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How these notes came to be

Among the Berkeley professors, there was once Allen Knutson, who
would teach Math 261. But it happened that professor Knutson was
on sabbatical at UCLA, and eventually went there for good. During this
turbulent time, Maths 261AB were cancelled two years in a row. The
last of these four semesters (Spring 2006), some graduate students gath-
ered together and asked Nicolai Reshetikhin to teach them Lie theory in
a giant reading course. When the dust settled, there were two other pro-
fessors willing to help in the instruction of Math 261A, Vera Serganova
and Richard Borcherds. Thus Tag Team 261A was born.

After a few lectures, professor Reshetikhin suggested that the stu-
dents write up the lecture notes for the benefit of future generations.
The first four lectures were produced entirely by the “editors”. The re-
maining lectures were I¥XTpXed by Anton Geraschenko in class and then
edited by the people in the following table. The columns are sorted by
lecturer.

Nicolai Reshetikhin Vera Serganova Richard Borcherds
1 Anton Geraschenko 11 Sevak Mkrtchyan 21  Hanh Duc Do
2 Anton Geraschenko 12 Jonah Blasiak 22 An Huang
3 Nathan George 13 Hannes Thiel 23 Santiago Canez
4  Hans Christianson 14 Anton Geraschenko 24 Lilit Martirosyan
5 Emily Peters 15 Lilit Martirosyan 25  Emily Peters
6 Sevak Mkrtchyan 16 Santiago Canez 26  Santiago Canez
7 Lilit Martirosyan 17 Katie Liesinger 27 Martin Vito-Cruz
8  David Cimasoni 18 Aaron McMillan 28 Martin Vito-Cruz
9  Emily Peters 19  Anton Geraschenko 29 Anton Geraschenko
10  Qingtau Chen 20 Hanh Duc Do 30 Lilit Martirosyan

31 Sevak Mkrtchyan

Richard Borcherds then edited the last third of the notes. The notes
were further edited (and often expanded or rearranged) by Crystal Hoyt,
Sevak Mkrtchyan, and Anton Geraschenko.

Send corrections and comments to anton@math.berkeley.edu.


mailto:anton@math.berkeley.edu
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Dependence of results and other informa-
tion

Within a lecture, everything uses the same counter, with the exception
of exercises. Thus, item a.b is the b-th item in Lecture a, whether it is
a theorem, lemma, example, equation, or anything else that deserves a
number and isn’t an exercise.
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Lecture 1

Definition 1.1. A Lie group is a smooth manifold G with a group
structure such that the multiplication u : G x G — G and inverse map
t: G — G are smooth maps.

» Exercise 1.1. If we assume only that p is smooth, does it follow that
¢ is smooth?

Example 1.2. The group of invertible endomorphisms of C", GL,(C),
is a Lie group. The automorphisms of determinant 1, SL,(C), is also a
Lie group.

Example 1.3. If B is a bilinear form on C”, then we can consider the
Lie group

{A € GL,(C)|B(Av, Aw) = B(v,w) for all v,w € C"}.

If we take B to be the usual dot product, then we get the group O, (C).

If we let n = 2m be even and set B(v,w) = v” (_{ ') w, then we get

Sp2m(c)'

Example 1.4. SU, C SL,(C) is a real form (look in lectures 27,28, and
29 for more on real forms).

Example 1.5. We’d like to consider infinite matrices, but the multi-
plication wouldn’t make sense, so we can think of GL, C GL,; via
A — (49), then define GL as |J, GL,. That is, invertible infinite
matrices which look like the identity almost everywhere.

Lie groups are hard objects to work with because they have global
characteristics, but we’d like to know about representations of them.
Fortunately, there are things called Lie algebras, which are easier to work
with, and representations of Lie algebras tell us about representations of
Lie groups.

Definition 1.6. A Lie algebra is a vector space V equipped with a Lie
bracket [, ]:V x V — V' which satisfies

1. Skew symmetry: [a,a] =0 for all a € V| and
2. Jacobi identity: [a, [b, ¢]] +[b, [c, a]] + ¢, [a,b]] = 0 for all a,b,c € V.

A Lie subalgebra of a Lie algebra V' is a subspace W C V which is closed
under the bracket: [W, W] C W.
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Example 1.7. If A is a finite dimensional associative algebra, you can
set [a,b] = ab — ba. If you start with A = M, the algebra of n x n
matrices, then you get the Lie algebra gl,. If you let A C M, be the
algebra of matrices preserving a fixed flag Vo C V) C ---V;, C C”, then
you get parabolicindexparabolic subalgebras Lie sub-algebras of gl,,.

Example 1.8. Consider the set of vector fields on R", Vect(R™) = {¢ =
Y€t (x) 52| [01, la] = €1 0y — £y 0 (1}

» Exercise 1.2. Check that [(1,¢5] is a first order differential operator.

Example 1.9. If A is an associative algebra, we say that 0 : A — A is
a derivation if d(ab) = (0a)b + adb. Inner derivations are those of the
form [d, -] for some d € A; the others are called outer derivations. We
denote the set of derivations of A by D(A), and you can verify that it is
a Lie algebra. Note that Vect(R™) above is just D(C*°(R™)).

The first Hochschild cohomology, denoted H'(A, A), is the quotient
D(A)/{inner derivations}.

Definition 1.10. A Lie algebra homomorphism is a linear map ¢ : L —
L’ that takes the bracket in L to the bracket in L', ie. ¢([a,b];) =
[6(a), p(b)]. A Lie algebra isomorphism is a morphism of Lie algebras
that is a linear isomorphism.'

A very interesting question is to classify Lie algebras (up to isomor-
phism) of dimension n for a given n. For n = 2, there are only two: the
trivial bracket [ , ] = 0, and [e1,e3] = es. For n = 3, it can be done
without too much trouble. Maybe n = 4 has been done, but in general,
it is a very hard problem.

If {e;} is a basis for V, with [e;, ;] = cfjep (the ¢f; are called the
structure constants of V), then the Jacobi identity is some quadratic
relation on the cfj, so the variety of Lie algebras is some quadratic surface
in C*".

Given a smooth real manifold M"™ of dimension n, we can construct
Vect(M™), the set of smooth vector fields on M"™. For X € Vect(M"),
we can define the Lie derivative Ly by (Lx - f)(m) = X, f, so Lx acts
on C*°(M™) as a derivation.

» Exercise 1.3. Verify that [Ly, Ly]| = Lxo Ly — Ly o Lx is of the form
Lz for a unique Z € Vect(M™). Then we put a Lie algebra structure on
Vect(M™) = D(C*(M™)) by [X,Y] = Z.

'The reader may verify that this implies that the inverse is also a morphism of
Lie algebras.
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There is a theorem (Ado’s Theorem?) that any Lie algebra g is iso-
morphic to a Lie subalgebra of gl,, so if you understand everything about
gl,,, you're in pretty good shape.

ZNotice that if g has no center, then the adjoint representation ad : g — gl(g) is
already faithful. See Example 7.4 for more on the adjoint representation. For a proof
of Ado’s Theorem, see Appendix E of | ]
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Lecture 2

Last time we talked about Lie groups, Lie algebras, and gave examples.
Recall that M C L is a Lie subalgebra if [M, M] C M. We say that M
is a Lie ideal if [M, L] C M.

Claim. If M is an ideal, then L/M has the structure of a Lie algebra
such that the canonical projection is a morphism of Lie algebras.

Proof. Take Iy, € L, check that [I; + M,ly + M] C [l3,1s] + M. d
Claim. For ¢ : L1 — Lo a Lie algebra homomorphism,

1. ker ¢ C Ly is an ideal,

2. im ¢ C Ly 1s a Lie subalgebra,

3. Li/ker ¢ 2 im ¢ as Lie algebras.

» Exercise 2.1. Prove this claim.

Tangent Lie algebras to Lie groups

Let’s recall some differential geometry. You can look at | | as a
reference. If f: M — N is a differentiable map, then df : TM — TN is
the derivative. If G is a group, then we have the maps [, : * — gz and
rq 1 ¢ +— xg. Recall that a smooth vector field is a smooth section of the
tangent bundle TM — M.

Definition 2.1. A vector field X is left invariant if (dl;) o X = X o],
for all g € G. The set of left invariant vector fields is called Vecty (G).

dly
TG—TG

X]l [

G—2-@q
Proposition 2.2. Vecty(G) C Vect(G) is a Lie subalgebra.

Proof. We get an induced map [} : C*(G) — C®(G), and X is left
invariant if and only if Ly commutes with [f.. Then
X, Y left invariant <= [Lyx, Ly| invariant <= [X, Y] left invariant. [

All the same stuff works for right invariant vector fields Vectg(G).

Definition 2.3. g = Vect(G) is the tangent Lie algebra of G.
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Proposition 2.4. There are vector space isomorphisms Vecty (G) ~ T,.G
and Vectr(G) ~ T.G. Moreover, the Lie algebra structures on T.G in-
duced by these isomorphisms agree.

Note that it follows that dim g = dim G.

Proof. Recall fibre bundles. dl, : T.G = T,G,s0 TG ~T, xG. X is a
section of T'G:, so it can be thought of as X : G — T.G, in which case
the left invariant fields are exactly those which are constant maps, but
the set of constants maps to T.G is isomorphic to T,G. O

If G is an n dimensional C¥ Lie group, then g is an n dimensional
Lie algebra. If we take local coordinates near ¢ € G to be zt,..., 2" :
U. — R™ with m : R" x R" — R" the multiplication (defined near 0).
We have a power series for m near 0,

m(z,y) = Ar + By + ao(z,y) + az(z,y) + - -

where A, B : R®” — R"™ are linear, «; is degree i. Then we can consider
the condition that m be associative (only to degree 3): m(x,m(y, z)) =

m(m(z,y), z)-

m(z,m(y,z)) = Az + Bm(y, 2) + az(z,m(y, 2)) + as(z,m(y, z)) + -
= Az + B(Ay + Bz + az(y, 2) + as(y, 2)))
+ as(z, Ay + Bz + as(y, 2)) + as(x, Ay + Bz)

m(m(z,y),z) =

Comparing first order terms (remember that A, B must be non-singular),
we can get that A = B = I,,. From the second order term, we can get
that s is bilinear! Changing coordinates (¢(z) = z+¢a(z) +p3(x)+- - -,
with ¢~ 1(z) = & — ¢o(x) + d3(x) + - -+ ), we use the fact that my(z,y) =
¢ 'm(¢x, ¢y) is the new multiplication, we have

my(w,y) = v +y+ (P2(2) + d2(y) + d2(x +y)) + oz, y) +- -

J

Vv
can be any symm form

so we can tweak the coordinates to make ay skew-symmetric. Looking
at order 3, we have

as(z, sy, 2)) + as(z,y + 2) = ag(as(x,y), 2) + as(z +y,2)  (2.5)

» Exercise 2.2. Prove that this implies the Jacobi identity for as. (hint:
skew-symmetrize equation 2.5)

Remarkably, the Jacobi identity is the only obstruction to associativ-
ity; all other coefficients can be eliminated by coordinate changes.
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Example 2.6. Let G be the set of matrices of the form (“ b ) for a,b

0a?
real, a > 0. Use coordinates x,y where e* = a, y = b, then

!

m((z,y), (@' y)) = (@ + 2", ey +ye ™)
=(@+ay+y + (@ -2y +---).
k
The second order term is skew symmetric, so these are good coordinates.

There are H, E € T,G corresponding to x and y respectively so that
[H,E] = E".

» Exercise 2.3. Think about this. If a,b commute, then e%’ = **?,
If they do not commute, then e%e’ = ef(@Y . Compute f(a,b) to order 3.

lwhat does this part mean?
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Lecture 3
Last time we saw how to get a Lie algebra Lie(G) from a Lie group G.
Lie(G) = Vect(G) ~ Vectg(G).

Let 2!, ..., 2" be local coordinates near e € G, and let m(z,y)® be
the i'" coordinate of (x,y) — m(x,y). In this local coordinate
system, m(x,y)" = o' +y' + 33yt 4. I ey, . e, € TG
is the basis induced by z!, ..., 2", (e; ~ 0;), then

k

lei, e;] = CijCk-
k

Example 3.1. Let G be GL,, and let (g;;) be coordinates. Let X :
GL, — TGL, be a vector field.

=2 %00

89,]
. | ly:g—hg
, where Lx (I;(f))(g) = { lg(f) g) = f(h_lg) }
df(h~ g) O(h™'g)m Of (x)
= ZX” 09y ;Xij(g) 9gi; 0wyl s
o h—l 0 m —
- <% = 207 0em g, = ()
B 1y, OF
2 Xij(9) (™ )i Dar, lo=n-1
0
= Z Z(h_l)kiX (g )) axf]‘:v h=1g
ik \ i

If we want X to be left invariant, >, (h™ ")k X;;(g) = Xi;j(h™'g), then
Lx((f) =Li(Lx(f)), (left invariance of X).

Example 3.2. All solutions are X;;(g) = (g - M);;, M-constant n x n
matrix. gives that left invariant vector fields on GL,, = n X n matrices
= gl,. The “Natural Basis” is e;; = (Ei;), Lij = Y., (§)mj 52

M) Ogmi

Example 3.3. Commutation relations between L;; are the same as com-
mutation relations between e;;.
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Take 7 € T.G. Define the vector field: v, : G — TG by v.(g) =
dl,(7), where [, : G — G is left multiplication. v, is a left invariant
vector field by construction.

Consider ¢ : [ — G, 20 — 4 _(4(t)), ¢(0) = e.
Proposition 3.4.

1. ¢(t+s) = o(t)o(s)

2. ¢ extends to a smooth map ¢ : R — G.
Proof. 1. Fix s and a(t) = ¢(s)o(t), B(t) = ¢(s + t).
a(0) = ¢(s) = B(0)
di’ = Bt — o (B(1)

— Aol — d((5)g(t)) = dlgie) - (0(1)) = v (0()(1)) = vr((t)),

where the second equality is because v, is linear.

— « satisfies same equation as 3 and same initial conditions, so
by uniqueness, they coincide for |t]| < e.

2. Now we have (1) for [t + s| <€, |t| <e¢, |s| < e. Then extend ¢ to
|t] < 2¢e. Continue this to cover all of R.
U

This shows that for all 7 € T.G, we have a mapping R — G and it’s
image is a 1-parameter (1 dimensional) Lie subgroup in G.

exp:g=T1T.G — G
T — ¢ (1) =exp(7)

Notice that A7 — exp(A7) = ¢ (1) = ¢ ()
Example 3.5. GL,, 7 € gl, = T.GL,, “9 = v (4(t)) € TyGL, =~

gl,.
w(00) = 0(0) -7, P = o1y 7 9(0) = 1,

o(t) = exp(th) = Y 2T
n=0 ’

exp: gl, = GL,

d

Lol 1)) = GO0l



Lecture 3 14

Baker-Campbell-Hausdorff formula:

X LY = JHXY)
1 1
HXY) =X+ Y+ [X Y]+ S (XX Y+ VY, X]) +- -
sym —— ~~ ~

skew symmetric

Proposition 3.6. 1. Let f : G — H be a Lie group homomorphism,

then the diagram G N . H 18 commutative.

oxpT Toxp

Lie(G) ~2< Lie(H)

2. If G is connected, then (df). defines the Lie group homomorphism
f uniquely.

Proof. Next time. O

Proposition 3.7. G, H Lie groups, G simply connected, then « : Lie(G) —
Lie(H) is a Lie algebra homomorphism if and only if there is a Lie group
homomorphism A : G — H lifting a.

Proof. Next time. O

{Lie algebras } <% { Lie groups(connected, simply connected)} is
an equivalence of categories.
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Lecture 4

Theorem 4.1. Suppose G is a topological group. Let U C G be an open
neighbourhood of e € G. If G is connected, then

G:UU".

n>1

Proof. Choose a non-empty open set V C U such that V = V!, for
example V = U NU"!. Define H = U, V", and observe H is an
abstract subgroup, since V*V™ C V"™  H is open since it is the union
of open sets. If 0 ¢ H, then cH ¢ H, since otherwise if hy,hy € H
satisfy ohy = ho, then ¢ = hghl_l € H. Thus H is a complement of
the union of all cosets not containing H. Hence H is closed. Since G is
connected, H = G. O

Theorem 4.2. Let f : G — H be a Lie group homomorphism. Then
the following diagram commutes:

(df)e T.H

T,
oxpl lexp
f
G—H

Further, if G is connected, (df). determines f uniquely.

Proof. 1) Commutative diagram. Fix 7 € T,G and set n = df.7 € T.H.
Recall we defined the vector field V;(g) = (dl,)(7), then if ¢(¢) solves

d
D = V(o) € T G,

we have exp(7) = ¢(1). Let ¢ solve

ay
2 = Val()

so that exp(n) = ¥(1). Observe ¥(t) = f(4(t)) satisfies
di do .
&= () =,

so by uniqueness of solutions to ordinary differential equations, 1) = .
2) Uniqueness of f. The exponential map is an isomorphism of a

neighborhood of 0 € g and a neighborhood of e € G. But if G is

connected, G = U,>1(nbd e)". O
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Theorem 4.3. Suppose G is a topological group, with G° C G the con-
nected component of e. Then 1) G° is normal and 2) G/G° is discrete.

Proof. 2) G° C G is open implies pr~*([e]) = eGP is open in G, which in
turn implies pr~'([g]) € G/G" is open for every g € G. Thus each coset
is both open and closed, hence G/G" is discrete.

1) Fix g € G and consider the map G — G defined by z — gxg~'.
This map fixes e and is continuous, which implies it maps G into G°.
In other words, gG%g~! C G°, or G is normal. O

We recall some basic notions of algebraic topology. Suppose M is a
connected topological space. Let z,y € M, and suppose v(t) : [0,1] — M
is a path from z to y in M. We say 7(t) is homotopic to  if there is a
continuous map h(s,t) : [0,1]> — M satisfying

We call h the homotopy. On a smooth manifold, we may replace h with
a smooth homotopy. Now fix 2y € M. We define the first fundamental
group of M

m1 (M, xy) = { homotopy classes of loops based at ¢} .

It is clear that this is a group with group multiplication composition of
paths. It is also a fact that the definition does not depend on the base
point zq:

m (M, zo) ~ m (M, xy).

By (M) we denote the isomorphism class of w1 (M, ). Lastly, we say
M is simply connected if m (M) = {e}, that is if all closed paths can be
deformed to the trivial one.

Theorem 4.4. Suppose G and H are Lie groups with Lie algebras g, b
respectively. If G is simply connected, then any Lie algebra homomor-
phism p : g — b lifts to a Lie group homomorphism R : G — H.

In order to prove this theorem, we will need the following lemma.

Lemma 4.5. Let £ : R — g be a smooth mapping. Then

dg
pri (dly)(&(t))

has a unique solution on all of R with g(to) = go.
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For convenience, we will write g& := (dl,)(&).

Proof. Since g is a vector space, we identify it with R™ and for sufficiently
small 7 > 0, we identify B,.(0) C g with a small neighbourhood of e,
U(r) C G, under the exponential map. Here B,.(0) is measured with the
usual Euclidean norm || -||. Note for any g € U,(r) and |t —to| sufficiently
small, we have ||g&(t)|| < C. Now according to Exercise 4.1, the solution
with g(ty) = e exists for sufficiently small |t — ;| and

r

o

Now define h(t) = g(t)go so that h(t) € U,,(r) for |t —to| < r/C’. That
is, » and C” do not depend on the choice of initial conditions, and we
can cover R by intervals of length, say r/C". O

g(t) € Ue(r) V|t — to| <

» Exercise 4.1. Verify that there is a constant C” such that if |t —
is sufficiently small, we have

lg(@®)ll < C"It — tol.

Proof of Theorem 4.4. We will construct R : G — H. Beginning with
g(t) : [0,1] — G satistying ¢(0) = e, g(1) = g, define £(t) € g for each ¢
by

o(E(1) = S a(t).

Let n(t) = p(&(t)), and let h(t) : [0,1] — H satisfy

d
Dhie) = h(om(). h(o) =c.
Define R(g) = h(1).
Claim: h(1) does not depend on the path ¢(t¢), only on g.
Proof of Claim. Suppose gi(t) and go(t) are two different paths con-
necting e to g. Then there is a smooth homotopy g¢(¢,s) satisfying

g(tv 0) = gl(t>v g(tv 1) = 92(t>’ Define f(t, S) and n(tv S) by

dg _
a - g(ta S)§(t7 S),
0
oe = glts(t.s).
s
Observe
g o€
5o~ In° E+ 95 and (4.6)
g an
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and (4.6) is equal to (4.7) since g is smooth. Consequently

% el

ot 0s
Now define an s dependent family of solutions h(:, s) to the equations
oh
E(tv 8) = h’(tv 8)p(£(t7 S))7 h(ov S) = e

Define 6(t, s) by
(4.8)

ot 0Os

{ 0690 _ p¢).0).
0(0,s) = 0.

Observe 0(t, s) = p(n(t, s)) also satisfies equation (4.8), so that 6 = § by

uniqueness of solutions to ODEs. Finally,

%(1,3) =0,

%91 ) =0 — 0(1,5) =0 —> o

gn(l,s) = s

justifying the claim.
We need only show R : G — H is a homomorphism. Let ¢1,90 € G
and set g = g1g2. Let g;(t) be a path from e to g; in G for each i = 1,2.

Then the path g(t) defined by

_ o @(2t), 0<t < 4,
9t) = { g192(2t — 1), % <t<l1

goes from e to g. Let h; for i = 1,2 and h be the paths in H corresponding

to g1, go, and g respectively and calculate

R(g192) = R(g)
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Lecture 5

Last time we talked about connectedness, and proved the following things:

- Any connected topological group GG has the property that G =
\U,, V", where V' is any neighborhood of e € G.

- If G is a connected Lie group, with « : Lie(G) — Lie(H) a Lie
algebra homomorphism, then if there exists f : G — H with df, =
a, it is unique.

- If G is connected, simply connected, with « : Lie(G) — Lie(H)
a Lie algebra homomorphism, then there is a unique f : G — H
such that df. = a.

Simply Connected Lie Groups

The map pin Z — X 2 Y is a covering map if it is a locally trivial fiber
bundle with discrete fiber Z. Locally trivial means that for any y € Y
there is a neighborhood U such that if f : U x Z — Z is the map defined
by f(u,z) = u, then the following diagram commutes:

p U =~ UxZ

|7

YDOU

The exact sequence defined below is an important tool. Suppose we
have a locally trivial fiber bundle with fiber Z (not necessarily discrete),
with X, Y connected. Choose zq € X, 29 € Z,yo € Y such that p(zg) =
Yo, and i : Z — p~1(yo) is an isomorphism such that i(zg) = wo:

2o € T Yy o—— 2

Yo

We can define p, : m(X,29) — m(Y,5) in the obvious way (m; is a
functor). Also define i, : m(Z,29) — m(X,29). Then we can define
0 :m(Y,yo) — m(Z) = {connected components of Z} by taking a loop
v based at yy and lifting it to some path 4. This path is not unique, but
up to fiber-preserving homotopy it is. The new path ¥ starts at xo and
ends at z;. Then we define 0 to be the map associating the connected
component of x; to the homotopy class of ~.
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Claim. The following sequence is exact:

m(Z, ) L>7T1(X,ZEO) 2w (Y, o) a—>7T0(Z) — {0}

1. im1, = ker p,

2. {fibers of 0} ~ w1 (Y, yo)/ imp,

3. 0 is surjective.
Proof.

1. ker p, is the set of all loops which map to contractible loops in Y,
which are loops which are homotopic to a loop in m7!(y,) based at
xo. These are exactly the loops of im i,.

2. The fiber of 0 over the connected component Z, C Z is the set
of all (homotopy classes of) loops in Y based at 3, which lift to
a path connecting xy to a point in the connected component of
71 (yo) containing i(Z.). If two loops (3, v based at y, are in the
same fiber, homotope them so that they have the same endpoint.
Then ’yﬁ_l is a loop based at xy. So fibers of 0 are in one to
one correspondence with loops in Y based at gy, modulo images of
loops in X based at xg, which is just m (Y, o)/ im p..

3. This is obvious, since X is connected.
U

Now assume we have a covering space with discrete fiber, i.e. maps

X——Z

|r

Y

such that m(Z, z9) = {e} and 7(Z) = Z. Then we get the sequence
{e} —5 m (X, 20) = m (Y, p0) & Z — {0}

and since p, is injective, Z = m (V) /m (X).

Classifying all covering spaces of Y is therefore the same as describing
all subgroups of 71 (Y). The universal cover of Y is the space ¥ such
that m (Y) = {e}, and for any other covering X, we get a factorization
of covering maps Y Lx2y.

We construct X, the universal cover, in the following way: fix g € X,
and define Xxo to be the set of basepoint-fixing homotopy classes of paths
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connecting xy to some z € X. We have a natural projection [y, .| — =,
and the fiber of this projection (over x() can be identified with 7 (X, zo).
It is clear for any two basepoints zy and xj, Xxo ~ X@‘{) via any path
Yo,z - SO We have

Xxo <—7T1(X)

lp

X

Claim. X,, is simply connected.

Proof. We need to prove that m(X,,) is trivial, but we know that the
fibers of p can be identified with both m1(X) and m (X)/m(X,,), so

we're done. O

Let G be a connected Lie group. We would like to produce a simply
connected Lie group which also has the Lie algebra Lie(G). It turns out
that the obvious candidate, G., is just what we are looking for. It is not
hard to see that G, is a smooth manifold (typist’s note: it is not that
easy either. See | |, pp. 64-65, for a description of the topology
on G,. Once we have a topology and a covering space map, the smooth
manifold structure of G lifts to G. — Emily). We show it is a group as
follows.

Write ~, for v : [0, 1] — G with endpoints e and g. Define multiplica-
tion by [v4][7h) == [{Vg(t)7 () }icpo,1]- The unit element is the homotopy
class of a contractible loop, and the inverse is given by [{7v(t) ™" }ep.1)-

Claim.
1. G=G. isa group.
2. p:G— G is a group homomorphism.
3. m(G) C G is a normal subgroup.
4. Lie(G) = Lie(@).
5. G — G is the universal cover (i.e. m(G) is discrete).

Proof. 1. Associativity is inherited from associativity in G, compo-
sition with the identity does not change the homotopy class of a
path, and the product of an element and its inverse is the identity.

2. This is clear, since p([v,][74]) = gh.

3. We know 71 (G) = ker p, and kernels of homomorphisms are normal.



Lecture 5 22

4. The topology on G is induced by the topology of G in the following
way: If U is a basis for the topology on G then fix a path ., for
all g € G. Then U = {U,,} is a basis for the topology on G with

U,.., defined to be the set of paths of the form 7;36%,5] with g a
loop based at g contained entirely in U.

Now take U a connected, simply connected neighborhood of e € G.
Since all paths in U from e to a fixed g € G are homotopic, we
have that U and U are diffeomorphic and isomorphic, hence Lie

isomorphic. Thus Lie(G) = Lie(G).

5. As established in (4), G and G are diffeomorphic in a neighborhood
of the identity. Thus all points z € p~(e) have a neighborhood
which does not contain any other inverse images of e, so p~'(e) is
discrete; and p~'(e) and 7 (G) are isomorphic.

U

We have that for any Lie group G with a given Lie algebra Lie(G) = g,
there exists a simply connected Lie group G with the same Lie algebra,
and G is the universal cover of G.

Lemma 5.1. A discrete normal subgroup H C G of a connected topo-
logical group G is always central.

Proof. For any fixed h € H, consider the map ¢, : G — H,g —
ghg™'h~1, which is continuous. Since G is connected, the image is also
connected, but H is discrete, so the image must be a point. In fact, it
must be e because ¢, (h) = e. So H is central. O

Corollary 5.2. m1(G) is central, because it is normal and discrete. In
particular, ™ (G) is commutative.

Corollary 5.3. G ~ G/mi(G), with m(G) discrete central.

The following corollary describes all (connected) Lie groups with a
given Lie algebra.

Corollary 5.4. Given a Lie algebra g, take G with Lie algebra g. Then
any other connected G with Lie algebra g is a quotient of G by a discrete
central subgroup of G.

Suppose G is a topological group and G is a connected component
of e.

Claim. G° C G is a normal subgroup, and G/G° is a discrete group.
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If we look at {Lie groups} — {Lie algebras}, we have an “inverse”
given by exponential: exp(g) € G. Then G° = |, (expg)™. So for a
given Lie algebra, we can construct a well-defined isomorphism class of
connected, simply connected Lie groups. When we say “take a Lie group
with this Lie algebra”, we mean to take the connected, simply connected
one.

Coming Attractions: We will talk about Ug, the universal envelop-
ing algebra, C'(G), the Hopf algebra, and then we’ll do classification of
Lie algebras.
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Lecture 6 - Hopf Algebras

Last time: We showed that a finite dimensional Lie algebra g uniquely
determines a connected simply connected Lie group. We also have a
“map” in the other direction (taking tangent spaces). So we have a nice
correspondence between Lie algebras and connected simply connected
Lie groups.

There is another nice kind of structure: Associative algebras. How
do these relate to Lie algebras and groups?

Let I' be a finite group and let C[I'] :== {}_ c,glg € I',¢, € C} be
the C vector space with basis I'. We can make C[I['] into an associative
algebra by taking multiplication to be the multiplication in I' for basis
elements and linearly extending this to the rest of C[']."

Remark 6.1. Recall that the tensor product V and W is the linear span
of elements of the form v ® w, modulo some linearity relations. If V' and
W are infinite dimensional, we will look at the algebraic tensor product
of V- and W, i.e. we only allow finite sums of the form >  a; ® b;.

We have the following maps

Comultiplication: A : C[I'] — C[I'] ® C[I'], given by A(> z,9) =
DTG ®g

Counit: ¢ : C[I'] — C, given by (> z,9) = > x,.
Antipode: S : C[I'] — CII'] given by S(>_z,9) = > 2,97

You can check that

A(zy) = A(x)A(y) (i-e. A is an algebra homomorphism),

~ (A®Id)o A = (Id® A) o A. (follows from the associativity of ®),
— e(zy) = e(x)e(y) (i-e. € is an algebra homomorphism),

— S(zy) = S(y)S(x) (i.e. S is an algebra antihomomorphism).

Consider

A S®Id,Id®S
e T

C[r] & C[r] ® C[T) |l ® C[I] = C[r).

You get
m(S@Id)A(g) =m(g~ @ g)=e

so the composition sends » z,4g to (3, xy)e = (x)14.
So we have

L“If somebody speaks Danish, I would be happy to take lessons.”
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1. A = CJI'] an associative algebra with 14

2. A: A— A® A which is coassociative and is a homomorphism of
algebras

3. € : A — C an algebra homomorphism, with (e®Id)A = (Id®e)A =
Id.

Definition 6.2. Such an A is called a bialgebra, with comultiplication
A and counit €.

We also have S, the antipode, which is an algebra anti-automorphism,
so it is a linear isomorphism with S(ab) = S(b)S(a), such that

S®Id

AQA— s A0 4
€ 1a
A C A

Definition 6.3. A bialgebra with an antipode is a Hopf algebra.

If A is finite dimensional, let A* be the dual vector space. Define the
multiplication, A,, Sk, €4, 14+ on A* in the following way:

Im(a) := (l®m)(Aa) for all ,m € A*
— A(I)(a®b) := l(ab)

- 8*(l) = l(lA)
— 1a+(a) :=¢(a)

Theorem 6.4. A* is a Hopf algebra with this structure, and we say it
is dual to A. If A is finite dimensional, then A™ = A.

» Exercise 6.1. Prove it.

We have an example of a Hopf algebra (C[I']), what is the dual Hopf
algebra?? Let’s compute A* = C[I']*.

Well, C[I'] has a basis {g € I'}. Let {d,} be the dual basis, so
dg(h) =01if g # h and 1 if g = h. Let’s look at how we multiply such
things

- 691592(h) = (591 ® 592)(h ® h) = 591 (h)692(h)

2 If you want to read more, look at S. Montgomery’s Hopf algebras, AMS, early
1990s. | ]
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AL (0g)(h1 ® he) = dg(h1h2)
= S(dg)(h) = 04(h71)

— €4(0g) = dg(€) = e

— 1a«(h) = 1.

It is natural to think of A* as the set of functions I' — C, where
(D> x464)(h) = > x404(h). Then we can think about functions

= (fif2)(h) = fi(R) f2(h)

= AL(f)(hy X ha) = f(hihs)
S (f)(h) = f(h™)

- adlf) = fle)

— 14+ = 1 constant.

So this is the Hopf algebra C'(I"), the space of functions on I'. If T" is any
affine algebraic group, then C(T") is the space of polynomial functions
on I'; and all this works. The only concern is that we need C(I" x I') =
C(I")®@C(I'), which we only have in the finite dimensional case; you have
to take completions of tensor products otherwise.

So we have the notion of a bialgebra (and duals), and the notion
of a Hopf algebra (and duals). We have two examples: A = C[I'] and
A* = C(T"). A natural question is, “what if " is an infinite group or a
Lie group?” and “what are some other examples of Hopf algebras?”

Let’s look at some infinite dimensional examples. If A is an infinite
dimensional Hopf algebra, and A ® A is the algebraic tensor product
(finite linear combinations of formal a®b s). Then the comultiplication
should be A : A — A® A. You can consider cases where you have to take
some completion of the tensor product with respect to some topology,
but we won’t deal with this kind of stuff. In this case, A* is too big, so
instead of the notion of the dual Hopf algebra, we have dual pairs.

Definition 6.5. A dual pairing of Hopf algebras A and H is a pair with

a bilinear map ( , ) : A® H — C which is nondegenerate such that
(1) (Aa,l®m) = (a,lm)
(2) (ab,l) = (a ® b, A,l)
(3) (Sa,l) = (a, S.I)

(4)

4) e(a) = (a,1y),eu(l) = (14,1)
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Exmaple: A = Cl[z], then what is A*? You can evaluate a polynomial
at 0, or you can differentiate some number of times before you evaluate
at 0. A* = span of linear functionals on polynomial functions of C of the

form () = <%)n f@)],_y

A basis for Clz] is 1,2" with n > 1, and we have

m m! n=m
In(® )_{ 0 ,n#m
What is the Hopf algebra structure on A? We already have an algebra
with identity. Define A(z) =2 ® 1+ 1 ® 2z and extend it to an algebra
homomorphism, then it is clearly coassociative. Define £(1) = 1 and
g(z") = 0 for all n > 1. Define S(z) = —z, and extend to an algebra
homomorphism. It is easy to check that this is a Hopf algebra.
Let’s compute the Hopf algebra structure on A*. We have

Ll (™) = (I @ L) (A ()
— b)Y (Z ) R

» Exercise 6.2. Compute this out. The answer is that A* = Cly = 2],
and the Hopf algebra structure is the same as A.

This is an example of a dual pair: A = C[z|, H = C[y], with (2", y™) =
dp,mml.

Summary: If A is finite dimensional, you get a dual, but in the infinite
dimensional case, you have to use dual pairs.

The universal enveloping algebra

The idea is to construct a map from Lie algebras to associative algebras
so that the representation theory of the associative algebra is equivalent
to the representation theory of the Lie algebra.

1) let V' be a vector space, then we can form the free associative alge-
bra (or tensor algebra) of V: T(V) = C®(®,>1V®"). The multiplication
is given by concatenation: (11 ® - Q@ v,) - (W1 Q- QW) =V Q-+ ®
U QW1 Q-+ - Wy, 1t is graded: T,(V)T, (V) C Ty (V). Tt is also a Hopf
algebra, with A(z) =z®1+1®x, S(zr) = —z, (1) =1l and e(x) = 0. If
you choose a basis e, ..., e, of V, then T'(V) is the free associative alge-
bra (e, ...,e,). This algebra is Z,-graded: T'(V') = @,>07,.(V), where
the degree of 1 is zero and the degree of each e; is 1. It is also a Z-graded
bialgebra: A(T,,(V)) C &(T; & T,,—:), S(T(V)) C T,(V),e : T(V) — C
is a mapping of graded spaces ((C),, = {0}).
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Definition 6.6. Let A be a Hopf algebra. Then a two-sided ideal I C A
is a Hopf ideal if A(I) CA®I+1® A, S(I)=1,and ¢() = 0.

You can check that the quotient of a Hopf algebra by a Hopf ideal is
a Hopf algebra (and that the kernel of a map of Hopf algebras is always
a Hopf ideal).

» Exercise 6.3. Show that Iy = (v@w —wvjv,w € V =T1(V) C
T(V)) is a homogeneous Hopf ideal.

Corollary 6.7. S(V)=T(V)/I, is a graded Hopf algebra.

Choose a basis ej,...,e, in V, so that T(V) = (ey,...,e,) and
S(V) = <€1, ey €n>/<6i6j — 6j€i>

» Exercise 6.4. Prove that the Hopf algebra S(V') is isomorphic to
Cle1] ® - -+ @ Cley].

Remark 6.8. From the discussion of C[z|, we know that S(V') and S(V*)
are dual.

» Exercise 6.5. Describe the Hopf algebra structure on 7'(V*) that is
determined by the pairing (11 ®- - -Qu,,, [1®- - -®lp) = Smpli(v1) - - - Ly (V).
(free coalgebra of V*)

Now assume that g is a Lie algebra.

Definition 6.9. The universal enveloping algebra of gis U(g) = T'(g)/{z®
y—y@x—|z,y).

Exercise: prove that (z ® y —y ®  — [z, y]) is a Hopf ideal.
Corollary 6.10. Ug is a Hopf algebra.

If er,...,e, is a basis for V. Ug = (e1,...,e,leie; —eje; =D, cfjek>,
where ¢}; are the structure constants of [, ].

Remark 6.11. The ideal (e;e; — eje;) is homogeneous, but (z @y —y ®
x — [x,y]) is not, so Ug isn’t graded, but it is filtered.
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Lecture 7

Last time we talked about Hopf algebras. Our basic examples were
C[I'] and C(I') = C[I']*. Also, for a vector space V, T'(V) is a Hopf
algebra. Then S(V) =T(V)/(z®@y—y®@zx|z,y € V). And we also have
Ug=Tg/(r@y—-y®z—[z,y]]r,y € g).

Today we’ll talk about the universal enveloping algebra. Later, we’ll
talk about deformations of associative algebras because that is where
recent progress in representation theory has been.

Universality of Ug

We have that g — T'g — Ug. And o : g — Ug canonical embedding (of
vector spaces and Lie algebras). Let A be an associative algebra with
T:9 — L(A) = {A|[a,b] = ab — ba} a Lie algebra homomorphism such
that 7([z, y]) = 7(2)7(y) — 7(y)7(x).

Proposition 7.1. For any such 7, there is a unique 7" : Ug — A homo-
morphism of associative algebras which extends T:

UgLA

I~

g

Proof. Because T'(V) is generated (freely) by 1 and V', Ug is generated
by 1 and the elements of g. Choose a basis e;,...,¢e, of g. Then we
have that 7(e;)7(e;) — 7(e;)7(e;) = Y, clir(ex). The elements e;, - - - e;,
(this is a product) span Ug for indices ¢;. From the commutativity of the
diagram, 7’(e;) = 7(e;). Since 7' is a homomorphism of associative alge-
bras, we have that 7/(e;, ---e;,) = 7'(e;,) - - - 7'(es,), so 7' is determined
by 7 uniquely: 7'(e;, ---€;,) = T(e;y)---7(e;,,). We have to check that
the ideal we mod out by is in the kernel. But that ideal is in the kernel
because T is a mapping of Lie algebras. O

Definition 7.2. A linear representation of g in V' is a pair (V,¢ : g —
End(V)), where ¢ is a Lie algebra homomorphism. If A is an associative
algebra, then (V,¢: A — End(V)) a linear representation of A in V.

Corollary 7.3. There is a bijection between representations of g (as a
Lie algebra) and representations of Ug (as an associative algebra).

Proof. (=) By the universality, A = End(V'), 7 = ¢. («<)g C L(Ug) is
a Lie subalgebra. O
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Example 7.4 (Adjoint representation). ad : g — Endg given by z :
y — [z,y]. This is also a representation of Ug. Let ey,...,e, be a
basis in g. Then we have that adc,(e;) = [e;,e;] = Y, clex, so the
matrix representing the adjoint action of the element e; is the matrix
(ade,)jr = (cf;) of structural constants. You can check that ad, . =
(ade,)(ad.,) — (ad.,)(ad,,) is same as the Jacobi identity for the ¢f;. We
get ad : Ug — End(g) by defining it on the monomials e;, ---e;, as
ade;, ..e;, = (ade, ) (ad, ) (the product of matrices).

