(R) is homotopy equivalent to
On(R) = K. We will show that G = KAN , where K is On, A is all
diagonal matrices with positive coefficients, and N is matrices which are
upper triangular with 1s on the diagonal. This is the Iwasawa decom-
position. In general, we get K compact, A semisimple abelian, and N
is unipotent. The proof of this you saw before was called the Grahm-
Schmidt process for orthonormalizing a basis. Suppose v1, . . . , vn is any
basis for Rn.

1. Make it orthogonal by subtracting some stuff, you’ll get v1, v2−∗v1,
v3 − ∗v2 − ∗v1, . . . .

2. Normalize by multiplying each basis vector so that it has norm 1.
Now we have an orthonormal basis.

This is just another way to say that GLn can be written as KAN . Mak-
ing things orthogonal is just multiplying by something in N , and normal-
izing is just multiplication by some diagonal matrix with positive entries.
An orthonormal basis is an element of On. Tada! This decomposition
is just a topological one, not a decomposition as groups. Uniqueness is
easy to check.



Lecture 28 165

Now we can get at the homotopy type of GLn. N ∼= Rn(n−1)/2,
and A ∼= (R+)n, which are contractible. Thus, GLn(R) has the same
homotopy type as On(R), its maximal compact subgroup.

If you wanted to know π1(GL3(R)), you could calculate π1(O3(R)) ∼=
Z/2Z, so GL3(R) has a double cover. Nobody has shown you this double
cover because it is not algebraic.

Example 28.1. Let’s go back to various forms of E8 and figure out
(guess) the fundamental groups. We need to know the maximal compact
subgroups.

1. One of them is easy: the compact form is its own maximal compact
subgroup. What is the fundamental group? Remember or quote
the fact that for compact simple groups, π1

∼= weight lattice
root lattice

, which is
1. So this form is simply connected.

2. β2 = 2 case (signature −24). Recall that there were 1, 56, 126,
56, and 1 roots α with (α, β) = 2, 1, 0,−1, and -2 respectively,
and there are another 8 dimensions for the Cartan subalgebra. On
the 1, 126, 1, 8 parts, the form is negative definite. The sum of
these root spaces gives a Lie algebra of type E7A1 with a negative
definite bilinear form (the 126 gives you the roots of an E7, and
the 1s are the roots of an A1). So it a reasonable guess that the
maximal compact subgroup has something to do with E7A1. E7

and A1 are not simply connected: the compact form of E7 has π1

= Z/2 and the compact form of A1 also has π1 = Z/2. So the
universal cover of E7A1 has center (Z/2)2. Which part of this acts
trivially onE8? We look at the E8 Lie algebra as a representation of
E7×A1. You can read off how it splits form the picture above: E8

∼=
E7 ⊕ A1 ⊕ 56 ⊗ 2, where 56 and 2 are irreducible, and the centers
of E7 and A1 both act as −1 on them. So the maximal compact
subgroup of this form of E8 is the simply connected compact form
of E7 ×A1/(−1,−1). This means that π1(E8) is the same as π1 of
the compact subgroup, which is (Z/2)2/(−1,−1) ∼= Z/2. So this
simple group has a nontrivial double cover (which is non-algebraic).

3. For the other (split) form of E8 with signature 8, the maximal
compact subgroup is Spin16(R)/(Z/2), and π1(E8) is Z/2.

You can compute any other homotopy invariants with this method.

Let’s look at the 56 dimensional representation of E7 in more detail.
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We had the picture
(α, β) # of α’s

2 1
1 56
0 126
-1 56
-2 1

The Lie algebra E7 fixes these 5 spaces of E8 of dimensions 1, 56, 126 +
8, 56, 1. From this we can get some representations of E7. The 126 + 8
splits as 1+(126+7). But we also get a 56 dimensional representation of
E7. Let’s show that this is actually an irreducible representation. Recall
that in calculating W (E8), we showed that W (E7) acts transitively on
this set of 56 roots of E8, which can be considered as weights of E7.

An irreducible representation is called minuscule if the Weyl group
acts transitively on the weights. This kind of representation is partic-
ularly easy to work with. It is really easy to work out the character
for example: just translate the 1 at the highest weight around, so every
weight has multiplicity 1.

So the 56 dimensional representation of E7 must actually be the irre-
ducible representation with whatever highest weight corresponds to one
of the vectors.

Every possible simple Lie group

We will construct them as follows: Take an involution σ of the compact
form L = L+ + L− of the Lie algebra, and form L+ + iL−. The way we
constructed these was to first construct An, Dn, E6, and E7 as for E8.
Then construct the involution ω : eα 7→ −e−α. We get Bn, Cn, F4, and
G2 as fixed points of the involution ω.

Kac classified all automorphisms of finite order of any compact simple
Lie group. The method we’ll use to classify involutions is extracted from
his method. We can construct lots of involutions as follows:

1. Take any Dynkin diagram, say E8, and select some of its vertices,
corresponding to simple roots. Get an involution by taking eα 7→
±eα where the sign depends on whether α is one of the simple
roots we’ve selected. However, this is not a great method. For one
thing, you get a lot of repeats (recall that there are only 3, and
we’ve found 28 this way).

��	�
�� ��	�
�� ��	�
�� ��	�
�� ��	�
��

��	�
��

��	�
�� ��	�
�� '!&"%#$1  '!&"%#$1

 '!&"%#$ 1
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2. Take any diagram automorphism of order 2, such as

��	�
�� ��	�
�� ��	�
��

��	�
��

��	�
�� ��	�
��zz $$}} !!

This gives you more involutions.

Next time, we’ll see how to cut down this set of involutions.
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Lecture 29

Split form of Lie algebra (we did this for An, Dn, E6, E7, E8): A =
⊕

êα ⊕ L. Compact form A+ + iA−, where A± eigenspaces of ω : êα 7→
(−1)α

2/2ê−α.
We talked about other involutions of the compact form. You get all

the other forms this way.
The idea now is to find ALL real simple Lie algebras by listing all

involutions of the compact form. We will construct all of them, but we
won’t prove that we have all of them.

We’ll use Kac’s method for classifying all automorphisms of order N
of a compact Lie algebra (and we’ll only use the case N = 2). First let’s
look at inner automorphisms. Write down the AFFINE Dynkin diagram

2
��	�
��

4
��	�
��

6
��	�
��

3��	�
��

5
��	�
��

4
��	�
��

3
��	�
��

2
��	�
��

1
−highest weight = ��	�
��

Choose ni with
∑
nimi = N where the mi are the numbers on the

diagram. We have an automorphism eαj 7→ e2πinj/Neαj induces an au-
tomorphism of order dividing N . This is obvious. The point of Kac’s
theorem is that all inner automorphisms of order dividing N are ob-
tained this way and are conjugate if and only if they are conjugate by an
automorphism of the Dynkin diagram. We won’t actually prove Kac’s
theorem because we just want to get a bunch of examples. See [Kac90]
or [Hel01].

Example 29.1. Real forms of E8. We’ve already found three, and it
took us a long time. We can now do it fast. We need to solve

∑
nimi = 2

where ni ≥ 0; there are only a few possibilities:

∑
nimi = 2 # of ways how to do it maximal compact

subgroup K

2 × 1 one way ��	�
����	�
����	�
��
��	�
��

��	�
����	�
����	�
����	�
��×��	�
�� E8 (compact form)

1 × 2 two ways ��	�
����	�
����	�
��
��	�
��

��	�
����	�
����	�
��×��	�
����	�
�� A1E7

×��	�
����	�
����	�
��
��	�
��

��	�
����	�
����	�
����	�
����	�
�� D8 (split form)
1 × 1 + 1 × 1 no ways

The points NOT crossed off form the Dynkin diagram of the maximal
compact subgroup. Thus, by just looking at the diagram, we can see
what all the real forms are!
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Example 29.2. Let’s do E7. Write down the affine diagram:

1��	�
�� 2��	�
�� 3��	�
�� 4��	�
��

2��	�
��

3��	�
�� 2��	�
�� 1��	�
��

We get the possibilities

∑
nimi = 2 # of ways how to do it maximal compact

subgroup K
2 × 1 one way* ×��	�
�� ��	�
�� ��	�
�� ��	�
��

��	�
��
��	�
�� ��	�
�� ��	�
�� E7 (compact form)

1 × 2 two ways* ��	�
�� ×��	�
�� ��	�
�� ��	�
��
��	�
��

��	�
�� ��	�
�� ��	�
�� A1D6

��	�
�� ��	�
�� ��	�
�� ��	�
��
×��	�
��

��	�
�� ��	�
�� ��	�
�� A7 (split form)**

1 × 1 + 1 × 1 one way ×��	�
�� ��	�
�� ��	�
�� ��	�
��
��	�
��

��	�
�� ��	�
�� ×��	�
�� E6 ⊕R ***

(*) The number of ways is counted up to automorphisms of the diagram.
(**) In the split real form, the maximal compact subgroup has dimension
equal to half the number of roots. The roots of A7 look like εi − εj for
i, j ≤ 8 and i 6= j, so the dimension is 8 · 7 + 7 = 56 = 112

2
.

(***) The maximal compact subgroup is E6 ⊕ R because the fixed sub-
algebra contains the whole Cartan subalgebra, and the E6 only accounts
for 6 of the 7 dimensions. You can use this to construct some interesting
representations of E6 (the minuscule ones). How does the algebra E7

decompose as a representation of the algebra E6 ⊕R?
We can decompose it according to the eigenvalues of R. The E6 ⊕R

is the zero eigenvalue of R [why?], and the rest is 54 dimensional. The
easy way to see the decomposition is to look at the roots. Remember
when we computed the Weyl group we looked for vectors like

��	�
�� ��	�
�� ��	�
�� or ��	�
�� ��	�
�� ��	�
��

The 27 possibilities (for each) form the weights of a 27 dimensional rep-
resentation of E6. The orthogonal complement of the two nodes is an E6

root system whose Weyl group acts transitively on these 27 vectors (we
showed that these form a single orbit, remember?). Vectors of the E7

root system are the vectors of the E6 root system plus these 27 vectors
plus the other 27 vectors. This splits up the E7 explicitly. The two 27s
form single orbits, so they are irreducible. Thus, E7

∼= E6 ⊕R⊕ 27⊕ 27,
and the 27s are minuscule.

Let K be a maximal compact subgroup, with Lie algebra R + E6.
The factor of R means that K has an S1 in its center. Now look at the
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space G/K, where G is the Lie group of type E7, and K is the maximal
compact subgroup. It is a Hermitian symmetric space. Symmetric space
means that it is a (simply connected) Riemannian manifold M such that
for each point p ∈M , there is an automorphism fixing p and acting as −1
on the tangent space. This looks weird, but it turns out that all kinds of
nice objects you know about are symmetric spaces. Typical examples you
may have seen: spheres Sn, hyperbolic space Hn, and Euclidean space
Rn. Roughly speaking, symmetric spaces have nice properties of these
spaces. Cartan classified all symmetric spaces: they are non-compact
simple Lie groups modulo the maximal compact subgroup (more or less
... depending on simply connectedness hypotheses ’n such). Historically,
Cartan classified simple Lie groups, and then later classified symmetric
spaces, and was surprised to find the same result. Hermitian symmetric
spaces are just symmetric spaces with a complex structure. A standard
example of this is the upper half plane {x+ iy|y > 0}. It is acted on by
SL2(R), which acts by ( a bc d ) τ = aτ+b

cτ+d
.

Let’s go back to this G/K and try to explain why we get a Hermitian
symmetric space from it. We’ll be rather sketchy here. First of all, to
make it a symmetric space, we have to find a nice invariant Riemannian
metric on it. It is sufficient to find a positive definite bilinear form on
the tangent space at p which is invariant under K ... then you can
translate it around. We can do this as K is compact (so you have the
averaging trick). Why is it Hermitian? We’ll show that there is an almost
complex structure. We have S1 acting on the tangent space of each point
because we have an S1 in the center of the stabilizer of any given point.
Identify this S1 with complex numbers of absolute value 1. This gives an
invariant almost complex structure on G/K. That is, each tangent space
is a complex vector space. Almost complex structures don’t always come
from complex structures, but this one does (it is integrable). Notice that
it is a little unexpected that G/K has a complex structure (G and K
are odd dimensional in the case of G = E7, K = E6 ⊕ R, so they have
no hope of having a complex structure).

Example 29.3. Let’s look at E6, with affine Dynkin diagram

1��	�
�� 2��	�
�� 3��	�
��

2��	�
��

1��	�
��

2��	�
�� 1��	�
��
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We get the possibilities
∑
nimi = 2 # of ways how to do it maximal compact

subgroup K
2 × 1 one way ��	�
�� ��	�
�� ��	�
��

��	�
��
×��	�
��

��	�
�� ��	�
�� E6 (compact form)

1 × 2 one way ��	�
�� ��	�
�� ��	�
��
×��	�
��
��	�
��

��	�
�� ��	�
�� A1A5

1 × 1 + 1 × 1 one way ×��	�
�� ��	�
�� ��	�
��
��	�
��
×��	�
��

��	�
�� ��	�
�� D5 ⊕R

In the last one, the maximal compact subalgebra is D5 ⊕ R. Just as
before, we get a Hermitian symmetric space. Let’s compute its dimension
(over C). The dimension will be the dimension of E6 minus the dimension
of D5 ⊕R, all divided by 2 (because we want complex dimension), which
is (78 − 46)/2 = 16.

So we have found two non-compact simply connected Hermitian sym-
metric spaces of dimensions 16 and 27. These are the only “exceptional”
cases; all the others fall into infinite families!

There are also some OUTER automorphisms of E6 coming from the
diagram automorphism

��	�
�� ��	�
�� ��	�
��

��	�
��

��	�
�� ��	�
���� ��

σ

		 �� −→

��	�
��

��	�
��

��	�
��
��

��	�
��
The fixed point subalgebra has Dynkin diagram obtained by folding the
E6 on itself. This is the F4 Dynkin diagram. The fixed points of E6

under the diagram automorphism is an F4 Lie algebra. So we get a real
form of E6 with maximal compact subgroup F4. This is probably the
easiest way to construct F4, by the way. Moreover, we can decompose
E6 as a representation of F4. dimE6 = 78 and dimF4 = 52, so E6 =
F4 ⊕ 26, where 26 turns out to be irreducible (the smallest non-trivial
representation of F4 ... the only one anybody actually works with). The
roots of F4 look like (. . . ,±1,±1 . . . ) (24 of these) and (±1

2
· · · ± 1

2
) (16

of these), and (. . . ,±1 . . . ) (8 of them) ... the last two types are in the
same orbit of the Weyl group.
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The 26 dimensional representation has the following character: it has
all norm 1 roots with multiplicity 1 and 0 with multiplicity 2 (note that
this is not minuscule).

There is one other real form of E6. To get at it, we have to talk about
Kac’s description of non-inner automorphisms of order N . The non-inner
automorphisms all turn out to be related to diagram automorphisms.
Choose a diagram automorphism of order r, which divides N . Let’s take
the standard thing on E6. Fold the diagram (take the fixed points), and
form a TWISTED affine Dynkin diagram (note that the arrow goes the
wrong way from the affine F4)

1��	�
��
2��	�
��

3 ��	�
�� 2��	�
�� 1��	�
��
2��	�
��
1��	�
��

  

>>

r
$$

:: 1��	�
�� 2��	�
�� 3��	�
��// 2��	�
�� 1��	�
�� Twisted Affine F4

1
(

��	�
�� 2��	�
�� 3��	�
�� 4��	�
��// 2
Affine F4

)

��	�
��

33ggggg

There are also numbers on the twisted diagram, but nevermind them.
Find ni so that r

∑
nimi = N . This is Kac’s general rule. We’ll only

use the case N = 2.
If r > 1, the only possibility is r = 2 and one n1 is 1 and the

corresponding mi is 1. So we just have to find points of weight 1 in the
twisted affine Dynkin diagram. There are just two ways of doing this in
the case of E6

��	�
�� ��	�
�� ��	�
��// ��	�
�� ×��	�
�� and ×��	�
�� ��	�
�� ��	�
��// ��	�
�� ��	�
��

one of these gives us F4, and the other has maximal compact subalgebra
C4, which is the split form since dimC4 = #roots of F4/2 = 24.

Example 29.4. F4. The affine Dynkin is
1��	�
�� 2��	�
�� 3��	�
�� 4��	�
��// 2��	�
�� We

can cross out one node of weight 1, giving the compact form (split form),
or a node of weight 2 (in two ways), giving maximal compacts A1C3 or
B4. This gives us three real forms.