Let’s look at some other properties of Ug.

Gradation in Ug

Recall that V' is a Z,-graded vector space if V. = &9 ,V,. A linear
map f : V — W between graded vector spaces is grading-preserving
if f(V,,) € W,. If we have a tensor product V ® W of graded vector
spaces, it has a natural grading given by (V @ W), = &,V @ W,,_,.
The “geometric meaning” of this is that there is a linear action of C on
V such that V,, = {z|t(z) = t" -z for all t € C}. A graded morphism
is a linear map respecting this action, and the tensor product has the
diagonal action of C, given by t(x ® y) = t(z) ® t(y).

Example 7.5. If V = C|z], % is not grading preserving, I% is.

We say that (V. [, ]) is a Z;-graded Lie algebra if [ ;] : V@V -V
is grading-preserving.

Example 7.6. Let V be the space of polynomial vector fields on C =
Span(z"L),~o. Then V,, = Cz"L.

An associative algebra (V,m : V@V — V) is Z,-graded if m is
grading-preserving.

Example 7.7.
(1) V = Clz], where the action of C is given by = — tx.

(2) V. =Clzy,...,z,] where the degree of each variable is 1 ... this is
the n-th tensor power of the previous example.

(3) Liealgebra: Vect(C) = {3, 5 anz™ -} with Vect,,(C) = Ca" L,
deg(z) = 1. You can embed Vect(C) into polynomial vector fields
on S (Virasoro algebra).

(4) T(V) is a Z;-graded associative algebra, as is S(V'). However, Ug
is not because we have modded out by a non-homogeneous ideal.
But the ideal is not so bad. Ug is a Z. -filtered algebra:
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Filtered spaces and algebras

Definition 7.8. V is a filtered space if it has an increasing filtration
VocWicV,Cc---CV

such that V' = |JV;, and V,, = is a subspace of dimension less than
or equal to n. f : V. — W is a morphism of filtered vector spaces if
f(V,) CW,.

We can define filtered Lie algebras and associative algebras as such
that the bracket/multiplication are filtered maps.

There is a functor from filtered vector spaces to graded associative
algebras Gr : V. — Gr(V), where Gr(V) = Vo d Vi/Vo & Vo /Vy---. If
f:V — W is filtration preserving, it induces a map Gr(f) : Gr(V) —
Gr(W) functorially such that this diagram commutes:

— YW

v
Grl l
Gr(f

f
Gr(V) Gy Gr(W)

Let A be an associative filtered algebra (i.e. A;A; C A;1;) such that
for all a € Ai, be Aj, ab — ba € Ai+j—1~

Proposition 7.9. For such an A,

(1) Gr(A) has a natural structure of an associative, commutative al-
gebra (that is, the multiplication in A defines an associative, com-
mutative multiplication in Gr(A)).

(2) For a € Ai+1,b S Aj+1, the opemtion {aAi,bAj} = aAibAj —
bA;aA; mod A;y; is a lie bracket on Gr(A).

(3) {z,yz} = {z,y}z + y{z, 2}.

Proof. Exercise;. You need to show that the given bracket is well defined,
and then do a little dance, keeping track of which graded component you
are in. ]

Definition 7.10. A commutative associative algebra B is called a Pois-
son algebra if B is also a Lie algebra with lie bracket { , } (called a
Poisson bracket) such that {z,yz} = {x,y}z + y{x, z} (the bracket is a
derivation).
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Example 7.11. Let (M,w) be a symplectic manifold (i.e. w is a closed
non-degenerate 2-form on M), then functions on M form a Poisson al-
gebra. We could have M = R?" with coordinates pi,...,Pn,q1,-- -, qn,
and w = ). dp; A dg;. Then the multiplication and addition on C*°(M)
is the usual one, and we can define {f,g} = >, p"” ggﬁ%, where w =
S wijdx’ A da? and (pY) is the inverse matrix to (wj;). You can check
that this is a Poisson bracket.

Let’s look at Ug = (1, e;le;e; — eje; = Y, cher). Then Ug is filtered,
with (Ug),, = Span{e;, ---e; |k < n}. We have the obvious inclusion
(Ug)n, € (Ug)ns1 and (Ug)o=C - 1.

Proposition 7.12.
(1) Ug is a filtered algebra (i.e. (Ug),(Ug)s C (Ug)r1s)

(2) [(Ug)r, (Ug)s] € (Ug)rss-1-
Proof. 1) obvious. 2) Exercises (almost obvious). O
Now we can consider Gr(Ug) = C-1® (B,>,(Ug),/(Ug)r-1)
Claim. (Ug),/(Ug),—1 =~ S"(g) = symmetric elements of (Cley, ..., en])r.
Proof. Exercises. O

So Gr(Ug) ~ S(g) as a commutative algebra.
S(g) = Polynomial functions on g* = Home(g, C).
Consider C*°(M). How can we construct a bracket { , } which sat-

isfies Liebniz (i.e. {f,g192} = {f,91}92 + {f,92}91). We expect that
{f.9}(z) = pY(2) 2L 2% = (p(x),df(x) A dg(x)). Such a p is called a
bivector field (it is a section of the bundle TM A TM — M). So a
Poisson structure on C*°(M) is the same as a bivector field p on M sat-
isfying the Jacobi identity. You can check that the Jacobi identity is
some bilinear identity on p” which follows from the Jacobi identity on
{, }. This is equivalent to the Schouten identity, which says that the
Schouten bracket of some things vanishes [There should be a reference
here]. This is more general than the symplectic case because p” can be
degenerate.

Let g have the basis eq, . . ., e, and corresponding coordinate functions
x',.. ., 2" On g* we have that dual basis e!,... e" (you can identify
these with the coordinates x!, ..., 2"), and coordinates z, ..., z, (which
you can identify with the e;). The bracket on polynomial functions on
g* is given by S

K p oq
{p.a} = Z Cii Tk oz, axj-
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This is a Lie bracket and clearly acts by derivations.

Next we will study the following. If you have polynomials p, q on g*,
you can try to construct an associative product p *; ¢ = pq+tm(p, q) +
. We will discuss deformations of commutative algebras. The main
example will be the universal enveloping algebra as a deformation of
polynomial functions on g*.
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Lecture 8 - The PBW Theorem and Defor-
mations

Last time, we introduced the universal enveloping algebra Ug of a Lie
algebra g, with its universality property. We discussed graded and fil-
tered spaces and algebras. We showed that under some condition on a
filtered algebra A, the graded algebra Gr(A) is a Poisson algebra. We
also checked that Ug satisfies this condition, and that Gr(Ug) ~ S(g)
as graded commutative algebras. The latter space can be understood as
the space Pol(g*) of polynomial functions on g*. It turns out that the
Poisson bracket on Gr(Ug), expressed in Pol(g*), is given by

{f, 9} (x) = x([dfs, dg.])

for f,g € Pol(g*) and = € g*. Note that f is a function on g* and x an
element of g*, so df, is a linear form on T,g* = g*, that is, df, € g.

Suppose that V' admits a filtration Vo C V4 € Vo C ---. Then, the
associated graded space Gr(V) = Vo & @,,~,(Vi/Vas1) is also filtered.
(Indeed, every graded space W = @, -, W,, admits the filtration W, C
Wo@® W, C Wy @® W, ® W, C ---) A natural question is: When do we
have V ~ Gr(V) as filtered spaces 7

For the filtered space Ug, the answer is a consequence of the following
theorem.

Theorem 8.1 (Poincaré-Birkhoff-Witt). Let ey, ..., e, be any linear ba-
sis for g. Let us also denote by ey, ..., e, the image of this basis in the
universal enveloping algebra Ug. Then the monomials €™ - - - e form
a basis for Ug.

Corollary 8.2. There is an isomorphism of filtered spaces Ug ~ Gr(Ug).

Proof of the corollary. In S(g), €™ ---e' also forms a basis, so we get
an isomorphism Ug ~ S(g) of filtered vector spaces by simple identifica-
tion of the bases. Since Gr(Ug) ~ S(g) as graded algebras, the corollary

is proved. O

Remark 8.3. The point is that these spaces are isomorphic as filtered
vector spaces. Saying that two infinite dimensional vector spaces are
isomorphic is totally useless.

Proof of the theorem. By definition, the unordered monomials e;, - - -e;,
for k < p span the subspace To®- - -®T, of T'(g), where T; = g®*. Hence,
they also span the quotient (Ug), =Ty @ - - &1, /(z@y—yRx—[z,y]).
The goal is now to show that the ordered monomials €™ - - - e for m; +
-+ my, < pstill span (Ug),. Let’s prove this by induction on p > 0.
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The case p = 0 being trivial, consider e;, - --¢;, - - - ¢€;,, with k& < p, and
assume that ¢, has the smallest value among the indices i1, ... 1. We
can move e;, to the left as follows

—_

a—
.eik — 6ia€i1 RN CE I .eik + eil . 'eibfl[eimeia] . .eia . .eik_

€iy €yt "
1

a

o
Il

Using the commutation relations [e;,,e;,] = D, cfbiaeg, we see that the
term to the right belongs to (Ug),_1. Iterating this procedure leads to
an equation of the form

iy iy ey = et mep™ + terms in (Ug)g—1,

a

with mq + -4+ m, = k < p. We are done by induction. The proof of
the theorem is completed by the following homework.[This should really
be done here] O

» Exercise 8.1. Prove that these ordered monomials are linearly inde-
pendant.

Let’s “generalize” the situation. We have Ug and S(g), both of which
are quotients of T'(g), with kernels (z®y—y®z—[z,y]) and (zQ@y—y®x).
For any € € C, consider the associative algebra S.(g) = T(g)/{(z @ y —
y® x — elx,y]). By construction, Sp(g) = S(g) and S1(g) = Ug. Recall
that they are isomorphic as filtered vector spaces.

Remark 8.4. If € # 0, the linear map ¢. : S.(g) — Ug given by ¢.(x) =
ex for all x € g is an isomorphism of filtered algebras. So, we have
nothing new here.

We can think of S.(g) as a non-commutative deformation of the asso-
ciative commutative algebra S(g). (Note that commutative deformations
of the algebra of functions on a variety correspond to deformations of the
variety.)

Deformations of associative algebras

Let (A,m : A® A — A) be an associative algebra, that is, the linear
map m satisfies the quadratic equation

m(m(a,b),c) = m(a,m(b,c)). (8.5)

Note that if ¢ : A — A is a linear automorphism, the multiplication
my, given by my(a,b) = ¢ *(m(p(a), (b)) is also associative. We like
to think of m and m,, as equivalent associative algebra structures on A.
The “moduli space” of associative algebras on the vector space A is the
set of solutions to equation 8.5 modulo this equivalence relation.
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One can come up with a notion of deformation for almost any kind
of object. In these deformation theories, we are interested in some coho-
mology theories because they parameterize obstructions to deformations.
The knowledge of the cohomology of a given Lie algebra g, enables us
say a lot about the deformations of g. We’ll come back to this question
in the next lecture.

Let us turn to our original example: the family of associative alge-
bras S:(g). Recall that by the PBW theorem, we have an isomorphism

of filtered vector spaces S:(g) 2, S(g) = Pol(g*), but this is not an iso-
morphisms of associative algebras. Therefore, the multiplication defined
by fxg:=w(7(f) ¥ 1(g)) is not the normal multiplication on S(g).
We claim that the result is of the form

frg="rfg+Y "mu(f.9),

n>1

where m,, is a bidifferential operator of order n, that is, it is of the form

ma(f,9) =Y py0" f0'g,
1,J

where I and J are multi-indices of length n, and p2’/ € Pol(g*). The idea
of the proof is to check this for f = (e ---en) and g = (el ---eln)
by writing

1 r I ln _ l1+m In+r E k 1 r A l
61 ...enn.el...erz’b_el 61’7 ”+ gmk(el ...enn’el...erl’b)
k>1

in S:(g) using the commuting relations.

» Exercise 8.2. Compute the p’”/ for the Lie algebra g generated by
X, Y, and H with bracket [X,Y] = H,[H,X] = [H,Y] = 0. This is
called the Heisenberg Lie algebra.

So we have a family of products on Pol(g*) which depend on € in the

following way:
frg="rg+> "mu(f,9)
n>1

Since f, g are polynomials and m, is a bidifferential operator of order
n, this series terminates, so it is a polynomial in . If we try to extend
this product to C*°(g*), then there are questions about the convergence
of the product *. There are two ways to deal with this problem. The
first one is to take these matters of convergence seriously, consider some
topology on C*(g*) and demand that the series converges. The other
solution is to forget about convergence and just think in terms of formal
power series in . This is the so-called “formal deformation” approach.
As we shall see, there are interesting things to say with this seemingly
rudimentary point of view.
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Formal deformations of associative algebras

Let (A, mgp) be an associative algebra over C. Then, a formal deformation
of (A, mp) is a C[[h]]-linear map m : A[[h]] ®cypy A[[R]] — A[[R]] such
that

m(a,b) = mo(a,b) + Y h"my(a,b)

n>1

for all a,b € A, and such that (A[[h]],m) is an associative algebra. We
say that two formal deformations m and m are equivalent if there is a
C[[R]]-automorphism A[[h]] £ A[[h]] such that m = m,, with p(z) =
x4+ o "o, (z) for all © € A, where ¢, is an endomorphism of A.
Question: Describe the equivalence classes of formal deformations of a
given associative algebra.

When (A, myg) is a commutative algebra, the answer is known. Philo-
sophically and historically, this case is relevant to quantum mechanics.
In classical mechanics, observables are smooth functions on a phase space
M, i.e they form a commutative associative algebra C*°(M). But when
you quantize this system (which is needed to describe something on the
order of the Planck scale), you cannot think of observables as functions
on phase space anymore. You need to deform the commutative algebra
C*(M) to a noncommutative algebra. And it works...

From now on, let (A, mg) be a commutative associative algebra. Let’s
write mg(a, b) = ab, and m(a,b) = a = b. (This is called a star product,
and the terminology goes back to the sixties and the work of J. Vey).
Then we have

a*xb=ab+ Z h"my(a,b).

n>1

Demanding the associativity of * imposes an infinite number of equations
for the m,,’s, one for each order:

hY: a(bc) = (ab)c
ht: amy (b, c) +my(a,bc) = my(a,b)c + my(ab,c)
h%: ...

» Exercise 8.3. Show that the bracket {a,b} = my(a,b) — my(b,a)
defines a Poisson structure on A. This means that we can think of a
Poisson structure on an algebra as the remnants of a deformed product

where a x b — b a = hia,b} + O(h).
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One easily checks that if two formal deformations m and m are equiv-
alent via ¢ (i.e: m = m,), then the associated m;,m; are related by
my(a,b) = mq(a,b) + @i(ab) — p1(a)b— api(b). In particular, two equiv-
alent formal deformations induce the same Poisson structure. Also, it
is possible to choose a representative in an equivalence class such that
my is skew-symmetric (and then, m;(a,b) = 3{a, b}). This leads to the
following program for the classification problem:

1. Classify all Poisson structures on A.

2. Given a Poisson algebra (A, { , }), classify all equivalence classes
of star products on A such that ms(a,b) = 3{a,b}.

Under some mild assumption, it can be assumed that a star product is
symmetric, i.e. that it satisfies the equation m,,(a, b) = (—=1)"m,(b, a) for
all n. The program given above was completed by Maxim Kontsevitch
for the algebra of smooth functions on a manifold M. Recall that Poisson
structures on C*°(M) are given by bivector fields on M that satisfy the
Jacobi identity.

Theorem 8.6 (Kontsevich, 1994). Let A be the commutative associative
algebra C>(M), and let us fix a Poisson bracket { , } on A. Equivalence
classes of symmetric star products on A with my(a,b) = +{a, b} are in bi-

jection with formal deformations of { , } modulo formal diffeomorphisms
of M.

A formal deformation of { | } is a Poisson bracket { , }, on A[[h]]

such that
{a,b}), = {a,b} + Z h" i, (a, b)

n>1

for all a,bin A. A formal diffeomorphism of M is an automorphism ¢
of A[[h]] such that o(f) = f+ 3,5, h"en(f) and ©(fg) = ©(f)e(g) for
all f,gin A.

We won’t prove the theorem (it would take about a month) . As
Poisson algebras are Lie algebras, it relates deformations of associative
algebras to deformations of Lie algebras.

Formal deformations of Lie algebras

Given a Lie algebra (g, [, |), you want to know how many formal defor-
mations of g there are. Sometimes, there are none (like in the case of
sl,, as we will see later). Sometimes, there are plenty (as for triangular
matrices). The goal is now to construct some invariants of Lie algebras
which will tell you whether there are deformations, and how many of
them there are. In order to do this, we should consider cohomology
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theories for Lie algebras. We will focus first on the standard complex
C"(9,8) = D,50 C" (g, 9), where C"(g, g) = Hom(A"g, g).
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Lecture 9

Let’s summarize what has happened in the last couple of lectures.

1. We talked about T'(g), and then constructed three algebras:

- Ug=T(g)/(r®@y—y®r—[r,y]), with Ug = Si(g) ~ S.(g)

as filtered associative algebras, for all non-zero ¢ € C.

- S:(9) =T(9)/(z®@y—yRx—¢lr,y|) is a family of associative

algebras, with S.(g) ~ So(g) as filtered vector spaces.

~ So(g) = Pol(g") = T(g)/(z ®y —y @) = So(g) is an asso-

ciative, commutative algebra with a Poisson structure defined
by the Lie bracket.

2. We have two “pictures” of deformations of an algebra

(a)

There is a simple “big” algebra B (such as B = T(g)) and a
family of ideals I.. Then we get a family B/I. = A.. This
becomes a deformation family of the associative algebra Ag if
we identify A, ~ Ay as vector spaces (these are called torsion
free deformations). Fixing this isomorphism gives a family of
associative products on Ag.

We can think of this geometrically as a family of (embedded)
varieties.

Alternatively, we can talk about deformations intrinsically
(i.e., without referring to some bigger B). Suppose we have
Ap and a family of associative products a *. b on Ag.

Example 9.1. Let Pol(g*) 2, S:(g) be the isomorphism of
the PBW theorem. Then define f * g = ¢~ (o(f) - ¢(g)) =

fg+ Zn21 Enmn(fa g)'

Understanding deformations makes a connection between repre-
sentation theory and Poisson geometry. A second course on Lie
theory should discuss symplectic leaves of Pol(g*), which happen
to be coadjoint orbits and correspond to representations. This is
why deformations are relevant to representation theory.

Let A be a Poisson algebra with bracket { , }, so it is a commu-
tative algebra, and a Lie algebra, with the bracket acting by deriva-
tions. Typically, A = C°°(M). Equivalence classes of formal (i.e., formal
power series) symmetric (i.e.,m,(f,g) = (—=1)"m,(g, f) ) star products
on C*°(M) are in bijection with equivalence classes of formal deforma-

tions of {

» }on C=(M)[[A]].
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Apply this to the case A = C*(g*). The associative product on
S:(g) comes from the product on T'(g). The question is, “how many
equivalence classes of star products are there on A?” Any formal de-
formation of the Poisson structure on (4, { , }4) is a PBW deformation
of some formal deformation of the Lie algebra C*(g*) (with Lie bracket
{f,9}(x) = z(df N dg)). Such a deformation is equivalent to a formal
deformation of the Lie algebra structure on g. This is one of the reasons
that deformations of Lie algebras are important — they describe defor-
mations of certain associative algebras. When one asks such questions,
some cohomology theory always shows up.

Lie algebra cohomology

Recall that (M, ¢) is a g-module if ¢ : g — End(M) is a Lie alge-
bra homomorphism. We will write xm for ¢(z)m. Define C" (g, M) =
D, >0 C(g, M) where C?(g, M) = Hom(A%, M) (linear maps). We de-
fine d : C1 — C9*! by

de(xy A=  Nxgr) =

A

= > (D) Te([mnm] Az A NEGA e NE A A Tge)
1<s<t<q+1
g+1

+ Z(—l)sxsc(xl Ao NEGN - AN Tgir)
s=1

» Exercise 9.1. Show that d? = 0.

Motivation: If g = Vect(M), M = C*(M), then Cg, M) =
Q%(M), with the Cartan formula

(dw)(Er A A Egyr) =
= ) (TG G NG A AE A NG A A )

1<s<t<q+1
q+1

D (W@ A AE A ANgr)
s=1

for vector fields &;.
Another motivation comes from the following proposition.

Proposition 9.2. " (g,C) ~ Q,(G) C Q' (G) where C is the 1 dimen-

sional trivial module over g (so xm = 0).

» Exercise 9.2. Prove it.
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Remark 9.3. This was Cartan’s original motivation for Lie algebra co-

homology. It turns out that the inclusion Q(G) — Q' (G) is a homo-
topy equivalence of complexes (i.e. the two complexes have the same

homology), and the proposition above tells us that C* (g, C) is homotopy
equivalent to Qz(G). Thus, by computing the Lie algebra cohomology

of g (the homology of the complex C* (g, C)), one obtains the De Rham

cohomology of G (the homology of the complex Q' (G)).

Define Hi(g, M) = ker(d : C? — C9Y/im(d : CT! — (C9) as
always. Let’s focus on the case M = g, the adjoint representation:
x-m = [z, m].

H(g,9)

H'(g,9)

H*(g,9)

We have that C° = Hom(C, g) & g, and

de(y) =y-c=ly,c.

so ker(d : C° — C%) is the set of ¢ € g such that [y,c] = 0
for all y € g. That is, the kernel is the center of g, Z(g). So

H(g.9) = Z(g).
The kernel of d : C'(g,g) — C?(g, g) is

{w g — gldu(z,y) = p([z,y])—[z, u(y)]—[p(z), y] = 0 for all z,y € g},

which is exactly the set of derivations of g. The image of d :
C%g,9) — C%Yg,g) is the set of inner derivations, {dc : g —
gldc(y) = [y, ¢]}. The Liebniz rule is satisfied because of the Jacobi
identity. So

H'(g, g) = {derivations} /{inner derivations} =: outer derivations.

Let’s compute H?(g,g). Suppose € C? so pu: gAg — gisa
linear map. What does dpu = 0 mean?

dp(wy, 2, x3) = p([21, 22), w3) — p([21, 23], 22) + p([w2, 23], 1)
— (21, (w2, 23)] + [22, (1, 23)] — [23, (21, 72)]
= —u(xy, [T2, x3]) — [21, (22, 23)] + cyclic permutations
Where does this kind of thing show up naturally?
Consider deformations of Lie algebras:
[SL’, y]h = [LU, y] + Z hnmn(x, y)
n>1

where the m,, : g X g — g are bilinear. The deformed bracket [, |5,
must satisfy the Jacobi identity,

la, [b, c|n]n + [, [c, alp]n + [c, [a, b]p]n =0
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which gives us relations on the m,,. In degree A", we get

la, mn (b, c)] + mpy(a,[b,c]) + 2_: my(a, my—_x(b, ¢))+
k=1
[b,mn(c,a)] +mn(b,[c,a]) + - my (b, my_x(c,a))+

2~

[, mn(a,b)] + my(c, [a,b]) + - my(c,my_g(a,b)) =0 (9.4)

o

» Exercise 9.3. Derive equation 9.4.
Define [mg, my_kl(a,b, c) as
My (a, my—_r (b, c)) +mg (b, my_k(c, a)) + M (c, my_k(a, b))

Then equation 9.4 can be written as

N-1

dmN = Z [mk, mN_k] (95)
k=1
Theorem 9.6. Assume that for alln < N —1, we have the relation

dmy, = S0 g, mp_r]. Then d(3 0= [my, my_x]) = 0.

» Exercise 9.4. Prove it.

The theorem tells us that if we have a “partial deformation” (i.e. we
have found my,...,my_1), then the expression Ziv:_ll (M, my ]
is a 3-cocycle. Furthermore, equation 9.5 tells us that if we are
to extend our deformation to one higher order, S0 [my, my_x]
must represent zero in H3(g, g).

Taking N = 1, we get dm; = 0, so ker(d : C? — C3) = space of
first coefficients of formal deformations of [, ]. It will turn out that
H? is the space of equivalence classes of my.

It is worth noting that the following “pictorial calculus” may make
some of the above computations easier. In the following pictures, arrows
are considered to be oriented downwards, and trivalent vertices with two
lines coming in and one going out represent the Lie bracket. So, for
example, the antisymmetry of the Lie bracket is expressed as

7=y

and the Jacobi identity is
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0

+

We can also use pictures to represent cocycles. Take u € H™(g,g). Then

we draw p as

with n lines going in. Then, the Cartan formula for the differential says

that
i J i
18 SR IR oS>
1<i<j<n+1 1<i<n+1

and the bracket of two cocycles p € H™ and v € H" is
i 7

= > - >

1<i<n 1<i<m

» Exercise 9.5. Use pictures to show that d|u, v] = £[du, v| £+ [, dv].

Also, these pictures can be used to do the calculations in Exercises
9.3 and 9.4.
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Lecture 10

Here is the take-home exam, it’s due on Tuesday:
(1) B C SLy(C) are upper triangular matrices, then

— Describe X = SLy(C)/B

— SLy(C) acts on itself via left multiplication implies that it
acts on X. Describe the action.

0 T 0
(2) Find exp
0 Tn-1
0 0

(3) Prove that if V| W are filtered vector spaces (with increasing filtra-
tion) and ¢ : V — W satisfies ¢(V;) C W;, and Gr(¢) : Gr(V) =
Gr(W) an isomorphism, then ¢ is a linear isomorphism of filtered
spaces.

Lie algebra cohomology

Recall C" (g, M) from the previous lecture, for M a finite dimensional rep-
resentation of g (and g finite dimensional). There is a book by D. Fuchs,
Cohomology of oo dimensional Lie algebras | ]

We computed that H°(g,g) = Z(g) ~ ¢/[g,9] and that H'(g,g) is
the space of exterior derivations of g. Say c € Z'(g,g)," so [c] € H'(g, g).
Define g. = g @ C0, with the bracket [(z,t), (y,s)] = ([x,y] — te(y) +
sc(x),0). Soif eq,..., e, is a basis in g with the usual relations [e;, e;] =
cfjek, then we get one more generator 0. such that [0., 2] = ¢(z). Then
H'(g,g) is the space of equivalence classes of extensions

0—-g—g—-C—0

up to the equivalences f such that the diagram commutes:

0 g g C 0
lld lf lld
0 g g C 0

This is the same as the space of exterior derivations.

LZ™(g, M) is the space of n-cocycles, i.e. the kernel of d : C™(g, M) — C"*1(g, M).
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H?*(g,g) and Deformations of Lie algebras

A deformation of g is the vector space g[[h]] with a bracket |a,b], =
[a,b] + 32,51 h"my(a,b) such that m,(a,b) = —m,(b,a) and

[CL, [b, C]h]h + [b, [C, a]h]h + [C, [CL, b]h]h =0.

The kY order term of the Jacobi identity yields equation 9.4, which was

N-1

la,mn (b, c)] +mn(a,[b,c]) + Z my(a, my_r(b,c)) + cycle =0

where “cycle” is the same thing, with a, b, and ¢ permuted cyclically.
For u € C*(g,g), we compute
d:u(au bv C) = —[CL, :U’(bv C)] - :u(av [bu C]) + Cy(ﬂe'
Define .
{my, mn_i}(a,b,c) 2y my(a, my_r(b,c)) + cycle

This is called the Gerstenhaber bracket ... do a Google search for it if
you like ... it is a tiny definition from a great big theory.
Then we can rewrite equation 9.4 as equation 9.5, which was

N-1

dmN = Z{mk, mN_k}.

k=1

In partiular, dm; = 0, so my is in Z2(g, g).
Equivalences: [a, b, =~ [a,b], if [a,b];, = ¢~ ([p(a), #(b)]s) for some
pla) =a+> - h"du(a). then

my(a,b) = mi(a,b) — ¢1([a, b]) + [a, ¢1(b)] + [¢1(a), b].
which we can write as m} = my + d¢;. From this we can conclude
Claim. The space of equivalence classes of possible m; is ezactly H*(g, ).

Claim (was HW). If my is a 2-cocycle, and my_1, ..., ms satisfy the
equations we want, then

d (i{mk,mN_k}> = 0.

k=1

This is not enough; we know that S~ {mg, my_} is in Z3(g, g),
but to find my, we need it to be trivial in H?(g, g) because of equation
9.5. If the cohomology class of Z,ivjll{mk, mpy_} is non-zero, it’s class in



Lecture 10 47

H3(g, g) is called an obstruction to n-th order deformation. If H3(g, g) is
zero, then any first order deformation (element of H?(g, g)) extends to a
deformation, but if H3(g, g) is non-zero, then we don’t know that we can
always extend. Thus, H3(g, g) is the space of all possible obstructions to
extending a deformation.

Let’s keep looking at cohomology spaces. Consider C" (g, C), where
C is a one dimensional trivial representation of g given by x — 0 for any
x € g.

First question: take Ug, with the corresponding 1 dimensional rep-
resentation ¢ : Ug — C given by e(x) =0 for x € g.

» Exercise 10.1. Show that (Ug, e, A, S) is a Hopf algebra with the ¢
above, A(z) = 1®z+2xr®1, and S(z) = —z for x € g. Remember that A
and ¢ are algebra homomorphisms, and that S is an anti-homomorphism.

Let’s compute H' (g, C) (H° is boring, just a point). This is ker(C!
C?). Well, C*(g,C) = Hom(g, C), C*(g,C) = Hom(A%g, C), and

de(z,y) = ([, y))-

So the kernel is the set of ¢ such that ¢([z,y]) = 0 for all z,y € g. Thus,
ker(d) C C'(g,C) is the space of g-invariant linear functionals. Recall
that g acts on g by the adjoint action, and on g* = C'(g,g) by the
coadjoint action (z : [ — [, where [,(y) = [([x,y])). Under the coadjoint
action, [ € g* is g-invariant if [, = 0. Note that C? is just one point, so
its image doesn’t have anything in it.

Now let’s compute H?(g,C) = ker(d : C? — C?)/im(d : C* — C?).
Let ¢ € Z2, then

dC(SL’,y,Z) = c([x,y],z) - C([LL’, Z]vy) + c([y,z],x) =0

for all z,y, 2 € g. Now let’s find the image of d : C' — C?: it is the set
of functions of the form dl(z,y) = I([x,y]) where [ € g*. It is clear that
[([z,y]) are (trivial) 2-cocycles because of the Jacobi identity. Let’s see
what can we cook with this H?.

Definition 10.1. A central extension of g is a short exact sequence
0—-C—g—g—0.

Two such extensions are equivalent if there is a Lie algebra isomorphism
f g — ¢ such that the diagram commutes:

0 C g g 0
lld lf lId
0 C g g 0
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Theorem 10.2. H?(g, C) is isomorphic to the space of equivalence classes
of central extensions of g.

Proof. Let’s describe the map in one direction. If ¢ € Z2, then consider
g = g ® C with the bracket [(z,1), (v, s)] = ([z,y], c(z,y)). Equivalences
of extensions boil down to ¢(z,y) — c(x,y) + I([z, y]).

» Exercise 10.2. Finish this proof.
U

Let’s do some (infinite dimensional) examples of central extensions.

Example 10.3. [Affine Kac-Moody algebras] If g C gl,,, then we define
the loop space or loop algebra Lg to be the set of maps S' — g. To
make the space more manageable, we only consider Laurent polynomials,
2= g am 2™ for an, € g with all but finitely many of the a,, equal
to zero. The bracket is given by [f, g]cq(2) = [f(2), 9(2)],-

Since g C gl,,, there is an induced trace tr : g — C. This gives a
non-degenerate inner product on Lg:

1 dz
,g) = t B zZ))—.
(Fo)=§ ()
There is a natural 2-cocylce on Lg, given by
1 L - es|tr(f(2)d'(z
()= 5 . o (F )T = Rep (71 2) ),

and a natural outer derivation 0 : Lg — Lg given by dz(z) = az—(j).
The Kac-Moody algebra is Lg @ CO @& Cec. A second course on Lie
theory should have some discussion of the representation theory of this

algebra.

Example 10.4. Let gl be the algebra of matrices with finitely many
non-zero entries. It is not very interesting. Let gl be the algebra of
matrices with finitely many non-zero diagonals. gl’ is “more infinite
dimensional” than gl , and it is more interesting.

110
J—<O_J).
For x,y € gl , show that

c(,y) = tr(z]J y])

is well defined (i.e. is a finite sum).

» Exercise 10.3. Define
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This ¢ is a non-trivial 1-cocycle, i.e. [¢] € H?(gll,,C) is non-zero.
By the way, instead of just using linear maps, we require that the maps
A?gll, — C are graded linear maps. This is H2, 4.

Notice that in gl,,, tr(z[J,y]) = tr(J[z,y]) is a trivial cocycle (it is d
of I(z) = tr(Jz). So we have that H?(gl,, C) = {0}.

We can define a,, = gl,, & Cc. This is some non-trivial central
extension.

To summarize the last lectures:

1. We related Lie algebras and Lie Groups. If you're interested in
representations of Lie Groups, looking at Lie algebras is easier.

2. From a Lie algebra g, we constructed Ug, the universal enveloping
algebra. This got us thinking about associative algebras and Hopf
algebras.

3. We learned about dual pairings of Hopf algebras. For example,
C[I'] and C(I") are dual, and Ug and C(G) are dual (if G is affine
algebraic and we are looking at polynomial functions). This pairing
is a starting point for many geometric realizations of representa-
tions of G. Conceptually, the notion of the universal enveloping
algebra is closely related to the notion of the group algebra C[I'].

4. Finally, we talked about deformations.
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Lecture 11 - Engel’s Theorem and Lie’s The-
orem

In the next ten lectures, we will cover

1. Classification of semisimple Lie algebras. This will include root
systems and Dynkin diagrams.

2. Representation theory of semisimple Lie algebras and the Weyl
character formula.

3. Compact connected Lie Groups.

A reference for this material is Fulton and Harris | ].

The first part is purely algebraic: we will study Lie algebras. g will
be a Lie algebra, usually finite dimensional, over a field & (usually of
characteristic 0).

Any Lie algebra g contains the ideal D(g) = [g, g], the vector subspace
generated by elements of the form [X,Y] for X,V € g.

» Exercise 11.1. Show that Dg is an ideal in g.

» Exercise 11.2. Let G be a simply connected Lie group with Lie
algebra g. Then [G,G] is the subgroup of G generated by elements of
the form ghg='h~! for g,h € G. Show that [G,G] is a connected closed
normal Lie subgroup of G, with Lie algebra Dg.

Warning 11.1. Exercise 11.2 is a tricky problem. Here are some
potential pitfalls:

1. For G connected, we do not necessarily know that the exponential
map is surjective, because GG may not be complete. For example,
exp : 5ly(C) — SLy(C) is not surjective.’

2. If H C (G is a subgroup with Lie algebra b, then h C g closed is
not enough to know that H is closed in G. For example, take G to
be a torus, and H to be a line with irrational slope.

3. The statement is false if we relax the condition that G is simply

connected. Let
) } x St

(i
ERUGHD

! Assume ( 0 _1) is in the image, then its pre-image must have eigenvalues (2n +

1)im and —(2n+ 1)inm for some integer n. So the pre-image has distinct eigenvalues, so

it is diagonalizable. But that implies that (51 _11) is diagonalizable, contradiction.

o =8
— N

nEZ}QH
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where ¢ is an element of S! of infinite order. Then K is normal in
H and G = H/K is a counterexample.

Definition 11.2. Define D°g = g, and D"g = [D"'g, D" 'g]. This is
called the derived series of g. We say g is solvable if D"g = 0 for some
n sufficiently large.

Definition 11.3. We can also define Dyg = g, and D, g = [g, D—19].
This is called the lower central series of g. We say that g is nilpotent if
D,g = 0 for some n sufficiently large.

Note that D;g = D'g by Dg. Solvable and nilpotent Lie algebras are
hard to classify. Instead, we will do the classification of semisimple Lie
algebras (see Definition 11.15).

The following example is in some sense universal (see corollaries 11.7
and 11.12):

Example 11.4. Let gl(n) be the Lie algebra of all n x n matrices, and
let b be the subalgebra of upper triangular matrices. I claim that b
is solvable. To see this, note that Db is the algebra of strictly upper
triangular matrices, and in general, D*b has zeros on the main diagonal
and the 28~2 diagonals above the main diagonal (for k¥ > 2). Let n = Db.
You can check that n is in fact nilpotent.

Useful facts about solvable/nilpotent Lie algebras:

1. If you have an exact sequence of Lie algebras
0—a—g—g/a—0

then g is solvable if and only if a and g/a are solvable.
2. If you have an exact sequence of Lie algebras
0—a—g—g/a—0

then if g is nilpotent, so are a and g/a.

Warning 11.5. The converse is not true. Diagonal matrices 0 is
nilpotent, and we have

0—-n—0b—0—0.

Note that b is not nilpotent, because Db = D,b = ().
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3. If a,b C g are solvable ideals, then the sum a + b is solvable. To
see this, note that we have

0—a—a+b—(a+b)/a—0
———
~b/(anb)

a is solvable by assumption, and b/(aNb) is a quotient of a solvable
algebra, so it is solvable by (1). Applying (1) again, a+b is solvable.

4. If k C F is a field extension, with a Lie algebra g over k, we can
make a Lie algebra g ®; F' over F. Note that g ®; F' is solvable
(nilpotent) if and only if g is.

We will now prove Engel’s theorem and Lie’s theorem.

For any Lie algebra g, we have the adjoint representation: X
adx € gl(g) given by adx(Y) = [X,Y]. If g is nilpotent, then adyx is a
nilpotent operator for any X € g. The converse is also true as we will
see shortly (Cor. 11.9).

Theorem 11.6 (Engel’s Theorem). Let g C gl(V'), and assume that X
1s milpotent for any X € g. Then there is a vector v € V such that
g-v=0.

Note that the theorem holds for any representation p of g in which
every element acts nilpotently; just replace g in the statement of the
theorem by p(g).

Corollary 11.7. If V is a representation of g in which every element
acts nilpotently, then one can find {0} =V, C Vi C - CV, =V a
complete flag such that g(V;) C V;_y. That is, there is a basis in which
all of the elements of g are strictly upper triangular.

Warning 11.8. Note that the theorem isn’t true if you say “suppose
g is nilpotent” instead of the right thing. For example, the set of
diagonal matrices d C gl(V) is nilpotent.

Proof. Let’s prove the theorem by induction on dim g.We first show that
g has an ideal a of codimension 1. To see this, take a maximal proper
subalgebra a C g. Look at the representation of a on the quotient space
g/a. This representation, a — gl(g/a), satisfies the condition of the
theorem,? so by induction, there is some X € g such that ad,(X) = 0
modulo a. So [a, X] C a,s0 b = kX & a is a new subalgebra of g which
is larger, so it must be all of g. Thus, a must have had codimension 1.
Therefore, a C g is actually an ideal (because [X, a] = 0).

2For any X € a, since X is nilpotent, adx is also nilpotent.
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Next, we prove the theorem. Let Vj = {v € V|av = 0}, which is
non-zero by the inductive hypothesis. We claim that gV C Vj. To see
this, take x € g, v € Vp, and y € a. We have to check that y(zv) = 0.
But

yrv =x yv + [y, x]v =0.
i Sl

Now, we have that g = kX @ a, and a kills V), and that X : Vj — V is
nilpotent, so it has a kernel. Thus, there is some v € V which is killed
by X, and so v is killed by all of g. O

Corollary 11.9. If adx is nilpotent for every X € g, then g is nilpotent
as a Lie algebra.

Proof. Let V = g, so we have ad : g — gl(g), which has kernel Z(g). By
Engel’s theorem, we know that there is an = € g such that (ad g)(z) = 0.
This implies that Z(g) # 0. By induction we can assume g/Z(g) is nilpo-
tent. But then g itself must be nilpotent as well because D,,(g/Z(g)) = 0
implies D,,+1(g) = 0. O

Warning 11.10. If g C gl(V') is a nilpotent subalgebra, it does not
imply that every X € g is nilpotent (take diagonal matrices for
example).

Theorem 11.11 (Lie’s Theorem). Let k be algebraically closed and of
characteristic 0. If g C gl(V') is a solvable subalgebra, then all elements
of g have a common eigenvector in V.

This is a generalization of the statement that two commuting operators
have a common eigenvector.

Corollary 11.12. If g is solvable, then there is a complete flag {0} =
Vo WVi Q- GV, =V such that g(V;) C V;. That is, there is a basis
in which all elements of g are upper triangular.

Proof. 1f g is solvable, take any subspace a C g of codimension 1 con-
taining Dg, then a is an ideal. We're going to try to do the same kind
of induction as in Engel’s theorem.

For a linear functional A\ : a — k, let

Vi={veV|Xv=AX)v for all X € a}.

V) # 0 for some A by induction hypothesis.
Claim. g(V)) C V.



Lecture 11 - Engel’s Theorem and Lie’s Theorem 54

Proof of Claim. Choose v € V), and X € a, Y € g. Then

X(Yv) = Y(Xu) + [X,Y]u

AXv (XY

We want to show that A\[X, Y] = 0. There is a trick. Let r be the largest
integer such that v, Yv,Y?v,...,Y" 0 is a linearly independent set. We
know that Xv = A(X)v for any X € a. We claim that XY7v = A\(X)Y7v
mod (span{v,Ywv,..., Y37 t}). This is clear for j = 0, and by induction,
we have

XYl =YXY ™y + [X, Y]yl
_ NG —
=AX)YI oy =A\([X, Y)Y~ 1w

mod span{v,...,Y7 20} mod span{v,...,Y7—2v}

= MX)Y?v mod spanfv, ..., Y v}

So the matrix for X can be written as A(X) on the diagonal and stuff
above the diagonal (in this basis). So the trace of X is (r+1)A(X). Then
we have that tr([X, Y]) = (r+1)A([X, Y]), since the above statement was
proved for any X € a and [X,Y] € a. But the trace of a commutator
is always 0. Since the characteristic of k is 0, we can conclude that
A[X’ Y] =0. |:ICIaLim

To finish the proof, write g = kT @ a, with T : V), — V), (we can do
this because of the claim). Since k is algebraically closed, T" has a non-
zero eigenvector w in V). This w is the desired common eigenvector. [J

Remark 11.13. If k is not algebraically closed, the theorem doesn’t hold.
For example, consider the (one dimensional) Lie algebra generated by a
rotation of R?.

The theorem also fails if k is not characteristic 0. Say k is charac-
teristic p, then let x be the permutation matrix of the p-cycle (p p —
1 - 21) (ie. the matrix ({ IPO* )), and let y be the diagonal matrix
diag(0,1,2,...,p — 1). Then [z,y] = x, so the Lie algebra generated
by x and y is solvable. However, y is diagonal, so we know all of its
eigenvectors, and none of them is an eigenvector of x.

Corollary 11.14. Let k be of characteristic 0. Then g is solvable if and
only if Dg s nilpotent.

If Dg is nilpotent, then g is solvable from the definitions. If g is
solvable, then look at everything over the algebraic closure of k, where
g looks like upper triangular matrices, so Dg is nilpotent. All this is
independent of coefficients (by useful fact (4)).
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The radical

There is a unique maximal solvable ideal in g (by useful fact (3): sum of
solvable ideals is solvable), which is called the radical of g.

Definition 11.15. We call g semisimple if radg = 0.
» Exercise 11.3. Show that g/rad g is always semisimple.

If g is one dimensional, generated by X, then we have that [g, g] = 0,
so g cannot be semisimple.

If g is two dimensional, generated by X and Y, then we have that [g, g]
is one dimensional, spanned by [X,Y]. Thus, g cannot be semisimple
because Dg is a solvable ideal.

There is a semisimple Lie algebra of dimension 3, namely sls.

Semisimple algebras have really nice properties. Cartan’s criterion
(Theorem 12.7) says that g is semisimple if and only if the Killing form
(see next lecture) is non-degenerate. Whitehead’s theorem (Theorem
12.10) says that if V' is a non-trivial irreducible representation of a
semisimple Lie algebra g, then H'(g,V) = 0 for all i. Weyl’s theorem
(Theorem 12.14) says that every finite dimensional representation of a
semisimple Lie algebra is the direct sum of irreducible representations.
If G is simply connected and compact, then g is semisimple (See Lecture
20).
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Lecture 12 - Cartan Criterion, Whitehead
and Weyl Theorems

Invariant forms and the Killing form

Let p: g — gl(V) be a representation. To make the notation cleaner, we
will write X for p(X). We can define a bilinear form on g by By (X,Y) :=
tr(XY). This form is symmetric because tr(AB) = tr(BA) for any linear
operators A and B.

We also have that

By([X,Y],Z) = tr(XYZ =YX Z) = tr(XY Z) — tr(X ZY)
_ (XY Z — XZV) = By(X, Y, Z)),

so B satisfies
B([X,Y],Z) = B(X,[Y, Z]).

Such a form is called an invariant form. It is called invariant because
it is implied by B being Ad-invariant.! Assume that for any g € G and
X,Z € g, we B(Ad,X,Ad,Z) = B(X,Z). Let v be a path in G with
7' (0) =Y. We get that

B([Y7 X]v Z) + B(X7 [Yv Z]) = B(Ad’Y(t)<X>7Ad’Y(t)(Z>) =0.

a

dt|,_,
Definition 12.1. The Killing form, denoted by B, is the special case
where p is the adjoint representation. That is, B(X,Y") := tr(adx oady).

» Exercise 12.1. Let g be a simple Lie algebra over an algebraically
closed field. Check that two invariant forms on g are proportional.

» Exercise 12.2 (In class). If g is solvable, then B(g, Dg) = 0.

Solution. First note that if Z = [X,Y] € Dg, then ady = [adx,ady] €
D(ad g) since the adjoint representation is a Lie algebra homomorphism.
Moreover, g solvable implies that the image of the adjoint representation,
ad(g) ~ g/Z(g), is solvable. Therefore, in some basis of V' of a repre-
sentation of ad(g), all matrices of ad(g) are upper triangular (by Lie’s
Theorem), and those of D(adg) are all strictly upper triangular. The
product of an upper triangular matrix and a strictly upper triangular
matrix will be strictly upper triangular and therefore have trace 0. N

The converse of this exercise is also true. It will follow as a corollary
of our next theorem (Corollary 12.6 below).

'If G is connected, the two versions of invariance are equivalent.
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Theorem 12.2. Suppose g C gl(V'), chark = 0, and By(g,g) = 0.
Then g is solvable.

For the proof, we will need the following facts from linear algebra.

Lemma 12.32 Let X be a diagonalizable linear operator in 'V, with k
algebraically closed. If X = A -diag(My,...,\n) - A and f: k — k is
a function, we define f(X) as A-diag(f(M\1),..., f(\n)) - A™L. Suppose
tr(X - f(X)) = 0 for any Q-linear map f : k — k such that [ is the
identity on Q, then X = 0.

Proof. Consider only f such that the image of f is Q. Let Ay,..., A\, be
the eigenvalues of X with multiplicities nq, ..., n,,. We obtain tr(X-f(X)) =
A f(A) + .o+ np A f(N) = 0. Apply f to this identity to obtain
nf(A)?+ ..+ 1 f(An)? = 0 which implies f();) = 0 for all i. If some
A; is not zero, we can choose f so that f(\;) # 0, so \; = 0 for all 4.
Since X is diagonalizable, X = 0. O

Lemma 12.4 (Jordan Decomposition). Given X € gl(V'), there are
unique X, X, € gl(V) such that X is diagonalizable, X, is nilpotent,
(X5, Xn] =0, and X = X,, + Xs. Furthermore, X5 and X,, are polyno-
maals in X .

Proof. All but the last statement is standard; see, for example, Corollay
2.5 of Chapter XIV of | ]. To see the last statement, let the char-
acteristic polynomial of X be [[,(z — X;)™. By the chinese remainder
theorem, we can find a polynomial f such that f(z) = \; mod (z—\;)™.
Choose a basis so that X is in Jordan form and compute f(X) block by
block. On a block with \; along the diagonal (X — \;1)™ is 0, so f(X) is
Ail on this block. Then f(X) = X is diagonalizable and X,, = X — f(X)
is nilpotent. O

Lemma 12.5. Let g C gl(V'). The adjoint representation ad : g — gl(g)
preserves Jordan decomposition: adx, = (adx)s and adx, = (adx),. In
particular, adx, is a polynomial in ady .

Proof. Suppose the eigenvalues of X are Ay, ..., A\, and we are in a basis
where X, is diagonal. Check that adx, (E;;) = [Xs, Eij] = (A — Aj) Ej.
So X diagonalizable implies ady, is diagonalizable (because it has a basis
of eigenvectors). We have that ady, is nilpotent because the monomials
in the expansion of (adx,)*(Y) have X,, to at least the k/2 power on one
side of Y. So we have that adx = adx, +ady,, with adx, diagonalizable,
ady, nilpotent, and the two commute, so by uniqueness of the Jordan
decomposition, adx, = (adx)s and adx, = (adx ). O

2This is different from what we did in class. There is an easier way to do this if
you are willing to assume k£ = C and use complex conjugation. See Fulton and Harris
for this method.
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Proof of Theorem 12.2. It is enough to show that Dg is nilpotent. Let
X € Dg, so X = > [Y;, Z;]. It suffices to show that Xy = 0. To do this,
let f:k — k be any Q-linear map fixing Q.

By (f(Xs), Xs) = Bv(f(Xy), X) (X, doesn’t contribute)
= By (£(x.), Y[V 22)
= ; By ([f(X,),Yi], Z) (By invariant)
=0 (assuming [f(X;), Y] € g)

Then by Lemma 12.3, X, = 0.

To see that [f(X;), Yi] € g, suppose the eigenvalues of X are Ay, ..., Ay
Then the eigenvalues of f(X;) are f();), the eigenvalues of ady, are of the
form f1;; == X\; — \;, and eigenvalues of ady(x,) are v;; := f(\;) — f(N\;) =
f (). If we define g to be a polynomial such that g(p;;) = v;j, then
adyx,y and g(ady,) are diagonal (in some basis) with the same eigenval-
ues in the same places, so they are equal. So we have

[f(X,), Yi] = gladx,)(Yi)
= h(adx)(Y;) € g (using Lemma 12.5)

for some polynomial h.

The above arguments assume k is algebraically closed, so if it’s not
apply the above to g ®; k. Then g ®;, k solvable implies g solvable as
mentioned in the previous lecture. O

Corollary 12.6. g is solvable if and only if B(Dg,g) = 0.

Proof. (<) We have that B(Dg,g) = 0 implies B(Dg,Dg) = 0 which
implies that ad(Dg) is solvable. The adjoint representation of Dg gives
the exact sequence

0 — Z(Dg) — Dg — ad(Dg) — 0.

Since Z(Dg) and ad(Dg) are solvable, Dg is solvable by useful fact (1)
of Lecture 11, so g is solvable.
(=) This is exercise 12.2. O

Theorem 12.7 (Cartan’s Criterion). The Killing form is non-degenerate
if and only if g 1s semisimple.

Proof. Say g is semisimple. Let a = ker B. Because B is invariant, we
get that a is an ideal, and B|, = 0. By the previous theorem (12.2), we
have that a is solvable, so a = 0 (by definition of semisimple).
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Suppose that g is not semisimple, so g has a non-trivial solvable ideal.
Then the last non-zero term in its derived series is some abelian ideal
a C g For any X € a, the matrix of ady is of the form (J) with
respect to the (vector space) decomposition g = a® g/a, and for Y € g,

ady is of the form (§%). Thus, we have that tr(adx o ady) = 0 so
X € ker B, so B is degenerate. O

Theorem 12.8. Any semisimple Lie algebra is a direct sum of simple
algebras.

Proof. If g is simple, then we are done. Otherwise, let a C g be an ideal.
By invariance of B, a* is an ideal. On ana*, B is zero, so the intersection
is a solvable ideal, so it is zero by semisimplicity of g. Thus, we have
that g = a @ at. The result follows by induction on dimension. O

Remark 12.9. In particular, if g = @ g; is semisimple, with each g;
simple, we have that Dg = @ Dg,. But Dg; is either 0 or g;, and it
cannot be 0 (lest g; be a solvable ideal). Thus Dg = g.

Theorem 12.10 (Whitehead). If g is semisimple and V' is an irreducible
non-trivial representation of g, then H'(g, V) =0 for all i > 0.

Proof. The proof uses the Casimir operator, Cy € gl(V). Assume for
the moment that g C gl(V). Choose a basis ey, ..., e, in g, with dual
basis fi,..., f, in g (dual with respect to By, so By(e;, fj) = 0;;). It
is necessary that By be non-degenerate for such a dual basis to exist,
and this is where we use that g is semisimple. The* Casimir operator is
defined to be Cy = > e; 0 f; € gl(V) (where o is composition of linear
operators on V). The main claim is that [Cy, X] = 0 for any X € g.
This can be checked directly: put [X, fi] = > ai;if, [X, e = D bijey,
then apply By to obtain aj; = By (e;, [X, f;]) = Bv([e:, X], fj) = —bij,
where the middle equality is by invariance of By .

(X,Cv] =Y Xeifi —eiX fi+ e X fi — eifi X
= i[X, ellfi + el X, fi]
= Z > bijeifi + aeif;
Y Sy 4 b =0
i

3Quick exercise: why is a an ideal?
4We will soon see that Cy is independent of the basis ey, ..., e,, so the article
“the” is apropriate.




Lecture 12 - Cartan Criterion, Whitehead and Weyl Theorems 60

Suppose V is irreducible, and k is algebraically closed. Then the
condition [Cy, X] = 0 means precisely that Cy is an intertwiner so by
Schur’s lemma, Cy = Ald. We can compute

dim g

tryCy = Z tr(eifi)
i—1
= Z By (e;, fi;) = dim g.

Thus, we have that A = (;hmf/‘, in particular, it is non-zero.

For any representation p : g — gl(V), we can still talk about Cy,
but we define it for the image p(g), so Cy = dlm” 91d. We get that
[Cv, p(X)] = 0. The point is that if V' is non—trwlal 1rreduc1ble we have
that Cy, is non-zero.

Now consider the complex calculating the cohomology:
Hom(Akg, V) % Hom(AF g, V)

We will construct a chain homotopy® v : C¥*! — C* between the zero

map on the complex and the map Cy = dgflrf Ef.’ Id:

’YC(,’L'h s 7xk) = Zeic(fiaxla s 7xk)

» Exercise 12.3. Check directly that (vd + dvy)c = Cyec.

Thus vd + dy = Cy = Ad (where A = m) Now suppose dc = 0.

Then we have that dvy(c) = A¢, so ¢ = d(w . Thus, kerd/imd = 0, as
desired. O

Remark 12.11. What is H'(g, k), where k is the trivial representation of
g7 Recall that the cochain complex is

k — Hom(g, k) LR Hom(A%g, k) —

If ¢ € Hom(g, k) and ¢ € kerd, then de(x,y) = ¢([z,y]) =0, so ¢ is 0 on
Dg = g. So we get that H'(g,k) = (g/Dg)* = 0.

However, it is not true that H'(g,k) = 0 for ¢ > 2. Recall from
Lecture 10 that H?(g, k) parameterizes central extensions of g (Theorem
10.2).

» Exercise 12.4. Compute H’(sly, k) for all j.

®Don’t worry about the term “chain homotopy” for now. It just means that
~ satisfies the equation in Exercise 12.3. See Proposition 2.12 of | | if you're
interested.
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Remark 12.12. Note that for g semisimple, we have H'(g, M) = 0 for
any finite dimensional representation M (not just irreducibles). We have
already seen that this holds when M is trivial and Whitehead’s Theorem
shows this when M is non-trivial irreducible. If M is not irreducible, use
short exact sequences to long exact sequences in cohomology: if

0—-W-M-—->V -0
is an exact sequence of representations of g, then
— H'(g,V) — H'(g, M) — H'(g, W) —

is exact. The outer guys are 0 by induction on dimension, so the middle
guy is zero.

We need a lemma before we do Weyl’s Theorem.

Lemma 12.13. Say we have a short exact sequence
0—-W-—-M-—-V —0.
If H' (g, Homy(V,W)) = 0, then the sequence splits.
—_——

VW
Proof. Let X € g. Let Xy represent the induced linear operator on

W. Then we can write Xy = (XOW Cgf)). What is ¢(X)? It is an

element of Homy(V, W). So ¢ is a linear function from g to Homy(V, W).
It will be a 1-cocycle: we have [Xy, Y] = [X, Y]y because these are
representations, which gives us

Xwe(Y) —c(Y)Xv — (Ywe(X) — o(X)Yy) = c([X, Y]).

In general, de(X,Y) = ¢([X,Y]) = Xe(Y)+Ye(X), where Xc(Y) is given
by the action of X € g on V*® W, which is not necessarily composition.
In our case this action is by commutation, where ¢(Y') is extended to an
endomorphism of V & W by writing it as (§ (7). The line above says
exactly that de = 0.

Put I' = (I(V]V 11‘</ ) Conjugating by I' gives an equivalent representa-
tion. We have

. Xy o(X)+ KXy — XK
1 _ w 14 w
IX),T _< A X )

We’d like to kill the upper right part (to show that X acts on V and W
separately). We have ¢ € Hom(g, V*@ W), K € V*® W. Since the first
cohomology is zero, dc = 0, so we can find a K such that ¢ = dK. Since
¢(X)=dK(X)=X(K)=XwK — KXy, the upper right part is indeed
0. O
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Theorem 12.14 (Weyl). If g is semisimple and V is a finite dimensional
representation of g, then V is semisimple® (i.e. completely reducible).

Proof. The theorem follows immediately from Lemma 12.13 and Remark
12.12. ]

Weyl proved this using the unitary trick, which involves knowing
about compact real forms.

Remark 12.15. We know from Lecture 10 that deformations of g are
enumerated by H?(g,g). This means that semisimple Lie algebras do
not have any deformations! This suggests that the variety of semisimple
Lie algebras is discrete. Perhaps we can classify them.

Aut g is a closed Lie subgroup of GL(g). Let X () be a path in Aut g
such that X (0) = 1, and let%X(t)‘tzo = ¢ be an element of the Lie
algebra of Autg. We have that

(XY, X(8)2] = X(O)([Y; Z])
Y, Z] + [Y,9Z] = ¢[Y, Z] (differentiating at ¢t = 0)

so Lie(Aut g) = Der(g), the algebra of derivations of g. (We get equality
because any derivation can be exponentiated to an automorphism.)
By the Jacobi identity, ady is a derivation on g. So ad(g) C Der(g).

» Exercise 12.5. Check that ad(g) is an ideal.

We have seen in lecture 9 (page 42) that Der(g)/ad(g) ~ H'(g,g).
The conclusion is that Der(g) = ad(g) = g—that is, all derivations on a
semisimple Lie algebra are inner.

Now we know that G and Aut g have the same Lie algebras. If f €
Aut g is central (i.e. commutes with all automorphisms), then we have

(exp(t- ady))y = f o (exp(t-ad,)) o f'y (f is central)
= exp(t - ads))y (f an automorphism of g)

Comparing the ¢' coefficients, we see that ads(,) = ad, for all . Since g
has no center, f(z) = x for all . Therefore, Aut g has trivial center.

It follows that the connected component of the identity of Autg is
AdG.

SFor any invariant subspace W C V, there is an invariant W’ C V so that V =
wWaeWw'.
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Lecture 13 - The root system of a semisim-
ple Lie algebra

The goal for today is to start with a semisimple Lie algebra over a field
k (assumed algebraically closed and characteristic zero), and get a root
system.

Recall Jordan decomposition. For g C gl(V), any = € g can be
written (uniquely) as x = x4 + x,, where x, is semisimple and z,, is
nilpotent, both of which are polynomials in z. In general, x; and z,, are
in gl(V), but not necessarily in g.

Proposition 13.1. If g C gl(V) is semisimple, then x4, x, € g.

Proof. Notice that g acts on gl(V') via commutator, and g is an invari-
ant subspace. By complete reducibility (Theorem 12.14), we can write
gl(V) = g ® m where m is g-invariant, so

g9/ Cg and [gm|Cm

We have that ad,, and ad,, are polynomials in ad, (by Lemma 12.5), so
[T, 8] Cg, [vs,8] Cg and [z, m] Cm, [zg,m] Cm.

Take z, = a+b € gdm, where a € g and b € m. We would like to show
that b = 0, for then we would have that z, € g, from which it would
follow that x4 € g.

Decompose V =V, @ --- @ V,, with the V; irreducible. Since z,, is a
polynomial in z, we have that z,(V;) C V;, and a(V;) C V; since a € g,
so b(V;) C V;. Moreover, we have that

[Tn, 0] = [a, 9] +[b,g] C g,
>
g m

so [b,g] = 0 (i.e. b is an intertwiner). By Schur’s lemma, b must be a
scalar operator on V; (i.e. bly; = A\;Id). We have try, (z,,) = 0 because z,,
is nilpotent. Also try,(a) = 0 because g is semisimple implies Dg = g, so
a = Y [zk, yx], and the traces of commutators are 0. Thus, try;(b) = 0,
so\; =0and b=0. Now z,, =a € g, and so z, € g. O

Since the image of a semisimple Lie algebra is semisimple, the proposi-
tion tells us that for any representation p : g — gl(V), the semisimple and
nilpotent parts of p(x) are in the image of g. In fact, the following corol-
lary shows that there is an absolute Jordan decomposition x = x, + x,
within g.
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Corollary 13.2. If g is semisimple, and x € g, then there are x5, x, € g
such that for any representation p : g — gl(V'), we have p(xs) = p(x)s

and p(n) = p(x)n.

Proof. Consider the (faithful) representation ad : g — gl(g). By the
proposition, there are some z4,z, € g such that (ad,)s = ad,, and
(ady)n = ad,,. Since ad is faithful, ad, = ad,, + ad,, and ad, ,,) =
lad,, ,ad,,] = 0 tell us that x = z, + x; and [z, z,,] = 0. These are our
candidates for the absolute Jordan decomposition.

Given any surjective Lie algebra homomorphism o : g — ¢/, we
have that ady)(0(2)) = o(ady(2)), from which it follows that ad,(,,) is
diagonalizable and ad,,,) is nilpotent (note that we’ve used surjectivity
of o). Thus, o(x), = o(z,) and o(z)s = o(xs). That is, our candidates
are preserved by surjective homomorphisms.

Now given any representation p : g — gl(V'), the previous paragraph
allows us to replace g by its image, so we may assume p is faithful. By the
proposition, there are some y, z € g such that p(z)s = p(y), p(x)n = p(2).
Then [p(y), —]gp(g) is a diagonalizable operator on gl(p(g)) = gl(g),
and [p(2), —]gi(p(g)) 1s nilpotent. Uniqueness of the Jordan decomposition
implies that p(y) = p(zs) and p(z) = p(x,,). Since p is faithful, it follows
that y = x5 and z = x,,. O

Definition 13.3. We say = € g is semisimple if ad, is diagonalizable.
We say x is nilpotent if ad, is nilpotent.

Given any representation p : g — gl(V') with g semisimple, the corol-
lary tells us that if = is semisimple, then p(z) is diagonalizable, and if
is nilpotent, then p(zx) is nilpotent. If p is faithful, then z is semisimple
(resp. nilpotent) if and only if p(z) is semisimple (resp. nilpotent).

Definition 13.4. We denote the set of all semisimple elements in g
by gss. We call an x € gy regular if dim(ker ad,) is minimal (i.e. the
dimension of the centralizer is minimal).

Example 13.5. Let g = sl,. Semisimple elements of sl,, are exactly the
diagonalizable matrices, and nilpotent elements are exactly the nilpotent
matrices. If x € g is diagonalizable, then the centralizer is minimal
exactly when all the eigenvalues are distinct. So the regular elements are
the diagonalizable matrices with distinct eigenvalues.

Let h € g,s be regular. We have that ad), is diagonalizable, so we can
write g = ,,c; 8, where g, = {z € gl|[h, ] = px} are eigenspaces of
ady. We know that gg # 0 because it contains h. There are some other
properties:

L (84 00) C G-
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2. go C g is a subalgebra.
3. B(gu,9,) =0 if p # —v (here, B is the Killing form, as usual).
4. Blg,eg_, is non-degenerate, and B|g, is non-degenerate.

Proof. Property 1 follows from the Jacobi identity: if x € g, and y € g,,
then

[, [, 91} = [lhs 2, y] =+ [ [hy ]l = plae, yl + vl yl,
so [z,y] € gut+v. Property 2 follows immediately from 1. Property 3
follows from 1 because ad, o ady : gy — @y1u+v, 50 B(z,y) = tr(ad, o
ad,) = 0 whenever p+ v # 0. Finally, Cartan’s criterion says that B
must be non-degenerate, so property 4 follows from 3. O

Proposition 13.6. In the situation above (g is semisimple and h € g,
is reqular), go is abelian.

Proof. Take x € gy, and write z = x5 + z,,. Since ad,, is a polynomial
of ad,, we have [z,,h] =0, so x,, € go, from which we get x5 € go. Since
[z, h] = 0, we know that ad,, and ad), are simultaneously diagonalizable
(recall that ad,, is diagonalizable). Thus, for generic t € k, we have
that ker adpy4, C kerady,. Since h is regular, ker ad,, = ker ad;, = go.
So [xs,go] = 0, which implies that g is nilpotent by Corollary 11.9 to
Engel’s Theorem. Now we have that ad, : go — go is nilpotent, and we
want ad, to be the zero map. Notice that B(go, Dgo) = 0 since g is
nilpotent, but By, is non-degenerate by property 4 above, so Dgy = 0,
SO go is abelian. O

Definition 13.7. We call h := gy the Cartan subalgebra of g (associated
to h).

In Theorem 14.1, we will show that any two Cartan subalgebras of a
semisimple Lie algebra g are related by an automorphism of g, but for
now we just fix one. See | , §15] for a more general definition of
Cartan subalgebras.

» Exercise 13.1. Show that if g is semisimple, b consists of semisimple
elements.

All elements of §h are simultaneously diagonalizable because they are
all diagonalizable (by the above exercise) and they all commute (by the
above proposition). For a € h* \ {0} consider

9o = {z € g|lh, 2] = a(h)x for all h € h}

If this g, is non-trivial, it is called a root space and the « is called a
root. The root decomposition (or Cartan decomposition) of g is g =

b @ @aeb* \{O} gOé‘
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Example 13.8. g = s5l(2). Take H = ({ %), a regular element. The
Cartan subalgebra is h = k - H, a one dimensional subspace. We have

g2={(§6)} andgo={(?§)}, and g=h @ g2 © g».
Example 13.9. g = s((3). Take

T O

h= Tg T+ 2o +w3=0

0 o

Let E;; be the elementary matrices. We have that [diag(x1, x2, 23), Ejj] =
(x; — xj) ;. If we take the basis ¢;(21, 22, 3) = x; for h*, then we have
roots ¢; — €. They can be arranged in a diagram:

€2 — &3 €1 —E&3
9 &1
€2 — €1 €1 — &2
&3 —&1 €3 — &2

This generalizes to sl(n).

The rank of g is defined to be dim b. In particular, the rank of sl(n)
is going to be n — 1.

Basic properties of the root decomposition are:

—_

. [8a, 98] € gats-
. B(ga,93) =0if a+ 3 #0.

3. Blg.eg . is non-degenerate.

[\]

4. Bly is non-degenerate
Note that 3 implies that « is a root if and only if —« is a root.
» Exercise 13.2. Check these properties.

Now let’s try to say as much as we can about this root decomposition.
Define b, C b as [ga, §-o)- Take x € g, and y € g_, and h € . Then
compute

B([z,y],h) = B(z, [y, h]) (B is invariant)
= a(h)B(z,y) (since y € g4)

It follows that h: = ker(a), which is of codimension one. Thus, b, is
one dimensional.
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Proposition 13.10. If g is semisimple and « is a root, then a(bh,) # 0.

Proof. Assume that a(h,) = 0. Then pick x € g,, ¥y € g_o such that
[z,y] = h # 0. If a(h) = 0, then we have that [h, z] = a(h)x =0, [h,y] =
0. Thus (z,y, h) is a copy of the Heisenberg algebra, which is solvable (in
fact, nilpotent). By Lie’s Theorem, adgy(x) and ady(y) are simultaneously
upper triangularizable, so ady(h) = [ad4(x), ad4(y)] is nilpotent. This is
a contradiction because h is an element of the Cartan subalgebra, so it
is semisimple. O

For each root «, we will take H, € b, such that a(H,) = 2 (we can

always scale H, to get this). We can choose X, € g, and Y, € g_,
such that [X,,Y,] = H,. We have that [H,, X,] = a(H,)X, = 2X,

and [H,,Ys] = —2Y,. That means we have a little copy of sl(2) =

(Hu, Xo, Ya). Note that this makes g a representation of sly via sly —
ad

g — gl(g)-

We normalize a(h,) to 2 so that we get the standard basis of sl,. This
way, the representations behave well (namely, that various coefficients are
integers). Next we study these representations.

Irreducible finite dimensional representations of s[(2)

Let H, X,Y be the standard basis of s[(2), and let V' be an irreducible
representation. By Corollary 13.2, the action of H on V' is diagonalizable
and the actions of X and Y on V are nilpotent. By Lie’s Theorem
(applied to the solvable subalgebra generated by H and X), X and
H have a common eigenvector v: Hv = v and Xv = 0 (since X is
nilpotent, its only eigenvalues are zero). Verify by induction that

HY'v=YHY o+ [H YYo= (A=2(r—1)Y v+2Y"v
=A=2r)Y"v (13.11)
XY'o=YXY" " lw+[X,Y]Y" v
=r—-1DA=-(r-1D+1)Y" v+ A=2(r—1)Y"
=r(A—r+1)Y" (13.12)

Thus, the span of v,Yv,Y?v,... is a subrepresentation, so it must be
all of V' (since V' is irreducible). Since Y is nilpotent, there is a minimal
n such that Y"v = 0. From (13.12), we get that A = n — 1 is a non-
negative integer. Since v, Yv,...,Y" v have distinct eigenvalues (under
H), they are linearly independent.

Conclusion: For every non-negative integer n, there is exactly one
irreducible representation of sl, of dimension n+1, and the H-eigenvalues
on that representation are n,n —2,n—4,...,2 —n, —n.
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Remark 13.13. As a consequence, we have that in a general root decom-
position, g = b ® . ga, €ach root space is one dimensional. Assume
that dimg_, > 1. Consider an s((2) in g, generated by (X,, Y., H, =
(X, Ya]) where Y, € g_, and X,, € g,. Then there is some Z € g_,, such
that [X,, Z] = 0 (since b, is one dimensional). Hence, Z is a highest
vector with respect to the adjoint action of this s[(2). But we have that
adg,(Z) = —2Z, and the eigenvalue of a highest vector must be positive!
This shows that the choice of X, and Y, is really unique.

Definition 13.14. Thinking of g as a representation of sly = (X, Yo, Ha),
the irreducible subrepresentation containing gg is called the a-string
through (3.

Let A denote the set of roots. Then A is a finite subset of h* with
the following properties:

1. A spans b*.
2. If a,3 € A, then 3(H,) € Z, and 8 — (B(H,))a € A.
3. If a,cax € A, then ¢ = +1.

» Exercise 13.3. Prove these properties.
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Lecture 14 - More on Root Systems

Assume g is semisimple. Last time, we started with a regular element
h € gs and constructed the decomposition g = b & @A ga, Where
A C b* is the set of roots. We proved that each g, is one dimensional
(we do not call 0 aroot). For each root, we associated an sl(2) subalgebra.
Given X, € ga, Yo € 9o, we set H, = [X,, Y,], and normalized so that
a(H,) = 2.

Furthermore, we showed that

1. A spans b*,
2. a(Hpg) € Z, with a — a(Hg)B € A for all o, 5 € A, and
3. if a,ka € A, then k = +1.

How unique is this decomposition? We started with some choice of a
regular semisimple element. Maybe a different one would have produced
a different Cartan subalgebra.

Theorem 14.1. Let b and by’ be two Cartan subalgebras of a semisimple

Lie algebra g (over an algebraically closed field of characteristic zero).
Then there is some ¢ € AdG such that ¢(h) = . Here, G is the Lie
group associated to g.

Proof. Consider the map
Db X gy X X oy — 8
(hyz1,...,xN) — exp(ady, ) - - -exp(adyy )h.
Note that ad,;h is linear in both z; and h, and each adg, is nilpotent,
so the power series for exp is finite. It follows that ® is a polynomial
function. Since % exp(admi)h} g = a;(h)x; € ga,, the differential if ® at
(h,0,...,0) is
Idy | 0
ai(h) 0

D®|0,..0) =

0 an(h)

with respect to the decomposition g = ® go, © -+ ® gay- DP|(n0....0)
is non-degenerate because h € h™8 implies that a;(h) # 0. So im ®
contains a Zariski open set.! Let ® be the analogous map for b’. Since
Zariski open sets are dense, we have that im ® Nim &’ £ @&. So there are
Y, Y € AdG, and h € h, ' € i such that ¢(h) = ¢'(h’). Thus, we have

that b = ¢ =1/(h). O

!This is a theorem from algebraic geometry. | | claims in §D.3 that this result
isin [ ], but I cannot find it.
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Abstract Root systems

We'd like to forget that any of this came from a Lie algebra. Let’s just
study an abstract set of vectors in h* satisfying some properties. We
know that B is non-degenerate on [, so there is an induced isomorphism
s :bh — b*. By definition, (s(h),h’) = B(h,}’).

Let’s calculate

(sHs,H,) = B(Hs, H,) = B(H,, Hp) (B symmetric)
= B(Ha [Xg, Yﬁ]) B([Ha, Xﬁ], Yg) (B invariant)
= B(X5,Y5)0(Ha)
= 3 B(Hy, X5], Yo)3(H,) (2, = [H, X
- %B(Hﬁ, Hp)B(H,) (B invariant)

Thus, we have that s(Hg) = B(Hﬂﬁ Also, compute

(0, B) = {a,s7'53)

(g, )

_ 2a(Hp)
- 5 (14.2)

In particular, letting a = 3, we get s(Hg) = This is sometimes

28
B.8)"
called the coroot of 3, and denoted 3. We may use (14.2) to rewrite fact

2 from last time as:

2o, B) 2o, B)
(3.p) € Zandes (ﬁ,ﬂ)

Now you can define rg : h* — bh* by r3(z) = is the
reflection through the hyperplane orthogonal to /6 1n b* The group
generated by the rg for # € A is a Coxeter group. If we want to study
Coxeter groups, we'd better classify root systems.”

We want to be working in Euclidean space, but we are now in h*.
Let §, be the real span® of the H,’s. We claim that B is positive def-
inite on h,.. To see this, note that X,,Y,, H, make a little s[(2) in g,
and that g is therefore a representation of s[(2) via the adjoint actions
ady,,ady,,ady,. But we know that in any representation of s[(2), the
eigenvalues of H, must be integers. so adpy, o ady, has only positive
eigenvalues, so B(H,, H,) = tr(ady, o ady,) > 0.

For a, 8 € A, B e A. (2"

2We will not talk about Coxeter groups in depth in this class.
3 Assuming we are working over C. Otherwise, we can use the Q span.
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Thus, we may think of our root systems in Euclidean space, where the
inner product on h* is given by (u,v) @ B(s~(n), s (v)) = (1, s~'v).

Definition 14.3. An abstract reduced root system is a finite set A C
R™ \ {0} which satisfies

(RS1) A spans R”,

(RS2) if o, B € A, then 2(%) € Z, and rg(A) = A

(ie. o, € A =rg(a) € A, with o — rg(a) € Zf ), and
(RS3) if o, kv € A, then k = +1 (this is the “reduced” part).
The number n is called the rank of A.

Notice that given root systems A; C R”, and Ay C R™, we get that
A ] A C R* @ R™ is a root system.

Definition 14.4. A root system is irreducible if it cannot be decomposed
into the union of two root systems of smaller rank.

» Exercise 14.1. Let g be a semisimple Lie algebra and let A be its
root system. Show that A is irreducible if and only if g is simple.
2(a,8) 2(f)

(a,) (B,8)
4 cos? 6, where 0 is the angle between o and 3. This thing must be an

integer. Thus, there are not many choices for 6:

Now we will classify all systems of rank 2. Observe that

Choose two vectors with minimal angle between them. If the minimal
angle is m/2, then the system is reducible.

o

$a

Notice that a and 8 can be scaled independently.

If the minimal angle is smaller than 7/2, then rg(e) # a, so the
difference a —rg() is a non-zero integer multiple of 3 (in fact, a positive
multiple of 3 since § < 7/2). If we assume ||a|| < ||8]| (we can always
switch them), we get that ||a — rg(a)|| < 2[ja| < 2[|5]|. It follows that
a—rg(a) = 0.

Remark 14.5. Observe that we have shown that for any roots o and (3,
if 6,3 < m/2, then a — 3 is a root.
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Remark 14.6. We have also shown that once we set the direction of the
longer root, 3 (thus determining rg), its length is determined relative to
the length of a.

Now we can obtain the remaining elements of the root system from
the condition that A is invariant under 7, and rg, observing that no
additional vectors can be added without violating RS2, RS3, or the pre-
scribed minimal angle. Thus, all the irreducible rank two root systems
are

AQ,QZW/B 32,9:71'/4 .GQ,QZW/6
B
a a
rg(a
rg(a) rg(a)
The Weyl group
Given a root system A = {ay,...,ayx}, we call the group generated by

the r,,s the Weyl group, denoted 20.

Remark 14.7. If G is a Lie group with Lie algebra g, then for each
ro € 2, there is a group element S, € G, such that Adg, takes b to
itself, and induces r,. Consider the sly C g generated by X,, Y,, and
H,. The embedding sl — g induces a homomorphism SL(2) — G, and
S, is the image of ( % {) under this homomorphism.

» Exercise 14.2. Let g be a semisimple Lie algebra, and let h be a
Cartan subalgebra. For each root a define

Sa = exp(X,) exp(—Ya) exp(X,).
Prove that Adg,(h) = b and that
(A Ads, (h)) = (ra(A), h)
L

for any h € h and A € bh*, where r,, is the reflection in a-—.

If G is a connected group with Lie algebra g, then define the Cartan
subgroup H C G to be the subgroup generated by the image of h under
the exponential map exp : g — G. Let

N(H)={geGlgHg ' = H}
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be the normalizer of H. Then we get a sequence of homomorphisms

N(H) — Aut H — Auth — Aut h*
g Ady — Ady,.

The first map is given by conjugation, the second by differentiation at
the identity, and the third by the identification of b with h* via the
Killing form. The final map is given by g — Ad;, where (Ad:(1))(h) =
[(Ady-1h).

Proposition 14.8. The kernel of the composition above is exactly H,
and the image is the Weyl group. In particular, 2 = N(H)/H.

Before we prove this proposition, we need a lemma.
Lemma 14.9. The centralizer of H is H.

Proof. 1f g centralizes H, then Ad, is the identity on h. Furthermore,
for any h € h and = € g,,

[h, Adyz] = Ady([h, 7)) = Ad,y(a(h)z) = a(b) - Adyx

so0 Ady(ga) = ga- Say Ady(X;) = ¢;X;, where X; spans the simple root
space go,. Then Ady(Y;) = 1V;. Since the simple roots are linearly
independent, we can find an h € h such that Ade,, X; = ¢;X;. Now we
have that Ad,.(expp)-1 is the identity on g, so g- (exp h) ™' is in the center

of GG, which is in H, so g € H, as desired. O

Proof of Proposition 14.8. 1t is clear that H is in the kernel of the com-
position. To see that H is exactly the kernel, observe that Adj can only
be the identity map if Ad, is the identity map, which can only happen if
conjugation by g is the identity map on H, i.e. if g is in the centralizer
of H. By Lemma 14.9, g € H.

Since the S, in the previous exercise preserves hh under the Ad action,
it is in the normalizer of H. It is easy to see (given Exercise 14.2) that
the image of S, in Aut h* is exactly r,. Thus, every element of the Weyl
group is in the image.