Example 29.5. G2. We can actually draw this root system ... UCB
won’t supply me with a four dimensional board. The construction is to
take the D4 algebra and look at the fixed points of:

��	�
��

��	�
��
��	�
��

��	�
��11
11

11
��

00

ρ

ZZ
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We want to find the fixed point subalgebra.
Fixed points on Cartan subalgebra: ρ fixes a two dimensional space,

and has 1 dimensional eigenspaces corresponding to ω and ω̄, where
ω3 = 1. The 2 dimensional space will be the Cartan subalgebra of G2.

Positive roots of D4 as linear combinations of simple roots (not fun-
damental weights):

01

0


0

11
1 00

1


0

11
1 00

0


1

11
1

gf ed

`a bc
10

0


0

11
1

gf ed

`a bc

11

0


0

11
1 10

1


0

11
1 10

0


1

11
1

gf ed

`a bc
11

1


1

11
1

gf ed

`a bc

11

1


0

11
1 10

1


1

11
1 11

0


1

11
1

gf ed

`a bc
21

1


1

11
1

gf ed

`a bc

︸ ︷︷ ︸

projections of norm 2/3
︸ ︷︷ ︸

projections of norm 2

There are six orbits under ρ, grouped above. It obviously acts on the
negative roots in exactly the same way. What we have is a root system
with six roots of norm 2 and six roots of norm 2/3. Thus, the root system
is G2:

2• 1•

1•1•

1 •

1
•

1
•

1•

1 












• 1•

11111111111111111

1•1•

1

11
11

11
11

11
11

11
11

1

•



One of the only root systems to appear on a country’s national flag. Now

let’s work out the real forms. Look at the affine: 1��	�
�� 2��	�
�� 3��	�
��// . we can
delete the node of weight 1, giving the compact form: ×��	�
�� ��	�
�� ��	�
��// . We
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can delete the node of weight 2, giving A1A1 as the compact subalgebra:
��	�
�� ×��	�
�� ��	�
��// ... this must be the split form because there is nothing else
the split form can be.

Let’s say some more about the split form. What does the Lie algebra
of G2 look like as a representation of the maximal compact subalgebra
A1×A1? In this case, it is small enough that we can just draw a picture:

2 1•

1•1•

1 •

1
•

1
•

1•

1• 1•

1•1•

1
•

?> =<89 :;

?> =<

89 :;

−→

1•1•

1
•

1
•

1
•

1
•

1•1•?> =<
89 :;

?> =<

89 :;

We have two orthogonal A1s, and we have leftover the stuff on the right.
This thing on the right is a tensor product of the 4 dimensional irre-
ducible representation of the horizontal and the 2 dimensional of the
vertical. Thus, G2 = 3× 1 + 1⊗ 3 + 4⊗ 2 as irreducible representations
of A

(horizontal)
1 ⊗ A

(vertical)
1 .

Let’s use this to determine exactly what the maximal compact sub-
group is. It is a quotient of the simply connected compact group SU(2)×
SU(2), with Lie algebra A1 × A1. Just as for E8, we need to identify
which elements of the center act trivially on G2. The center is Z/2×Z/2.
Since we’ve decomposed G2, we can compute this easily. A non-trivial
element of the center of SU(2) acts as 1 (on odd dimensional repre-
sentations) or −1 (on even dimensional representations). So the ele-
ment z × z ∈ SU(2) × SU(2) acts trivially on 3 ⊗ 1 + 1 ⊗ 3 + 4 × 2.
Thus the maximal compact subgroup of the non-compact simple G2 is
SU(2) × SU(2)/(z × z) ∼= SO4(R), where z is the non-trivial element of
Z/2.

So we have constructed 3 + 4 + 5 + 3 + 2 (from E8, E7, E6, F4, G2)
real forms of exceptional simple Lie groups.

There are another 5 exceptional real Lie groups: Take COMPLEX
groups E8(C), E7(C), E6(C), F4(C), and G2(C), and consider them as
REAL. These give simple real Lie groups of dimensions 248×2, 133×2,
78 × 2, 52 × 2, and 14 × 2.
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Lecture 30 - Irreducible unitary representa-

tions of SL2(R)

SL2(R) is non-compact. For compact Lie groups, all unitary represen-
tations are finite dimensional, and are all known well. For non-compact
groups, the theory is much more complicated. Before doing the infinite
dimensional representations, we’ll review finite dimensional (usually not
unitary) representations of SL2(R).

Finite dimensional representations

Finite dimensional complex representations of the following are much
the same: SL2(R), sl2R, sl2C [branch SL2(C) as a complex Lie group]
(as a complex Lie algebra), su2R (as a real Lie algebra), and SU2 (as
a real Lie group). This is because finite dimensional representations
of a simply connected Lie group are in bijection with representations
of the Lie algebra. Complex representations of a REAL Lie algebra
L correspond to complex representations of its complexification L ⊗ C
considered as a COMPLEX Lie algebra.

Note: Representations of a COMPLEX Lie algebra L ⊗ C are not
the same as representations of the REAL Lie algebra L ⊗ C ∼= L + L.
The representations of the real Lie algebra correspond roughly to (reps
of L)⊗(reps of L).

Strictly speaking, SL2(R) is not simply connected, which is not im-
portant for finite dimensional representations.

Recall the main results for representations of SU2:

1. For each positive integer n, there is one irreducible representation
of dimension n.

2. The representations are completely reducible (every representation
is a sum of irreducible ones). This is perhaps the most important
fact.

The finite dimensional representation theory of SU2 is EASIER
than the representation theory of the ABELIAN Lie group R2, and
that is because representations of SU2 are completely reducible.

For example, it is very difficult to classify pairs of commuting nilpo-
tent matrices.

Completely reducible representations:

1. Complex representations of finite groups.

2. Representations of compact groups (Weyl character formula)
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3. More generally, unitary representations of anything (you can take
orthogonal complements of subrepresentations)

4. Finite dimensional representations of semisimple Lie groups.

Representations which are not completely reducible:

1. Representations of a finite group G over fields of characteristic
p| |G|.

2. Infinite dimensional representations of non-compact Lie groups (even
if they are semisimple).

We’ll work with the Lie algebra sl2R, which has basis H = ( 1 0
0 −1 ),

E = ( 0 1
0 0 ), and F = ( 0 0

1 0 ). H is a basis for the Cartan subalgebra ( a 0
0 −a ).

E spans the root space of the simple root. F spans the root space of the
negative of the simple root. We find that [H,E] = 2E, [H,F ] = −2F
(so E and F are eigenvectors of H), and you can check that [E,F ] = H .

0

H
•

−2
•
F

2•
EBB

Weyl group of order 2

\\

weights = eigenvalues under Hoo

The Weyl group is generated by ω = ( 0 1
−1 0 ) and ω2 =

(−1 0
0 −1

)
.

Let V be a finite dimensional irreducible complex representation
of sl2R. First decompose V into eigenspaces of the Cartan subalge-
bra (weight spaces) (i.e. eigenspaces of the element H). Note that
eigenspaces of H exist because V is FINITE-DIMENSIONAL (remem-
ber this is a complex representation). Look at the LARGEST eigenvalue
of H (exists since V is finite dimensional), with eigenvector v. We have
that Hv = nv for some n. Compute

H(Ev) = [H,E]v + E(Hv)

= 2Ev + Env = (n + 2)Ev

So Ev = 0 (lest it be an eigenvector of H with higher eigenvalue). [E,−]
increases weights by 2 and [F,−] decreases weights by 2, and [H,−] fixes
weights.

We have that E kills v, and H multiplies it by n. What does F do
to v?

nv (n− 2)Fv (n− 4)F 2v (n− 6)F 3v . . .

0 v
E

hh

H

OO

F
++
Fv

E
×n

jj

H

OO

F
,,
F 2v

E
×(2n−2)

ll

H

OO

F
,,
F 3v

E
×(3n−6)

ll

H

OO

. . .
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What is E(Fv)? Well,

EFv = FEv + [E,F ]v

= 0 +Hv = nv

In general, we have

H(F iv) = (n− 2i)F iv

E(F iv) = (ni− i(i− 1))F i−1v

F (F iv) = F i+1v

So the vectors F iv span V because they span an invariant subspace. This
gives us an infinite number of vectors in distinct eigenspaces of H , and
V is finite dimensional. Thus, F kv = 0 for some k. Suppose k is the
SMALLEST integer such that F kv = 0. Then

0 = E(F kv) = (nk − k(k − 1))EF k−1v
︸ ︷︷ ︸

6=0

So nk − k(k − 1) = 0, and k 6= 0, so n− (k − 1) = 0, so k = n+ 1 . So
V has a basis consisting of v, Fv, . . . , F nv. The formulas become a little
better if we use the basis wn = v, wn−2 = Fv, wn−4 = F 2v

2!
, F

3v
3!
, . . . , F

nv
n!

.

w−6

1

!!

aa

6

w−4

2

!!

aa

5

w−2

3

  

``

4

w0

4

��

__

3

w2

5

��

__

2

w4

6

��

__

1

w6

E

F

This says that E(w2) = 5w4 for example. So we’ve found a complete
description of all finite dimensional irreducible complex representations
of sl2R. This is as explicit as you could possibly want.

These representations all lift to the group SL2(R): SL2(R) acts on
homogeneous polynomials of degree n by ( a bc d ) f(x, y) = f(ax+ by, cx+
dy). This is an n + 1 dimensional space, and you can check that the
eigenspaces are xiyn−i.

We have implicitly constructed VERMA MODULES. We have a ba-
sis wn, wn−2, . . . , wn−2i, . . . with relations H(wn−2i) = (n − 2i)wn−2i,
Ewn−2i = (n − i + 1)wn−2i+2, and Fwn−2i = (i + 1)wn−2i−2. These
are obtained by copying the formulas from the finite dimensional case,
but allow it to be infinite dimensional. This is the universal representa-
tion generated by the highest weight vector wn with eigenvalue n under
H (highest weight just means E(wn) = 0).

Let’s look at some things that go wrong in infinite dimensions.
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� Warning 30.1. Representations corresponding to the Verma mod-
ules do NOT lift to representations of SL2(R), or even to its univer-

sal cover. The reason: look at the Weyl group (generated by ( 0 1
−1 0 )) of

SL2(R) acting on 〈H〉; it changes H to −H . It maps eigenspaces with
eigenvalue m to eigenvalue −m. But if you look at the Verma module, it
has eigenspaces n, n−2, n−4, . . . , and this set is obviously not invariant
under changing sign. The usual proof that representations of the Lie al-
gebra lifts uses the exponential map of matrices, which doesn’t converge
in infinite dimensions.

Remark 30.2. The universal cover S̃L2(R) of SL2(R), or even the double
cover Mp2(R), has NO faithful finite dimensional representations.

Proof. Any finite dimensional representation comes from a finite dimen-
sional representation of the Lie algebra sl2R. All such finite dimensional
representations factor through SL2(R).

All finite dimensional representations of SL2(R) are completely reducible.
Weyl did this by Weyl’s unitarian trick:

Notice that finite dimensional representations of SL2(R) are isomor-
phic (sort of) to finite dimensional representations of the COMPACT
group SU2 (because they have the same complexified Lie algebras. Thus,
we just have to show it for SU2. But representations of ANY compact
group are completely reducible. Reason:

1. All unitary representations are completely reducible (if U ⊆ V ,
then V = U ⊕ U⊥).

2. Any representation V of a COMPACT group G can be made uni-
tary: take any unitary form on V (not necessarily invariant under
G), and average it over G to get an invariant unitary form. We can
average because G is compact, so we can integrate any continuous
function over G. This form is positive definite since it is the av-
erage of positive definite forms (if you try this with non-(positive
definite) forms, you might get zero as a result).

The Casimir operator

Set Ω = 2EF+2FE+H2 ∈ U(sl2R). The main point is that Ω commutes
with sl2R. You can check this by brute force:

[H,Ω] = 2 ([H,E]F + E[H,F ])
︸ ︷︷ ︸

0

+ · · ·

[E,Ω] = 2[E,E]F + 2E[F,E] + 2[E,F ]E

+ 2F [E,E] + [E,H ]H +H [E,H ] = 0

[F,Ω] = Similar
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Thus, Ω is in the center of U(sl2R). In fact, it generates the center. This
doesn’t really explain where Ω comes from.

Remark 30.3. Why does Ω exist? The answer is that it comes from
a symmetric invariant bilinear form on the Lie algebra sl2R given by
(E,F ) = 1, (E,E) = (F, F ) = (F,H) = (E,H) = 0, (H,H) = 2. This
bilinear form is an invariant map L ⊗ L → C, where L = sl2R, which
by duality gives an invariant element in L ⊗ L, which turns out to be
2E ⊗ F + 2F ⊗E +H ⊗H . The invariance of this element corresponds
to Ω being in the center of U(sl2R).

Since Ω is in the center of U(sl2R), it acts on each irreducible rep-
resentation as multiplication by a constant. We can work out what this
constant is for the finite dimensional representations. Apply Ω to the
highest vector wn:

(2EF + 2FE +HH)wn = (2n+ 0 + n2)wn

= (2n+ n2)wn

So Ω has eigenvalue 2n+ n2 on the irreducible representation of dimen-
sion n + 1. Thus, Ω has DISTINCT eigenvalues on different irreducible
representations, so it can be used to separate different irreducible repre-
sentations. The main use of Ω will be in the next lecture, where we’ll
use it to deal with infinite dimensional representation.

To finish today’s lecture, let’s look at an application of Ω. We’ll sketch
an algebraic argument that the representations of sl2R are completely
reducible. Given an exact sequence of representations

0 → U → V → W → 0

we want to find a splitting W → V , so that V = U ⊕W .
Step 1: Reduce to the case where W = C. The idea is to look at

0 → HomC(W,U) → HomC(W,V ) → HomC(W,W ) → 0

and HomC(W,W ) has an obvious one dimensional subspace, so we can
get a smaller exact sequence

0 → HomC(W,U) → subspace of HomC(W,V ) → C→ 0

and if we can split this, the original sequence splits.
Step 2: Reduce to the case where U is irreducible. This is an easy

induction on the number of irreducible components of U .

◮ Exercise 30.1. Do this.
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Step 3: This is the key step. We have

0 → U → V → C→ 0

with U irreducible. Now apply the Casimir operator Ω. V splits as
eigenvalues of Ω, so is U ⊕ C UNLESS U has the same eigenvalue as C
(i.e. unless U = C).

Step 4: We have reduced to

0 → C→ V → C→ 0

which splits because sl2(R) is perfect1 (no homomorphisms to the abelian
algebra ( 0 ∗

0 0 )).
Next time, in the final lecture, we’ll talk about infinite dimensional

unitary representations.

1L is perfect if [L, L] = L
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Lecture 31 - Unitary representations of SL2(R)

Last lecture, we found the finite dimensional (non-unitary) representa-
tions of SL2(R).

Background about infinite dimensional representa-
tions

(of a Lie group G) What is an finite dimensional representation?

1st guess Banach space acted on by G?

This is no good for some reasons: Look at the action of G on the
functions on G (by left translation). We could use L2 functions, or
L1 or Lp. These are completely different Banach spaces, but they
are essentially the same representation.

2nd guess Hilbert space acted on by G? This is sort of okay.

The problem is that finite dimensional representations of SL2(R)
are NOT Hilbert space representations, so we are throwing away
some interesting representations.

Solution (Harish-Chandra) Take g to be the Lie algebra of G, and let K
be the maximal compact subgroup. If V is an infinite dimensional
representation of G, there is no reason why g should act on V .

The simplest example fails. Let R act on L2(R) by left translation.
Then the Lie algebra is generated by d

dx
(or i d

dx
) acting on L2(R),

but d
dx

of an L2 function is not in L2 in general.

Let V be a Hilbert space. Set Vω to be the K-finite vectors of V ,
which are the vectors contained in a finite dimensional represen-
tation of K. The point is that K is compact, so V splits into a
Hilbert space direct sum finite dimensional representations of K,
at least if V is a Hilbert space. Then Vω is a representation of the
Lie algebra g, not a representation of G. Vω is a representation of
the group K. It is a (g, K)-module, which means that it is acted
on by g and K in a “compatible” way, where compatible means
that

1. they give the same representations of the Lie algebra of K.

2. k(u)v = k(u(k−1v)) for k ∈ K, u ∈ g, and v ∈ V .

The K-finite vectors of an irreducible unitary representation of
G is ADMISSIBLE, which means that every representation of K
only occurs a finite number of times. The GOOD category of
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representations is the representations of admissible (g, K)-modules.
It turns out that this is a really well behaved category.