We can show that the map preserves the set of roots. If « is a root,
with a root vector z, then we have ady(x) = a(h)z for all h € h. We
would like to show that Adja is also a root. It is enough to observe that
Adgyz is a root vector:

adp(Adyz) = [h, Adyx] = Ady([Ady-1h, z])
= Ady(a(Ady-1h)z)) = a(Ady-1h)Ad,y(z)
= (Adg(@))(h) (Ad,z)
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Therefore, we can find some element w in the Weyl group so that
w o Adj preserves the set II of simple roots. Since w is in the image
of Ad*, it is enough to show that whenever Ad; preserves II, it is the
identity map on b*.

]
Example 14.10 (Also see Example 13.9). The root system of sl is
called A,,. We pick an orthonormal basis €1,...,&,41 of R*™! the the
root system is the set of all the differences: A = {g; —¢;|i # j}. We
have that
€k k 7é 7’7]
TEi—Ej(€k> = Ej k=1
9% k= ]

is a transposition, so we have that 20 ~ S, .

Now back to classification of abstract root systems.

Draw a hyperplane in general position (so that it doesn’t contain any
roots). This divides A into two parts, A = AT[]JA~. The roots in
AT are called positive roots, and the elements of A~ are called negative
roots. We say that o € AT is simple if it cannot be written as the sum of
other positive roots. Let II be the set of simple roots, sometimes called
a base. It has the properties

1. Any @ € AT is a sum of simple roots (perhaps with repitition):
=) sy mpB where mg € Zsy.
2. If o, B €11, then (a, ) <0.

This follows from the fact that if (a, 3) > 0, then a— 3 and f—a« are
again roots (as we showed when we classified rank 2 root systems),
and one of them is positive, say o — . Then a =  + (o — ),
contradicting simplicity of a.

3. Il is a linearly independent set.

If they were linearly dependent, the relation Zai e @i = 0 must
have some negative coefficients (because all of II is in one half
space), so we can always write

0# aroq + -+ a,0p = Qr 1y + -0+ Ap0y

with all the a; > 0. Taking the inner product with the left hand
side, we get
larar+ - - - + apo,||?

= (alal + Ay, G Qg 000 anan) <0

by 2, which is absurd.
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Remark 14.11. Notice that the hyperplane is t+ for some ¢, and the
positive roots are the v € A for which (¢,«) > 0. This gives an order on
the roots. You can inductively prove 1 using this order.

Remark 14.12. Notice that when you talk about two roots, they always
generate one of the rank 2 systems, and we know what all the rank 2
systems are.

Lemma 14.13 (Key Lemma). Suppose we have chosen a set of positive
roots AT, with simple roots I1. Then for a € 11, we have that ro(AT) =
AT U{—a} ~A{a}.

Proof. For a simple root 3 # «, we have r,() = 8 + ka for some non-
negative k; this must be on the positive side of the hyperplane, so it
is a positive root. Now assume you have a positive root of the form
v = ma + Zai#a m;a;, with m,m; > 0. Then we have that r,(y) =
—mao + Za#a m;(a; — k;a) € A, If any of the m; are strictly positive,
then the coefficient of a; in r;(7y) is positive, so 7,(y) must be positive
because every root can be (uniquely) written as either a non-negative or
a non-positive combination of the simple roots. O

Proposition 14.14. The group generated by simple reflections (with
respect to some fized 11 = {aq,...,a,}) acts transitively on the set of
sets of positive roots.

Proof. Tt is enough to show that we can get from A" to any other set of
simple roots AT.
If A* contains II, then AT = A" and we are done. Otherwise, there
is some o; € At (equivalently, —a; € A*). Applying r;, Lemma 14.13
tells us that
ri(AT) N AT < |AT AT

If we can show for any root a which is simple with respect to r;(A), that r,,
is a product of simple reflections, then we are done by induction. But we
have that a = r;(¢;) for some j, from which we get that r, = ryrjr;. O

Corollary 14.15. 27 is generated by simple reflections.

Proof. Any root « is a simple root for some choice of positive roots. To
see this, draw the hyperplane really close to the given root. Then we
know that « is obtained from our initial set II by simple reflections. We
get that if « =r;, -1y, (o)), then ro = (14, -+ v )ri(rey -1, )7 O

We define the length of an element w € 2T to be the smallest number
k so that w = r;, - -1y, for some simple reflections r;;.

Next, we'd like to prove that 27 acts simply transitively on the set
of sets of simple roots. To do this, we need the following lemma, which
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essentially says that if you have a string of simple reflections so that
some positive root becomes negative and then positive again, then you
can get the same element of 20 with fewer simple reflections.

Lemma 14.16. Let 3y, 5a, ..., 0 be a sequence in 11 (possibly with rep-
etition) with t > 2. Let r; = rg,. If rira---1(B;) € AT, then there is
some s <t such that

T T =T e Tgn T
(Note that the right hand side omits rs and r;.)

Proof. Note that 3, is positive and 7 - - - 7,_1(;) is negative, so there is a
smallest number s for which 7,1 -+ -r,_1(5;) = v is positive. Then r4(7)
is negative, so by Lemma 14.13, we get v = 5. This gives us

_ -1
rs = (7’s+1 - 'Tt—1>rt(rs+1 o 'Tt—1)
TsTs41 " Tt—1 = Ts41 " Tt—1T%-

Multiplying both sides of the second equation on the left by ry---r,_4
to get the result. O

Proposition 14.17. 20 acts simply transitively on the set of sets of
positive 1oots.

Proof. Proposition 14.14 shows that the action is transitive, so we need
only show that any w € 20 which fixes AT must be the identity element.
If w is a simple reflection, then it does not preserve AT. So we may
assume that the shortest way to express w as a product simple reflections
uses at least two simple reflections, say w = r;, - - -r;,. Then by Lemma
14.16, we can reduce the length of w by two, contradicting the minimality

of t. O
Corollary 14.18. The length of an element w € 20 is exactly ‘w(AJF) ~
AH.

Proof. By Proposition 14.17, w is the unique element taking A" to
w(AT). Say we are building a word, as in Proposition 14.14, to get
from AT to w(A™). Assume we've already applied r;, ---r; , and next
we are going to reflect through r;, - - -r;, (). Then we will have applied
the element

(riy =g )r(ray - 1) T (s ) = Ty
Thus, each time we reduce |r;, - --7;, (AT) \ w(AT)| by one, we add
one simple reflection. This shows that we can express w in the desired
number of simple reflections.
On the other hand, Lemma 14.13 tells us that for any sequence of
simple reflections 7;,,..., ry, |ri, - i (A7) N AT| <k, so w cannot be
written as a product of fewer than [w(AT) \ AT| simple reflections. [
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Lecture 15 - Dynkin diagrams, Classifica-
tion of root systems

Last time, we talked about root systems A C R". We constructed the
Weyl group 20, the finite group generated by reflections. We considered
IT C A, the simple roots. We showed that II forms a basis for R", and
that every root is a non-negative (or non-positive) linear combination of
simple roots.

If o, 8 € 11, then define n,g = 2((5’5)). We showed that n,s is a non-

positive integer. Since nagng, = 4c0s? 0,5, nap can only be 0, —1, =2,
or —=3. If nyg = 0, the two are orthogonal. If n,3 = —1, then the angle
must be 27 /3 and the two are the same length. If n,3 = —2, the angle
must be 37/4 and ||5|| = V2 ||a||. If nag = —3, the angle is 57/6 and
118|] = V/3 ||a||. Thus we get:

Nga | Nap | relationship | Dynkin picture
g
0 0 T—> a o o3
g
-1 -1 \—> o ao——of3
B
-2 | —1 a ao===0[3
g \_}

-3 | -1 o aoe==0(}

Definition 15.1. Given a root system, the Dynkin diagram of the root
system is obtained in the following way. For each simple root, draw a
node. We join two nodes by n,gng, lines. If there are two or three lines
(i.e. if the roots are not the same length), then we draw an arrow from
the longer root to the shorter root. (As always, the alligator eats the big
one.)

The Dynkin diagram is independent of the choice of simple roots.
For any other choice of simple roots, there is an element of the Weyl
group that translates between the two, and the Weyl group preserves
inner products.

We would really like to classify Dynkin diagrams. To aid the classi-
fication, we define an undirected version of the Dynkin diagram. Define

e; = (agﬁ’ for a; € II. Then the number of lines between two vertices

. _ (Oci,oc]')Q o 2
1S Neyo; Naja; = 4 et = 4(e;, e5)7.



Lecture 15 - Dynkin diagrams, Classification of root systems 78

Definition 15.2. Given a set {ey,...,e,} of linearly independent unit
vectors in some Euclidean space with the property that (e;,e;) < 0 and
4(e;, ej)? € Z for all i and j, the Cozeter diagram associated to the set is
obtained in the following way. For each unit vector, draw a node. Join
the nodes of e; and e; by 4(e;, e;)? lines.

Since every Dynkin diagram gives a Coxeter diagram, understanding
Coxeter diagrams is a good start in classifying Dynkin diagrams.

Example 15.3. A, has n simple roots, given by €; —;,1. So the graphs

are

Dynkin o—0— -+ —0—0

Coxeter * ——— - - —0—0

Let’s prove some properties of Coxeter diagrams.

(CX1)

(CX2)

(CX3)

A subgraph of a Coxeter diagram is a Coxeter diagram. This is
obvious from the definition.

A Coxeter diagram is acyclic.

Proof. Let ey, ..., e be a cycle in the Coxeter diagram. Then

(Zei,ZeZ) =k+ Z 2(e;,6e;) <0
1, ;;i?gccnt S_lj

which contradicts that the inner product is positive definite. [

The degree of each vertex in a Coxeter diagram is less than or equal
to 3, where double and triple edges count as two and three edges,
respectively.

Proof. Let ey have ey, ..., e, adjacent to it. Since there are no
cycles, eq, ..., e, are orthogonal to each other. So we can compute

(eo — Z(eo, €i)e;, eo — Z(eo, ei)ei> >0
1- Z(eo,ei)Q >0

but (eg, €;)? is one fourth of the number of edges connecting ey and
e;. So k cannot be bigger than 3. O
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(CX4) Suppose a Coxeter diagram has a subgraph of type A, and only
the endpoints of this subgraph have additional edges (say I'; at one
end and I'y at the other end). Then we can “contract” the stuff
in the middle and just fuse I'; with I's, and the result is a Coxeter
diagram.

Or=d— —) — =D

Proof. Let eq, ..., e, bethe vertices in the Ay. Let eg = e1+- - -+¢y.
Then we can compute that (eg,e9) = 1. If e, € 'y and e, € 'y, we
get that (eg,es) = (e1,¢es) and (eg, ;) = (eg, €;). O

Thus, a connected Coxeter diagram can have at most one fork (two could
be glued to give valence 4), at most one double edge, and if there is a
triple edge, nothing else can be connected to it.

So the only possible connected Coxeter diagrams (an therefore Dynkin
diagrams) so far are of the form

Now we switch gears back to Dynkin diagrams. Note that a subgraph
of a Dynkin diagram is a Dynkin diagram. We will calculate that some
diagrams are forbidden. We label the vertex corresponding to «; with a
number m;, and check that

<Z m;oy, Z m,-ai> = 0.

1 2 3 4 2 1 2 3 2 1

O < O O——O0—COC0—=—=0——0
1 2 2 1 1 2 3 4 3 2 1
O O O O

Thus we have narrowed our list of possible Dynkin diagrams to a
short list.
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The “classical” connected Dynkin diagrams are shown below (n is
the total number of vertices).

o—o— ++—0—0 (A
o—0— + -—o0=—=—0 (B
(

— < §

The “exceptional” Dynkin diagrams are

== (G2)
o ——0o 0o Fy)
o O (EG)
l (£7)
l
o 0 (Eg)

It remains to show that each of these is indeed the Dynkin diagram of
some root system.
We have already constructed the root system A,, in Example 14.10.
Next we construct D,,. Let ¢1,...,¢, be an orthonormal basis for R".
Then let the roots be

We choose the simple roots to be
1 — &) -—en—2— En1}—En1 — En| (Dy)

To get the root system for B, take D,, and add {%¢;|i < n}, in which
case the simple roots are

(21— e et — En o] (B.)

To get C,,, take D,, and add {£2¢;]i < n}, then the simple roots are

€1 — €9 '*"'4{5%—1 _5n}j:<25n‘ (Cn)
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Remark 15.4. Recall that we can define coroots & = (j;’“a) Replacing
all the roots with their coroots will reverse the arrows in the Dynkin
diagram. The dual root system is usually the same as the original, but
is sometimes different. For example, C,, and B,, are dual.

Now let’s construct the exceptional root systems.

We constructed GG when we classified rank two root systems on page
72.

F comes from some special properties of a cube in 4-space. Let eq,
€9, €3, €4 be an orthonormal basis for R*. Then let the roots be

:i:(€1 :f:€2:t€3j:€4)}
2

{j:(EZ + Ej), igi,
The simple roots are

EEE S EEE S e L (7

There are 48 roots total. Remember that the dimension of the Lie al-
gebra (which we have yet to construct) is the number of roots plus the
dimension of the Cartan subalgebra (the rank of g, which is 4 here), so
the dimension is 52 in this case.

To construct Fs, look at R? with our usual orthonormal basis. The
trick is that we are going to project on to the plane orthogonal to e; +
.-+ 4 gg9. The roots are

{ei—gli # gy U{t(ei g5 +en)li # 5 # k}

The total number of roots is |A] = 9-8 4 2(3}) = 240. So the dimension
of the algebra is 248! The simple roots are

le1 —eaHer —esfHes —euf{ea —esHes — esfHee — erHer — 5] (Es)

864—87—}—58‘

The root systems Eg and F; are contained in the obvious way in the
root system FEg.

Warning 15.5. Remember to project onto the orthogonal comple-

ment of €1 + - -+ + &9. Thus, e + €7 + €5 is really %(56 +e7+eg) —
%(51 +-+-4e5+4¢e9). There is another way to construct this root system,
which is discussed in Lecture 25.

» Exercise 15.1. Verify that F; and Eg are root systems, and that the
given sets are simple roots.

We have now classified all indecomposable root systems. The diagram
of the root system A; [ Ay is the disjoint union of the diagrams of A;
and A,.
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Construction of the Lie algebras A,, B,, C,, and D,

Next lecture, we will prove Serre’s Theorem (Theorem 16.1), which states
that for each irreducible root system and for each algebraically closed
field of characteristic zero, there is a unique simple Lie algebra with the
given root system (it actually gives explicit generators and relations for
this Lie algebra). Meanwhile, we will explicitly construct Lie algebras
with the classical root systems.

A,: Example 14.10 shows that sl(n + 1) has root system A,.

D,,: Consider so(2n), the Lie algebra of linear maps of k*" preserving
some non-degenerate symmetric form. We can choose a basis for k2" so
that the matrix of the form is I = () ). Let X € so0(2n), then we
have that X*I + IX = 0. It follows that X is of the form

X = (é _it),withBt:—B,Ct:—C.

We guess' that and element H of the Cartan subalgebra should have
the form A = diag(ty,...,t,) and B = C = 0 (to check this guess, it is
enough to demonstrate that we get a root decomposition). To compute
the root spaces, we try bracketing H with various elements of so(2n). We

have that (E(jj _]%ji> has eigenvalue ¢;—t;, that (8 E”BEﬁ

ti+t;, and that ( Eijg Eji 8) eigenvalue —t; —t;. Since these matrices span
50(2n), we know that we are done. Thus, D, is the root system of s0(2n).

B,: Consider sp(2n), the linear operators on k*" which preserve a
non-degenerate skew-symmetric form. In some basis, the form is J =
(1, ). so an element X € sp(2n) satisfies X'J + JX = 0. It follows
that X is of the form

) has eigenvalue

X:(é _it),withBt:B,Ct:C.

Let the Cartan subalgebra be the diagonal matrices. We get all the
same roots as for so(2n), and a few more. (8 Hs ) has eigenvalue 2¢;, and
(£, 0) has eigenvalue —2¢;. Thus, B, is the root system of sp(2n).

C,: Consider s0(2n + 1). Choose a basis so that the non-degenerate

symmetric form is

110 0
I=10|0 1,
0(1, O

1This will always be the right guess. The elements of the Cartan are simultaneously
diagonalizable, so in some basis, the Cartan is exactly the set of diagonal matrices in
the Lie algebra. The guess would be wrong if the Lie algebra did not have enough
diagonal elements, but this would just mean that we had chosen the wrong basis.
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Then an element X € so0(2n+ 1), satisfying X*I + I X = 0, has the form

0 ‘ U )
X=| —'|A B , with B' = =B, C' = —C,
—ut | C —A!

where u and v are row vectors of length n. Again, we take the Cartan
subalgebra to be the diagonal matrices. We get all the same roots as
we for s0(2n), and a few more. If e; is the row vector with a one in

0 e, O
the ¢-th spot and zeros elsewhere, then ( 0 10 O ) has eigenvalue t;,
—et |0 0
0 0 e . .
and ( —eI[0 0 ) has eigenvalue —t;. Thus, C, is the root system of
00 0
so(2n +1).

Isomorphisms of small dimension

Let’s say that we believe Serre’s Theorem. Then you can see that for
small n some of the Dynkin diagrams coincide, so the corresponding Lie
algebras are isomorphic.

BQZCQ D2:A1HA1 D3:A3
50(5) ~ sp(4) s0(4) ~ sl(2) x s((2) 50(6) ~ sl(4)

We can see some of these isomorphisms directly on the level of groups!
Let’s construct a map of groups SL(2) x SL(2) — SO(4), whose kernel
is discrete. Let W be the space of 2 x 2 matrices, then the SL(2) x SL(2)
acts on W by (X,Y)w = XwY . This action preserves the determinant
of w= (2b%). That is, the quadratic form ad — be is preserved, so the
corresponding non-degenerate bilinear form is preserved.? The Lie group
preserving such a form is SO(4), so we have a map SL2) x SL(2) —
SO(4). It is easy to check that the kernel is the set {(I,1),(—1,—1I)},
and since the domain and range each have dimension 6, we get SL(2) x
SL(2)/(£l,£I) = SO(4) (we are also using that SO(4) is connected).
This yields an isomorphism on the level of Lie algebras.

Now let’s see that so(6) ~ sl(4). The approach is the same. Let V'
be the standard 4 dimensional representation of SL(4). Let W = A%V,

2Given a quadratic form @, one gets a symmetric bilinear form (w,w’) := Q(w +
w') — Q(w) — Q(w'). In the case Q(w) = det w, the form is non-degenerate. Indeed,
assume det(w + w’) = det w + det w for all w. Then by choosing a basis so that w' is
in Jordan form and letting w vary over diagonal matrices, we see that w’ = 0.
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which is a 6 dimensional representation of SL(4). Note that you have a
pairing
W x W = A2V x A2V — AV 2 g

where the last map is an isomorphism of representations of SL(4) (be-
cause the determinant of any element of SL(4) is 1). Thus, W = A?V
has some SL(4)-invariant non-degenerate symmetric bilinear form, so we
have a map SL(4) — SO(W) ~ SO(6). It is not hard to check that the
kernel is £/, and the dimensions match, so we get an isomorphism of
Lie algebras.
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Lecture 16 - Serre’s Theorem

Start with a semisimple Lie algebra g over an algebraically closed field &
of characteristic zero, with Cartan subalgebra h C g. Then we have the
root system A C bh*, with a fixed set of simple roots IT = {aq, ..., a,}.
We have a copy of slob—generated by X;, Y;, and H;—associated to each
simple root.

The Cartan matriz (a;;) of g is given by a;; = (&;, o) = «a;(H;) =
2&1'7’;3')). From the definition of coroots and from properties of simple
roots, we know that a;; € Z<( for i # j, that a; = 2, and that a;; = 0
implies a;; = 0.

Claim. The following relations (called Serre relations' ) are satisfied in
g.

[Hi7Xj] = CLZ'ij (a) [HZ’ H]] =0 (C) (Serl)
[H;, )] = —aiY; (b) X0, Y} = 05H; ()
0 = (adx,) " X; =0 o
ij i j
HZ; = (ain)l—aij’j -0 fori#j. (Ser2)

Proof. (Serla), (Serlb), and (Serlc) are immediate because X; € g,,,
Y € g_o,, and H; = [X;,Y;] € h. To show (Serld), we need to show
that [X;,Y;] = 0 for ¢ # j. This is because [X;,Y}] € ga,—a,, Which is
not in A because every element of A is a non-negative or non-positive
combination of the «;.

Since ady,(Y;) = 0, we get that Y; is a highest vector for the s[(2)
generated by X;, Vi, and H,. We also have that adgy,(Y;) = —a;;Yj.

Thus, the ag-string through Y; is spanned by Y}, ady,Y;, ..., ady Y.
In particular, 6;; = ad;a” Y; = 0. Similarly, 6; = 0, so the relations
(Ser2) hold. O

So far, all we know is that any Lie algebra with root system A satisfies
these relations. We have yet to show that such an algebra exists, that it
is unique, and that these relations define it.

Theorem 16.1 (Serre’s Theorem). Let A be a root system, with a
fized set of simple roots 11 = {aq,...,a,}, yielding the Cartan ma-
triz a;; = Z&i’ij)). Let g be the Lie algebra generated by H;, X;,Y; for
1 < i < n, with relations (Serl) and (Ser2). Then g is a finite di-
mensional semisimple Lie algebra with a Cartan subalgebra spanned by
Hy, ..., H,, and with root system A.

1Serre called them Weyl relations.
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Remark 16.2. In order to talk about a Lie algebra given by certain gen-
erators and relations, it is necessary to understand the notion of a free
Lie algebra L(X) on a set of generators X, which is non-trivial (be-
cause of the Jacobi identity). We define L(X) as the Lie subalgebra
of the tensor algebra T'(X) generated by the set X. This algebra has
the universal property that for any Lie algebra L’ and for any function
f: X — L', there is a unique extension of f to a Lie algebra homomor-
phism f: L(X) — L' (to prove this, one needs the PBW theorem).

To impose a set of relations R, quotient L(X) by the smallest ideal
containing R. The resulting Lie algebra L(X, R) has the universal prop-
erty that for any Lie algebra L’ and for any function f : X — L’ such
that the image satisfies the relations R, there is a unique extension of f
to a Lie algebra homomorphism f: L(X,R) — L.

Remark 16.3. Serre’s Theorem proves that for any root system A there
is a finite dimensional semisimple Lie algebra g with root system A. But
since any other Lie algebra g with root system A satisfies (Serl) and
(Ser2), and since g is the universal Lie algebra satisfying these relations,
we get an induced Lie algebra homomorphism ¢ : g — ¢’. This homo-
morphism is surjective because g’ is spanned by ¢(X;), ¢(Y;), and ¢(H;).
Moreover, both dimg and dim g’ must be equal to |A|+rank(A), so ¢
must be an isomorphism. Therefore, we get uniqueness of g.

Proof of Serre’s Theorem.

Step 1. Decompose g: Consider the free Lie algebra with generators
X;, Y;, H; for 1 <i < n and impose the relations (Serl). Call the result
g. Let b be the abelian Lie subalgebra generated by Hy, ..., H,, and let
nt (resp. n7) be the Lie subalgebra generated by the X; (resp. Y;). The
goal is to show that g =1~ @ h & nt as a vector space.

There is a standard trick for doing such things. It is easy to see from
(Serl) that Ug = Un~ - Uh - Un*.? Let T(X) be the tensor algebra
on the X;, let T(Y) be the tensor algebra on the Y;, and let Sh be
the symmetric algebra on the H,;. We define a representation Ug —
End(T(Y)® Sh@T(X)). Fora € T(Y), b € Sh, and ¢ € T(X), define

Xi(l®l®e) =101 X,
H(1®b®c)=1® Hb® ¢, and
Yila®b®c) = (Yia) @bRec.

2By Ua~ - Uh - Unt, we mean the set of linear combinations of terms of the form
y-h-x, whereye Un~, h € Uh, and x € Un™.
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Then extend inductively by

H(Ya®b® )= VH(a®b®c) — a,Yy(a®bo o)
X(Yia@b®c)=Y;Xi(a®b®c)+ 0;;Hi(a®b®c).

» Exercise 16.1. Check that this is a representation.

Observe that the canonical (graded vector space) homomorphism
TY)® SheT(X) — Un -Ubh-Unt = Ug is the inverse of the map
wrw(lelel),soUg~T(Y)®ShRT(X) as graded vector spaces.”
Looking at the degree 1 parts, we get the vector space isomorphism
g~n ehoent.

Step 2. Construct g: We have that 9?; € nt. Let j™ (resp. j7) be the
ideal in A (resp. ™) generated by the set {67} (vesp. {6;;}).

» Exercise 16.2. Check that

[Yk, 9;;] =0 and [Hk, 9:]_] = Ckij‘9+

j
for some constants c¢y;;. Therefore, j* are ideals in g.

Now define n* =nat/j", n~ =n"/j",and g =g/GT+j ) =n" &
h @ nt. From relations (Serl), we know that h acts diagonalizably on
nt, n, and b, so we get the decomposition g = h & @aeh* ga, Where
0o = {7 € g|[h, 2] = a(h)z}. Note that each g, is either in n™ or in n™.

Define R as the set of non-zero a € h* such that g, # 0. We know
that +oy,...,+a, € R because X; € g,, and Y; € g_,,. Since each
g is either in n* or in n™, o must be a non-negative or a non-positive
combination of the «; (recalling that [ga, gs] C ga+s). This gives us the
decomposition R = RTII R™.

Since g is generated by the X; and Y;, the relation [g., g5] C gas tells
us that R is contained in the lattice } 7" | Za;. Since n* = @ p+ 0a
is a quotient of nt, it is generated as Lie algebra by the X;. Together
with the relation [g.,83] C @gat+s and the linear independence of the
o, this tells us that g,, is one dimensional, spanned by X;, and that
Ona; = (o g(n—l)ai] =0 forn > 1.

Step 3. R is QW-invariant: Let 20 be the Weyl group of the root sys-
tem A, generated by the simple reflections 7; : A — A — A\(H;)a;. We
would like to show that R is invariant under the action of 20. To do this,
we need to make sense of the element s; = exp(ady,) exp(—ady,) exp(ady,) €
Aut g.

3Ug is graded as a vector space, but only filtered as an algebra.
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The main idea is that (Serl) and (Ser2) imply that ady,,ady, are
locally nilpotent operators on g.* The Serre relations say that ady, and
ady, are nilpotent on generators, and then the Jacobi identity implies that
they are locally nilpotent. Thus, s; = exp(ady,) exp(—ady,) exp(ady,) is
a well-defined automorphism of g because each power series is (locally)
finite.

As in Exercise 14.2; we get s;(h) C b and

A(si(h)) = (A, si(h)) = (ri(A), h) = (ri\)(h) (16.4)

for any h € h and any A € h*.
Now we are ready to show that R is 2-invariant. If o € R, with
X € g., then we will show that s; ' X is a root vector for r;a. For h € b,
we have
[h,s;

)

X] = s ([sih, X]) = 57 (als; ) )
:O‘(Sih) s X = ( a)(h) si X, (by 16.4)

so r;a € R. So 20 preserves R.

On the other hand, we know that +«a; C R from the end of Step 2,
so we get A C R. Moreover, for any a € A, we have that dimg, = 1
because we can choose w =1y, - - -1, and s = s;, - - - 5;, so that o = w(y)
for some 7; then g, = s(gs,) has dimension one by the last sentence of
Step 2.

Step 4. Prove that A= R: Let A\ € R~ A. Then X is not pro-
portional to any o € A. One can find some h in the real span of
the H; such that (A\,h) = 0 and (a,h) # 0 for all @« € A. This
decomposes A as A* JJA~', and gives a new basis of simple roots
{B1,...,B,} =1 C A*'. By Proposition 14.14, 20 acts transitively on
the sets of simple roots, so we can find some w € 20 such that w(«;) = 5;
(after permutation of the f3;, if necessary). Then look at w=(\) € R.

By construction A is neither in the non-negative span nor the non-
positive span of the 3;, so w™*(\) is neither in the non-negative nor the
non-positive span of the ;. But we had the decomposition R = RT [ R~
from Step 2, so this is a contradiction. Hence A = R.

Step 5. Check that g is semisimple: It is enough to show that b has
no nontrivial abelian ideals. We already know that g = b @ @ .4 8a
and that each g, is 1 dimensional. In particular, g is finite dimensional.
We also know that the Serre relations hold. Notice that for any ideal
a, ady-invariance implies that a = b’ @,es g for some subspace h’ C b
and some subset S C A. If g, C a, then X, € a, so [X,, Y. = H, € a
(a is an ideal), and [Y,, H,] = 2Y, € a. Thus, we have the whole s[(2)

4An operator A on V is locally nilpotent if for any vector v € V, there is some
n(v) such that A"y = 0.
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in a, so it cannot be abelian. So a = §’ C h. Take a nonzero element
h € b'. Since {a,...,qa,} spans h*, there is some «; with a;(h) # 0,
then [h, X;] = a;(h)X; € a, contradicting a C b. O]

In the non-exceptional cases, we have nice geometric descriptions of
these Lie algebras. Next time, we will explicitly construct the exceptional
Lie algebras.
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Lecture 17 - Constructions of Exceptional
simple Lie Algebras

We'll begin with the construction of Gs.

We saw here that G5 is isomorphic to the Lie algebra of automor-
phisms of a generic 3-form in 7 dimensional space. The picture of the
projective plane is related to Cayley numbers, an important nonassocia-
tive division algebra, of which G5 is the algebra of automorphisms.

Consider the picture

Vo

(% (%
1 Ws 3

This is the projective plane over Fs.
Consider the standard 7 dimensional representation of gl(7), call it
E. Take a basis given by points in the projective plane above.

» Exercise 17.1. Consider the following element of A3E.
W=V ANV Nvg+w ANwas ANws+uNvi ANwy +uN\vo Awe +u/N\vg A\ ws
Prove that gl(7)w = A3E.

Warning 17.1. Don’t forget that gl(7) acts on A3E as a Lie algebra,

not as an associative algebra. That is, x(a AbAc) = (za) NbAc+
aANxzbAc+aAbAzc. In particular, the action of x followed by the action
of y is not the same as the action of yx.

Claim. g = {z € gl(7)|zw = 0} is a simple Lie algebra with root system
Go.

Proof. 1t is immediate that g is a Lie algebra. Let’s pick a candidate for
the Cartan subalgebra. Consider linear operators which are diagonal in
the given basis u, v1, vg, v3, W1, we, w3, take h = diag(c, ay, as, as, by, by, bs).
If we want h € g, we must have

hw = (a1 + a9 + CL3)’01’02U3 -+ (bl + bg + bg)wleUJ3+
+ (C + a1 + bl)uvlwl + (C + as + bg)uvgwg + (C + as + bg)U'Ug'LUg =0

which is equivalent to ¢ = 0, a1 + a2 + a3 = 0, and b; = —a;. So our
Cartan subalgebra is two dimensional.
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If you consider the root diagram for GGy and look at only the long
roots, you get a copy of As. This should mean that you have an embed-
ding Ay C Gy,' so we should look for a copy of sl(3) in our g. We can
write E = ku ®V @ W, where V' = (vy,v9,v3) and W = (wy, wy, w3).
Let’s consider the subalgebra which not only kills w, but also kills u. Let
go = {z € glou = 0}.

Say x € g is of the form

where a, b are row vectors, then

0 =2z w=x(nv3) + x(wiwows) + u A x(viwy + vaws + V3w3)

vov www UVW "
uvv 3 uww 3
[wo),  [oww], wait
uvv
uww |,

where each term lies in the span of the basis vectors below it. Since
the terms in boxes labelled 1 appear in only one way, we must have
B = C = 0. From that, it follows that the terms boxed an labelled 2
cannot appear. Thus, the terms in boxes labelled 3 only appear in one
way, so we must have a = b = 0. Since the terms in boxes labelled 2
appear in only one place (though in two ways), we must have D = —A".
Finally, since vvv only appears in one place (in three different ways), we
must have tr A = 0.

For x € go we have x(v; A v Avg) =0 and x(w; A we Awz) =0, so x
preserves V and W. It also must kill the 2-form o = v1 Awy + v Aws +
v3 A ws, since 0 = z(u A a) =zuANa+uAza =uA za forces za = 0.
This 2-form gives a pairing, so that V* ~ W. We can compute exactly
what the pairing is, (v;, w;) = d;;. Therefore the operator x must be of
the form

00 O
r=|(0]/A 0 , where tr(A) = 0.
0|0 —A

The total dimension of GG5 is 14, which we also know by the exercise
is the dimension of g. We saw the Cartan subalgebra has dimension 2,
and this go piece has dimension 8 (two of which are the Cartan). So we
still need another 6 dimensional piece.

'Note that this is not true of the short roots because the bracket of elements in
“adjacent” short root spaces produces an element in a long root space, so the short
root spaces will generate all of Gs.
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For each v € V| define a linear operator X, which acts by X,(u) = v.
A%V ~ W is dual to V (since A*V = C). Then X, acts by X, (v') =
y(v Av') and X, (w) = 2(v, w)u. Check that this kills w, and hence is in
g.

Similarly, you can define X,, for each w € W by X,,(u) = w, X,,(v') =
Y(w Aw'), Xy(v) = 2(w, v)u.

If you think about a linear operator which takes u +— v;, it must be
in some root space, this tells you about how it should act on V' and W.
This is how we constructed X, and X,,, so we know that X,, and X,,
are in some root spaces. We can check that their roots are the short
roots in the diagram,

Xos

and so they span the remaining 6 dimensions of G5. To properly complete
this construction, we should check that this is semisimple, but we’re not
going to. ]

Let’s analyze what we did with G,, so that we can do a similar
thing to construct Eg. We discovered certain phenomena, we can write
g= 0o ® g1 © go . ThisgivesusaZ/3-grading: [gi, 8] C Gitjmod 3)-

—~ ~~ ~~

51(3) 1% W
As an sl(3) representation, it has three components: ad, standard, and
the dual to the standard. We get that W = V* ~ A2V. Similarly,
V ~ A?W. This is called Triality.

More generally, say we have gy a semisimple Lie algebra, and V, W
representations of gg, with intertwining maps

a: NV =W
B AW -V
V ~W*.

We also have v: VW ~ V®V* — g, (representations are semisimple,
so the map gy — gl(V') ~ V@V * splits). We normalize ~ in the following
way. Let B be the Killing form, and normalize 7 so that B(y(v@w), X) =
(w, Xv). Make a Lie algebra g = go @ V @ W by defining [X,v] = Xv
and [X,w] = Xw for X € go,v € V;w € W. We also need to define
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[,] on V,WW and between V and W. These are actually forced, up to
coefficients:
[v1, V2] = ac(vy A vg)

[wy, we] = bB (w1 A ws)
[v,w] = cy(v @ w).

There are some conditions on the coefficients a, b, c imposed by the Jacobi
identity; [z, [y, 2]] = [[z,y], 2] + [y, [z, 2]]. Suppose x € go, with y, z € g;
for ¢ = 0,1, 2, then there is nothing to check, these identities come for
free because a, 3,7 are go-invariant maps. There are only a few more
cases to check, and only one of them gives you a condition. Look at

[’Uo, [Ul, ’02]] = CCL’)/(’UO &® Oé(’Ul N Ug)) (RHS)
and it must be equal to

[[vo, v1], va]+[v1, [vo, va]] =
—acy(vy ® a(vg Avy)) + acy(vy @ a(vg Avy))  (LHS)

This doesn’t give a condition on ac, but we need to check that it is
satisfied. It suffices to check that B(RHS,X) = B(LHS,X) for any
X € go. This gives us the following condition:

(a(vy A va), Xvg) = (a(vg A va), Xv1) — (a(vg A vy), Xvg)
The fact that « is an intertwining map for gy gives us the identity:
(a(vy A va), Xvg) = (a(Xvy A va),v9) — (a(vy A Xwg), vg)
and we also have that
(a(vr Avz),v0) = (a(vg A wva), v1) = (@(vg A v1),v2)

With these two identities it is easy to show that the equation (and hence
this Jacobi identity) is satisfied.
We also get the Jacobi identity on [w, [v1, v2]], which is equivalent to:

abB(w A a(vy Avg)) = c(y(v1 @ w)vy — y(vy ® w)vy)

It suffices to show for any w’ € W that the pairings of each side with w
are equal,

ab{w’, B(w A a(vy Avg)) = cB(y(vy @ w),v(vs @ w'))
— cB(v(vy @ w), y(v, ® w'))
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This time we will get a condition on a, b, and ¢. You can check that any
of the other cases of the Jacobi identity give you the same conditions.

Now we will use this to construct Egz. Write g = go ®V & W,
where we take go = s((9). Let E be the 9 dimensional representation
of go. Then take V = A*E and W = A3E* ~ ASE. We have a pairing
ANE ® A°E — k, so we have V ~ W*. We would like to construct
a : A2 — W, but this is just given by v; A vy including into ASE ~ W.
Similarly, we get 3 : A2W — V. You get that the rank of g is 8 (= rank
of go). Notice that dimV = (g) = 84, which is the same as dim W, and
dim go = dims((9) = 80. Thus, we have that dim g = 84484480 = 248,
which is the dimension of Eg, and this is indeed FEjx.

Remember that we previously got E; and Eg from Ey. Look at the
diagram for Fj:

51352 €3 — &4 €5 — &6 57;58
€2 — &3 €4 — &5 €6 — €71
56+57+58

The extra guy, €4 + €7 + €g, corresponds to the 3-form. When you cut
out €; — €9, you can figure out what is left and you get F;. Then you
can additionally cut out €5 — 3 and get Eg.

Fianally, we construct Fj: o : < o

We know that any simple algebra can be determined by generators
and relations, with a X;,Y;, H; for each node i. But sometimes our
diagram has a symmetry, like switching the horns on a D,,, which induces
an automorphism of the Lie algebra given by v(X;) = X, for i < n—1 and
switches X,,_; and X,,. Because the arrows are preserved, you can check
that the Serre relations still hold. Thus, in general, an automorphism
of the diagram induces an automorphism of the Lie algebra (in a very
concrete way).

Theorem 17.2. (Autg)/(Autyog) = Aut'. So the connected component
of the identity gives some automorphisms, and the connected components
are parameterized by automorphisms of the diagram.

D,, is the diagram for SO(2n). We have that SO(2n) C O(2n),
and the group of automorphisms of SO(2n) is O(2n). This isn’t true of
SO(2n+1), because the automorphisms given by O(2n+1) are the same
as those from SO(2n + 1). This corresponds the the fact that D,, has a
nontrivial automorphism, but B,, doesn’t.

Notice that Eg has a symmetry; the involution:

NN

O O

l
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Define X{ = Xl + X5,Xé = X2 + X4,Xé = Xg,Xé = XG, and the
same with Y’s, the fixed elements of this automorphism. We have that
H{ = H, + Hjy (you have to check that this works), and similarly for
the other H’s. As the set of fixed elements, you get an algebra of rank
4 (which must be our Fj). You can check that o} (H)) = —1,a4(Hy) =
—1,a5(H)) = 0,04(HS) = —2,a5(H}) = —1, so this is indeed Fj as
desired. In fact, any diagram with multiple edges can be obtained as the
fixed algebra of some automorphism:

» Exercise 17.2. Check that G5 is the fixed algebra of the automor-

phism of Dy:

Check that B,,, C, can be obtained from A,,, As,i1

NN

o — OO0 « . ——0—70
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Lecture 18 - Representations of Lie algebras

Let g be a semisimple Lie algebra over an algebraically closed field k of
characteristic 0. Then we have the root decomposition g = h & @, ga-
Let V be a finite dimensional representation of g. Because all elements
of b are semisimple, and because Jordan decomposition is preserved, the
elements of h can be simultaneously diagonalized. That is, we have
a weight decomposition V = €@, cy. V,, where V, = {v € V] =
p(h)v for all h € h}. We call V,, a weight space, and p a weight. Define
P(V) = {pu € b*|V, # 0}. The multiplicity of a weight p € P(V) is
dim V), and is denoted m,,.

Example 18.1. You can take V = k (the trivial representation). Then
P(V)={0} and mo = 1.