We want to find the unitary irreducible representations of G. We will
do this in several steps:

1. Classify all irreducible admissible representations of G. This was
solved by Langlands, Harish-Chandra et. al.

2. Find which have hermitian inner products ( , ). This is easy.

3. Find which ones are positive definite. This is VERY HARD. We’ll
only do this for the simplest case: SL2(R).

The group SL2(R)

We found some generators (in Lie(SL2(R)) ⊗ C last time: E, F , H ,
with [H,E] = 2E, [H,F ] = −2F , and [E,F ] = H . We have that
H = −i ( 0 1

−1 0 ), E = 1
2
( 1 i
i −1 ), and F = 1

2

(
1 −i
−i −1

)
. Why not use the old

( 1 0
0 −1 ), ( 0 1

0 0 ), and ( 0 0
1 0 )?

Because SL2(R) has two different classes of Cartan subgroup:
(
a 0
0 a−1

)
,

spanned by ( 1 0
0 −1 ), and

(
cos θ sin θ
− sin θ cos θ

)
, spanned by ( 0 1

−1 0 ), and the second
one is COMPACT. The point is that non-compact (abelian) groups need
not have eigenvectors on infinite dimensional spaces. An eigenvector
is the same as a weight space. The first thing you do is split it into
weight spaces, and if your Cartan subgroup is not compact, you can’t
get started. We work with the compact subalgebra so that the weight
spaces exist.

Given the representation V , we can write it as some direct sum of
eigenspaces of H , as the Lie group H generates is compact (isomorphic
to S1). In the finite dimensional case, we found a HIGHEST weight,
which gave us complete control over the representation. The trouble is
that in infinite dimensions, there is no reason for the highest weight to
exist, and in general they don’t. The highest weight requires a finite
number of eigenvalues.

A good substituted for the highest weight vector: Look at the Casimir
operator Ω = 2EF + 2FE + H2 + 1. The key point is that Ω is in the
center of the universal enveloping algebra. As V is assumed admissible,
we can conclude that Ω has eigenvectors (because we can find a finite
dimensional space acted on by Ω). As V is irreducible and Ω commutes
with G, all of V is an eigenspace of Ω. We’ll see that this gives us about
as much information as a highest weight vector.

Let the eigenvalue of Ω on V be λ2 (the square will make the in-
teresting representations have integral λ; the +1 in Ω is for the same
reason).
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Suppose v ∈ Vn, where Vn is the space of vectors where H has eigen-
value n. In the finite dimensional case, we looked at Ev, and saw that
HEv = (n + 2)Ev. What is FEv? If v was a highest weight vector,
we could control this. Notice that Ω = 4FE + H2 + 2H + 1 (using
[E,F ] = H), and Ωv = λ2v. This says that 4FEv+n2v+2nv+v = λ2v.
This shows that FEv is a multiple of v.

Now we can draw a picture of what the representation looks like:

· · ·
��

]]
vn−4

��

]]
vn−2

��

]]
vn

��

]]

(
n2+2n+1−λ2

4

)

vn+2
��

]]
vn+4

��

]]
· · ·

E

H

F

Thus, Vω is spanned by Vn+2k, where k is an integer. The non-zero
elements among the Vn+2k are linearly independent as they have different
eigenvalues. The only question remaining is whether any of the Vn+2k

vanish.
There are four possible shapes for an irreducible representation

– infinite in both directions: · · · %%
ee · %%

ee · %%
ee · %%

ee · %%
ee · · ·

E
H
F

– a lowest weight, and infinite in the other direction:

· · · %%
ee · %%

ee · %%
ee · %%

ee · %%
ee · E

H
F

– a highest weight, and infinite in the other direction:

· %%
ee · %%

ee · %%
ee · %%

ee · %%
ee · · ·

E
H
F

– we have a highest weight and a lowest weight, in which case it is

finite dimensional · %%
ee · %%

ee · · · %%
ee · %%

ee · E
H
F

We’ll see that all these show up. We also see that an irreducible rep-
resentation is completely determined once we know λ and some n for
which Vn 6= 0. The remaining question is to construct representations
with all possible values of λ ∈ C and n ∈ Z. n is an integer because it
must be a representations of the circle.

If n is even, we have

· · ·
��

[[ −6
��

[[ −4
��

[[ −2
��

[[ 0
��

[[ 2
��

[[ 4
��

[[ 6
��

[[
· · ·

E

H

F

λ−7
2

λ−5
2

λ−3
2

λ−1
2

λ+1
2

λ+3
2

λ+5
2

λ+7
2

λ+7
2

λ+5
2

λ+3
2

λ+1
2

λ−1
2

λ−3
2

λ−5
2

λ−7
2
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It is easy to check that these maps satisfy [E,F ] = H , [H,E] = 2E,
and [H,F ] = −2F

◮ Exercise 31.1. Do the case of n odd.

Problem: These may not be irreducible, and we want to decompose
them into irreducible representations. The only way they can fail to
be irreducible if if Evn = 0 of Fvn = 0 for some n (otherwise, from
any vector, you can generate the whole space). The only ways that can
happen is if

n even: λ an odd integer
n odd: λ an even integer.

What happens in these cases? The easiest thing is probably just to write
out an example.

Example 31.1. Take n even, and λ = 3, so we have

· · ·
��

[[ −6
��

[[ −4
��

[[ −2
��

[[ 0
��

[[ 2
��

[[ 4
��

[[ 6
��

[[
· · ·

E

H

F

−2 −1 0 1 2 3 4 5

5 4 3 2 1 0 −1 −2

You can just see what the irreducible subrepresentations are ... they are
shown in the picture. So V has two irreducible subrepresentations V−
and V+, and V/(V−⊕V+) is an irreducible 3 dimensional representation.

Example 31.2. If n is even, but λ is negative, say λ = −3, we get

· · ·
��

[[ −6
��

[[ −4
��

[[ −2
��

[[ 0
��

[[ 2
��

[[ 4
��

[[ 6
��

[[
· · ·

E

H

F

−5 −4 −3 −2 −1 0 1 2

2 1 0 −1 −2 −3 −4 −5

Here we have an irreducible finite dimensional representation. If you
quotient out by that subrepresentation, you get V+ ⊕ V−.

◮ Exercise 31.2. Show that for n odd, and λ = 0, V = V+ ⊕ V−.

So we have a complete list of all irreducible admissible representa-
tions:

1. if λ 6∈ Z, you get one representation (remember λ ≡ −λ). This is
the bi-infinite case.

2. Finite dimensional representation for each n ≥ 1 (λ = ±n)
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3. Discrete series for each λ ∈ Zr {0}, which is the half infinite case:
you get a lowest weight when λ < 0 and a highest weight when
λ > 0.

4. two “limits of discrete series” where n is odd and λ = 0.

Which of these can be made into unitary representations? H† = −H ,
E† = F , and F † = E. If we have a hermitian inner product ( , ), we see
that

(vj+2, vj+2) =
2

λ+ j + 1
(Evj , vj+2)

=
2

λ+ j + 1
(vj ,−Fvj+2)

= − 2

λ+ j + 1

λ− j − 1

2
(vj , vj) > 0

where we fix the sign errors. So we want −λ−1−j
λ+j+1

to be real and positive
whenever j, j + 2 are non-zero eigenvectors. So

−(λ− 1 − j)(λ+ 1 + j) = −λ2 + (j + 1)2

should be positive for all j. Conversely, when you have this, blah.
This condition is satisfied in the following cases:

1. λ2 ≤ 0. These representations are called PRINCIPAL SERIES
representations. These are all irreducible except when λ = 0 and
n is odd, in which case it is the sum of two limits of discrete series
representations

2. 0 < λ < 1 and j even. These are called COMPLEMENTARY
SERIES. They are annoying, and you spend a lot of time trying to
show that they don’t occur.

3. λ2 = n2 for n ≥ 1 (for some of the irreducible pieces).

If λ = 1, we get

· · ·
��

[[ −6
��

[[ −4
��

[[ −2
��

[[ 0
��

[[ 2
��

[[ 4
��

[[ 6
��

[[
· · ·

E

H

F

−3 −2 −1 0 1 2 3 4

4 3 2 1 0 −1 −2 −3

We see that we get two discrete series and a 1 dimensional repre-
sentation, all of which are unitary
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For λ = 2 (this is the more generic one), we have

· · ·
��

[[ −5
��

[[ −3
��

[[ −1
��

[[ 1
��

[[ 3
��

[[ 5
��

[[
· · ·

E

H

F

−2 −1 0 1 2 3 4

4 3 2 1 0 −1 −2

The middle representation (where (j+1)2 < λ2 = 4 is NOT unitary,
which we already knew. So the DISCRETE SERIES representa-
tions ARE unitary, and the FINITE dimensional representations
of dimension greater than or equal to 2 are NOT.