Example 18.2. If V = g and we take the adjoint representation, then
we have that P(V) = AU{0}, with m, = 1 for a € A, and my is equal
to the rank of g.

Example 18.3. Let g = sl(3). The weights of the adjoint representation
are shown by the solid arrows (together with zero, which has multiplicity
two).

€2 — €3 €1 — €3

€2—¢&1

€1 — &2

€3 — &1 €3 — &2

The weights of the standard 3-dimensional representation are {e1, ¢, €3},
shown in dotted lines.

In general, the weights of the dual of a representation are the nega-
tives of the original representation because (h¢, v) is defined as — (¢, hv).
Thus, the dashed lines show the weights of the dual of the standard rep-
resentation.

If V is a finite dimensional representation, then its weight decompo-
sition has the following are properties.

1. For any root o and € P(V), u(H,) € Z.

To see this, consider V' as a representation of the s[(2) spanned
by X., Hs, and Y,. Our characterization of finite dimensional
representations of s[(2) implies the result.
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2. Forae Aand pe P(V), gaV, C Vita
This follows from the standard calculation:
h(zav) = xohv + [k, z4|v

Taop(h)v + a(h)z,v
= (p+ a)(h)zyv.

3. If pe P(V) and w € 20, then w(p) € P(V) and my, = my(y)-

It is sufficient to check this when w is a simple reflection r;. Con-
sider V' as a representation of the copy of s[(2) spanned by Xj,
Y;, and H;. If v € V), then we have that h-v = p(h)v for all
h € b. By property 1, we know that u(H;) = [ is a non-negative
integer. From the characterization of finite dimensional represen-
tations of s[(2), we know that there is a corresponding vector with
H;-eigenvalue —I, namely u = Y/v. By property 2, u € V,,_jq,.
But g —loy = p— p(Hy)ay; = p— %al = r;u. Putting it all
together, if we consider the s[(2) subrepresentation of V' generated
by V,, and V;.,, the symmetry of finite dimensional representations

of sl(2) tells us that dim V;,, = dim V,,, as desired.

Remark 18.4. Note that the proof of property 2 did not require that
V' be finite dimensional. Properties 1 and 3 used finite dimensionality,
but in a weak way. Consider the s[(2) spanned by X;, Y;, and H;. It
is enough for each vector v in a weight space of V' to be contained in a
finite dimensional s[(2) subrepresentation. In particular, if each X; and
Y; act locally nilpotently,' then all three properties hold.

Example 18.5. If g = s[(3), then we get 20 = Dy3 = S3. The orbit of a
point can have a couple of different forms. If the point is on a hyperplane
orthogonal to a root, then you get a triangle. For a generic point, you
get a hexagon (which is not regular, but still symmetric).

-~
-

~
~
~

N
|
|

J

It is pretty clear that knowing the weights and multiplicities gives us a
lot of information about the representation, so we’'d better find a good
way to exploit this information.

"'We say that a linear operator A is locally nilpotent if for each vector v there is
an integer n(v) such that A"y = 0.
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Let V be a representation of g. Then V is also a representation of
the associated simply connected group G, and we get the commutative
square

G——GL(V)

OXPI Texp

g——gl(V)

If h € b, then exp h € GG, and we can evaluate the group character of the
representation V' on exp h as

xv(exph) = tr(exph) Z m,, et
neP(V

where the second equality is because every eigenvalue p(h) of h yields
an eigenvalue e of exp h. Since characters tell us a lot about finite
dimensional representations, it makes sense to consider the following
definition.

Definition 18.6. The character of the representation V' is the formal

sum
chV = Z myet.
peEP(V)

You can and multiply these (formal) expressions; ch is additive with
respect to direct sum and multiplicative with respect to tensor products:

ch(VeW)=chV +chW
ch(VRW) = (chV)(chW)

This is because V, ® W, C (V ® W)+, (or you can use the relationship
with group characters). You can also check that the ch V* is > m, e "

Remark 18.7. We only evaluated yy on the image of the Cartan subal-
gebra. Is it possible that we’ve lost some information about the behavior
of xy on the rest of G? The answer is no. Since xy is constant on conju-
gacy classes, and any Cartan subalgebra is conjugate to any other Cartan
subalgebra (Theorem 14.1), we know how yy behaves on the union of all
Cartan subalgebras. Since the union of all Cartan subalgebras is dense
in g, expg is dense in G, and xy is continuous, the behavior of xy on
the image of a single Cartan determines it completely.

» Exercise 18.1. Show that the union of all Cartan subalgebras is dense
in g.
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Highest weights

Fix a set of simple roots Il = {a,...,a,}. A highest weight of a repre-
sentation V is a A € P(V) such that a; + A & P(V) for all o; € TI. A
highest weight vector is a vector in V).

Let V' be irreducible, let A be a highest weight, and let v € V), be a
highest weight vector. Since V' is irreducible, v generates: V = (Ug)v.
We know that ntv = 0 and that § acts on v by scalars. By PBW,
Ug=Un" @Ubh®Unt, soV =0Un"v. Thus, V is generated from v by
applying various Y,,, where o € AT, In particular, the multiplicity m
is one. This also tells us that any other weight p is “less than” A in the
sense that A — 1 = Y1+ oo, where the [, are non-negative.

It follows that in an irreducible representation, the highest weight is
unique. If p is another highest weight, then we get A < p and p < A,
which implies p = \.

Remark 18.8. If V is an irreducible finite dimensional representation
with highest weight A, then for any w € 20, property 3 tells us that w(\)
is a highest weight with respect to the set of simple roots {way, . . ., wa, }.
So P(V) is contained in the convex hull of the set {wA},ca.

We also know that A is a highest weight for each s[(2) spanned by
Xa, Y,, and H,, with a € AT (from the definition of highest weight).
So M(H;) = (A, &;) € Z>q for each i.

Definition 18.9. The lattice generated by the roots, ) = Za; ® --- P
Zav,, is called the root lattice.

Definition 18.10. The lattice P = {u € b*|(u, &) € Z for 1 <1 < n}
is called the weight lattice.

Definition 18.11. The set {u € b*|(u, ;) > 0 for 1 < i < n} is called
the Weyl chamber, and the intersection of the Weyl chamber with the

weight lattice is called the set of dominant integral weights, and is de-
noted P+.

P and (Q have the same rank. It is clear that () is contained in P,
and in general this containment is strict.

P/Q is isomorphic to the center of the simply connected group cor-
responding to g.

Example 18.12. For g = sl(2), the root lattice is 2Z (because [H, X]| =
2X), and the weight lattice is Z.

Example 18.13. In the three rank two cases, the weight lattices and
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Weyl chambers are

sl(3)
° | Pt
°
°
[ ] ~
°
o2
° °
LI alo / h
2 e ® ) | ® °
n * b o/.b ° °
° ¢ s * ° * o ele o
| |

» Exercise 18.2. Show that P* is the fundamental domain of the
action of 20 on P. That is, show that for every u € P, the 2-orbit of u
intersects PT in exactly one point. (Hint: use Proposition 14.17)

We have already shown that the highest weight of an irreducible finite
dimensional representation is an element of P* (this is exactly the second
part of Remark 18.8). The rest of the lecture will be devoted to proving
the following remarkable theorem.

Theorem 18.14. There is a bijection between PT and the set of (iso-
morphism classes of ) finite dimensional irreducible representations of g,
in which an irreducible representation corresponds to its highest weight.

It remains to show that two non-isomorphic finite dimensional irre-
ducible representations cannot have the same highest weight, and that
any element of Pt appears as the highest weight of some finite dimen-
sional representation. To prove these things, we will use Verma modules.

Let V be an irreducible representation with highest weight A\. Then
V, is a 1-dimensional representation of the subalgebra bt :=hdn™ C g.
There is an induced representation Ug ®pp+ V) of g, and an induced
homomorphism Ug @up+ V — V given by 2 @ v +— z - v.

Definition 18.15. A Verma module is M(\) = Ug Qup+ V.

The Verma module is universal in the sense that for any represen-
tation V' with highest weight vector v of weight A, there is a unique
homomorphism of representations M (A) — V sending the highest vector
of M(\) to v. However, there is a problem: M () is infinite dimensional.

To understand M(\) as a vector space, we use PBW to get that
Ug =Un @, UhR,Unt =U(n")®, UbT. Since Ub™ acts on V) by
scalars, we get

M()\) =Un" ®, Ub" Quet Vi =Un" ®; V.
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AT ={ay,...,an}, withIl = {ay, ..., a,}, then by PBW, {Y(fll . Yf}’\j}
is a basis for Un~, so {Y* - YNo} is a basis for M(X) = U(n™) ®j Vi.
Thus, even though the Verma module is infinite dimensional, it still has

a weight decomposition with finite dimensional weight spaces:

RYE - YENp) = (A= kyog — -+ — kyan) (h)(YE - YN 0).

In particular, we get a nice formula for the multiplicity of a weight. The
multiplicity of u is given by the number of different ways A — p can be
written as a non-negative sum of positive roots, corresponding to the
number of basis vectors Y 1 - - YNy lying in V,.

mu:#{k—,u: 3 ks

a;EAT

k€ ZZO}.

This is called the Kostant partition function.

Example 18.16. We are now in a position to calculate the characters
of Verma modules. In the rank two cases, we get the characters below.
For example, since 2a3 = az + as + a3 = 2aq + 2a3 can be written in
these three ways as a sum of positive roots, the circled multiplicity (in
the sl(3) case) is 3.

sl(3) 50(5) = 5p(4)
Ao A
2v3 \T/
1 1 1 1 —o 1 1 1 1 1—«
2 2 2 2 1 3 3 3 3 2 1
3.3 3@ 21 6 6 6 5 4 2 1
4 4 4 3 2 1
1010 9 8 6 4 2 1
5 5 5 4 3 2 1
15 14 1311 9 6 4 2 1
Qy
[0}
2%\]/
1 1 1 155 m
4 4 4 4 4 3 2 1
G, 11 11 11 11 10 9 7 4 2 1

24 24 23 22 20 16 12 8 4 2 1

46 45 44 42 38 33 27 19 13 8 4 2 1
» Exercise 18.3. Check that the characters in Example 18.16 are cor-
rect. (Hint: For so(5), at each lattice point, keep track of four numbers:
the number of ways to write A —  as a non-negative sum in the sets
{ag, ..., a4}, {ag, a3, a4}, {ag, as}, and {as})
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Lemma 18.17. A Verma module M(\) has a unique proper maximal
submodule N(\).

Proof. N being proper is equivalent to N NV, = 0. This property
is clearly preserved under taking sums, so you get a unique maximal
submodule. O

Remark 18.18. If V and W are irreducible representations with the same
highest weight, then they are both isomorphic to the unique irreducible
quotient M(X\)/N (M), so they are isomorphic.

Lemma 18.19. If A € P*, then the quotient V(\) = M(X)/N(X) is
finite dimensional.

Proof. If w is a weight vector (but not the highest weight vector) in
M(A) such that X;w =0 for i =1,...,n, then we claim that w € N(\).
To see this, you note that

(Ug)w = (Un" @Uh@Un")w = (Un")w

so the submodule generated by w contains only lower weight spaces. In
particular, the highest weight space V) cannot be obtained from w.

Fix an ¢ < n. By assumption, A\(H;) = (\,&;) = l; € Z>¢. Letting
w = Y}, we get that

Xow=~+1)(l— (L+1)+1)Y " w =0 (by Equation 13.12)
Xjw =Y X;w=0 (since [X;,Y;] = 0)

so w € N(X). It follows from the Serre relations that in the quotient
V(A), the Y; act locally nilpotently. The X; act locally nilpotently on
M (X)), so they act locally nilpotently on V(). By Remark 18.4, P(V (X))
is invariant under 20, so it is contained in the convex hull of the orbit of
A. Since each weight space is finite dimensional, it follows that V(\) is
finite dimensional. O

Putting it all together, we can prove the Theorem.

Proof of Theorem 18.14. By Remark 18.8, the highest weight of an irre-
ducible finite dimensional representation is an element of P™. By Remark
18.18, non-isomorphic representations have distinct highest weights. Fi-
nally, by Lemmas 18.17 and 18.19, every element of P appears as the
highest weight of some finite dimensional irreducible representation. [

Corollary 18.20. If V and W are finite dimensional representations,
and if chV =chW, then V ~W.
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Proof. Since their characters are equal, V and W have a common highest
weight A, so they both contain a copy of V(A). By complete reducibil-
ity (Theorem 12.14), V/(A) is a direct summand in both V and W. It is
enough to show that the direct complements are isomorphic, but this fol-
lows from the fact that they have equal characters and fewer irreducible
components. U

So it is desirable to be able to compute the character of V' (\). This
is what we will do next lecture.
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Lecture 19 - The Weyl character formula

If A € PT (ie. (A, &) € Zsp for all i), then we can construct an irre-
ducible representation with highest weight A, which we called V' (\). We
define the fundamental weights wy,...,w, of a Lie algebra to be those
weights for which (w;, &;) = d;;. It is clear that any dominant integral
weight can be written as A = \jwy; + -+ + \w, for \; > 0, so people
often talk about V' (\) by drawing the Dynkin diagram with the the i-th
vertex labelled by ;.

With this notation, the first fundamental representation V' (w;) for

sl(n) is written 1 0 .90 0, which happens to be the stan-
dard representation (see Example 19.2 below). Similarly, the adjoint
representation is 1 0 .90 L.

Warning 19.1. Another common notation (incompatible with this

one) is to write A = > k;a; and label the i-th vertex by k;. In this
notation, the standard representation is 1 —0—---—0——0 and the
adjoint representation is 1 —1—---—1——1. In these notes, we will
draw the diagram differently to distinguish between the two notations.

Observe that if v € V' a highest vector of weight A\, and w € W
another highest weight vector of weight 1 in another representation, then
vRw € VW is a highest weight vector of weight A+ u. It follows that
every finite dimensional irreducible representation can be realized as a
subrepresentation of a tensor product of fundamental representations.

Example 19.2. Let’s calculate the fundamental weights for sl(n + 1).
Recall that we have simple roots €y — €9,...,6, — €541, and they are
equal to their coroots (since they have length v/2). It follows that w; =
g1 +---+eg fori=1,... n

Let E be the standard (n+1)-dimensional representation of sl{(n+1).
Let ey, ..., en41 be a basis for £, Note that e; has weight ¢;, and ¢, — ¢;
can be written as a non-negative sum of positive roots exactly when
1 < j. Thus, the weights of E, in decreasing order, are €1, €5, ..., €,41.

Consider the representation A*E. We'd like to write down its weights.
Note that A¥E is spanned by the vectors e;, A- - -Ae;, , which have weights
€, + - +¢;,. Thus, the highest weight is 1 + - - - 4+ &, = wg, so we know
that V(wy,) C A*E.

Note also that Q0 = S, acts by permutation of the e;, so it can
take any weight space to any other weight space. Such a representation
(where all the weight spaces form a single orbit of the Weyl group) is
called minuscule. Since the character of any subrepresentation must
be 20-invariant, minuscule representations are always irreducible. So
A*E = V(wy) is a fundamental representation.
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Remark 19.3 (Highest weights of duals). One of the weights of V(\)* is
—, but to compute the highest weight, we need to get back into P,
so we apply the longest word w in the Weyl group. Thus, —w(\) is the
highest weight of V' (\)*. This means that there is a fixed involution of
the Weyl chamber (namely, —w) which takes the highest weight of a rep-
resentation to the highest weight of its dual. It is clear that —w preserves
the set of simple roots and preserves inner products, so it corresponds
to an involution of the Dynkin diagram.

In the case of sl(n + 1), the involution is qe——gi==So——,.

In particular, the dual of the standard representation V (wy) is V' (wy).

The key to computing the character of V() is to write it as a linear
combination of characters of Verma modules, as in the following example.

Example 19.4. Let g = sl(3) and let A = 2w; + we. We try to write
ch V()\) as a linear combination of characters of Verma modules in the
naive way. We know that M (\) must appear once and that ch V' (\) must
end up symmetric with respect to the Weyl group. We must subtract off
two Verma modules to keep the symmetry. Then we find that we must
add back two more and subtract one in order to get zeros outside of the
hexagon. In the picture below, each dot can be read as a zero.

For now, just observe that if we shift the weights that appear (by some-
thing we will call the Weyl vector), we get an orbit of the Weyl group,
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with signs alternating according to the length of the element of the Weyl
group.

Some notation: if w € 20, we define (—1)" := det(w). Since each
simple reflection has determinant —1, this is the same as (—1)sth(w),
Note that (—1)*"" = (=1)*'(=1)*.

The Weyl vector is p = 3> a+ . Note that r;(p) = p — s by
Lemma 14.13. On the other hand, r;(p) = p— (p, &;);, so we know that
(p, ;) =1 for all . Thus, p is the sum of all the fundamental weights.

Theorem 19.5 (Weyl Character Formula). For A\ € PT, the character
f the irreducible finite dimensional representation with highest weight A

Tl
P wea(—1) et

is
> wem(—1)ver®)

The denominator is called the Weyl denominator. It is not yet obvi-
ous that the Weyl denominator divides the numerator (as formal sums),
so one may prefer to rewrite the equation as ch V/(A)-3_, op(—1)"e®?) =

P wea(—1) e,

Proof. Step 1. Compute ch M(7): Recall from the previous lecture that
the multiplicity of p in M () is the number of ways v — u can be written
as a sum of positive roots. Thus, it is easy to see that ch M(v) is given
by the following generating function.

ch M(~y) =e" H (I+e ™ +e+...)

chV(\) =

acAt
e'Y
Ha€A+ (1 - e—a)
evte

= a2 — ep
Lo @7 —c7) (ogar =€)

I This formula may look ugly, but it is sweet. It says that you can compute the
character of V(A) in the following way. Translate the Weyl vector p around by the
Weyl group; this will form some polytope. Make a piece of cardboard shaped like
this polytope (ok, so maybe this is only practical for rank 2), and put (—1)* at the
vertex w(p). This is your cardboard denominator. Now the formula tells you that
when you center your cardboard denominator around any weight, and then add the
multiplicities of the weights of V(\) at the vertices with the appropriate sign, you’ll
get zero (unless you centered your cardboard
at w(A+p), in which case only one non-zero multiplicity shows up in the sum, so you’ll
get +1). Since we know that the highest weight has multiplicity 1 1 1—Q

1, we can use this to compute the rest of the character. 1 2 ?/ 1 \0
For sl(3), your cardboard denominator will be a hexagon, and o \ 1— O/
one step of computing the character of Va,,, 1., might look like:
0=0—1+7—-140—-0,s0? =2. Since chV is symmetric with 1

respect to 27, all three of the ?s must be 2.
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Step 2. The action of the Casimir operator: Recall the Casimir op-
erator from the proof of Whitehead’s Theorem (Theorem 12.10). If {e;}
is a basis for g, and {f;} is the dual basis (with respect to the Killing
form), then Q = > e;f; € Ug. We showed that ) is in the center of Ug
(i.e. that Qz = 2 for all z € g).

Claim. Q acts on M(7y) as (7,7 + 2p)Id.

Proof of Claim. Since € is in the center of Ug, it is enough to show that
Qv = (v + 2p,y)v for a highest weight vector v € V.
Let {u;} be an orthonormal basis for h, and let {X,}aea be a basis

Yo
(Xa,Ya)

for the rest of g. The dual basis is { } Then we get

0= Zu +Z j((:;z

a€A

X Yo Y. X,
= X—aY—a - YaXa .
Zu + EZN tmARREm AT )

Using the equalities

wv = y(u;)v, (7,7) = 202y v(w)?, and
Xqv =0, (XCV’Y ) = %([HOHXQL a)
X Yov = Hypw — Yo Xov = 3 (Ha, [Xa, Ya])
= (Hy)e. = L(Ho Hy) = - 200
_ 2(1,0) _ 2 ’
(Ha) = 7555 = o
we get
. . 2 v(H.,)
Qv = (Zv(uz) )v+ Z XV
i=1 acA~t
= (Mot > (v.a)v = (7,7 +2p) Hetaim

aceAt

Note that the universal property of Verma modules implies that the
action of {2 on any representation generated by a highest vector of weight
7 is given by (7,7 + 2p)Id.

Finally, consider the set

O ={pePl(u+pptp=O+py+p}

This is the intersection of the weight lattice P with the sphere of radius
|17 + pl| centered at —p. In particular, it is a finite set. On the other
hand, since (v,7+2p) = (v+p,7+p)— (p, p), it is also the set of weights
w such that Q acts on M(u) in the same way it acts on M (7).
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Step 3. Filter M(v) for another formula: We say that a weight vec-
tor v is a singular vector if ntv = 0. If a representation is generated by
some highest vector v, and if all singular vectors are proportional to v,
then the representation is irreducible. To see this, note that a highest
weight vector of any proper subrepresentation must be singular, and it
cannot be proportional to v, lest it generate the whole representation.

Now let w be a singular vector of weight p in M (7). Then w generates
a subrepresentation which is a quotient of M(u). By the claim in Step
2, Q) acts on this subrepresentation by (i, + 2p). On the other hand,
since we are in M (), 2 must act by (v,v + 2p). It follows that u € Q7.

In particular, since €27 is finite, there is a minimal singular vector
w, which generates some irreducible subrepresentation; we will call that
representation Fy M (). Mod out my FyM(y) and repeat the process.
Any singular vector in M (v)/F;M () must be in 7, so there is a min-
imal one, w, which generates an irreducible subrepresentation. Define
F; 1 M(7y) C M(7) to be the pre-image of that representation. Since (7
is finite and each V), is finite dimensional, the process terminates. The
result is a filtration

0=FyM(y) C FiM(y) C -+ C FM(v) = M()

such that F;M(vy)/F;+1 M (7y) is isomorphic to the irreducible representa-
tion V(i) for some p € Q7.2 We also know that each p that appears is
less than or equal to .

This gives us the nice formula

ch M(y) = Z byuch V(1)

H<ry, peQy

for some non-negative integers b,,.> Moreover, V(v) appears as a quo-
tient exactly once, so b,, = 1.

Step 4. Invert and simplify the equation: We’ve shown that the ma-
trix (byu), ueqr is lower triangular with ones on the diagonal, so it has
a lower triangular inverse (¢y,), ,cqr With ones on the diagonal.” This
gives us the formula

chV(X) = exuch M(p).

PN, peQ

2We showed in Lecture 18 that for every p € h*, there is a unique irreducible
representation V(u) with highest weight . However, we only showed that V(u)
is finite dimensional when p € PT. In general, it is infinite dimensional. In fact,
sometimes it happens that V(u) = M ().

3These b, are called Kazhdan-Luztig multiplicities, and they are hard to compute
for general v and pu.

“We will prove that each non-zero c,,, is =1. It was once conjectured that even if
A &€ PT, each non-zero ¢, is 1, but this is false.
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Using Step 1, we can rewrite this as

chV(A) - I (€2 =) =) " epuet ™.

aEAT u<\, peQ?

For any element w of the Weyl group, we know that w(LHS) = (—1)“LHS,
so the same must be true of the RHS, i.e.

Z eape ) = Z(—l)wcme‘“’p.

This is equivalent to the condition ¢y (u+p)—p = Cru. Since Pt is the
fundamental domain of 20, and since ¢y, = 1, we get

hV(Y)- [T (2 = em2/2) = 3 (-1)7e ) 4 37 (1) 000,

aEAT weW U<, peQH
pt+pePt

We would like to eliminate the second sum on the right hand side.
The following claim does that nicely by showing that the sum is empty.

Claim. If p <\, p € Q, and p+p >0, then pn = M.

Proof. We assume that (u+p, u+p) = (A+p, A\+p) and A\—p = > " ki
for some non-negative k;. Then we get

0= ((A+p) = (u+p),(A+p)+ (n+p)
= A=, A+ p+2p)

= Z ki(ou, A+ p+2p)
i=1

But A>0and p+p >0, so (a;, A+ p+ p) > 0. Also, (ay,p) > 0 for
each i, so (a;, A+ p+2p) > 0. It follows that each k; is zero.  Ocgaim

Now we have
chV(A) - ] (e —e )= (=1)ve ),
aEAT weT

Specializing to the case A = 0, we know that V(0) is the trivial repre-
sentation, so ch V(0) = 1. This tells us that

IT (o2 —emo2) = >~ (—1)wem@), (19.6)
acAt weW
so we get the desired

> pean(—1)P e
D wem(—1)vevt)

chV(\) =
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A
Corollary 19.7 (Weyl dimension formula). dim V() = H %'
acAt ’

Proof. The point is that e* is a formal expression. The only property
that we use is e#'e” = e#*7, so everything we've ever done with characters
works if we replace e# by any other expression satisfying that relation.
In particular, if replace e with 60+ where t is a real number,” then
Equation 19.6 says

I1 <6t(v+p,a/2) _ 6—t(v+p7a/2)) = 3 (~1yrereee)

acAt weW

— Z w6t w(v+p).p) (19.8)

weW

where the second equality is obtained by replacing w by w~! and observ-
ing that (z,w™'y) = (wx,y) and that (=1)* " = (=1).

Now we switch things up and replace e* by 6*#*) so the character
formula becomes

Zwem(_l)w@(w(/\ﬂ),p)
Y weg(—1)w6Hwee)

Applying Equation 19.8 to the numerator (with v = A) and to the de-
nominator (with v = 0), we get

chV(\) =

(6t(>\+p,a/2) _ 6—t(>\+p,a/2))
(6tra/2) — Gt/

chV(X) =

acAt

The dimension of V() is equal to the expression ch V()\) with e replaced
by 1. We can obtain this by letting ¢ tend to zero in 6/**). This gives

' e (6t()\+p,a/2) _ 6—t()\+p,a/2))
dim V() = lim [T (6t<p,a/2> — 6-trar)

aceAt
(A
_ H +p’ (By I'Hépital’s rule) O
acAt

Example 19.9. Let g = sl(n+1). We choose the standard set of simple
roots IT = {ay, ..., o} so that AT = {a;+a; 1+ - -+, }i<icj<n. Recall

5Obviously, there is nothing special about the base 6; just about any number
would work. It is important to understand that for any p, ¢t — 6/t2#) is an honest
real-valued function in ¢. Equation 19.8 is an equality of real-valued functions in t!
Similarly, ch V' (\) becomes a real-valued function in ¢.
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that (p, ;) = 1 for 1 <i < nand that (w;, o) = 0;5. A +p=>"" | aw;,
the dimension formula tells us that

. (A +p,a)
dimv()) = [ L~
a£[+ (p7 a)

. H CLi+CLi+1+"'+CLj_1+CLj
j—i+1

1<i<j<n

1 J
-G I Y

1<i<i<n k=1

where n!l :=n!(n—1)!---312/11.

If g = sl(3), and if A + p = 3w + 2ws, we get dimV(A) = 5;-2-3-
(2+3) = 15, computing the dimension of the representation in Example
19.4. This formula is nice because the calculation does not get big as A
gets big. If A+ p = 20w; + 91ws, it would be really annoying to compute
ch V(\) completely, but we can get dim V(\) = %20 -91-111 = 101010
easily.

Even for larger n, this formula is pretty good. Say we want the
dimension of 1 2 0 6, then A+ p = 2wy + 3ws + lws + Twy,
so we get

%2-3.1-7- 2+43)B+1)(1+7)(2+3+1)B+1+7)(2+3+1+7) = 20020.
Remark 19.10. Given complete reducibility, knowing the characters of
all irreducible representations allows you to decompose tensor products,
just like in representation theory of finite groups. That is, we can now
compute the coefficients in V(A\)@V (1) = € 05,V (v). In the finite group
case, we make this easier by choosing an inner product on class functions
so that characters of irreducible representations form an orthonormal
basis. Now we would like to come up with an inner product on formal
expressions ) myet so that characters of irreducible representations are
orthonormal.

The obvious inner product is (e, e") = 4, ,, under which the e* are
an orthonormal basis. There is no hope for the ch V' (\) to be orthogonal,
but we can tweak it. Another inner product is

1

(eh,e") =
|20]

(D-e* D et

where D is the Weyl denominator. The character formula tells us that
under this inner product, the ch V() are orthonormal, and form a basis
for 20-symmetric expressions where m,, = 0 for u & P.
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As with the character formula, this may not look so impressive, but
it makes decomposing tensor products very fast. We want to compute

! (D ch V) ch V(). D-chV ()

(ch V() -chV(u),ch V(v)) = @

S (—1)wewA+p) S (=1)wewtyte)

for all v € P*. Since we know that the result must be 20-symmetric,
we can remove the ﬁ and restrict our attention to the Weyl chamber.
That is, we can just compute (3 (—1)e***+) . ch V (1), e’*), which is
the multiplicity of v in Y (—1)¥e®*A+P=Pch V(1). In practice, we choose
|| < |Al, so most of the summands lie outside of the Weyl chamber, so
we can ignore them.

Example 19.11 (For those who know about gl(n)). We know that gl(n+
1) is the direct sum (as a Lie algebra) of its center, k - Id, and sl(n +
1).5 TLet {e1,...,en41} be the image of an orthonormal basis of k™!
in k™ (under the usual projection, so that Y e; = 0). Let z; = €, so
21+ Zpny1 = 1. The Weyl group W ~ S, 1 acts on the z; by permutation.
We have that

pzéz&'—&j

i<j
n n—2 -n
:§€1+ 5 €2+"‘+7€n+1
=ner+(n—1)eg+ -+ 26,1+, + 0241 (> e=0)
SO
e =220

If A =37 ase; (with 3 a; = 0) is a dominant integral weight, we have
(A, &;) = a; — a;41 > 0. The character formula says that

_1\o,a1tn . an+l_Gn+1
ZO’ESTL+1( ]‘) Zcr(l) Zo(n) Zo(n+1)

2oesni (T7200) 2o Pomt)

chV(X) =

The denominator (call it D) is the famous Vandermonde determinant,

n n n
“1 <2 “n+tl o n L o

Zn—l P 1 Zn—l - § (_1) Za(l) ZO’( )Z (n+1)
1 2 n+1

det

1<i<j<n+1

6 In general, a Lie algebra which is the the direct sum of its center and its semisim-
ple part is called reductive.
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The numerator is

Z[fl +n Zgu +n
Ztlzz-i-n—l Zgz-i-n—l
D)\ = det
Z?n-i-l Z¢21n +1
ZiLnH ZiLnH

So the character is the Schur polynomial.

a1+n
Zn—l—l

ag+n+1

n—1

an+1
Zn—i—l

Z:flln+1

Usually, the representations are encoded as Young diagrams. The
marks on the dynkin diagram are the differences in consecutive rows in

the young diagram.
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Lecture 20 - Compact Lie groups

So far we classified semisimple Lie algebras over an algebraically closed
field characteristic 0. Now we will discuss the connection to compact
groups. Representations of Lie groups are always taken to be smooth.

Example 20.1. SU(n) = {X € GL(n,C)|X*X =1d and det X = 1} is
a compact connected Lie group over R. It is the group of linear trans-
formations of C" preserving some hermitian form.

You may already know that SU(2) is topologically a 3-sphere.

» Exercise 20.1. If G is an abelian compact connected Lie group, then
it is a product of circles, so it is T".

There exists the G-invariant volume form' w satisfying
1. The volume of G is one: [,w =1, and

2. w is left invariant: [, fw = [, Ljfw for all h € G. Recall that
L} f is defined by (L f)(9) = f(hg).

To construct w pick w, € A*P(T.G)* and define w, = L;,lwe.

» Exercise 20.2. If G is connected, show that this w is also right
invariant. Even if GG is not connected, show that the measure obtained
from a right invariant form agrees with the measure obtained from a left
invariant form.

Theorem 20.2. If G is a compact group and V is a real representation
of G, then there exists a positive definite G-invariant inner product on
V. That s, (gv, gw) = (v, w).

Proof. Pick any positive definite inner product? (v, w), and define

(v.0) = [ tgv.gu)e

which is positive definite and invariant. O

It follows that any finite dimensional representation of a compact
group G is completely reducible (i.e. splits into a direct sum of irre-
ducibles) because the orthogonal complement to a subrepresentation is
a subrepresentation.

In particular, the representation Ad : G — GL(g) is completely re-
ducible, and the irreducible subrepresentations are exactly the irreducible

LA wolume form is a non-vanishing top degree form.
2Pick any basis, and declare it to be orthonormal.
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subrepresentations of the derivative, ad : g — gl(g). Thus, we get the
decomposition g = g; @ - - - g D a, with each g; is a one dimensional or
simple ideal. We dump all the one dimensional g; into a, which is then
the center of g. Thus, the Lie algebra of a compact group is the direct
sum of its center and a semisimple Lie algebra. Such a Lie algebra is
called reductive.

If GG is simply connected, then I claim that a is trivial. This is because
the simply connected group connected to a must be a torus, so a center
gives you some fundamental group. Thus, if G is simply connected, then
g is semisimple.

Theorem 20.3. If the Lie group G of g is compact, then the Killing
form B on g is negative semi-definite. If the Killing form on g is negative
definite, then there is some compact group G with Lie algebra g.

Proof. 1f you have g — gl(g), and you know that g has an ad-invariant
positive definite product, so it lies in so(g). Here you have A' = —A,
so you have to check that ¢r(A?) < 0. It is not hard to check that the
eigenvalues of A are imaginary (as soon as A = —A), so we have that
the trace of the square is negative (or zero).

If B is negative definite, then it is non-degenerate, so g is semisimple
by Theorem 12.7, and —B is an inner product. Moreover, we have that

—BladxY, Z) = B(Y, adx Z2)

so adx = —ad’; with respect to this inner product. That is, the image
of ad lies in so(g). It follows that the image under Ad of the simply
connected group G with Lie algebra g lies in SO(g). Thus, the image is
a closed subgroup of a compact group, so it is compact. Since Ad has a

discrete kernel, the image has the same Lie algebra. O

How to classify compact Lie algebras? We know the classification over
C, so we can always take g ~~ gc = g ®r C, which remains semisimple.
However, this process might not be injective. For example, take su(2) =
{(_“5 2) la € Ri,b € C} and sl(2,R), then they complexify to the same
thing.

g in this case is called a real form of gc. So you can start with g¢
and classify all real forms.

Theorem 20.4 (Cartan). Every semisimple Lie algebra has exactly one
(up to isomorphism) compact real form.

For example, for s((2) it is su(2).
Classical Lie groups: SL(n,C),SO(n,C) (SO has lots of real forms of
this, because in the real case, you get a signiture of a form; in the complex
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case, all forms are isomorphic), Sp(2n,C). What are the corresponding
compact simple Lie groups?

Compact real forms: SU(n) = the group of linear operators on C"
preserving a positive definite Hermitian form. SL(n) = the group of
linear operators on R™ preserving a positive definite symmetric bilinear
form. Sp(2n) =the group of linear operators on H" preserving a positive
definite Hermitian form

We're not going to prove this theorem because we don’t have time,
but let’s show existence.

Proof of existence. Suppose gc = g ®r C = g ® 7g. Then you can con-
struct o : gc — gc “‘complex conjugation”. Then o preserves the commu-
tator, but it is an anti-linear involution. Classifying real forms amounts
to classifying all anti-linear involutions. There should be one that corre-
sponds to the compact algebra. Take Xy,..., X,,, Hy,..., H,, Y1,..., Y,
generators for the algebra. Then we just need to define o on the genera-
tors: o(X;) = =Y, 0(Y;) = —X;,0(H;) = —H;, and extend anti-linearly.
This particular o is called the Cartan involution.

Now we claim that g = (gc)? = {X|o(X) = X} is a compact simple
Lie algebra. We just have to check that the Killing form is negative
definite. If you take h € b, written as h = > a; H;, then o(h) = h implies
that all the a; are purely imaginary. This implies that the eigenvalues of
h are imaginary, which implies that B(h,h) < 0. You also have to check
it on X;,Y;. The fixed things will be of the form (aX; — aY;) € g. The
Weyl group action shows that B is negative on all of the root space. [

Look at exp h? C G (simply connected), which is called the maximal
torus 7. I'm going to tell you several facts now. You can always think of
T as R"/L. The point is that R™ can be identified with b,., and h*_ has
two natural lattices: @ (the root lattice) and P (the weight lattice). So
one can identify T = R"/L = b,./P, where P is the natural dual lattice
to P, the set of h € b such that (w, h) € Z for all w € P. G is simply
connected, and when you quotient by the center, you get Ad G, and all
other groups with the same algebra are in between. AdT = b,../ Q. We
have the sequence {1} — Z(G) — T — AdT — {1}. You can check
that any element is semisimple in a compact group, so the center of G is
the quotient P/Q ~ Q/P. Observe that |P/Q| = the determinant of the
Cartan matrix. For example, if g = s[(3), then we have det ( % 3') = 3,
and the center of SU(3) is the set of all elements of the form diag(w, w,w)
where w? = 1.

G5 has only one real form because the det is 17

Orthogonality relations for compact groups:

/ (@)P(gw = by
G
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where y and 1) are characters of irreducible representations. You know
that the character is constant on conjugacy classes, so you can integrate
over the conjugacy classes. There is a nice picture for SU(2).

The integral can be written as

o / HVol(C(t))dt

And Vol(C(t)) = D(t)D(t). You divide by |20| because that is how
many times each class hits 7.
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Lecture 21 - An overview of Lie groups

The (unofficial) goal of the last third of the course is to prove no theo-
rems. We'll talk about

1. Lie groups in general,
2. Clifford algebras and Spin groups,

3. Construction of all Lie groups and all representations. You might
say this is impossible, so let’s just try to do all simple ones, and in
particular Fg, E7, Eg.

4. Representations of SLy(R).

Lie groups in general

In general, a Lie group G can be broken up into a number of pieces.
The connected component of the identity, Geonn € G, is a normal
subgroup, and G/Geony is a discrete group.

11— Gconn — G — GYdiscrete — 1

The maximal connected normal solvable subgroup of Geonn is called
Gso1- Recall that a group is solvable if there is a chain of subgroups Gy, 2
--- D 1, where consecutive quotients are abelian. The Lie algebra of a
solvable group is solvable (by Exercise 11.2), so Lie’s theorem (Theorem
11.11) tells us that Gy, is isomorphic to a subgroup of the group of upper
triangular matrices.

Every normal solvable subgroup of Geonn/Gsol is discrete, and there-
fore in the center (which is itself discrete). We call the pre-image of the
center G,. Then G/G, is a product of simple groups (groups with no
normal subgroups).

* * 1 *
Gsol g B ’ Gnil g .
* 1
O * O 1
Since Ggo is solvable, Gy := [Gsol, Gsol] is nilpotent, i.e. there is a chain

of subgroups Gy 2 G1 2 -+ 2 Gy = 1 such that G;/G;41 is in the
center of Guy1/Giyq. In fact, Gy must be isomorphic to a subgroup of
the group of upper triangular matrices with ones on the diagonal. Such
a group is called unipotent.
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We have the picture

G
‘ ]discrete; classification hopeless
( Gconn
\ ]H connected simples; classified
G,
‘ )abelian discrete
connected Gsol } classification trivial
‘ ) abelian
Gnil
‘ )nilpotent; classification a mess
. 1

The classification of connected simple Lie groups is quite long. There are
many infinite series and a lot of exceptional cases. Some infinite series
are PSU(n), PSL,(R), and PSL,(C).!

One way to get many connected simple Lie groups is not observe
that there is a unique connected simple Lie group for each simple Lie
algebra. We've already classified complex Lie algebras, and it turns
out that there a finite number of real Lie algebras which complexify to
any given complex Lie algebra. We will classify all such real forms in
Lecture 29.

For example, sl3(R) % sus(R), but slh(R)®@C ~ suy(R) @ C ~ sl,(C).
By the way, sl5(C) is simple as a real Lie algebra, but its complexification
is 5l5(C) @ sl5(C), which is not simple. Thus, we cannot obtain all
connected simple groups this way.

Example 21.1. Let G be the group of all shape-preserving transforma-
tions of R* (i.e. translations, reflections, rotations, and scaling). It is
sometimes called R* - GO4(R). The R* stands for translations, the G
means that you can multiply by scalars, and the O means that you can
reflect and rotate. The R?* is a normal subgroup. In this case, we have

R'. GOA(R) = G
G/Gconn = Z/QZ
R* - GOI(R) = Gconn
Gconn/Gsol Gconn/G* == PSO4(R)
0. R* R* =G, (~ SO3(R) x SO5(R))
GG = 7,)27
R*. RT = Gy
Gsol/Gnil =Rt
R* = Gnil

'The P means “mod out by the center”.
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where GOJ (R) is the connected component of the identity (those trans-
formations that preserve orientation), R* is scaling by something other
than zero, and R is scaling by something positive. Note that SO3(R) =
PSO3(R) is simple.

SO4(R) is “almost” the product SO3(R) x SO3(R). To see this, con-
sider the associative (but not commutative) algebra of quaternions, H.
Since g7 = a®+b* + 2+ d? > 0 whenever ¢ # 0, any non-zero quaternion
has an inverse (namely, G/qq). Thus, H is a division algebra. Think of H
as R* and let S3 be the unit sphere, consisting of the quaternions such
that ||q|| = qg = 1. It is easy to check that ||pq|| = ||p|| - ||¢||, from which
we get that left (right) multiplication by an element of S3 is a norm-
preserving transformation of R?. So we have a map S? x S% — O4(R).
Since S? x 53 is connected, the image must lie in SO4(R). It is not hard
to check that SO4(R) is the image. The kernel is {(1,1),(—1,—1)}. So
we have S% x S3/{(1,1), (=1, —1)} = SO4(R).

Conjugating a purely imaginary quaternion by some ¢ € S? yields
a purely imaginary quaternion of the same norm as the original, so we
have a homomorphism S — O3(R). Again, it is easy to check that the
image is SO3(R) and that the kernel is 41, so S3/{#1} ~ SO3(R).

So the universal cover of SO4(R) (a double cover) is the cartesian
square of the universal cover of SO3(R) (also a double cover). Orthog-
onal groups in dimension 4 have a strong tendency to split up like this.
Orthogonal groups in general tend to have these double covers, as we
shall see in Lectures 23 and 24. These double covers are important if
you want to study fermions.

Lie groups and Lie algebras

Let g be a Lie algebra. We can set gs, = rad g to be the maximal solvable
ideal (normal subalgebra), and gni = [gsol, 8so1]- Then we get the chain

g

)H simples; classification known
Fsol

)abelian; easy to classify

Ynil
‘ )nilpotent; classification a mess
0

We have an equivalence of categories between simply connected Lie
groups and Lie algebras. The correspondence cannot detect

— Non-trivial components of GG. For example, SO,, and O,, have the
same Lie algebra.
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— Discrete normal (therefore central, Lemma 5.1) subgroups of G. If
Z C @ is any discrete normal subgroup, then G and G/Z have the
same Lie algebra. For example, SU(2) has the same Lie algebra as

PSU(2) ~ SO4(R).

If G is a connected and simply connected Lie group with Lie algebra g,
then any other connected group G with Lie algebra g must be isomorphic
to G /7, where Z is some discrete subgroup of the center. Thus, if you
know all the discrete subgroups of the center of G, you can read off all
the connected Lie groups with the given Lie algebra.

Let’s find all the groups with the algebra so4(R). First let’s find a
simply connected group with this Lie algebra. You might guess SO4(R),
but that isn’t simply connected. The simply connected one is S x S3
as we saw earlier (it is a product of two simply connected groups, so it
is simply connected). The center of S? is generated by —1, so the center
of S% x S3 is (Z/27)?, the Klein four group. There are three subgroups
of order 2

(Z/2Z)? PSO4(R)

AL N U

(—=1,1) (=1,—1) (1,=1)  SO3(R) x S* SO4(R) S*x SO4(R)

7 ~ |

1 S3 % §3
Therefore, there are 5 groups with Lie algebra soy.

Lie groups and finite groups

1. The classification of finite simple groups resembles the classification
of connected simple Lie groups when n > 2.

For example, PSL,(R) is a simple Lie group, and PSL,(F,) is a
finite simple group except when n = ¢ =2 or n = 2,q = 3. Simple
finite groups form about 18 series similar to Lie groups, and 26 or
27 exceptions, called sporadic groups, which don’t seem to have
any analogues for Lie groups.

2. Finite groups and Lie groups are both built up from simple and
abelian groups. However, the way that finite groups are built is
much more complicated than the way Lie groups are built. Finite
groups can contain simple subgroups in very complicated ways; not
just as direct factors.

For example, there are wreath products. Let G and H be finite
simple groups with an action of H on a set of n points. Then H
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acts on G by permuting the factors. We can form the semi-direct
product G™ x H, sometimes denoted G H. There is no analogue for
(finite dimensional) Lie groups. There is an analogue for infinite
dimensional Lie groups, which is why the theory becomes hard in
infinite dimensions.

3. The commutator subgroup of a solvable finite group need not be
a nilpotent group. For example, the symmetric group S; has com-
mutator subgroup Ay, which is not nilpotent.

Lie groups and Algebraic groups (over R)

By algebraic group, we mean an algebraic variety which is also a group,
such as GL,(R). Any algebraic group is a Lie group. Probably all the
Lie groups you've come across have been algebraic groups. Since they
are so similar, we’ll list some differences.

1. Unipotent and semisimple abelian algebraic groups are totally dif-
ferent, but for Lie groups they are nearly the same. For example
R ~ {(}1)} is unipotent and R* ~ {(& %)} is semisimple. As
Lie groups, they are closely related (nearly the same), but the Lie
group homomorphism exp : R — R* is not algebraic (polynomial),

so they look quite different as algebraic groups.

2. Abelian varieties are different from affine algebraic groups. For
example, consider the (projective) elliptic curve y? = 3+ with its
usual group operation and the group of matrices of the form ( % 3)
with a? + > = 1. Both are isomorphic to S! as Lie groups, but
they are completely different as algebraic groups; one is projective
and the other is affine.

3. Some Lie groups do not correspond to ANY algebraic group. We
give two examples here.

The Heisenberg group is the subgroup of symmetries of L?(R) gen-
erated by translations (f(¢) — f(¢ + x)), multiplication by €™
(f(t) — €™ f(t)), and multiplication by e*™* (f(t) — e*™= f(t)).
The general element is of the form f(t) > e2>™W!+2) f(¢ 4 ). This
can also be modelled as

1 =z =z
01 y /
0 01

It has the property that in any finite dimensional representation,
the center (elements with x =y = 0) acts trivially, so it cannot be
isomorphic to any algebraic group.

n ez

O O =
O = O
— o 3
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The metaplectic group. Let’s try to find all connected groups with
Lie algebra sly(R) = {(¢%)]a + d = 0}. There are two obvious
ones: SLy(R) and PSLy(R). There aren’t any other ones that can
be represented as groups of finite dimensional matrices. However,
if you look at SLy(R), you'll find that it is not simply connected.
To see this, we will use Iwasawa decomposition (without proof).

Theorem 21.2 (Iwasawa decomposition). If G is a (connected)
semisimple Lie group, then there are closed subgroups K, A, and
N, with K compact, A abelian, and N unipotent, such that the
multiplication map K x AX N — G 1is a surjective diffeomorphism.
Moreover, A and N are simply connected.

In the case of SL,, this is the statement that any basis can be
obtained uniquely by taking an orthonormal basis (K = SO,),
scaling by positive reals (A is the group of diagonal matrices with

positive real entries), and shearing (N is the group ( (1)>1k )) This

is exactly the result of the Gram-Schmidt process.

The upshot is that G ~ K x A x N (topologically), and A and N
do not contribute to the fundamental group, so the fundamental
group of G is the same as that of K. In our case, K = SO(R) is
isomorphic to a circle, so the fundamental group of SLy(R) is Z.

—_—

So the universal cover SLy(R) has center Z. Any finite dimensional

representation of SLy(R) factors through SLs(R), so none of the
covers of SLy(R) can be written as a group of finite dimensional
matrices. Representing such groups is a pain.

The most important case is the metaplectic group Mpy(R), which
is the connected double cover of SLy(R). It turns up in the theory
of modular forms of half-integral weight and has a representation
called the metaplectic representation.

Important Lie groups

Dimension 1: There are just R and S' = R/Z.

Dimension 2: The abelian groups are quotients of R? by some discrete
subgroup; there are three cases: R?, R?*/Z = R x S!, and R?/Z? =
Stx St

There is also a non-abelian group, the group of all matrices of the
form (g a91 ), where a > 0. The Lie algebra is the subalgebra of 2 x 2
matrices of the form (8 _xh), which is generated by two elements H and
X, with [H, X] = 2X.
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Dimension 3: There are some boring abelian and solvable groups,
such as R? x R, or the direct sum of R with one of the two dimensional
groups. As the dimension increases, the number of boring solvable groups
gets huge, and nobody can do anything about them, so we ignore them
from here on.

You get the group SLy(R), which is the most important Lie group of
all. We saw earlier that SL(R) has fundamental group Z. The double
cover Mps(R) is important. The quotient PSLo(R) is simple, and acts
on the open upper half plane by linear fractional transformations

Closely related to SLq(R) is the compact group SU,. We know that
SU, ~ 83, and it covers SO3(R), with kernel +1. After we learn about
Spin groups, we will see that SU; = Sping(R). The Lie algebra su, is
generated by three elements X, Y, and Z with relations [X,Y] = 27,
Y, Z] =2X, and [Z, X] = 2Y .2

The Lie algebras sly(R) and suy are non-isomorphic, but when you
complexify, they both become isomorphic to sly(C).

There is another interesting 3 dimensional algebra. The Heisenberg
algebra is the Lie algebra of the Heisenberg group. It is generated by
X,Y, Z, with [X,Y] = Z and Z central. You can think of this as strictly
upper triangular matrices.

Dimension 6: (nothing interesting happens in dimensions 4,5) We get
the group SLy(C). Later, we will see that it is also called Spin,; 3(R).

Dimension 8: We have SU3(R) and SL3(R). This is the first time we
get a non-trivial root system.

Dimension 14: G5, which we will discuss a little.

Dimension 248: Fjg, which we will discuss in detail.

This class is mostly about finite dimensional algebras, but let’s men-
tion some infinite dimensional Lie groups or Lie algebras.

1. Automorphisms of a Hilbert space form a Lie group.

2. Diffeomorphisms of a manifold form a Lie group. There is some
physics stuff related to this.

3. Gauge groups are (continuous, smooth, analytic, or whatever) maps
from a manifold M to a group G.

4. The Virasoro algebra is generated by L, for n € Z and ¢, with
relations [Ly, Ly, = (n—m) Ly + 5n+m,0"31—;"c, where ¢ is central
(called the central charge). If you set ¢ = 0, you get (complexified)

vector fields on S*, where we think of L, as ie™ 2. Thus, the

2An explicit representation is given by X = ( °§), Y = (9§), and Z = (} %).

The cross product on R? gives it the structure of this Lie algebra.



Lecture 21 - An overview of Lie groups 125

Virasoro algebra is a central extension

0 — cC — Virasoro — Vect(S') — 0.

5. Affine Kac-Moody algebras, which are more or less central exten-
sions of certain gauge groups over the circle.
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Lecture 22 - Clifford algebras

With Lie algebras of small dimensions, there are accidental isomor-
phisms. Almost all of these can be explained with Clifford algebras
and Spin groups.

Motivational examples that we’d like to explain:

1. SO,5(R) = S': ST can double cover S itself.
2. SO3(R): has a simply connected double cover S3.
3. SO4(R): has a simply connected double cover S3 x S3.

4. SO5(C): Look at Spy(C), which acts on C* and on A?(C*), which
is 6 dimensional, and decomposes as 5®1. A?(C?*) has a symmetric
bilinear form given by A*(C*)®@A?(C*) — A*(C*) ~ C, and Sp4(C)
preserves this form. You get that Sp,(C) acts on C°, preserving

a symmetric bilinear form, so it maps to SO5(C). You can check
that the kernel is £1. So Sps(C) is a double cover of SO5(C).

5. SO5(C): SL4(C) acts on C*, and we still have our 6 dimensional
A?(C*), with a symmetric bilinear form. So you get a homomor-
phism SL4(C) — SO4(C), which you can check is surjective, with
kernel +£1.

So we have double covers S, S, 53 x 53 Sp,(C), SL4(C) of the orthog-
onal groups in dimensions 2,3,4,5, and 6, respectively. All of these look
completely unrelated. By the end of the next lecture, we will have an
understanding of these groups, which will be called Spiny(R), Spins(R),
Spin, (R), Spin;(C), and Sping(C), respectively.

Example 22.1. We have not yet defined Clifford algebras, but here are
some examples of Clifford algebras over R.

— C is generated by R, together with 4, with i = —1

— H is generated by R, together with ¢, j, each squaring to —1, with
1j + 31 = 0.
. o 82 82 82 62
— Dirac wanted a square root for the operator V = w2 oz toz "o
(the wave operator in 4 dimensions). He supposed that the square
root is of the form A = fyla% + 723% + 73% + 74% and compared
coefficients in the equation A% = V. Doing this yields 72 = 72 =
73 =1, = —1, and vy; + ;7 = 0 for i # 3.
Dirac solved this by taking the 7; to be 4 x 4 complex matrices. A
operates on vector-valued functions on space-time.
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Definition 22.2. A general Clifford algebra over R should be generated
by elements 71, . . ., 7, such that 47 is some given real, and v;y; 47,7 = 0
for i # j.

Definition 22.3 (better definition). Suppose V' is a vector space over

a field K, with some quadratic form' N : V' — K. Then the Clifford
algebra Cy(K) is generated by the vector space V', with relations v? =

N(v).

We know that N(A\v) = A2N(v) and that the expression (a,b) :=
N(a+0b)— N(a)— N(b) is bilinear. If the characteristic of K is not 2, we
have N(a) = w2_a> Thus, you can work with symmetric bilinear forms
instead of quadratic forms so long as the characteristic of K is not 2.

We’ll use quadratic forms so that everything works in characteristic 2.

Warning 22.4. A few authors (mainly in index theory) use the
relations v?2 = —N(v). Some people add a factor of 2, which usually
doesn’t matter, but is wrong in characteristic 2.

Example 22.5. Take V = R? with basis 4, j, and with N(zi + yj) =
—12? — 5%, Then the relations are (zi + yj)? = —a? — 3 are exactly the
relations for the quaternions: 7% = j2 = —1 and (i+7)? = i®+ij+ji+j> =

—2,s0 17+ j1 = 0.

Remark 22.6. If the characteristic of K is not 2, a “completing the
square” argument shows that any quadratic form is isomorphic to ¢;z? +
-+ +c,x?, and if one can be obtained from another other by permuting
the ¢; and multiplying each ¢; by a non-zero square, the two forms are
isomorphic.

It follows that every quadratic form on a vector space over C is iso-
morphic to %+ - -+ 2, and that every quadratic form on a vector space
over R is isomorphic to 3 +- - -+ a2, — a2, —- - — 22, (m pluses and
n minuses) for some m and n. One can check that these forms over R
are non-isomorphic.

We will always assume that N is non-degenerate (i.e. that the as-
sociated bilinear form is non-degenerate), but one could study Clifford
algebras arising from degenerate forms.

Warning 22.7. The criterion in the remark is not sufficient for clas-
sifying quadratic forms. For example, over the field 3, the forms
r?+y?* and —z®—y? are isomorphic via the isomorphism (1 %) : F2 — F?,
but —1 is not a square in F3. Also, completing the square doesn’t work

in characteristic 2.

IN is a quadratic form if it is a homogeneous polynomial of degree 2 in the
coeflicients with respect to some basis.
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Remark 22.8. The tensor algebra T'V has a natural Z-grading, and to
form the Clifford algebra Cy (K), we quotient by the ideal generated by
the even elements v?— N (v). Thus, the algebra Cy(K) = CY(K)®CEH(K)
is Z/27Z-graded. A 7Z/27-graded algebra is called a superalgebra.

Problem: Find the structure of C,,,(R), the Clifford algebra over
2

ntm 24 ... 2 g2 =
R with the form x{ +--- + 27, — 25,4 To i

Example 22.9.
- COp(R) is R.

~ C1o(R)isR[e]/(e?—1) =R(1+¢) ®R(1 —¢) = RPR. Note that
the given basis, this is a direct sum of algebras over R.

~ Coa(R) is R[i]/(i2 + 1) = C, with i odd.

— Cy0(R) is R, 8]/ (e — 1, 8% — 1,8 + Ba). We get a homomor-
phism Cy0(R) — My(R), given by a — (§ %) and 3 — (9}).
The homomorphism is onto because the two given matrices gener-
ate My(R) as an algebra. The dimension of M(R) is 4, and the
dimension of Cy(R) is at most 4 because it is spanned by 1, a, £,
and af5. So we have that Cy(R) ~ My(R).

— C11(R) is R, 0]/(a* = 1,3* + 1,008 + Ba). Again, we get an
isomorphism with My(R), given by v +— (§ %) and 8 — (% })
Thus, we've computed the Clifford algebras

m\n 0 1 2
0 R C H
1 ReR MyR)
2 M(R)

Remark 22.10. If {vy,...,v,} is a basis for V, then {v;, ---v;, i1 < --- <
ir, k < n} spans Cy(K), so the dimension of Cy (K) is less than or equal
to 24mV " The tough part of Clifford algebras is showing that it cannot
be smaller.

Now let’s try to analyze larger Clifford algebras more systematically.
What is Cygy in terms of Cyy and Cy?7 One might guess Cyay = Cpy ®
Cy. For the usual definition of tensor product, this is false (e.g. C1(R) #
Cio(R) ® Cp1(R)). However, for the superalgebra definition of tensor
product, this is correct. The superalgebra tensor product is the regular
tensor product of vector spaces, with the product given by (a®b)(c®d) =
(—1)deebdegcqe @ bd for homogeneous elements a, b, ¢, and d.
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Let’s specialize to the case K = R and try to compute Cygy (K).
Assume for the moment that dim U = m is even. Take aq, ..., a,, to be
an orthogonal basis for U and let 3;,..., 3, to be an orthogonal basis
for V. Then set v; = ajas - - -y, 5;. What are the relations between the
a; and the ;7 We have

Qi = ay QB = arag - o Bioy = 50

since dim U is even, and «a; anti-commutes with everything except itself.

ViV; = Vil - 'amﬁj =aq - 'Oém%ﬂj
=1 Qo BiB5 = =
~—~
—B;Bi

m(m—1)

Y=oy amar a3 = (—1) a2 a2 3

= (-1)"2ai--- o} 5 (m even)

So the 7;’s commute with the «; and satisfy the relations of some Clifford
algebra. Thus, we've shown that Cygy(K) = Cy(K) @ Cw(K), where
W is V with the quadratic form multiplied by (—1)29mUa2...q2 =
(—1)z9mU. discriminant(U), and this is the usual tensor product of al-
gebras over R.

Taking dim U = 2, we find that

Cm+2,n(R) = M2 (R) ® Cn,m(R)
Crtint1(R) =2 My(R) ® Cpy n(R)
Cm,n+2 (]R) =H b2y Cn,m (R)

where the indices switch whenever the discriminant is positive. Using
these formulas, we can reduce any Clifford algebra to tensor products of
things like R, C, H, and M (R).

Recall the rules for taking tensor products of matrix algebras (all
tensor products are over R).

- R X=X.
~ C® H = M,(C).

This follows from the isomorphism C ® Cy, ,(R) = Cypir (C).
-CeC=CaqC.

~ H® H = My (R).

You can see by thinking of the action on H = R* given by (z ®y) -
—1
z=xzy L.
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— M, (M,(X)) = M (X).
— M, (X) @ M, (Y) & M,,,,,(X ®Y).

Filling in the middle of the table is easy because you can move di-
agonally by tensoring with My (R). It is easy to see that Cgip,,n(R) =
Crn+s(R) = C,, @ Mi6(R), which gives the table a kind of mod 8 peri-
odicity. There is a more precise way to state this: C,, ,,(R) and C, ,(R)

are super Morita equivalent if and only if m —n =m’ —n’ mod 8.
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Lecture 22 - Clifford algebras

n 0 1 2 3 4 5
m
0 R C H HoH M, (H) My (C)
1 ROR —//M
2 | M®) 7/
3 M, ((C) ® M2
4 M (H)
5 M (H) & M (H)
® Mo
6 My (H) My (H) © My (H)
7 Mg (C) ete.
® Mie
8 M6(R)

Mg(RR)

® M6
Ms(R) & Ms(R)

Mi6(R)
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Lecture 23

Last time we defined the Clifford algebra Cy (K'), where V is a vector
space over K with a quadratic form N. Cy(K) is generated by V' with
2? = N(z). Cpn(R) uses the form xf + -+ a2, —a2 | — - — a2,
We found that the structure depends heavily on m —n mod 8.

Remark 23.1. This mod 8 periodicity turns up in several other places:

1. Real Clifford algebras Cp,,(R) and C,(R) are super Morita
equivalent if and only if m —n =m’ —n’ mod 8.

2. Bott periodicity, which says that stable homotopy groups of orthog-
onal groups are periodic mod 8.

3. Real K-theory is periodic with a period of 8.

4. Even unimodular lattices (such as the FEy lattice) exist in R™™ if
and only if m —n =0 mod 8.

5. The Super Brauer group of R is Z/8Z. The Super Brauer group
consists of super division algebras over R (algebras in which every
non-zero homogeneous element is invertible) with the operation of
tensor product modulo super Morita equivalence.!

Cle4]

Rle4] Hle_]
R H
Rle_] He, ]

Cle_]

where ¢4 are odd with €2 = £1, and 7 € C is odd,? but 7, j, k € H
are even.

Recall that Cy(R) = CY(R) & CJ(R), where Cf(R) is the odd part
and CY(R) is the even part. It turns out that we will need to know the
structure of Cy), (R). Fortunately, this is easy to compute in terms of
smaller Clifford algebras. Let dimU = 1, with + a basis for U and let

1See http://math.ucr.edu/home/baez/trimble/superdivision.html
20ne could make i even since R[i,c4] = R[Fe1i,e4], and R[Feyi] = C is entirely
even.
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Y1, -, an orthogonal basis for V. Then CP4 (K) is generated by
VY15« -+, VY- We compute the relations

VYYVi =YY = =Y VY

for ¢ # j, and
(y3)? = (=v")7?
So Cey (K) is itself the Clifford algebra Cy (K), where W is V with

the quadratic form multiplied by —v? = —disc(U). Over R, this tells us
that

I

an-l-l,n (R)
Cron,n—i-l (R)

Ch.m(R) (mind the indices)
Crmn(R).

I

Remark 23.2. For complex Clifford algebras, the situation is similar, but
easier. One finds that Cy,,(C) = Mam(C) and Copy1(C) = Mom (C) &
Man (C), with C9(C) = C,,_1(C). You could figure these out by tensoring
the real algebras with C if you wanted. We see a mod 2 periodicity now.
Bott periodicity for the unitary group is mod 2.

Clifford groups, Spin groups, and Pin groups

In this section, we define Clifford groups, denoted I'y/(K), and find an
exact sequence

1— K<< po(K) — Op(K) — 1.

Definition 23.3. I'y(K) = {z € Cy(K) homogeneous®|zVa(z)™! C
V} (recall that V' C Cy(K)), where a is the automorphism of Cy (K)
induced by —1 on V' (i.e. the automorphism which acts by —1 on odd
elements and 1 on even elements).

Note that I'y/(K) acts on V by x - v = zva(z)~L.

Many books leave out the «, which is a mistake, though not a serious
one. They use zVz ™! instead of zVa(z)™!. Our definition is better for
the following reasons:

1. It is the correct superalgebra sign. The superalgebra convention
says that whenever you exchange two elements of odd degree, you
pick up a minus sign, and V' is odd.

3We assume that I'y (K) consists of homogeneous elements, but this can actually
be proven.
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2. Putting o in makes the theory much cleaner in odd dimensions.
For example, we will see that the described action gives a map
I'v(K) — Oy(K) which is onto if we use «, but not if we do not.
(You get SOy (K) without the «, which isn’t too bad, but is still
annoying. )

Lemma 23.4." The elements of Iy (K) which act trivially on V are the
elements of K* CI'y(K) C Cy(K).

Proof. Suppose ag + a1 € I'yv(K) acts trivially on V', with ag even and
a; odd. Then (ag + a1)v = va(ag + a1) = v(ag — a1). Matching up even
and odd parts, we get apv = vag and ayv = —va;. Choose an orthogonal
basis V1, ...,V for V. We may write

ap =T + 1Yy

where z € C%(K) and y € CJ,(K) and neither z nor y contain a factor
of 71, so y1& = 21 and v,y = yy1. Applying the relation agv = vay with
v = 1, we see that y = 0, so ag contains no monomials with a factor ~;.

Repeat this procedure with v equal to the other basis elements to
show that ag € K* (since it cannot have any 7’s in it). Similarly, write
ay = y + 112, with x and y not containing a factor of 7;. Then the

relation a;y; = —via; implies that * = 0. Repeating with the other
basis vectors, we conclude that a; = 0.
Soa0+a1:a06KﬂFV(K):KX. I

Now we define —7 to be the identity on V, and extend it to an anti-
automorphism of Cy(K) (“anti” means that (ab)” = b"a”). Do not
confuse a +— a(a) (automorphism), a — a’ (anti-automorphism), and
a — a(a®) (anti-automorphism).

Notice that on V', N coincides with the quadratic form N. Many au-
thors seem not to have noticed this, and use different letters. Sometimes
they use a sign convention which makes them different.

Now we define the spinor norm of a € Cy(K) by N(a) = aa”. We

also define a twisted version: N%(a) = aa(a)’.

Proposition 23.5.

1. The restriction of N to I'y(K) is a homomorphism whose image
lies in K*. N is a mess on the rest of Cy(K).

2. The action of T'v(K) on V is orthogonal. That is, we have a ho-
momorphism I'y (K) — Oy (K).

4] promised no Lemmas or Theorems, but I was lying to you.
SAll these results are true in characteristic 2, but you have to work harder ... you
can’t go around choosing orthogonal bases because they may not exist.
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Proof. First we show that if a € Iy (K), then N®(a) acts trivially on V.

N*(a)va(N(a)”" = aa(a)"(a(a) a(a(a)T)>_1

=aT

=aala)viaH ala)™!
=(a" T a(a))T
= aa 'va(a)a(a)™ (T|y = 1Idy and a tva(a) € V)

=0

So by Lemma 23.4, N®(a) € K*. This implies that N* is a homomor-
phism on I'y (K) because

= aN“*(b)a(a)” (N“(b) is central)

After all this work with N¢, what we’re really interested is N. On the
even elements of I'y(K), N agrees with N®, and on the odd elements,
N = —N°. Since I'y(K) consists of homogeneous elements, N is also a
homomorphism from 'y (K) to K*. This proves the first statement of
the Proposition.

Finally, since N is a homomorphism on I'y(K), the action on V
preserves the quadratic form N|y. Thus, we have a homomorphism

Now let’s analyze the homomorphism I'y (K) — Oy (K). Lemma 23.4
says exactly that the kernel is K*. Next we will show that the image is
all of Oy (K). Say r € V and N(r) # 0.

9 T vr? 4 ror
TUCY(’T’) = _TUN—T) =0 — W
N
= N(r) (23.6)
—r ifv=r
B {U if (v,7) =0 (23.7)

Thus, r is in I'y(K), and it acts on V' by reflection through the hyper-
plane r+. One might deduce that the homomorphism 'y (K) — Oy (K)
is surjective because Oy (K) is generated by reflections. This is wrong;
Oy (K) is not always generated by reflections!
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» Exercise 23.1. Let H = F3, with the quadratic form 2? + y* + 2y,
and let V.= H @ H. Prove that Oy (FFy) is not generated by reflections.

Remark 23.8. It turns out that this is the only counterexample. For
any other vector space and/or any other non-degenerate quadratic form,
Oy (K) is generated by reflections. The map 'y (K) — Oy (K) is surjec-
tive even in the example above. Also, in every case except the example
above, I'y(K) is generated as a group by non-zero elements of V' (i.e.
every element of I'y(K) is a monomial).

Remark 23.9. Equation 23.6 is the definition of the reflection of v through
r. It is only possible to reflect through vectors of non-zero norm. Reflec-
tions in characteristic 2 are strange; strange enough that people don’t
call them reflections, they call them transvections.

Thus, we have the diagram

|| lzv w
|1 s fox 2 e K% J(K*)? —1

where the rows are exact, K* is in the center of I'y/(K) (this is obvious,
since K* is in the center of Cy/(K)), and N : Oy(K) — K*/(K*)? is
the unique homomorphism sending reflection through 7+ to N (r) modulo
(K>)2.

Definition 23.11. Piny (K) = {z € I'y (K)|N(z) = 1}, and Spin (K) =
Pin{,(K), the even elements of Piny (K).

On K*, the spinor norm is given by z — 22, so the elements of spinor
norm 1 are = +1. By restricting the top row of (23.10) to elements of
norm 1 and even elements of norm 1, respectively, we get exact sequences

1 —— 41— Piny (K) —— Oy (K) Moy KX /(K*)?
1 —— 41— Spiny (K) — SOy (K) - KX /(K *)?

To see exactness of the top sequence, note that the kernel of ¢ is K* N
Piny (K) = £1, and that the image of Piny (K) in Oy (K) is exactly the
elements of norm 1. The bottom sequence is similar, except that the
image of Spiny, (K) is not all of Oy (K), it is only SOy (K); by Remark
23.8, every element of I'y/(K) is a product of elements of V', so every
element of Spiny (K) is a product of an even number of elements of V.
Thus, its image is a product of an even number of reflections, so it is in

SOy (K).
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These maps are NOT always onto, but there are many important
cases when they are, like when V' has a positive definite quadratic form.
The image is the set of elements of Oy (K) or SOy (K) which have spinor
norm 1 in K /(K*)2.

What is N : Oy(K) — K*/(K*)?? Tt is the UNIQUE homomor-
phism such that N(a) = N(r) if a is reflection in r*, and r is a vector
of norm N(r).

Example 23.12. Take V to be a positive definite vector space over R.
Then N maps to 1 in R*/(R*)? = +1 (because N is positive definite).
So the spinor norm on Oy (R) is TRIVIAL.

So if V' is positive definite, we get double covers
1 — +1 — Piny(R) —» Oy(R) — 1

1 — +1 — Spiny (R) —» SOy (R) — 1

This will account for the weird double covers we saw before.
What if V' is negative definite. Every reflection now has image —1
in R*/(R*)?, so the spinor norm N is the same as the determinant map
So in order to find interesting examples of the spinor norm, you have
to look at cases that are neither positive definite nor negative definite.
Let’s look at Losrentz space: RS,

‘I norm<0

Reflection through a vector of norm < 0 (spacelike vector, P: parity
reversal) has spinor norm —1, det —1 and reflection through a vector of
norm > 0 (timelike vector, T time reversal) has spinor norm +1, det
—1. So 01 3(R) has 4 components (it is not hard to check that these are
all the components), usually called 1, P, T', and PT.

Remark 23.13. For those who know Galois cohomology. We get an exact
sequence of algebraic groups

1—-GL, — Ty -0y —1

(algebraic group means you don’t put a field). You do not necessarily
get an exact sequence when you put in a field.



Lecture 23 138

If
1-A—-B—-=(C—=1

is exact,

1— A(K) — B(K) — C(K)
is exact. What you really get is
1 — H°Gal(K/K),A) — H°(Gal(K/K),B) — H°(Gal(K/K),C) —
— HY(Gal(K/K),A) — ---

It turns out that H*(Gal(K /K),GL,) = 1. However, H (Gal(K/K),+1) =
KX/(KX)2.
So from
1—-GL, — Ty —0y—1

you get

1 — K* - Ty(K)— Op(K) —1=H (Ga(K/K),GL))

However, taking
1 — po — Spiny, — SOy — 1

you get
1 — £1 — Spiny (K) — SOy (K) = K* /(K*)* = H'(K /K, 11z)
so the non-surjectivity of N is some kind of higher Galois cohomology.

Warning 23.14. Spin,, — SOy is onto as a map of ALGEBRAIC
GROUPS, but Spiny, (K) — SOy (K) need NOT be onto.

Example 23.15. Take O3(R) = SO3(R) x {1} as 3 is odd (in general
02,11 (R) 2 804,11(R) x {£1}). So we have a sequence

1 — £+1 — Sping(R) — SO3(R) — 1.

Notice that Sping(R) C CY(R) = H, so Sping(R) C H*, and in fact we
saw that it is S°.
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Lecture 24

Last time we constructed the sequences
1-K*—=Ty(K)—Oy(K)—1

1 — +1 — Piny(K) — Oy(K) 5 K> /(K*)?
1 — +1 — Spiny (K) — SOv(K) 5 K> /(K*)?

Spin representations of Spin and Pin groups

Notice that Piny (K) C Cy(K)*, so any module over Cy(K) gives a
representation of Piny (K). We already figured out that Cy (K) are direct
sums of matrix algebras over R, C, and H.

What are the representations (modules) of complex Clifford alge-
bras? Recall that Cy,(C) = My« (C), which has a representations of
dimension 2", which is called the spin representation of Piny (K) and
C241(C) = Mon (C) x Myn (C), which has 2 representations, called the
spin representations of Ping, 1 (K).

What happens if we restrict these to Spiny (C) C Piny(C)? To
do that, we have to recall that C9 (C) = Myu—1(C) X My—1(C) and
C9,41(C) = My (C). So in EVEN dimensions Pin,,(C) has 1 spin rep-
resentation of dimension 2" splitting into 2 HALF SPIN representations
of dimension 2"~! and in ODD dimensions, Piny,,1(C) has 2 spin rep-
resentations of dimension 2" which become the same on restriction to
Spiny, (C).

Now we’ll give a second description of spin representations. We'll
just do the even dimensional case (odd is similar). Say dimV = 2n,
and say we're over C. Choose an orthonormal basis 71, ..., 72, for V, so
that v2 = 1 and 77, = —7;7%. Now look at the group G generated by
Y1, - - - Yan, Which is finite, with order 2'72" (you can write all its elements
explicitly). You can see that representations of Cy (C) correspond to
representations of GG, with —1 acting as —1 (as opposed to acting as 1).
So another way to look at representations of the Clifford algebra, you
can look at representations of G.

Let’s look at the structure of G:

(1) The center is 1. This uses the fact that we are in even dimensions,
lest 1 - - - ¥2, also be central.

(2) The conjugacy classes: 2 of size 1 (1 and —1), 22" — 1 of size 2
(£7i, -+, ), so we have a total of 22" + 1 conjugacy classes, so
we should have that many representations. G /center is abelian,
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isomorphic to (Z/27)*", which gives us 22" representations of di-
mension 1, so there is only one more left to find! We can figure
out its dimension by recalling that the sum of the squares of the
dimensions of irreducible representations gives us the order of G,
which is 2271, So 22" x 1! + 1 x d?> = 22!, where d is the di-
mension of the mystery representation. Thus, d = 42", so d = 2.
Thus, G, and therefore Cy (C), has an irreducible representation of
dimension 2" (as we found earlier in another way).

Example 24.1. Consider O,;(R). As before, Oy;1(R) = SO3;(R) x
(£1), and SO3;(R) is not connected: it has two components, separated
by the spinor norm N. We have maps

1 — 41 — Spiny ; (R) — SO5,(R) & +1.

Spin, ; (R) € €5, (R) = My (R), so Spin,; (R) has one 2 dimensional spin
representation. So there is a map Spiny;(R) — SLy(R); by counting
dimensions and such, you can show it is an isomorphism. So Spin, ; (R) =

SLy(R).
Now let’s look at some 4 dimensional orthogonal groups

Example 24.2. Look at SO4(R), which is compact. It has a complex
spin representation of dimension 2%/? = 4, which splits into two half spin
representations of dimension 2. We have the sequence

1 — +1 — Spiny(R) — SO4(R) — 1 (N=1)

Spin, (R) is also compact, so the image in any complex representation
is contained in some unitary group. So we get two maps Spin,(R) —
SU(2) x SU(2), and both sides have dimension 6 and centers of order
4. Thus, we find that Spin,(R) & SU(2) x SU(2) = S% x S3, which give
you the two half spin representations.

So now we’ve done the positive definite case.

Example 24.3. Look at SO5;(R). Notice that Oz ;(R) has four com-
ponents distinguished by the maps det, N — +1. So we get

1 — 41 — Sping ; (R) — 505, (R) & +1 — 1

We expect 2 half spin representations, which give us two homomorphisms
Sping ;(R) — SLy(C). This time, each of these homomorphisms is an
isomorphism (I can’t think of why right now). The SLy(C)s are double
covers of simple groups. Here, we don’t get the splitting into a product as



Lecture 24 141

in the positive definite case. This isomorphism is heavily used in quan-
tum field theory because Sping(R) is a double cover of the connected
component of the Lorentz group (and S Ly (C) is easy to work with). Note
also that the center of Spins,(R) has order 2, not 4, as for Spin, ,(RR).
Also note that the group PSLy(C) acts on the compactified CU{oo} by
(2%) (1) = “£5. Subgroups of this group are called KLEINTAN groups.
On the other hand, the group SOs5;(R)* (identity component) acts on
H? (three dimensional hyperbolic space). To see this, look at

—
v — norm=0

\" — norm=1

—— norm=-—1

One sheet of norm —1 hyperboloid is isomorphic to H?® under the in-
duced metric. In fact, we’ll define hyperbolic space that way. If you're
a topologist, you're very interested in hyperbolic 3-manifolds, which are
H?/(discrete subgroup of SOs 1 (R)). If you use the fact that SO5;(R) &
PSLy(R), then you see that these discrete subgroups are in fact Klienian
groups.

There are lots of exceptional isomorphisms in small dimension, all of
which are very interesting, and almost all of them can be explained by
spin groups.

Example 24.4. O,5(R) has 4 components (given by det, N); C9,(R) =
M (R) x My (R), which induces an isomorphism Spin, ,(R) — SLy(R) x
SLy(R), which give you the two half spin representations. Both sides
have dimension 6 with centers of order 4. So this time we get two
non-compact groups. Let’s look at the fundamental group of SLy(R),
which is Z, so the fundamental group of Spin, ,(R) is Z & Z. As we re-
call, Spin, o(R) and Spinz,; (R) were both simply connected. This shows
that SPIN GROUPS NEED NOT BE SIMPLY CONNECTED. So we
can take covers of it. What do the corresponding covers (e.g. the uni-
versal cover) of Spin,,(R) look like? This is hard to describe because
for FINITE dimensional complex representations, you get finite dimen-
sional representations of the Lie algebra L, which correspond to the
finite dimensional representations of L ® C, which correspond to the fi-
nite dimensional representations of L' = Lie algebra of Spin, ;(R), which
correspond to the finite dimensional representations of Spin, ;(IR), which
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has no covers because it is simply connected. This means that any fi-
nite dimensional representation of a cover of Spin, ,(R) actually factors
through Spin, ,(R). So there is no way you can talk about these things
with finite matrices, and infinite dimensional representations are hard.
To summarize, the ALGEBRAIC GROUP Spin,, is simply con-
nected (as an algebraic group) (think of an algebraic group as a functor
from rings to groups), which means that it has no algebraic central exten-
sions. However, the LIE GROUP Spin, ,(R) is NOT simply connected;
it has fundamental group Z @ Z. This problem does not happen for
COMPACT Lie groups (where every finite cover is algebraic).

We've done Oyp,031, and Os 9, from which we can obviously get
0173 and 0074. Note that 04’0(R) = 00,4(R>, SO4,o(R) = 50074(R),
Spiny o(R) = Spin, 4(R). However, Pinyo(R) % Ping4(R). These two are
hard to distinguish. We have

Pil’l470 (R) PiIl074 (R)

J |

Oso(R) = Opu(R)

Take a reflection (of order 2) in O,(R), and lift it to the Pin groups.
What is the order of the lift? The reflection vector v, with v? = £1 lifts
to the element v € T'y(R) C C}(R). Notice that v* = 1 in the case of
R*Y and v* = —1 in the case of R, so in Pinyo(R), the reflection lifts
to something of order 2, but in Ping 4(R), you get an element of order 4!.
So these two groups are different.

Two groups are isoclinic if they are confusingly similar. A similar
phenomenon is common for groups of the form 2 - G - 2, which means it
has a center of order 2, then some group G, and the abelianization has
order 2. Watch out.