Summary: the irreducible unitary representations of SL2(R) are given
by

1. the 1 dimensional representation

2. Discrete series representations for any λ ∈ Z r {0}

3. Two limit of discrete series representations for λ = 0

4. Two series of principal series representations:

j even: λ ∈ iR, λ ≥ 0
j odd: λ ∈ iR, λ > 0

5. Complementary series: parameterized by λ, with 0 < λ < 1.

The nice stuff that happened for SL2(R) breaks down for more com-
plicated Lie groups.

Representations of finite covers of SL2(R) are similar, except j need

not be integral. For example, for the double cover ŜL2(R) = Mp2(R),
2j ∈ Z.

◮ Exercise 31.3. Find the irreducible unitary representations ofMp2(R).
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Solutions to (some) Exercises

Solution 1.1. Yes. Consider µ−1(e) ⊆ G×G. We would like to use the
implicit function theorem to show that there is a function f (which is
as smooth as µ) such that (h, g) ∈ µ−1(e) if and only if g = f(h). This
function will be ι. You need to check that for every g, the derivative of
left multiplication by g at g−1 is non-singular (i.e. that dlg(g

−1) is a non-
singular matrix). This is obvious because we have an inverse, namely
dlg−1(e).

Solution 1.2. Just do it.

Solution 4.1. We calculate:

d

dt
‖g(t)‖2 = 2〈 d

dt
g, g〉

≤ 2

∥
∥
∥
∥

d

dt
g

∥
∥
∥
∥
‖g‖

≤ 2‖ξ‖‖g‖2.

That is, η(t) := ‖g(t)‖2 satisfies the differential inequality:

d

dt
η(t) ≤ ‖ξ‖η(t),

which in turn implies (Gronwall’s inequality) that

η(t) ≤ e
2
∫ t
t0

‖ξ(s)‖ds

so that

‖g‖ ≤ e
∫ t
t0

‖ξ(s)‖ds

≤ C ′|t− t0|

since for |t− t0| sufficiently small, exponentiation is Lipschitz.

Solution 8.2. We would like to compute the coefficients of the product
(XaHbY r)(XsHcY d) once it is rewritten in the PBW basis by repeatedly
applying the relations XY − Y X = εH , HX = XH , and HY = Y H .
Check by induction that

Y rXs =
∞∑

n=0

εn(−1)nn!

(
r

n

)(
s

n

)

Xr−nH lY s−n.

It follows that pI,Jn is zero unless I = (Y, . . . , Y ) and J = (X, . . . , X), in

which case pI,Jn = (−1)n

n!
Hn.
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Solution 9.3. We have [a, b]h :=
∑∞

n=0 h
nmn(a, b), where m0(a, b) =

[a, b]. Now we compute

[a, [b, c]h]h = [a,
∑

l≥0

hlml(b, c)]h

=
∑

l≥0

hl
∑

k≥0

hkmk(a,ml(b, c))

=
∑

N≥0

hNmk(a,mN−k(b, c)) (N = k + l)

Adding the cyclic permutations and looking at the coefficient of hN , we
get the desired result.

Solution 11.1. [g,Dg] ⊆ [g, g] = Dg, so Dg is an ideal.

Solution 11.2. [G,G] is normal because r[g, h]r−1 = [rgr−1, rhr−1]. To
see that [G,G] is connected, let γgh : [0, 1] → G be a path from g to h.
Then t 7→ gγ(t)g−1γ(t)−1 is a path in [G,G] from the identity to [g, h].
Since all the generators of [G,G] are connected to e ∈ G by paths, all of
[G,G] is connected to e.

Now we show that the Lie algebra of [G,G] is Dg. Consider the Lie
algebra homomorphism π : g → g/Dg. Since G is simply connected,
Theorem 4.4 says there is a Lie group homomorphism p : G→ H lifting
π.

Dg // g π //

exp

��

g/Dg

exp

��

[G,G] // G
p

// H ∼= Rn

where H is the simply connected Lie group with Lie algebra g/Dg. Note
that the Lie algebra of the kernel of p must be contained in ker π = Dg.
Also, g/Dg is abelian, so H is abelian, so [G,G] is in the kernel of p.
This shows that Lie([G,G]) ⊆ Dg.

To see that Dg ⊆ Lie([G,G]), assume that g ⊆ gl(V ). Then for
X, Y ∈ g consider the path γ(t) = exp(X

√
t) exp(Y

√
t) exp(−X

√
t) exp(−Y

√
t)

in [G,G]:

γ(t) =

(

1 +X
√
t+

1

2
X2t+ · · ·

)(

1 + Y
√
t+

1

2
Y 2t+ · · ·

)

×
(

1 −X
√
t+

1

2
X2t+ · · ·

)(

1 − Y
√
t+

1

2
Y 2t+ · · ·

)

= 1 +
√
t(X + Y −X − Y )+

t(XY −X2 −XY − Y X − Y 2 +X2 + Y 2) + · · ·
= 1 + t[X, Y ] +O(t3/2)
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So γ′(0) = [X, Y ]. This shows that [G,G] is a connected component of
the kernel of p.

Since [G,G] is a connected component of p−1(0), it is closed in G.

Solution 11.3. Let π : g → g/rad g be the canonical projection, and
assume a ∈ g/rad g is solvable. Then Dka = 0 for some k, so Dkπ−1(a) ⊆
rad g. Since rad g is solvable, we have that DNπ−1(a) = 0 for some N .
By definition of rad g, we get that π−1(a) ⊆ rad g, so a = 0 ⊆ g/rad g.
Thus, g/rad g is semisimple.

Solution 12.1. An invariant form B induces a homomorphism g → g∗.
Invariance says that this homomorphism is an intertwiner of representa-
tions of g (with the adjoint action on g and the coadjoint action on g∗).
Since g is simple, these are both irreducible representations. By Schur’s
Lemma, any two such homomorphisms must be proportional, so any two
invariant forms must be proportional.

Solution 12.2. Done in class.

Solution 12.3. yuck.

Solution 12.4. The complex for computing cohomology is

0 −→ k
d0−−→ Hom(sl2, k)

d1−−→ Hom(Λ2sl2, k)
d2−−→ Hom(Λ3sl2, k) −→ 0

c 7−→ dc(x) = −x · c = 0
f 7−→ df(x, y) = f([x, y])

α 7→ dα(x, y, z) = α([x, y], z) − α([x, z], y)
+α([y, z], x)

We have that ker d1 = k, so H0(sl2, k) = k. The kernel of d1 is zero,
as we computed in Remark 12.11. Since Hom(sl2, k) and Hom(Λ2sl2, k)
are both three dimensional, it follows that d1 is surjective, and since the
kernel of d2 must contain the image of d1, we know that d2 is the zero
map. This tells us that H1(sl2, k) = 0, H2(sl2, k) = 0, and H3(sl2, k) =
Hom(Λ3sl2, k) ∼= k.

Solution 12.5. Let D ∈ Der(g) and let X, Y ∈ g. Then

[D, adX ]Der(g)(Y ) = D([X, Y ]) − [X,D(Y )]

= [D(X), Y ] + [X,D(Y )] − [X,D(Y )]

= adD(X)(Y ).
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Solution 13.1. Let x ∈ h, so [x, h] = 0. Since adxn is a polynomial in
adx, we get that [xn, h] = 0, so xn ∈ h. Thus, it is enough to show that
any nilpotent element in h is zero (then x = xs+xn = xs is semisimple).
We do this using property 4, that the Killing form is non-degenerate on h.
If y ∈ h, then B(xn, y) = tr(adxn◦ady). By Proposition 13.6, h is abelian,
so [xn, y] = 0, so adxn commutes with ady. Thus, we can simultaneously
upper triangularize adxn and ady by Engel’s theorem. Since adxn is
nilpotent, it is strictly upper triangular so tr(adxn ◦ ady) = 0. So xn = 0
by non-degeneracy of B.

Solution 13.2. Since ∆ is a finite set in h∗, we can find some h ∈
h so that α(h) 6= β(h) for distinct roots α and β. Then this h is a
regular element which gives the right Cartan subalgebra, and the desired
properties follow from the properties on page 64.