» Exercise 24.1. Sping 3(R) = SL4(R).
Triality

This is a special property of 8 dimensional orthogonal groups. Recall
that Og(C) has the Dynkin diagram D,, which has a symmetry of order

[/
N
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But Og(C) and SOg(C) do NOT have corresponding symmetries of
order three. The thing that does have the symmetry of order three is
the spin group! The group Sping(R) DOES have “extra” order three
symmetry. You can see it as follows. Look at the half spin representa-
tions of Sping(R). Since this is a spin group in even dimension, there
are two. Cg’o(R) = M28/271 (R) X M28/2—1(R) = Mg(R) X Mg(R) So
Sping(R) has two 8 dimensional real half spin representations. But the
spin group is compact, so it preserves some quadratic form, so you get
2 homomorphisms Sping(R) — SOs(R). So Sping(R) has THREE 8 di-
mensional representations: the half spins, and the one from the map
to SOg(R). These maps Sping(R) — SOg(R) lift to Triality automor-
phisms Sping(R) — Sping(R). The center of Sping(R) is (Z/2) + (Z/2)
because the center of the Clifford group is £1, 47 ---7s. There are 3
non-trivial elements of the center, and quotienting by any of these gives
you something isomorphic to SOg(R). This is special to 8 dimensions.

More about Orthogonal groups
Is Oy (K) a simple group? NO, for the following reasons:

(1) There is a determinant map Oy (K) — =£1, which is usually onto,
so it can’t be simple.

(2) There is a spinor norm map Oy (K) — K> /(K*)?
(3) —1 € center of Oy (K).

(4) SOy (K) tends to split if dimV = 4, abelian if dimV = 2, and
trivial if dimV = 1.

It turns out that they are usually simple apart from these four reasons
why they're not. Let’s mod out by the determinant, to get to SO,
then look at Spiny (K), then quotient by the center, and assume that
dim V' > 5. Then this is usually simple. The center tends to have order
1,2, or 4. If K is a FINITE field, then this gives many finite simple
groups.

Note that SOy (K) is NOT a subgroup of Oy (K), elements of deter-
minant 1 in general, it is the image of I'),(K) C T'y/(K) — Oy (K), which
is the correct definition. Let’s look at why this is right and the definition
you know is wrong. There is a homomorphism I'y(K) — Z/2Z, which
takes I'),(K) to 0 and T'},(K) to 1 (called the DICKSON INVARIANT).
It is easy to check that det(v) = (—1)dickson imvariant(v) G if the char-
acteristic of K is not 2, det = 1 is equivalent to dickson = 0, but in
characteristic 2, determinant is the wrong invariant (because determi-
nant is always 1).
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Special properties of O ,,(R) and O3, (R). O; ,(R) acts on hyperbolic
space H", which is a component of norm —1 vectors in R™'. Oy, (R) acts
on the “Hermitian symmetric space” (Hermitian means it has a complex
structure, and symmetric means really nice). There are three ways to
construct this space:

(1) Tt is the set of positive definite 2 dimensional subspaces of R*"
(2) Tt is the norm 0 vectors w of PC*" with (w,&) = 0.

(3) Tt is the vectors x + iy € RV~ ! with y € C, where the cone C is
the interior of the norm 0 cone.

» Exercise 24.2. Show that these are the same.

Next week, we’ll mess around with FEjg.
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Lecture 25 - FExg

In this lecture we use a vector notation in which powers represent repeti-
tions: so (1%) = (1,1,1,1,1,1,1,1) and (:t%z, 0°) = (£3,+24,0,0,0,0,0,0).
Recall that Ejg has the Dynkin diagram

15 13
(_575)
o €y — €3 €4 — €5 T €g — €7 o
€1 — €2 €3 — €4 €5 — €6 €7 — €3

where each vertex is a root r with (r,r) = 2; (r,s) = 0 when r and s
are not joined, and (r,s) = —1 when r and s are joined. We choose an
orthonormal basis ey, ..., eg, in which the roots are as given.

We want to figure out what the root lattice L of Eg is (this is the
lattice generated by the roots). If you take {e; —e; 11 }U(—1°, 1%) (all the
A7 vectors plus twice the strange vector), they generate the Dg lattice
= {(z1,...,28)|x; € Z, > x; even}. So the Eg lattice consists of two
cosets of this lattice, where the other coset is {(z1,...,28)|r; € Z +
1, Y odd}.

Alternative version: If you reflect this lattice through the hyperplane
et , then you get the same thing except that > z; is always even. We will
freely use both characterizations, depending on which is more convenient
for the calculation at hand.

We should also work out the weight lattice, which is the vectors s
such that (r,7)/2 divides (r, s) for all roots r. Notice that the weight
lattice of Ejg is contained in the weight lattice of Dg, which is the union of
four cosets of Dg: Dg, Dg+ (1, 07), Dg+ (%8) and Ds + (—3, %7) Which

15

of these have integral inner product with the vector (—3", %3)? They are

the first and the last, so the weight lattice of Eg is Ds U Dg + (—3, %7),
which is equal to the root lattice of FEg.

In other words, the Eg lattice L is UNIMODULAR (equal to its dual
L"), where the dual is the lattice of vectors having integral inner product
with all lattice vectors. This is also true of G, and F}, but is not in
general true of Lie algebra lattices.

The Ejg lattice is EVEN, which means that the inner product of any
vector with itself is always even.

Even unimodular lattices in R™ only exist if 8|n (this 8 is the same
8 that shows up in the periodicity of Clifford groups). The Ejg lattice is
the only example in dimension equal to 8 (up to isomorphism, of course).
There are two in dimension 16 (one of which is L & L, the other is DU
some coset). There are 24 in dimension 24, which are the Niemeier
lattices. In 32 dimensions, there are more than a billion!
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The Weyl group of Eg is generated by the reflections through s+
where s € L and (s,s) = 2 (these are called roots). First, let’s find all
the roots: (z1,...,zg) such that Y z? = 2 with x; € Z or Z + % and
> x; even. If z; € Z, obviously the only solutions are permutations of
(£1,%1,0°), of which there are (5) x 22 = 112 choices. In the Z + 1
case, you can choose the first 7 places to be :I:%, and the last coordinate
is forced, so there are 27 choices. Thus, you get 240 roots.

Let’s find the orbits of the roots under the action of the Weyl group.
We don’t yet know what the Weyl group looks like, but we can find
a large subgroup that is easy to work with. Let’s use the Weyl group
of Dg, which consists of the following: we can apply all permutations
of the coordinates, or we can change the sign of an even number of
coordinates (e.g., reflection in (1, —1,0°%) swaps the first two coordinates,
and reflection in (1, —1, 0%) followed by reflection in (1,1,0°%) changes
the sign of the first two coordinates.)

Notice that under the Weyl group of Dg, the roots form two orbits:
the set which is all permutations of (+1% 0°), and the set (i%g). Do
these become the same orbit under the Weyl group of Eg? Yes; to show
this, we just need one element of the Weyl group of Eg taking some

element of the first orbit to the second orbit. Take reflection in (18)L

2
and apply it to (12,0°%): you get (%2, —%6), which is in the second orbit.
So there is just one orbit of roots under the Weyl group.

What do orbits of W (Es) on other vectors look like? We're interested
in this because we might want to do representation theory. The character
of a representation is a map from weights to integers, which is W (Eg)-
invariant. Let’s look at vectors of norm 4 for example. So Y 2?7 = 4,
Y x; even, and x; € Z or x; € Z + % There are 8 x 2 possibilities

which are permutations of (£2,07). There are () x 2* permutations of

(£1%,0%), and there are 8 x 27 permutations of (43, ﬂ:g). So there are
a total of 240 x 9 of these vectors. There are 3 orbits under W (Dsg), and
as before, they are all one orbit under the action of W (Eg). Just reflect

(2, 07) and (1%, —1, 0%) through (%8).

» Exercise 25.1. Show that the number of norm 6 vectors is 240 x 28,
and they form one orbit

(If you've seen a course on modular forms, you’ll know that the num-
ber of vectors of norm 2n is given by 240 x > din d3. If you let call these
Cn, then > c,q¢™ is a modular form of level 1 (Eg even, unimodular),
weight 4 (dim Eg/2).)

For norm 8 there are two orbits, because you have vectors that are
twice a norm 2 vector, and vectors that aren’t. As the norm gets bigger,
you’ll get a large number of orbits.
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What is the order of the Weyl group of Eg? We’ll do this by 4 different
methods, which illustrate the different techniques for this kind of thing:

(1) This is a good one as a mnemonic. The order of Fg is given by

numbers on the Weight lattice of Eg
W(Es)| = 8!
IW(Es) 8 H (afﬁne Eg diagraml) " "Root lattice of Eg

3
= 8! o—o—o—o—o—i—o—o
8‘X<12345642>X1
=2 3B x5 x7

We can do the same thing for any other Lie algebra, for example,

W(F)| =41 x (4322 3)

=927 x 32

X 1

(2) The order of a reflection group is equal to the products of degrees
of the fundamental invariants. For Eg, the fundamental invariants
are of degrees 2,8,12,14,18,20,24,30 (primes +1).

(3) This one is actually an honest method (without quoting weird
facts). The only fact we will use is the following: suppose G acts

transitively on a set X with H = the group fixing some point; then
|G| = [H]-|X].

This is a general purpose method for working out the orders of
groups. First, we need a set acted on by the Weyl group of FEj.
Let’s take the root vectors (vectors of norm 2). This set has 240
elements, and the Weyl group of Fs acts transitively on it. So
|W(Eg)| = 240 x |subgroup fixing (1,—1,0%)|. But what is the
order of this subgroup (call it G;)? Let’s find a set acted on by
this group. It acts on the set of norm 2 vectors, but the action
is NOT transitive. What are the orbits? G fixes s = (1, —1,0°).
For other roots , Gy obviously fixes (7, s). So how many roots are
there with a given inner product with s?

(s,r) | number choices
2 1 s
1 56 | (1,0,+18), (0, —1,+16), (1, 1 1
0 126

-1 56

-2 1 —s

!These are the numbers giving highest root.
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So there are at least 5 orbits under (G;. In fact, each of these sets
is a single orbit under ;. How can we see this? Find a large
subgroup of Gy. Take W (Dg), which is all permutations of the last
6 coordinates and all even sign changes of the last 6 coordinates.
It is generated by reflections associated to the roots orthogonal to
e; and ey (those that start with two 0s). The three cases with
inner product 1 are three orbits under W (Dg). To see that there
is a single orbit under GG, we just need some reﬂections that mess
up these orbits. If you take a vector (;, ;, :I: ) and reflect norm
2 vectors through it, you will get exactly 5 orbits. So G, acts
transitively on these orbits.

We'll use the orbit of vectors r with (r,s) = —1. Let Gy be the
vectors fixing s and r: § L We have that |G| = |Gs] - 56

Keep going ... it gets tedious, but here are the answers up to the
last step:

Our plan is to chose vectors acted on by Gj, fixed by G,,; which
give us the Dynkin diagram of Eg. So the next step is to try to

find vectors t that give us the picture 5T . L i.e, they have
inner product —1 with r and 0 with s. The possibilities for ¢ are
(—1,-1,0,05) (one of these), (0,0,1,41,0%) and permutations of
its last five coordinates (10 of these), and (—3, -3, 3, 3 ®) (there
are 16 of these), so we get 27 total. Then we could check that they
form one orbit, which is boring.

Next find vectors which go next to ¢ in our picture:
§ r Lo o, i.e., whose inner product is —1 with ¢ and
zero with r,s. The possibilities are permutations of the last four
coords of (0,0,0,1,+1,0%) (8 of these) and (-3, -3, 1,1, i—14) (8
of these), so there are 16 total. Again check transitivity.

Find a fifth vector; the possibilities are (0%, 1, +1,0?%) and perms of
the last three coords (6 of these), and (— %4, 5 ﬂ:13) (4 of these) for
a total of 10.

For the sixth vector, we can have (0°,1,41,0) or (0°,1,0,41) (4

possibilites) or (—35, 5 i—12) (2 possibilities), so we get 6 total.

NEXT CASE IS TRICKY: finding the seventh one, the possibilities
are (0°,1,41) (2 of these) and ((—3)% 3,3) (just 1). The proof
of transitivity fails at this point. The group we’re using by now
doesn’t even act transitively on the pair (you can’t get between
them by changing an even number of signs). What elements of

W (Es) fix all of these first 6 points & 5 ’ o

? We want to find roots perpendicular to all of these vectors, and
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the only possibility is ((3)®). How does reflection in this root act

on the three vectors above? (09,1%) — ((—3)°, %2) and (0%,1, 1)

maps to itself. Is this last vector in the same orbit? In fact they
are in different orbits. To see this, look for vectors

0
°

own
<
~

o(0°,1, 1)

completing the Fg diagram. In the (05,1, 1) case, you can take the

vector ((—%)%, 2,3, —3). But in the other case, you can show that

there are no possibilities. So these really are different orbits.

Use the orbit with 2 elements, and you get

order of W (Esg)
W (Es)| = 240 x 56 x 27 x 16 x 10 x 6 x 2 x 1

~
order of W (E7)

because the group fixing all 8 vectors must be trivial. You also get

that
|W(A2 ><A1)|

——
[W(“E5")| =16 x 10 x 6 x 2 x 1
—_———

|W(Aq)]

where “F3” is the algebra with diagram O—I—O—o (that is, Ds).

Similarly, Ey is A4 and E3 is Ay X Aj.

We got some other information. We found that the Weyl group of
Ey acts transitively on all the configurations

but not on
O O

(4) We'll slip this in to next lecture

Also, next time we’ll construct the Lie algebra Fj.
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Lecture 26

Today we’ll finish looking at W (Es), then we’ll construct Eg.

Remember that we still have a fourth method of finding the order of
W (Es). Let L be the Eg lattice. Look at L/2L, which has 256 elements.
Look at this as a set acted on by W(Eg). There is an orbit of size 1
(represented by 0). There is an orbit of size 240/2 = 120, which are
the roots (a root is congruent mod 2L to it’s negative). Left over are
135 elements. Let’s look at norm 4 vectors. Each norm 4 vector, r,
satisfies 7 = —r mod 2, and there are 240 - 9 of them, which is a lot,
so norm 4 vectors must be congruent to a bunch of stuff. Let’s look at
r=(2,0,0,0,0,0,0,0). Notice that it is congruent to vectors of the form
(0---£2...0), of which there are 16. It is easy to check that these are
the only norm 4 vectors congruent to » mod 2. So we can partition the
norm 4 vectors into 240 - 9/16 = 135 subsets of 16 elements. So L/2L
has 141204135 elements, where 1 is the zero, 120 is represented by 2
elements of norm 2, and 135 is represented by 16 elements of norm 4. A
set of 16 elements of norm 4 which are all congruent is called a FRAME.
It consists of elements +ey, ..., +es, where e? = 4 and (e;,e;) = 1 for
1 # j, so up to sign it is an orthogonal basis.

Then we have

|W(FEg)| = (# frames) x |subgroup fixing a frame|

because we know that W (Es) acts transitively on frames. So we need
to know what the automorphisms of an orthogonal base are. A frame is
8 subsets of the form (r, —r), and isometries of a frame form the group
(Z)27)% - Ss, but these are not all in the Weyl group. In the Weyl group,
we found a (Z/27Z)7 - Sz, where the first part is the group of sign changes
of an EVEN number of coordinates. So the subgroup fixing a frame must
be in between these two groups, and since these groups differ by a factor
of 2, it must be one of them. Observe that changing an odd number of
signs doesn’t preserve the Fg lattice, so it must be the group (Z/27Z)"- S,
which has order 27 - 8!. So the order of the Weyl group is

# norm 4 elements

135.27 .81 = |27.
35208l = 20 Sl X o T

Remark 26.1. Similarly, if A is the Leech lattice, you actually get the
order of Conway’s group to be

# norm 8 elements
2 x dim A

|212 . M24| X

where My, is the Mathieu group (one of the sporadic simple groups).
The Leech lattice seems very much to be trying to be the root lattice of
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the monster group, or something like that. There are a lot of analogies,
but nobody can make sense of it.

W (Eg) acts on (Z/27)®, which is a vector space over Fy, with quadratic

form N(a) = @ mod 2, so you get a map

+1 — W(Eg) — Of (Fy)

which has kernel +1 and is surjective. Og is one of the 8 dimensional
orthogonal groups over Fy. So the Weyl group is very close to being an
orthogonal group of a vector space over Fs.

What is inside the root lattice/Lie algebra/Lie group Eg? One obvi-
ous way to find things inside is to cover nodes of the Eg diagram:

|

O R O

If we remove the shown node, you see that Fg contains Ay x Ds. We can
do better by showing that we can embed the affine Ey in the Ejy lattice.

|

simple roots

O
s

e,
—highest root ~

Now you can remove nodes here and get some bigger sub-diagrams. For
example, if we cover

O 3 O

you get that an A; x E7 in Eg. The F; consisted of 126 roots orthogonal
to a given root. This gives an easy construction of E7; root system, as all
the elements of the Fyg lattice perpendicular to (1,—1,0...)

We can cover

O = O

Then we get an A; x Eg, where the Eg are all the vectors with the first
3 coordinates equal. So we get the Ejg lattice for free too.
If you cover
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you see that there is a Dg in FEjg, which is all vectors of the FEjg lattice
with integer coordinates. We sort of constructed the Eg lattice this way
in the first place.

We can ask questions like: What is the Fg Lie algebra as a represen-
tation of Dg? To answer this, we look at the weights of the Eg algebra,
considered as a module over Dg, which are the 112 roots of the form
(++-+1---£1...) and the 128 roots of the form (+1/2,...) and 1 vec-
tor 0, with multiplicity 8. These give you the Lie algebra of Dg. Recall
that Dg is the Lie algebra of SO15. The double cover has a half spin
representation of dimension 2'9/2~1 = 128. So Es decomposes as a rep-
resentation of Dg as the adjoint representation (of dimension 120) plus a
half spin representation of dimension 128. This is often used to construct
the Lie algebra Eg. We'll do a better construction in a little while.

We’ve found that the Lie algebra of Dg, which is the Lie algebra of
SO, is contained in the Lie algebra of Eg. Which group is contained in
the the compact form of the Fg? We found that there were groups

SpinTﬁ(]R)
SOWR) Spiny(R)/(Z/22) = (Sping(R)](Z/22))
\ |
PSO4(R)

corresponding to subgroups of the center (Z/27Z)*:

1
|
7.)2Z 7.)27 7.)27
T~ | _—
(Z.)27.)?

We have a homomorphism Spin,5(R) — FEgs(compact). What is the ker-
nel? The kernel are elements which act trivially on the Lie algebra of Ej,
which is equal to the Lie algebra Dg plus the half spin representation.
On the Lie algebra of Dg, everything in the center is trivial, and on the
half spin representation, one of the elements of order 2 is trivial. So the
subgroup that you get is the circled one.

» Exercise 26.1. Show SU(2) x E;(compact)/(—1,—1) is a subgroup
of Eg (compact). Similarly, show that SU(9)/(Z/3Z) is also. These are
similar to the example above.

Construction of Eg

Earlier in the course, we had some constructions:
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1. using the Serre relations, but you don’t really have an idea of what
it looks like

2. Take Dg plus a half spin representation

Today, we’ll try to find a natural map from root lattices to Lie algebras.
The idea is as follows: Take a basis element e“ (as a formal symbol)
for each root «a; then take the Lie algebra to be the direct sum of 1
dimensional spaces generated by each e® and L (L root lattice = Cartan
subalgebra) . Then we have to define the Lie bracket by setting [e®, /] =
e**8 . but then we have a sign problem because [e%,e’] # —[e?, e?]. Is
there some way to resolve the sign problem? The answer is that there is
no good way to solve this problem (not true, but whatever). Suppose we
had a nice functor from root lattices to Lie algebras. Then we would get
that the automorphism group of the lattice has to be contained in the
automorphism group of the Lie algebra (which is contained in the Lie
group), and the automorphism group of the Lattice contains the Weyl
group of the lattice. But the Weyl group is NOT usually a subgroup of
the Lie group.

We can see this going wrong even in the case of sl3(R). Remember
that the Weyl group is N(T')/T where T' = (§ %) and N(T) = T U
(_1971 8), and this second part is stuff having order 4, so you cannot
possibly write this as a semi-direct product of 7" and the Weyl group.

So the Weyl group is not usually a subgroup of N(T'). The best we
can do is to find a group of the form 2" - W C N(T') where n is the rank.
For example, let’s do it for SL(n+1,R) Then T = diag(ay, . . ., a,) with
ap - --a, = 1. Then we take the normalizer of the torus to be N(7') =all
permutation matrices with +1’s with determinant 1, so this is 2" - S,
and it does not split. The problem we had with signs can be traced back
to the fact that this group doesn’t split.

We can construct the Lie algebra from something acted on by 2" -
W (but not from something acted on by W). We take a CENTRAL
EXTENSION of the lattice by a group of order 2. Notation is a pain
because the lattice is written additively and the extension is nonabelian,
so you want it to be written multiplicatively. Write elements of the lattice
in the form e* formally, so we have converted the lattice operation to
multiplication. We will use the central extension

L

1—>4+1 el — e =1

=L

We want é” to have the property that é%é% = (—1)(@9efe> where & is
something mapping to e®. What do the automorphisms of é* look like?
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We get
1 — (L/2L) — Aut(é") — Aut(e?)

——
(Z/z)rank(L)

for a € L/2L, we get the map é° — (—1)®®¢% The map turns out
to be onto, and the group Aut(e”) contains the reflection group of the
lattice. This extension is usually non-split.

Now the Lie algebra is L& {1 dimensional spaces spanned by (é*, —é)}
for a* = 2 with the convention that —é* (=1 in the vector space)
is —é* (-1 in the group é¥). Now define a Lie bracket by the “obvi-
ous rules” [a, 3] = 0 for o, € L (the Cartan subalgebra is abelian),
[, %] = (a,3)é? (¢° is in the root space of 3), and [¢%,¢é°] = O if
(o, 3) > 0 (since (o + 3)% > 2), [e,é°] = e*é? if (o, ) < 0 (product in
the group éL), and [é, (é2)71] = a.

Theorem 26.2. Assume L is positive definite. Then this Lie bracket
forms a Lie algebra (so it is skew and satisfies Jacobi).

Proof. Easy but tiresome, because there are a lot of cases; let’s do them
(or most of them).

We check the Jacobi identity: We want [[a, b], c|+[[b, ], a]+][c, a], b] =
0

1. all of a,b,c in L. Trivial because all brackets are zero.

2. two of a,b,cin L. Say «, (3, €7

[la, 8], €7+ [[8,€7], a] +[e”, 0], f]

(. J/

-~

0 (8,0~ 0)¢
and similar for the third term, giving a sum of 0.

3. one of a,b,cin L. o, e e7. e’ has weight 3 and e has weight
and efe” has weight 3+1. So check the cases, and you get Jacobi:

[lev, €], €7] = (o, B)[e”, €7]

Heﬁ> 67]7 Oz] = —[Oz, [66’ e'y]] = _(aaﬁ + 7)[66> eﬂy]
[[677 Oé], eﬁ] = _[[av e'y]’ 66] = (aa 7) [667 67]7

so the sum is zero.

4. none of a,b,c in L. This is the really tiresome one, e, e, e. The
main point of going through this is to show that it isn’t as tiresome
as you might think. You can reduce it to two or three cases. Let’s
make our cases depending on («a, 3), («,7), (8,7)-
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(a) if 2 of these are 0, then all the [[*, x|, *| are zero.

(b) @ = —p. By case a, v cannot be orthogonal to them, so say
(a,y) =1 (v, 3) = —1; adjust so that e®e? = 1, then calculate
167, €], %] — [[e2, ], 7] + [[e®, ¢7], €] = e%ee — (a, 7)€" + 0

=e’—¢e' =0.
(c) a = = = 1, easy because [e, ¢7] = 0 and [[e®,€f],e7] =
—[[67, eﬁ]’ ea]

(d) We have that each of the inner products is 1, 0 or —1. If some
(ar, B) = 1, all brackets are 0.

This leaves two cases, which we’ll do next time
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Lecture 27

Last week we talked about é*, which was a double cover of e”. L is the
root lattice of Fg. We had the sequence

1—+1 el el =1,

The Lie algebra structure on é* was given by
[a, 5] =0
[, ¢”] = (e, B)e”
0 if (a, 3) >0
e, €] = S ee? if (a,) = —1
a if (a, ) = —2

The Lie algebra is L & @ ._, €*.
Let’s finish checking the Jacobi identity. We had two cases left:

Hea> 66]’ e'y] + [[66> 67]’ ea] + [[6% ea]> 66] =0

— (o, 08) = (B,7) = (y,0) = —1, in which case a +  + v = 0. then
[[e, 7], 7] = [e®eP, 7] = a+/3. By symmetry, the other two terms
are 4+ and v+ «a;the sum of all three terms is 2(a+ G+ ) = 0.

— (o, B) = (B,7) = —1, (a,7) = 0, in which case [e*, €] = 0. We

check that [[e%, €], eY] = [e%e?, e7] = e¥ePe? (since (a + B,7) =
—1). Similarly, we have [[¢?,e],e%] = [ePe7,e*] = ePere*. We
notice that e®e® = —efe® and e’e® = e%” so e*ele’ = —eleve?;

again, the sum of all three terms in the Jacobi identity is 0.

This concludes the verification of the Jacobi identity, so we have a Lie
algebra.

Is there a proof avoiding case-by-case check? Good news: yes! Bad
news: it’s actually more work. We really have functors as follows:

. elementary,
Dynkm Double but tedious
N <

diagrams cover L only for positive
definite lattices

Lie algebras

Root lattice L Vertex algebras

these work
for any
even lattice
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where L is generated by é (the i’s are the dots in your Dynkin diagram),
with 6% = (—1)(@»2)g% ¢ and —1 is central of order 2.

Unfortunately, you have to spend several weeks learning vertex alge-
bras. In fact, the construction we did was the vertex algebra approach,
with all the vertex algebras removed. So there is a more general construc-
tion which gives a much larger class of infinite dimensional Lie algebras.

Now we should study the double cover L, and in particular prove its
existence. Given a Dynkin diagram, we can construct L as generated
by the elements e® for a; simple roots with the given relations. It is
easy to check that we get a surjective homomorphism L — L with kernel
generated by z with 22 = 1. What’s a little harder to show is that z # 1
(i.e., show that L # L). The easiest way to do it is to use cohomology of
groups, but since we have such an explicit case, we’ll do it bare hands:
Problem: Given Z, H groups with Z abelian, construct central exten-
sions

1—7—-G—H—1

(where Z lands in the center of ). Let G be the set of pairs (z, k), and set
the product (21, h1)(z2, ho) = (2120¢(h1, hs), h1hy), where c(hy, hy) € Z
(c(hy, hy) will be a cocycle in group cohomology). We obviously get a
homomorphism by mapping (z,h) — h. If ¢(1,h) = ¢(h,1) = 1 (normal-
ization), then z — (z,1) is a homomorphism mapping Z to the center
of G. In particular, (1,1) is the identity. We'll leave it as an exercise to
figure out what the inverses are. When is this thing associative? Let’s
just write everything out:

((2’1, hl)(ZQ, hg)) (Zg, hg) = (z122z3c(h1, hg)C(hlhg, hg), hlhghg)
(Zl, hl) ((2’2, hg)(Zg, hg)) = (z122z3c(h1, hghg)c(hg, hg), hlhghg)

so we must have
C(hl, hg)C(hth, hg) = C(hlhg, hg)C(hQ, hg)

This identity is actually very easy to satisfy in one particular case: when
¢ is bimultiplicative: c(hq, hahs) = c(hy, ha)c(hy, hs) and c(hihg, hs) =
c(hy, h3)c(hg, hs). That is, we have a map H x H — Z. Not all cocycles
come from such maps, but this is the case we care about.

To construct the double cover, let Z = +£1 and H = L (free abelian).
If we write H additively, we want ¢ to be a bilinear map L x L — =+1.
It is really easy to construct bilinear maps on free abelian groups. Just
take any basis oy, ...,a, of L, choose c(oy,a;) arbitrarily for each i, j
and extend ¢ via bilinearity to L x L. In our case, we want to find a
double cover L satisfying é%¢® = (—1)(@P¢fee where ¢ is a lift of €.
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This just means that c(a, 3) = (=1)@P¢(B,a). To satisfy this, just
choose ¢(a;, a;) on the basis {a;} so that c(ay, o) = (=1)@ %) e(ay, ay).
This is trivial to do as (—1)(®+®) = 1. Notice that this uses the fact
that the lattice is even. There is no canonical way to choose this 2-
cocycle (otherwise, the central extension would split as a product), but
all the different double covers are isomorphic because we can specify L
by generators and relations. Thus, we have constructed L (or rather,
verified that the kernel of L — L has order 2, not 1).
Let’s now look at lifts of automorphisms of L to L.

» Exercise 27.1. Any automorphism of L preserving ( , ) lifts to an
automorphism of L

There are two special cases:

1. —1 is an automorphism of L, and we want to lift it to L explicitly.
First attempt: try sending é* to ¢~ := (%)™, which doesn’t work
because a — a~! is not an automorphism on non-abelian groups.

Better: w : é* — (—1)*/2(&*)~! is an automorphism of L. To see
this, check

w(Ew (@) = (=)@ (@) (@)
w(e"e’) = (=) @) )

which work out just right

2. If r* = 2, then a — a — (, r)r is an automorphism of L (reflection
through ). You can lift this by ¢ s é(e")~(@) x (—1)(“4"),
This is a homomorphism (check it!) of order (usually) 4!

Remark 27.1. Although automorphisms of L lift to automorphisms
of L, the lift might have larger order.

This construction works for the root lattices of A,,, D,,, Es, Fr, and
Ej; these are the lattices which are even, positive definite, and generated
by vectors of norm 2 (in fact, all such lattices are sums of the given ones).
What about B,, C,,, F, and G537 The reason the construction doesn’t
work for these cases is because there are roots of different lengths. These
all occur as fixed points of diagram automorphisms of A,, D,, and FEj.
In fact, we have a functor from Dynkin diagrams to Lie algebras, so and
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automorphism of the diagram gives an automorphism of the algebra

Involution Fixed points Involution Fixed Points

E6:
— B,

Ay, doesn’t really give you a new algebra: it corresponds to some
superalgebra stuff.

Construction of the Lie group of Fjy

It is the group of automorphisms of the Lie algebra generated by the ele-
ments exp(AAd(é%)), where \ is some real number, é* is one of the basis
elements of the Lie algebra corresponding to the root o, and Ad(é*)(a) =
[é%,al]. In other words,

exp(AAd(%))(a) = 1 + A[¢®, a] + %[é“, 62, d]].

and all the higher terms are zero. To see that Ad(é*)? = 0, note that if
B is a root, then /3 4+ 3« is not a root (or 0).

Warning 27.2. In general, the group generated by these automor-
phisms is NOT the whole automorphism group of the Lie algebra.
There might be extra diagram automorphisms, for example.

We get some other things from this construction. We can get simple
groups over finite fields: note that the construction of a Lie algebra above
works over any commutative ring (e.g. over Z). The only place we used
division is in exp(AAd(é¥)) (where we divided by 2). The only time
this term is non-zero is when we apply exp(AAd(é*)) to é=%, in which
case we find that [, [é¥, é7?]] = [é%, a] = —(«, @)é*, and the fact that
(a, ) = 2 cancels the division by 2. So we can in fact construct the Ey
group over any commutative ring. You can mumble something about
group schemes over Z at this point. In particular, we have groups of
type Eg over finite fields, which are actually finite simple groups (these
are called Chevalley groups; it takes work to show that they are simple,
there is a book by Carter called Finite Simple Groups which you can
look at).
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Real forms

So we’ve constructed the Lie group and Lie algebra of type Fs. There
are in fact several different groups of type Eg. There is one complex
Lie algebra of type Eg, which corresponds to several different real Lie
algebras of type Eg.

Let’s look at some smaller groups:

Example 27.3. slr(R) = (%) with a,b, ¢,d real a + d = 0; this is not

compact. On the other hand, sus(R) = (%) with d = —a imaginary
b = —¢, is compact. These have the same Lie algebra over C.

Let’s look at what happens for Eg. In general, suppose L is a Lie
algebra with complexification L&C. How can we find another Lie algebra
M with the same complexification? L ® C has an anti-linear involution
wr Il ® 2z — [ ®Zz. Similarly, it has an anti-linear involution w,;. Notice
that wywys is a linear involution of L ® C. Conversely, if we know this
involution, we can reconstruct M from it. Given an involution w of
L ® C, we can get M as the fixed points of the map a — wrw(a)“="
w(a). Another way is to put L = L™ @ L, which are the +1 and —1
eigenspaces, then M = LT @ iL~.

Thus, to find other real forms, we have to study the involutions of
the complexification of L. The exact relation is kind of subtle, but this
is a good way to go.

Example 27.4. Let L = sly(R). It has an involution w(m) = —m?.

sus(R) is the set of fixed points of the involution w times complex con-
jugation on sly(C), by definition.

So to construct real forms of Eg, we want some involutions of the Lie
algebra Eg which we constructed. What involutions do we know about?
There are two obvious ways to construct involutions:

1. Lift =1 on L to é* — (—1)**/2(¢*)~!, which induces an involution
on the Lie algebra.

2. Take 3 € L/2L, and look at the involution é* s (—1)@Pee,

(2) gives nothing new ... you get the Lie algebra you started with. (1)
only gives you one real form. To get all real forms, you multiply these
two kinds of involutions together.

Recall that L/2L has 3 orbits under the action of the Weyl group,
of size 1, 120, and 135. These will correspond to the three real forms of
Eg. How do we distinguish different real forms? The answer was found
by Cartan: look at the signature of an invariant quadratic form on the
Lie algebral!
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A bilinear form ( , ) on a Lie algebra is called invariant if ([a,b], ¢) +
(bla, c]) = 0 for all a,b, c. This is called invariant because it corresponds
to the form being invariant under the corresponding group action. Now
we can construct an invariant bilinear form on FEjg as follows:

1. (Oé, /G)in the Lie algebra — (Oé, /G)in the lattice
2. (e, (")) =
3. (a,b) =0 if @ and b are in root spaces a and [ with a+ 3 # 0.

This gives an invariant inner product on FEg, which you prove by case-
by-case check

» Exercise 27.2. do these checks

Next time, we’ll use this to produce bilinear forms on all the real
forms and then we’ll calculate the signatures.
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Lecture 28

Last time, we constructed a Lie algebra of type Eg, which was L & @D é*,
where L is the root lattice and a? = 2. This gives a double cover of the
root lattice:

L

1—+1 el —el 51,

We had a lift for w(a) = —a, given by w(&®) = (—1)*/2 ()1 So w be—
comes an automorphism of order 2 on the Lie algebra. e® s (—1)(@%¢
is also an automorphism of the Lie algebra.

Suppose ¢ is an automorphism of order 2 of the real Lie algebra
L = LT+ L~ (eigenspaces of o). We saw that you can construct another
real form given by L™ + ¢L~. Thus, we have a map from conjugacy
classes of automorphisms with o2 = 1 to real forms of L. This is not in
general in isomorphism.

Today we’ll construct some more real forms of Eg. Fg has an invariant
symmetric bilinear form (e, (e®)™!) = 1, (a,3) = (B,a). The form
is unique up to multiplication by a constant since FEg is an irreducible
representation of Eg. So the absolute value of the signature is an invariant
of the Lie algebra.

For the split form of Eg, what is the signature of the invariant bilinear
form (the split form is the one we just constructed)? On the Cartan
subalgebra L, ( , ) is positive definite, so we get +8 contribution to the
signature. On {e?, (e®)™'}, the form is (9 ), so it has signature 0 - 120.
Thus, the signature is 8. So if we find any real form with a different
signature, we’ll have found a new Lie algebra

Let’s first try involutions e® s (—1)®#e® But this doesn’t change
the signature. L is still positive definite, and you still have (9{) or
(_01 _01) on the other parts. These Lie algebras actually turn out to be
isomorphic to what we started with (though we haven’t shown that they
are isomorphic).

Now try w : e* — (—=1)**/2(¢*)™!, o — —a. What is the signature
of the form? Let’s write down the + and — eigenspaces of w. The +
eigenspace will be spanned by e* — e, and these vectors have norm
—2 and are orthogonal. The — eigenspace will be spanned by e* + e™®
and L, which have norm 2 and are orthogonal, and L is positive definite.
What is the Lie algebra corresponding to the involution w? It will be
spanned by e® — e™® where a? = 2 (norm —2), and i(e* + ™) (norm
—2), and ¢L (which is now negative definite). So the bilinear form is
negative definite, with signature —248(# +8).

With some more work, you can actually show that this is the Lie
algebra of the compact form of Eg. This is because the automorphism
group of Eg preserves the invariant bilinear form, so it is contained in
Op 248(R), which is compact.
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Now let’s look at involutions of the form e® — (1)@ w(e®). Notice
that w commutes with e® — (—1)®%e®. The 8’s in («a, 3) correspond to
L/2L modulo the action of the Weyl group W (Eg). Remember this has
three orbits, with 1 norm 0 vector, 120 norm 2 vectors, and 135 norm 4
vectors. The norm 0 vector gives us the compact form. Let’s look at the
other cases and see what we get.

Suppose V' has a negative definite symmetric inner product ( , ), and
suppose o is an involution of V' =V, @& V_ (eigenspaces of o). What is
the signature of the invariant inner product on V, &¢V_7 On V. it is
negative definite, and on ¢V_ it is positive definite. Thus, the signature
is dim V_ —dim V; = —tr(o). So we want to work out the traces of these
involutions.

Given some 3 € L/2L, what is tr(e® s (—1)(@9e)? If 3 = 0, the
traces is obviously 248 because we just have the identity map. If 3* = 2,
we need to figure how many roots have a given inner product with (.
Recall that this was determined before:

(ar, B) | # of roots a with given inner product | eigenvalue
2 1 1
1 56 -1
0 126 1
-1 56 -1
-2 1 1

Thus, the trace is 1 — 56 + 126 — 56 + 1 + 8 = 24 (the 8 is from the
Cartan subalgebra). So the signature of the corresponding form on the
Lie algebra is —24. We’ve found a third Lie algebra.

If we also look at the case when (3% = 4, what happens? How many
a with o? = 2 and with given (o, 3) are there? In this case, we have:

(ar, B) | # of roots a with given inner product | eigenvalue
2 14 1
1 64 -1
0 84 1
-1 64 -1
-2 14 1

The trace will be 14 — 64 + 84 — 64 4+ 14 + 8 = —8. This is just the split
form again.

Summary: We've found 3 forms of Eg, corresponding to 3 classes
in L/2L, with signatures 8, —24, —248, corresponding to involutions
e = (=1)@Pe=a of the compact form. If L is the compact form of a
simple Lie algebra, then Cartan showed that the other forms correspond
exactly to the conjugacy classes of involutions in the automorphism group



Lecture 28 164

of L (this doesn’t work if you don’t start with the compact form — so
always start with the compact form).
In fact, these three are the only forms of Eg, but we won’t prove that.

Working with simple Lie groups

As an example of how to work with simple Lie groups, we will look at the
general question: Given a simple Lie group, what is its homotopy type?
Answer: G has a unique conjugacy class of maximal compact subgroups
K, and G is homotopy equivalent to K.

Proof for GL,(R). First pretend G L, (R) is simple, even though it isn’t;
whatever. There is an obvious compact subgroup: O, (R). Suppose K
is any compact subgroup of GL,(R). Choose any positive definite form
(,) on R™ This will probably not be invariant under K, but since
K is compact, we can average it over K get one that is: define a new
form (a,b)new = [;(ka, kb) dk. This gives an invariant positive definite
bilinear form (since integral of something positive definite is positive
definite). Thus, any compact subgroup preserves some positive definite
form. But the subgroup fixing some positive definite bilinear form is
conjugate to a subgroup of O, (R) (to see this, diagonalize the form). So
K is contained in a conjugate of O, (R).

Next we want to show that G = GL,(R) is homotopy equivalent to
O,(R) = K. We will show that G = KAN, where K is O,, A is all
diagonal matrices with positive coefficients, and NV is matrices which are
upper triangular with 1s on the diagonal. This is the [wasawa decom-
position. In general, we get K compact, A semisimple abelian, and N
is unipotent. The proof of this you saw before was called the Grahm-

Schmidt process for orthonormalizing a basis. Suppose vy, ..., v, is any
basis for R™.