Solution 13.3. If ∆ does not span h∗, then there is some non-zero h ∈ h

such that α(h) = 0 for all α ∈ ∆. This means that all of the eigenvalues
of adh are zero. Since h is semisimple, adh = 0. And since ad is faithful,
we get h = 0, proving property 1.

To prove 2, consider the α-string through β. It must be of the form
gβ+nα ⊕ gβ+(n−1)α ⊕ · · · ⊕ gβ+mα for some integers n ≥ 0 ≥ m. From the
characterization of irreducible finite dimensional representations of sl2,
we know that each eigenvalue of Hα is an integer, so β(Hα) = r ∈ Z
(since [Hα, Xβ] = β(Hα)Xβ). We also know that the eigenvalues of
Hα are symmetric around zero, so we must have −r = (β + sα)(Hα)
for some s for which gβ+sα is in the α-string through β. Then we get
β(Hα) + sα(Hα) = β(α) + 2s = −r = −β(α), from which we know that
s = −β(Hα). Thus, gβ−β(Hα)α 6= 0, so β −

(
β(Hα)

)
α is a root.

Finally, we prove 3. If α and β = cα are roots, then by property
2, we know that α(Hβ) = 2/c and β(Hα) = 2c are integers (note that
Hβ = Hα/c). It follows that c = ±1

2
,±1, or ±2. Therefore, it is enough

to show that α and 2α cannot both be roots. To see this, consider the α-
string through 2α. We have that [Hα, X2α] = 2α(Hα)X2α = 4X2α, so the
α-string must have a non-zero element [Yα, X2α] ∈ gα, which is spanned
by Xα. But then we would have that X2α is a multiple of [Xα, Xα] = 0,
which is a contradiction.

Solution 14.1. If ∆ is reducible, with ∆ = ∆1 ∪ ∆2, then set h∗
i to be

the span of ∆i, and set gi = hi ⊕
⊕

α∈∆i
gα (for i = 1, 2). Then we have

that g = g1⊕g2 as a vector space. We must check that g1 is an ideal (the
by symmetry, g2 will also be an ideal). From the relation [gα, gβ] ⊆ gα+β ,
we know that it is enough to check that for α ∈ ∆1,

[gα, g−α] ⊆ h1, and (1)

[gα, h2] = 0. (2)
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Letting β ∈ ∆2, we have that β([Xα, Yα]) = β(Hα) = 2(α,β)
(β,β)

= 0 because
∆1 and ∆2 are orthogonal; 1 follows because ∆2 spans the orthogonal
complement of h1 in h. Similarly, we have [Xα, Hβ] = α(Hβ)Xα = 0; 2
follows because the Hβ span h2.

Conversely, if g = g1 ⊕ g2 as a Lie algebra, then take root decom-
positions g1 = h1 ⊕

⊕

α∈∆1
gα and g2 = h2 ⊕

⊕

β∈∆2
gβ, with respect to

regular elements h1 ∈ h1 and h2 ∈ h2. Then for x1 ∈ g1 and x2 ∈ g2, we
have that [h1 + h2, x1 + x2] = [h1, x1] + [h2, x2]; it follows that h1 + h2

is a regular element in g. The Cartan given by this element is clearly
h1 ⊕ h2. If x ∈ gα ⊆ g1, then we have [h1 + h2, x] = α(h1)x + 0, so α
is a root. Similarly, each β ∈ ∆2 is a root. Since we have accounted
for all the root spaces of g1 and of g2, we have a root decomposition
g = (h1 ⊕ h2) ⊕

⊕

α∈∆1
gα ⊕

⊕

β∈∆2
gβ. This shows that ∆ = ∆1 ∪ ∆2.

Solution 14.2. Note that AdSα = exp(adXα) exp(−adYα) exp(adXα). If
h ∈ h, then adXαh = −α(h)Xα and adXαadXα(h) = α(h)adXα(Xα) = 0.
Using the power series expansion for exp, we get that

exp(adXα)(h) = h− α(h)Xα.

Similarly, we apply exp(−adYα) to the result

exp(−adYα)
(
h−α(h)Xα

)

= h− α(h)Yα − α(h)
(
Xα − [Yα, Xα]

︸ ︷︷ ︸
−Hα

+
1

2
[Yα, [Yα, Xα]]
︸ ︷︷ ︸

− 1
2
α(Hα)Yα=−Yα

+0
)

= h− α(h)(Xα +Hα)

and then apply exp(adXα)

exp(adXα)
(
h−α(h)(Xα +Hα)

)

= h− α(h)Xα − α(h)
((
Xα + 0

)
+
(
Hα − α(Hα)Xα + 0

))

= h− α(h)Hα.

This shows that AdSα(h) = h. For λ ∈ h∗, we get

〈rα(λ), h〉 = λ(h) − 2(λ, α)

(α, α)
α(h)

= λ(h) − 2λ(Hα)

α(Hα)
α(h) (using Equation 14.2)

= λ
(
h− α(h)Hα

) (
α(Hα) = 2

)

= 〈λ,AdSα(h)〉.
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Solution 15.1. It is immediate to verify RS1 and RS3. One may check
that the proposed sets of simple roots are correct by checking that every
root can be written as a non-positive or non-negative integer combination
of the proposed simple roots. It is not hard to verify that the given root
systems satisfy rα(∆) = ∆ for each α ∈ ∆.

Finally, it is enough to verify RS2 in the case where β is a simple root.
Since every root is an integer sum of simple roots, it is enough to consider
the case where α is also a simple root. This amounts to checking that
the given number of lines between α and β is correct, which is relatively
straightforward (keeping in mind Warning 15.5).

Solution 16.1. It is enough to check that the proposed endomorphisms
of T (Y ) ⊗ Sh ⊗ T (X) satisfy (Ser1). Then the universal property g̃

(from Remark 16.2) and the universal property of U g̃ (from Proposition
7.1) tell us exactly that there is a unique algebra homomorphism U g̃ →
End

(
T (Y )⊗ Sh⊗ T (X)

)
such that Xi, Yi, and Hi act as described. We

get (Ser1a), (Ser1b), and (Ser1d) by construction. We need only check
that HiHj acts in the same way asHjHi. It is clear that HiHj(1⊗b⊗c) =
HjHi(1 ⊗ b⊗ c). Now we induct on the degree of a.

HiHj(Yka⊗ b⊗ c) = (HiYkHj − ajkHiYk)(a⊗ b⊗ c) (Ser1b)

= (YkHiHj − aikYkHj

− ajkYkHi + ajkaikYk)(a⊗ b⊗ c) (Ser1b)

= HjHi(Yka⊗ b⊗ c) (i, j symmetric)

This shows that the representation is well defined.

Solution 16.2. It is easy to check by induction that in U g̃,

HkX
r
i = Xr

iHk + rakiX
r
i , and

YkX
r
i = Xr

i Yk − rδik
(
Xr−1
i Hi + (r − 1)Xr−1

i

)
.

Since ad is a representation, it follows that

[Hk, θ
+
ij ] = adHk

ad
1−aij

Xi
Xj

= ad
1−aij

Xi
adHk

Xj + (1 − aij)akiad
1−aij

Xi
Xj

= (akj + aki − aijaki)θ
+
ij

[Yk, θ
+
ij ] = ad

1−aij

Xi
[Yk, Xj] = 0 (if k 6= j)

[Yj, θ
+
ij ] = ad

1−aij

Xi

−Hj
︷ ︸︸ ︷

[Yj, Xj]−(1 − aij)ad
−aij

Xi

aijXj
︷ ︸︸ ︷

[Hi, Xj]

+ (1 − aij)aijad
−aij

Xi
Xj

= ajiad
−aij

Xi
Xi

which is zero if aij = aji = 0, and is zero if aij < 0.
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Solution 17.1. It is enough to show that each basis vector of Λ3E is
in the orbit of ω. Let pu, pv, and p1 be the projections onto span{u},
span{v1, v2, v3}, and span{v1, w1} respectively. For x, y ∈ S := {u, v1, v2, v3, w1, w2, w3},
let φx→y be the element of gl(7) sending x to y, and sending the rest of
S to zero. Then a little messing around produces

x x · ω x x · ω
1
3
(pv − pu) v1 ∧ v2 ∧ v3 φv1→u u ∧ v2 ∧ v3

1
2
p1 + 1

2
pu − 1

6
Id u ∧ v1 ∧ w1 φw1→w2 u ∧ v1 ∧ w2

φv3→w1 + φw2→u v1 ∧ v2 ∧ w1 φv3→w3 v1 ∧ v2 ∧ w3

Any other basis vector can be obtained from one of these (up to a sign)
by permuting indices and/or swapping v’s and w’s, so we can get all of
them.1

Solution 18.1. Every regular semisimple element is in some Cartan
subalgebra; namely, the Cartan subalgebra of elements that commute
with it. We will show that regular semisimple elements are dense in g.

Choose a basis for g, which gives you a corresponding basis for gl(g).
Say g has rank r. Let I be an indexing set so that for a matrix A ∈ gl(g),
the set {Mγ(A)}γ∈I is the set of all (n − r) × (n − r) minors of A.
Define fγ : g → k by fγ(x) = det

(
Mγ(adx)

)
. Since ad is linear, fγ is a

polynomial map for each γ. Now consider union of all of the zero sets
of all of the fγ . This is a Zariski closed set, so its complement in g is a
Zariski open set. Since g has a regular element (a semisimple element h,
where adh is rank n−r), that open set is non-empty, and since g ∼= Adimg

is irreducible, this set is dense.

Solution 18.2.

Solution 18.3. It is not hard to set up a recursive calculation with
the numbers in the hint. Alternatively, note that the Kostant partition
function tells us exactly that

chM(λ) = eλ
∏

α∈∆+

(1 + e−α + e−2α + · · · )

= eλ
∏

α∈∆+

(1 − e−α)−1.

You can easily (have your computer) compute the coefficients of this
power series. For example, to compute the character of a Verma

1Since ω is not quite invariant under permutations of the indices or swapping
of v’s and w’s, you sometimes have to tweak a sign (e.g. to get w1 ∧ w2 ∧ v1, take
x = φw3→v1

− φv2→u).
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module of G2, I think of eα1 as x and of eα2 as y. Then the following
Mathematica code returns the first 144 multiplicities.
Nmax = 12;

mySeries=Series[

((1-x)(1-y)(1- x y)(1- x^2 y)(1- x^3 y)(1- x^3 y^2))^(-1),

{x,0,Nmax},{y,0,Nmax}];

TableForm[Table[SeriesCoefficient[

mySeries,{i,j}],{i,0,Nmax},{j,0,Nmax}]]

Solution 20.1. Since G is abelian, g is the abelian Lie algebra Rn,
whose simply connected Lie group is Rn. Thus, G is a quotient of Rn by
a discrete subgroup (i.e. a lattice). Since G is compact, this lattice must
be full rank, so G ∼= Tn.

Solution 20.2. Consider the representation G → End(ΛtopTeG) ≃
End(R) = R× given by h 7→ ΛtopAdh. Since G is compact, its image
must also be compact, but the only compact subgroups of R× are {1}
and {±1}.

If G is connected, the image must be {1}, so the adjoint action on
ΛtopTeG is trivial. It follows that R∗

hωe = L∗
hωe = ωh, i.e. that ω is right

invariant.
If G is not connected, then we may have R∗

hωe = −ωh. That is, the
left invariant form agrees with the right invariant form up to sign. Since
the volume form determines the orientation, changing it by a sign does
not change the measure.

Solution 23.1. In H , the norm of any non-zero vector is 1. It is
immediate to check that the reflection of a non-zero vector v through
another non-zero vector u is

ru(v) =

{

u if u = v

v + u if u 6= v

so reflection through a non-zero vector fixes that vector and swaps the
two other non-zero vectors. Thus, the reflection in H generate the sym-
metric group on three elements S3, acting on the three non-zero vectors.

If u and v are non-zero vectors, then (u, v) ∈ H ⊕ H has norm
1 + 1 = 0, so one cannot reflect through it. Thus, every reflection in V
is “in one of the H ’s,” so the group generated by reflections is S3 × S3.
However, swapping the two H ’s is clearly an orthogonal transformation,
so reflections do not generate OV (F2).
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Bold page numbers indicate that the index entry was defined, used in a
theorem, or proven on that page. Italic page numbers indicate that the
index entry was exemplified or used in an example on that page. If the
index entry is a result, then the page number is bold only for the pages
on which the result is proven.

adjoint representation, 8, 30, 42,
56, 96

Ado’s Theorem, 8
α-string, 68, 85
An

and sln+1, 74
antipode, 24

b, 51
Baker-Campbell-Hausdorff, 14
bialgebra, 25
Bn

and sp(2n), 82
construction of, 80

Borcherds, Richard E., 4, 118–186
Bott periodicity, 132

cardboard denominator, see Weyl
denominator

Cartan, 115, 163, 170
criterion, 58
decomposition, 65
formula, 44
involution, 116
matrix, 85
subalgebra, 65, 69
subgroup, 72

Casimir operator, 59, 107, 178
central extension, 47, 48, 153
character, 98
ch V , see character
Clifford algebra, 126
Clifford groups, 133
Cn

and so(2n+ 1), 82

construction of, 80
cohomology

Hochschild, 7
of Lie algebras, 41

compact groups, 114
Complete reducibility, see Weyl’s

Theorem
comultiplication, 24
connected, 119
coroot, 70
counit, 24
covering map, 19
Coxeter diagram, 78
Coxeter group, 70

d, 51
Danish, 24
deformation

of a Lie algebra, 46
deformations

of associative algebras, 35
derived series, 51
Dn

and so(2n), 82
construction of, 80

dual pairing, 26
Dynkin diagram, 77

E8

construction of, 81
Engel’s Theorem, 65
Engel’s Theorem, 52, 190
exponential map, 13

F4
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construction of, 81
fermions, 120
filtered space, 31

gl∞, 48
gl(n), 7, 51, 112
Gram-Schmidt, 123
Guage groups

idxbf, 124

Heisenberg algebra, 36, 67
Heisenberg group, 122
Hopf Algebras, 24
Hopf ideal, 28

invariant form, 56
Iwasawa decomposition

idxbf, 123

Jacobi identity, 6
joke, 198
Jordan decomposition, 57

absolute, 63, 64
under the adjoint representa-

tion, 57

Kac-Moody algebra, 48
Kazhdan-Luztig multiplicities, 108
Killing form, 56
Knutson, Allen, 4
Kontsevitch, Maxim, 38
Kostant partition function, 101

LATEX, 4
length, 75
Lie algebra

free, 86
Lie algebra, 6

of a Lie group, 9
Lie algebra cohomology, 41
Lie derivative, 7
Lie group, 6
Lie ideal, 9
Lie’s Theorem, 53
loop algebra, 48

loop space, 48
lower central series, 51

metaplectic group, 123
minuscule representation, 104

nilpotent, 51
element, 64
group, 118

one-parameter subgroup, 13
orthogonal group

not generated by reflections,
135

PBW, 34, 86, 99–101
Poincaré-Birkhoff-Witt, see PBW

quadratic form, 127

rank, 66, 71
real form, 6, 115, 119

compact, 115
reductive, 112, 115
regular element, 64
representations, 29
Reshetikhin, Nicolai, 4, 6–49
root, 65

lattice, 99
positive, 74
simple, 74

properties of, 74–75
root space, 65
root decomposition, 65
root system

abstract, 71
dual, 81
irreducible, 71

Schur polynomial, 113
semisimple, 55

element, 64
Serganova, Vera, 4, 50–117
Serre relations, 85, 102
Serre’s Theorem, 82, 85–89
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sl(2), 66, 67
sl(3), 66, 96
sl(n), 64, 104, 110
so(2n), 82
so(2n+ 1), 82
solvable, 51

group, 118
sp(2n), 82
spinor norm, 134
star product, 37
SU(n), 114
super Brauer group, 132
super Morita equivalence, 130
superalgebra, 128
symmetric space, 170

transvections, 136
triality, 92

unipotent group, 118
unitary trick, 62
universal cover, 20
universal enveloping algebra, 27–

35
upper triangular, see b

useful facts about solvable and nilpo-
tent Lie algebras, 51–52

Vandermonde determinant, 112
variety of Lie algebras, 7
Verma module, 100–109
Virasoro algebra, 124

weight, 96
dominant integral, 99
fundamental, 104
highest, 99
lattice, 99

weight decomposition, 96
properties of, 96–97

weight space, 96
Weyl chamber, 99
Weyl character formula, 105–113
Weyl denominator, 106

Weyl dimension formula, 110
Weyl group, 72–76
Weyl vector, 106
Weyl’s Theorem, 62
Whitehead’s Theorem, 59
wreath product, 121

Zariski open set, 69, 193
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