1. Make it orthogonal by subtracting some stuff, you’ll get vy, vo —*vy,
V3 — *Vg — *Vp, ....

2. Normalize by multiplying each basis vector so that it has norm 1.
Now we have an orthonormal basis.

This is just another way to say that GL,, can be written as K AN. Mak-
ing things orthogonal is just multiplying by something in N, and normal-
izing is just multiplication by some diagonal matrix with positive entries.
An orthonormal basis is an element of O,. Tada! This decomposition
is just a topological one, not a decomposition as groups. Uniqueness is
easy to check.
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Now we can get at the homotopy type of GL,. N = Rr=1/2
and A = (R™)" which are contractible. Thus, GL,(R) has the same
homotopy type as O, (R), its maximal compact subgroup. O

If you wanted to know 71 (GL3(R)), you could calculate m;(O3(R)) =
Z.]2Z., so G L3(R) has a double cover. Nobody has shown you this double
cover because it is not algebraic.

Example 28.1. Let’s go back to various forms of Eg and figure out
(guess) the fundamental groups. We need to know the maximal compact
subgroups.

1. One of them is easy: the compact form is its own maximal compact
subgroup. What is the fundamental group? Remember or quote
: ~ weight latti : :
the fact that for compact simple groups, m = “SEEE22 which is
1. So this form is simply connected.

2. 3% = 2 case (signature —24). Recall that there were 1, 56, 126,
56, and 1 roots a with (a,3) = 2,1,0,—1, and -2 respectively,
and there are another 8 dimensions for the Cartan subalgebra. On
the 1,126, 1,8 parts, the form is negative definite. The sum of
these root spaces gives a Lie algebra of type E7A; with a negative
definite bilinear form (the 126 gives you the roots of an E7, and
the 1s are the roots of an A;). So it a reasonable guess that the
maximal compact subgroup has something to do with E;A;. E;
and A; are not simply connected: the compact form of E; has m
= Z/2 and the compact form of A; also has m; = Z/2. So the
universal cover of E7A; has center (Z/2)2. Which part of this acts
trivially on E3? We look at the Eg Lie algebra as a representation of
E7x Aq. You can read off how it splits form the picture above: Eg =
E; & A @56 ® 2, where 56 and 2 are irreducible, and the centers
of E; and A; both act as —1 on them. So the maximal compact
subgroup of this form of Eg is the simply connected compact form
of Bz x A1/(—1,—1). This means that 7 (FEs) is the same as m; of
the compact subgroup, which is (Z/2)?/(—1,—1) = Z/2. So this
simple group has a nontrivial double cover (which is non-algebraic).

3. For the other (split) form of Es with signature 8, the maximal
compact subgroup is Spin4(R)/(Z/2), and m(Es) is Z/2.

You can compute any other homotopy invariants with this method.

Let’s look at the 56 dimensional representation of F; in more detail.
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We had the picture

(o, B) | # of a’s
2 1
1 56
0 126
-1 56
-2 1

The Lie algebra E; fixes these 5 spaces of Fg of dimensions 1,56, 126 +
8,56, 1. From this we can get some representations of E7;. The 126 + 8
splits as 1+ (1264 7). But we also get a 56 dimensional representation of
E7. Let’s show that this is actually an irreducible representation. Recall
that in calculating W (Es), we showed that W (E;) acts transitively on
this set of 56 roots of Eg, which can be considered as weights of E7.

An irreducible representation is called minuscule if the Weyl group
acts transitively on the weights. This kind of representation is partic-
ularly easy to work with. It is really easy to work out the character
for example: just translate the 1 at the highest weight around, so every
weight has multiplicity 1.

So the 56 dimensional representation of F; must actually be the irre-
ducible representation with whatever highest weight corresponds to one
of the vectors.

Every possible simple Lie group

We will construct them as follows: Take an involution ¢ of the compact
form L = L™ + L~ of the Lie algebra, and form L™ +iL~. The way we
constructed these was to first construct A,, D,,, Eg, and E; as for Ejg.
Then construct the involution w : e* +— —e™®. We get B,,, C,,, Iy, and
(G5 as fixed points of the involution w.

Kac classified all automorphisms of finite order of any compact simple
Lie group. The method we’ll use to classify involutions is extracted from
his method. We can construct lots of involutions as follows:

1. Take any Dynkin diagram, say Eg, and select some of its vertices,
corresponding to simple roots. Get an involution by taking e* +—
+e® where the sign depends on whether « is one of the simple
roots we've selected. However, this is not a great method. For one
thing, you get a lot of repeats (recall that there are only 3, and
we've found 2® this way).

1
1 1
— ©
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2. Take any diagram automorphism of order 2, such as

NN

O O

|

Next time, we’ll see how to cut down this set of involutions.

This gives you more involutions.
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Lecture 29

Split form of Lie algebra (we did this for A,, D,, Eg, Er, Eg): A =
P e 269 L. Compact form AT 4+ iA~, where A* eigenspaces of w : €%
(—1)/2¢7e,

We talked about other involutions of the compact form. You get all
the other forms this way.

The idea now is to find ALL real simple Lie algebras by listing all
involutions of the compact form. We will construct all of them, but we
won’t prove that we have all of them.

We'll use Kac’s method for classifying all automorphisms of order N
of a compact Lie algebra (and we’ll only use the case N = 2). First let’s
look at inner automorphisms. Write down the AFFINE Dynkin diagram

—highest weight = g 3 3 3 2 2 3 3
Choose n; with > n;m; = N where the m; are the numbers on the
diagram. We have an automorphism e® — > /Ne% induces an au-
tomorphism of order dividing N. This is obvious. The point of Kac’s
theorem is that all inner automorphisms of order dividing N are ob-
tained this way and are conjugate if and only if they are conjugate by an
automorphism of the Dynkin diagram. We won'’t actually prove Kac’s
theorem because we just want to get a bunch of examples. See | ]
or | ].

Example 29.1. Real forms of Eg. We've already found three, and it
took us a long time. We can now do it fast. We need to solve > n;m; = 2
where n; > 0; there are only a few possibilities:

donym; =2 # of ways how to do it maximal compact
subgroup K

2x1 one way BS—O—O—O—O—i—O—o Es (compact form)
1x2 two ways O—N—O—O—O—E—O—o A E;
o—o—o—o—o—i—o—x Dy (split form)

The points NOT crossed off form the Dynkin diagram of the maximal
compact subgroup. Thus, by just looking at the diagram, we can see
what all the real forms are!

1x1+1x1 no ways
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Example 29.2. Let’s do F;. Write down the affine diagram:

1 2 3 4 3 2 1
O O

!

dSonym; =2 # of ways how to do it maximal compact
subgroup K

2x1 one way* E_O_O_i_o_o_o E; (compact form)
1x2 two ways* O_X_O_i_o_o_o Ay Dg
A7 (split form)**
o—o—o—i—o—o—o
I1x1+1x1 oneway N_O_O_I_O_O_E Eg ®R ***

(*) The number of ways is counted up to automorphisms of the diagram.
(**) In the split real form, the maximal compact subgroup has dimension
equal to half the number of roots. The roots of A7 look like €; — ¢, for
1,7 < 8 and i # j, so the dimension is 8 - 7+ 7 = 56 = %

(***) The maximal compact subgroup is Fg & R because the fixed sub-
algebra contains the whole Cartan subalgebra, and the Fg only accounts
for 6 of the 7 dimensions. You can use this to construct some interesting
representations of Eg (the minuscule ones). How does the algebra FE-
decompose as a representation of the algebra Eg @ R?

We can decompose it according to the eigenvalues of R. The Fg ® R
is the zero eigenvalue of R [why?], and the rest is 54 dimensional. The
easy way to see the decomposition is to look at the roots. Remember
when we computed the Weyl group we looked for vectors like

We get the possibilities

[0 m—— JYPPPPP [e) or (@ XRRRRRERIEES o——oO

The 27 possibilities (for each) form the weights of a 27 dimensional rep-
resentation of Fg. The orthogonal complement of the two nodes is an Fj
root system whose Weyl group acts transitively on these 27 vectors (we
showed that these form a single orbit, remember?). Vectors of the E;
root system are the vectors of the Fg root system plus these 27 vectors
plus the other 27 vectors. This splits up the E; explicitly. The two 27s
form single orbits, so they are irreducible. Thus, F; = Es &R & 27 @ 27,
and the 27s are minuscule.

Let K be a maximal compact subgroup, with Lie algebra R + FEj.
The factor of R means that K has an S in its center. Now look at the
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space G /K, where G is the Lie group of type E7, and K is the maximal
compact subgroup. It is a Hermitian symmetric space. Symmetric space
means that it is a (simply connected) Riemannian manifold M such that
for each point p € M, there is an automorphism fixing p and acting as —1
on the tangent space. This looks weird, but it turns out that all kinds of
nice objects you know about are symmetric spaces. Typical examples you
may have seen: spheres S™, hyperbolic space H", and Euclidean space
R". Roughly speaking, symmetric spaces have nice properties of these
spaces. Cartan classified all symmetric spaces: they are non-compact
simple Lie groups modulo the maximal compact subgroup (more or less
... depending on simply connectedness hypotheses 'n such). Historically,
Cartan classified simple Lie groups, and then later classified symmetric
spaces, and was surprised to find the same result. Hermitian symmetric
spaces are just symmetric spaces with a complex structure. A standard
example of this is the upper half plane {z + iy|y > 0}. It is acted on by
SLy(R), which acts by (¢4)7 = 4L,

Let’s go back to this G/K and try to explain why we get a Hermitian
symmetric space from it. We’ll be rather sketchy here. First of all, to
make it a symmetric space, we have to find a nice invariant Riemannian
metric on it. It is sufficient to find a positive definite bilinear form on
the tangent space at p which is invariant under K ... then you can
translate it around. We can do this as K is compact (so you have the
averaging trick). Why is it Hermitian? We’'ll show that there is an almost
complex structure. We have S! acting on the tangent space of each point
because we have an S* in the center of the stabilizer of any given point.
Identify this S* with complex numbers of absolute value 1. This gives an
invariant almost complex structure on G/ K. That is, each tangent space
is a complex vector space. Almost complex structures don’t always come
from complex structures, but this one does (it is integrable). Notice that
it is a little unexpected that G/K has a complex structure (G and K
are odd dimensional in the case of G = E;, K = FEg @ R, so they have
no hope of having a complex structure).

Example 29.3. Let’s look at Eg, with affine Dynkin diagram

1 2 3 2 1
e, O
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We get the possibilities

dYonym; =2 # of ways how to do it maximal compact
subgroup K
2x1 one way E¢ (compact form)
1x2 one way A1 A5
1x1+1x1 oneway Ds &R

In the last one, the maximal compact subalgebra is D5 & R. Just as
before, we get a Hermitian symmetric space. Let’s compute its dimension
(over C). The dimension will be the dimension of Fg minus the dimension
of D5 ®R, all divided by 2 (because we want complex dimension), which
is (78 — 46)/2 = 16.

So we have found two non-compact simply connected Hermitian sym-
metric spaces of dimensions 16 and 27. These are the only “exceptional”
cases; all the others fall into infinite families!

There are also some OUTER automorphisms of Eg coming from the
diagram automorphism

. .
The fixed point subalgebra has Dynkin diagram obtained by folding the
Eg on itself. This is the F;, Dynkin diagram. The fixed points of FEj
under the diagram automorphism is an F Lie algebra. So we get a real
form of Eg with maximal compact subgroup Fj. This is probably the
easiest way to construct Fj, by the way. Moreover, we can decompose
FEg as a representation of Fy. dim Eg = 78 and dim F, = 52, so Fg =
F, & 26, where 26 turns out to be irreducible (the smallest non-trivial
representation of Fy ... the only one anybody actually works with). The
roots of Fy look like (...,£1,41...) (24 of these) and (+5---+ 3) (16
of these), and (..., £1...) (8 of them) ... the last two types are in the
same orbit of the Weyl group.
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The 26 dimensional representation has the following character: it has
all norm 1 roots with multiplicity 1 and 0 with multiplicity 2 (note that
this is not minuscule).

There is one other real form of Fg. To get at it, we have to talk about
Kac’s description of non-inner automorphisms of order N. The non-inner
automorphisms all turn out to be related to diagram automorphisms.
Choose a diagram automorphism of order r, which divides N. Let’s take
the standard thing on Es. Fold the diagram (take the fixed points), and
form a TWISTED affine Dynkin diagram (note that the arrow goes the
wrong way from the affine F})

1
2 L2 .3 2 1 Tyisted Affine F,
< 2 1 _—
T 3
2 (HJE,:%H% Affine F)
1

There are also numbers on the twisted diagram, but nevermind them.
Find n; so that > n;m; = N. This is Kac’s general rule. We’ll only
use the case N = 2.

If » > 1, the only possibility is » = 2 and one n; is 1 and the
corresponding m; is 1. So we just have to find points of weight 1 in the
twisted affine Dynkin diagram. There are just two ways of doing this in
the case of Fg

o ) ‘ X and = ’ < o

one of these gives us Fy, and the other has maximal compact subalgebra
C'y, which is the split form since dim Cy = #roots of F;/2 = 24.
Example 29.4. F,. The affine Dynkin is ;I Z2 3.4 2 We
can cross out one node of weight 1, giving the compact form (split form),
or a node of weight 2 (in two ways), giving maximal compacts A;C3 or
B,4. This gives us three real forms.

Example 29.5. G;. We can actually draw this root system ... UCB
won’t supply me with a four dimensional board. The construction is to
take the D, algebra and look at the fixed points of:

-,
N

p
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We want to find the fixed point subalgebra.

Fixed points on Cartan subalgebra: p fixes a two dimensional space,
and has 1 dimensional eigenspaces corresponding to w and w, where
w? = 1. The 2 dimensional space will be the Cartan subalgebra of Gs.

Positive roots of D, as linear combinations of simple roots (not fun-
damental weights):

0 1 0
/
1—0 0—20 0—20
\ \
0 0 1
0 1 0
/ / /
1—1 0—1 0—1
\ \ \
0 0 1
1 1 0
/ / /
1—1 0—1 1—1
\ \ \
0 1 1
projections of norm 2/3 projection‘srof norm 2

There are six orbits under p, grouped above. It obviously acts on the
negative roots in exactly the same way. What we have is a root system
with six roots of norm 2 and six roots of norm 2/3. Thus, the root system

is GQZ

One of the only root systems to appear on a country’s national flag. Now

let’s work out the real forms. Look at the affine: %—%’ . we can

delete the node of weight 1, giving the compact form: x == . We
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can delete the node of weight 2, giving A; A; as the compact subalgebra:
o—w== ... this must be the split form because there is nothing else
the split form can be.

Let’s say some more about the split form. What does the Lie algebra
of G5 look like as a representation of the maximal compact subalgebra
Ay x A;? In this case, it is small enough that we can just draw a picture:

1)
1 ® - 1 [y P— | .1 ......... . 1 [ 2 ............ % ............. % ............. l ]
1 [ Y . ........ . 1 [ . ............. @ | ®
1 1 1 T 1 1
[
L

We have two orthogonal As, and we have leftover the stuff on the right.
This thing on the right is a tensor product of the 4 dimensional irre-
ducible representation of the horizontal and the 2 dimensional of the
vertical. Thus, Go =3 x1+1® 344 ® 2 as irreducible representations
of Aghorizontal) ® Agvortical).

Let’s use this to determine exactly what the maximal compact sub-
group is. It is a quotient of the simply connected compact group SU(2) x
SU(2), with Lie algebra A; x A;. Just as for Eg, we need to identify
which elements of the center act trivially on Gy. The center is Z/2 x Z /2.
Since we've decomposed G5, we can compute this easily. A non-trivial
element of the center of SU(2) acts as 1 (on odd dimensional repre-
sentations) or —1 (on even dimensional representations). So the ele-
ment z X z € SU(2) x SU(2) acts trivially on 3® 1 +1® 3 +4 x 2.
Thus the maximal compact subgroup of the non-compact simple Gy is
SU(2) x SU(2)/(z x z) = SO4(R), where z is the non-trivial element of
7)2.

So we have constructed 3+ 4 + 5+ 3 + 2 (from Eg, Er7, Eg, Fy, G3)
real forms of exceptional simple Lie groups.

There are another 5 exceptional real Lie groups: Take COMPLEX
groups Es(C), E7(C), Eg(C), F4(C), and G5(C), and consider them as
REAL. These give simple real Lie groups of dimensions 248 x 2, 133 x 2,
78 x 2, 52 x 2, and 14 x 2.
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Lecture 30 - Irreducible unitary representa-
tions of SL,(R)

SLy(R) is non-compact. For compact Lie groups, all unitary represen-
tations are finite dimensional, and are all known well. For non-compact
groups, the theory is much more complicated. Before doing the infinite
dimensional representations, we’ll review finite dimensional (usually not
unitary) representations of SLy(R).

Finite dimensional representations

Finite dimensional complex representations of the following are much
the same: SLy(R), sLR, sl,C [branch SLy(C) as a complex Lie group]
(as a complex Lie algebra), susR (as a real Lie algebra), and SU, (as
a real Lie group). This is because finite dimensional representations
of a simply connected Lie group are in bijection with representations
of the Lie algebra. Complex representations of a REAL Lie algebra
L correspond to complex representations of its complexification L ® C
considered as a COMPLEX Lie algebra.

Note: Representations of a COMPLEX Lie algebra L ® C are not
the same as representations of the REAL Lie algebra L ® C & L + L.
The representations of the real Lie algebra correspond roughly to (reps
of L)®(reps of L).

Strictly speaking, SLy(R) is not simply connected, which is not im-
portant for finite dimensional representations.

Recall the main results for representations of SUs:

1. For each positive integer n, there is one irreducible representation
of dimension n.

2. The representations are completely reducible (every representation
is a sum of irreducible ones). This is perhaps the most important
fact.

The finite dimensional representation theory of SU, is EASIER
than the representation theory of the ABELIAN Lie group R?, and
that is because representations of SU, are completely reducible.

For example, it is very difficult to classify pairs of commuting nilpo-
tent matrices.

Completely reducible representations:
1. Complex representations of finite groups.

2. Representations of compact groups (Weyl character formula)



Lecture 30 - Irreducible unitary representations of SLs(R) 176

3. More generally, unitary representations of anything (you can take
orthogonal complements of subrepresentations)

4. Finite dimensional representations of semisimple Lie groups.
Representations which are not completely reducible:

1. Representations of a finite group G over fields of characteristic
plG|.

2. Infinite dimensional representations of non-compact Lie groups (even
if they are semisimple).

We'll work with the Lie algebra slR, which has basis H = (§ ),
E=(8}%),and F = (99). H is a basis for the Cartan subalgebra (& ).
E spans the root space of the simple root. F' spans the root space of the
negative of the simple root. We find that [H, F] = 2E, [H,F| = —2F
(so E and F are eigenvectors of H), and you can check that [E, F|] = H.

-2 0 2 +—— weights = eigenvalues under H
[ ] [ ] [
F H F

NS

Weyl group of order 2

The Weyl group is generated by w = (% §) and w? = (_01 _01).

Let V' be a finite dimensional irreducible complex representation
of slLbR. First decompose V into eigenspaces of the Cartan subalge-
bra (weight spaces) (i.e. eigenspaces of the element H). Note that
eigenspaces of H exist because V' is FINITE-DIMENSIONAL (remem-
ber this is a complex representation). Look at the LARGEST eigenvalue
of H (exists since V is finite dimensional), with eigenvector v. We have
that Hv = nv for some n. Compute

H(Ev) =[H, Elv+ E(Hv)
=2Fv+ Env = (n+2)Ev

So Ev = 0 (lest it be an eigenvector of H with higher eigenvalue). [F, —|
increases weights by 2 and [F, —] decreases weights by 2, and [H, —| fixes
weights.

We have that E kills v, and H multiplies it by n. What does F' do
to v?

nov (n —2)Fv (n—4)F%v (n —6)F3v

R

— — —_—
OK_/U\I\_/FU&_//F%)K_/F:%U
E E E E
xn x (2n—2) X (3n—6)
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What is E(Fv)? Well,

EFv=FFEv+ [E, Flv
=0+ Hv=nv

In general, we have

H(F'v) = (n — 2i)F'v
E(Fv) = (ni —i(i — 1))F"
F(F'v) = F™y

So the vectors Fv span V because they span an invariant subspace. This
gives us an infinite number of vectors in distinct eigenspaces of H, and
V is finite dimensional. Thus, F*v = 0 for some k. Suppose k is the
SMALLEST integer such that F*v = 0. Then

0= E(FFv) = (nk — k(k— 1)) EF* 1y
#0

Sonk —k(k—1)=0,and k#0,s0n — (k—1) =0, so. So
V' has a basis consisting of v, F'v, ..., F"v. The formulas become a little
better if we use the basis w, = v, w,_o = Fv,w,_4 = Fy Fov L

T’T""’W'
/‘\ /\ /‘\ /\ /\ /\ B
W_g W_y w_9 Wo We
v '\/ v v v v r

This says that E(wy) = bw, for example. So we've found a complete
description of all finite dimensional irreducible complex representations
of s[bR. This is as explicit as you could possibly want.

These representations all lift to the group SLs(R): SLs(R) acts on
homogeneous polynomials of degree n by (2%) f(z,y) = f(ax + by, cx +
dy). This is an n + 1 dimensional space, and you can check that the
eigenspaces are z'y" .

We have implicitly constructed VERMA MODULES. We have a ba-
SIS Wy, Wy_9, ..., Wy_2i, ... with relations H(w,_2) = (n — 20)w,_o;,
Ewn_gi = (n — 1+ 1)wn_2i+2, and Fwn_% = (Z + 1)wn_22-_2. These
are obtained by copying the formulas from the finite dimensional case,
but allow it to be infinite dimensional. This is the universal representa-
tion generated by the highest weight vector w, with eigenvalue n under
H (highest weight just means E(w,) = 0).

Let’s look at some things that go wrong in infinite dimensions.
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Warning 30.1. Representations corresponding to the Verma mod-

ules do NOT lift to representations of SLs(R), or even to its univer-
sal cover. The reason: look at the Weyl group (generated by ( % §)) of
SLy(R) acting on (H); it changes H to —H. It maps eigenspaces with
eigenvalue m to eigenvalue —m. But if you look at the Verma module, it
has eigenspaces n,n—2,n—4, ..., and this set is obviously not invariant
under changing sign. The usual proof that representations of the Lie al-
gebra lifts uses the exponential map of matrices, which doesn’t converge
in infinite dimensions.

—_—

Remark 30.2. The universal cover SLy(R) of SLy(R), or even the double
cover Mpo(R), has NO faithful finite dimensional representations.

Proof. Any finite dimensional representation comes from a finite dimen-
sional representation of the Lie algebra slsR. All such finite dimensional
representations factor through SL,(R). O

All finite dimensional representations of S Ls(IR) are completely reducible.
Weyl did this by Weyl’s unitarian trick:

Notice that finite dimensional representations of SLy(R) are isomor-
phic (sort of) to finite dimensional representations of the COMPACT
group SUs, (because they have the same complexified Lie algebras. Thus,
we just have to show it for SU;. But representations of ANY compact
group are completely reducible. Reason:

1. All unitary representations are completely reducible (if U C V,
then V =U @ U?').

2. Any representation V' of a COMPACT group G can be made uni-
tary: take any unitary form on V' (not necessarily invariant under
(), and average it over GG to get an invariant unitary form. We can
average because (G is compact, so we can integrate any continuous
function over GG. This form is positive definite since it is the av-
erage of positive definite forms (if you try this with non-(positive
definite) forms, you might get zero as a result).

The Casimir operator
Set ) = 2EF+2FE+H? € U(sl,R). The main point is that € commutes
with slbR. You can check this by brute force:

[H,Q) = 2([H, E]F + E[H, F]) +- --

(. J/

0
[E,Q] = 2[E, E|F + 2E[F, E] + 2|E, F|E
+2F|E,E|+ [E,H|H+ H[E,H| =0
[F, Q] = Similar
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Thus, € is in the center of U(s[;R). In fact, it generates the center. This
doesn’t really explain where ) comes from.

Remark 30.3. Why does €2 exist? The answer is that it comes from
a symmetric invariant bilinear form on the Lie algebra sl;R given by
(E,F)=1,(E,E)=(F,F)=(F,H)=(E,H) =0, (H,H) = 2. This
bilinear form is an invariant map L ® L — C, where L = slbR, which
by duality gives an invariant element in L ® L, which turns out to be
2E® F+2F ® F+ H® H. The invariance of this element corresponds
to Q being in the center of U(slLR).

Since (2 is in the center of U(slhR), it acts on each irreducible rep-
resentation as multiplication by a constant. We can work out what this
constant is for the finite dimensional representations. Apply €2 to the
highest vector w,,:

(2EF +2FE + HH)w, = (2n + 0 + n*)w,
= (2n + n*)w,

So Q has eigenvalue 2n + n? on the irreducible representation of dimen-
sion n + 1. Thus, 2 has DISTINCT eigenvalues on different irreducible
representations, so it can be used to separate different irreducible repre-
sentations. The main use of €2 will be in the next lecture, where we’ll
use it to deal with infinite dimensional representation.

To finish today’s lecture, let’s look at an application of 2. We’ll sketch
an algebraic argument that the representations of sl,R are completely
reducible. Given an exact sequence of representations

0—-U—-V->W-=0

we want to find a splitting W — V', so that V. =U @& W.
Step 1: Reduce to the case where W = C. The idea is to look at

0 — Hom¢(W,U) — Home (W, V) — Home(W, W) — 0

and Hom¢ (W, W) has an obvious one dimensional subspace, so we can
get a smaller exact sequence

0 — Hom¢ (W, U) — subspace of Hom¢(W, V) — C — 0

and if we can split this, the original sequence splits.
Step 2: Reduce to the case where U is irreducible. This is an easy
induction on the number of irreducible components of U.

» Exercise 30.1. Do this.
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Step 3: This is the key step. We have
0—-U—-V-C—0

with U irreducible. Now apply the Casimir operator 2. V splits as
eigenvalues of €2, so is U @& C UNLESS U has the same eigenvalue as C
(i.e. unless U = C).

Step 4: We have reduced to

0-C—-V-C—0

which splits because sl;(R) is perfect’ (no homomorphisms to the abelian
algebra (93)).

Next time, in the final lecture, we’ll talk about infinite dimensional
unitary representations.

LL is perfect if [L, L] = L
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Lecture 31 - Unitary representations of SL,(R)

Last lecture, we found the finite dimensional (non-unitary) representa-
tions of SLs(R).

Background about infinite dimensional representa-
tions

(of a Lie group G) What is an finite dimensional representation?

1st guess Banach space acted on by G?

This is no good for some reasons: Look at the action of G on the
functions on G (by left translation). We could use L? functions, or
L' or LP. These are completely different Banach spaces, but they
are essentially the same representation.

2nd guess Hilbert space acted on by G7 This is sort of okay.

The problem is that finite dimensional representations of SLs(R)
are NOT Hilbert space representations, so we are throwing away
some interesting representations.

Solution (Harish-Chandra) Take g to be the Lie algebra of G, and let K
be the maximal compact subgroup. If V' is an infinite dimensional
representation of GG, there is no reason why g should act on V.

The simplest example fails. Let R act on L?(R) by left translation.
Then the Lie algebra is generated by - (or i-L) acting on L*(R),
but - of an L? function is not in L? in general.

Let V be a Hilbert space. Set V,, to be the K-finite vectors of V|
which are the vectors contained in a finite dimensional represen-
tation of K. The point is that K is compact, so V splits into a
Hilbert space direct sum finite dimensional representations of K,
at least if V' is a Hilbert space. Then V,, is a representation of the
Lie algebra g, not a representation of GG. V,, is a representation of
the group K. It is a (g, K)-module, which means that it is acted
on by g and K in a “compatible” way, where compatible means
that

1. they give the same representations of the Lie algebra of K.

2. k(u)v = k(u(k™'v)) for k€ K, u€g,and v € V.

The K-finite vectors of an irreducible unitary representation of
G is ADMISSIBLE, which means that every representation of K
only occurs a finite number of times. The GOOD category of
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representations is the representations of admissible (g, K)-modules.
It turns out that this is a really well behaved category.

We want to find the unitary irreducible representations of G. We will
do this in several steps:

1. Classify all irreducible admissible representations of GG. This was
solved by Langlands, Harish-Chandra et. al.

2. Find which have hermitian inner products ( , ). This is easy.

3. Find which ones are positive definite. This is VERY HARD. We'll
only do this for the simplest case: SLs(R).

The group SLs(R)

We found some generators (in Lie(SLy(R)) ® C last time: E, F, H,
with [H,FE] = 2F, [H,F] = —2F, and [FE,F| = H. We have that
H=-i(%§),E=3(17),and F =3 (2, Z}). Why not use the old
(6%), (84), and (98)?

Because SLy(RR) has two different classes of Cartan subgroup: (§ ,% ),
spanned by (§ %), and (%% $19) spanned by (% §), and the second
one is COMPACT. The point is that non-compact (abelian) groups need
not have eigenvectors on infinite dimensional spaces. An eigenvector
is the same as a weight space. The first thing you do is split it into
weight spaces, and if your Cartan subgroup is not compact, you can’t
get started. We work with the compact subalgebra so that the weight
spaces exist.

Given the representation V', we can write it as some direct sum of
eigenspaces of H, as the Lie group H generates is compact (isomorphic
to S!). In the finite dimensional case, we found a HIGHEST weight,
which gave us complete control over the representation. The trouble is
that in infinite dimensions, there is no reason for the highest weight to
exist, and in general they don’t. The highest weight requires a finite
number of eigenvalues.

A good substituted for the highest weight vector: Look at the Casimir
operator ) = 2EF + 2FFE 4+ H? + 1. The key point is that € is in the
center of the universal enveloping algebra. As V' is assumed admissible,
we can conclude that €2 has eigenvectors (because we can find a finite
dimensional space acted on by €2). As V is irreducible and €2 commutes
with G, all of V' is an eigenspace of {2. We’ll see that this gives us about
as much information as a highest weight vector.

Let the eigenvalue of  on V be A\? (the square will make the in-
teresting representations have integral A; the +1 in 2 is for the same
reason).
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Suppose v € V,,, where V,, is the space of vectors where H has eigen-
value n. In the finite dimensional case, we looked at Ev, and saw that
HEv = (n+ 2)Ev. What is FEv? If v was a highest weight vector,
we could control this. Notice that Q = 4FFE + H? + 2H + 1 (using
[E, F] = H), and Qv = \?v. This says that 4F' Ev+n?v+2nv+v = \v.
This shows that F'Ev is a multiple of v.

Now we can draw a picture of what the representation looks like:

Up, Up, Un Un+2 Un+4 - H

n242n4+1-12
1

Thus, V,, is spanned by V,,.or, where k is an integer. The non-zero
elements among the V,, o are linearly independent as they have different
eigenvalues. The only question remaining is whether any of the Vo

vanish.
There are four possible shapes for an irreducible representation

1 ] 1 ] 1 . ---/—N./_\./_N./_N./_N---
infinite in both directions: s

ey

— a lowest weight, and infinite in the other direction:

i, I
il ~ R~ R~ R~ R~ F

— a highest weight, and infinite in the other direction:

‘/N‘/N‘/_N‘/NO/N-~-§
e~ R~ R~ R~ R~ F

— we have a highest weight and a lowest weight, in which case it is

. . . R W S S
finite dimensional <7 .7 ~.--0 Zel 7 1}]

We'll see that all these show up. We also see that an irreducible rep-
resentation is completely determined once we know A and some n for
which V,, # 0. The remaining question is to construct representations
with all possible values of A € C and n € Z. n is an integer because it
must be a representations of the circle.

If n is even, we have

)\ A=7 )\—’ A=3 A-1 A+1 L A+5 L
/\ e 2/\0/\2/\4/\6/\ f]
\m/ T Km/ Y Y NN F

2 2 2 2 2 2 2 2
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It is easy to check that these maps satisfy [E, F| = H, [H, F] = 2F,
and [H, F] = —2F

» Exercise 31.1. Do the case of n odd.

Problem: These may not be irreducible, and we want to decompose
them into irreducible representations. The only way they can fail to
be irreducible if if Ev, = 0 of Fv, = 0 for some n (otherwise, from
any vector, you can generate the whole space). The only ways that can
happen is if

n even: A an odd integer
n odd: A an even integer.

What happens in these cases? The easiest thing is probably just to write
out an example.

Example 31.1. Take n even, and A = 3, so we have

You can just see what the irreducible subrepresentations are ... they are
shown in the picture. So V has two irreducible subrepresentations V_
and V., and V/(V_ @V, ) is an irreducible 3 dimensional representation.

Example 31.2. If n is even, but ) is negative, say A = —3, we get

Here we have an irreducible finite dimensional representation. If you
quotient out by that subrepresentation, you get V, & V_.

» Exercise 31.2. Show that for n odd, and A =0,V =V, @ V_.

So we have a complete list of all irreducible admissible representa-
tions:

1. if X € Z, you get one representation (remember A = —\). This is
the bi-infinite case.

2. Finite dimensional representation for each n > 1 (A = £n)
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3. Discrete series for each A € Z ~\. {0}, which is the half infinite case:
you get a lowest weight when A < 0 and a highest weight when
A > 0.

4. two “limits of discrete series” where n is odd and A = 0.

Which of these can be made into unitary representations? H' = —H,
E"=F,and F' = E. If we have a hermitian inner product ( , ), we see
that

(Vj+2, Vjt2) = ﬁ(ﬂﬁ% Vjt2)
— ﬁ(vj’_FUjH)
:_)\—I—j—l—l)\_g_l(vj’vj) >0
15

where we fix the sign errors. So we want —g —71 to be real and positive

whenever 7, 7 + 2 are non-zero eigenvectors. So
—A=1=)A+1+)j)==-N+(+1)

should be positive for all j. Conversely, when you have this, blah.
This condition is satisfied in the following cases:

1. A2 < 0. These representations are called PRINCIPAL SERIES
representations. These are all irreducible except when A = 0 and
n is odd, in which case it is the sum of two limits of discrete series
representations

2.0 < XA <1 and j even. These are called COMPLEMENTARY
SERIES. They are annoying, and you spend a lot of time trying to
show that they don’t occur.

3. A2 =n? for n > 1 (for some of the irreducible pieces).

If A =1, we get

We see that we get two discrete series and a 1 dimensional repre-
sentation, all of which are unitary
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For A = 2 (this is the more generic one), we have

ST

The middle representation (where (j41)? < A\* = 4is NOT unitary,
which we already knew. So the DISCRETE SERIES representa-
tions ARE unitary, and the FINITE dimensional representations
of dimension greater than or equal to 2 are NOT.

Summary: the irreducible unitary representations of S Ly(R) are given
by

1. the 1 dimensional representation

2. Discrete series representations for any A € Z ~ {0}
3. Two limit of discrete series representations for A = 0
4. Two series of principal series representations:

jeven: A€ 1R, A >0
jodd: A €iR, A >0

5. Complementary series: parameterized by A, with 0 < A < 1.

The nice stuff that happened for SLs(R) breaks down for more com-
plicated Lie groups.
Representations of finite covers of SLs(R) are similar, except j need

not be integral. For example, for the double cover SLy(R) = Mpy(R),
2j € Z.

» Exercise 31.3. Find the irreducible unitary representations of Mpy(R).
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Solutions to (some) Exercises

Solution 1.1. Yes. Consider u~*(e) C G x G. We would like to use the
implicit function theorem to show that there is a function f (which is
as smooth as ) such that (h,g) € p~'(e) if and only if g = f(h). This
function will be «. You need to check that for every g, the derivative of
left multiplication by g at g~! is non-singular (i.e. that di,(¢™") is a non-
singular matrix). This is obvious because we have an inverse, namely

dl,-1(e).
Solution 1.2. Just do it.

Solution 4.1. We calculate:

d
- Iz =
o

< H H ol

< 2liEllgll*.

That is, n(t) := ||g(t)||? satisfies the differential inequality:

d

A

d
Znlt) < €ln(e),

which in turn implies (Gronwall’s inequality) that
n(t) < 2o IEG)1ds

so that
o lE@llds
C'|t — to

gl <
<

since for |t — t| sufficiently small, exponentiation is Lipschitz.

Solution 8.2. We would like to compute the coefficients of the product
(XeHPY™)(X*H°Y'?) once it is rewritten in the PBW basis by repeatedly
applying the relations XY —YX =e¢H, HX = XH, and HY = YH.
Check by induction that

T S - n n r S r—n sS—n
YIXT =) (1) n'(n) (n)X H'Yys™,
n=0

It follows that p!7 is zero unless I = (Y,...,Y) and J = (X,..., X), in
which case pL7/ = ()l 1) H".
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Solution 9.3. We have [a,b], := >~ h"my,(a,b), where mg(a,b) =
la,b]. Now we compute

@, b, ol = [a, 3 hm (b, )]

1>0

— Z ht Z h*my.(a, my(b, c))
= Zthk(a,mN_k(b, c)) (N=k+1)

N>0

Adding the cyclic permutations and looking at the coefficient of A", we
get the desired result.

Solution 11.1. [g,Dg| C [g,g] = Dg, so Dg is an ideal.

Solution 11.2. [G, G] is normal because r[g, h|r~' = [rgr=, rhr=!]. To
see that [G, G] is connected, let 7y, : [0,1] — G be a path from g to h.
Then t +— gy(t)g 'y(t)™! is a path in [G, G| from the identity to [g, h].
Since all the generators of [G, G| are connected to e € G by paths, all of
|G, G] is connected to e.

Now we show that the Lie algebra of [G, G] is Dg. Consider the Lie
algebra homomorphism 7 : g — g/Dg. Since G is simply connected,
Theorem 4.4 says there is a Lie group homomorphism p : G — H lifting
.

Dg g—"—9/Dg

oxpl lexp
p

[G,G]—)G .................... >Hg]Rn

where H is the simply connected Lie group with Lie algebra g/Dg. Note
that the Lie algebra of the kernel of p must be contained in ker 7 = Dg.
Also, g/Dg is abelian, so H is abelian, so [G, G| is in the kernel of p.
This shows that Lie(|G, G]) C Dg.
To see that Dg C Lie([G, G]), assume that g C gl(V). Then for
X,Y € g consider the path y(t) = exp(Xv/t) exp(Y V) exp(— X V/t) exp(=Y /1)
in [G,G]:

1 1
v(t) = <1+Xx/¥+§X2t+---) (1+Y\/E+§Y2t+---) X
1 1
(1—X\/Z+§X2t+---) (1—Y\/Z+§Y2t+---)
=14+ VHX+Y - X - Y)+
HXY = X2 = XY - YX -V 4 X2 Y% +- -
=1 +t[X,Y]+O(?)
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So 7/(0) = [X,Y]. This shows that [G, G] is a connected component of
the kernel of p.
Since [G, G] is a connected component of p~1(0), it is closed in G.

Solution 11.3. Let m : g — g/radg be the canonical projection, and
assume a € g/rad g is solvable. Then D¥a = 0 for some k, so D*r~1(a) C
rad g. Since rad g is solvable, we have that DN7~!(a) = 0 for some N.
By definition of rad g, we get that 77'(a) C radg, so a = 0 C g/rad g.
Thus, g/rad g is semisimple.

Solution 12.1. An invariant form B induces a homomorphism g — g*.
Invariance says that this homomorphism is an intertwiner of representa-
tions of g (with the adjoint action on g and the coadjoint action on g*).
Since g is simple, these are both irreducible representations. By Schur’s
Lemma, any two such homomorphisms must be proportional, so any two
invariant forms must be proportional.

Solution 12.2. Done in class.
Solution 12.3. yuck.

Solution 12.4. The complex for computing cohomology is

00— kP Hom(sls, k) BN Hom(A?sly, k) N Hom(A3sly, k) — 0
CHdC(ZL’):_I"C:O

fr—df(z,y) = f([z,y])
a v da(r,y,2) = a[r,y], 2) — a([r, 2],y)
+a(ly, 2], z)

We have that kerd; = k, so H%(sly, k) = k. The kernel of d; is zero,
as we computed in Remark 12.11. Since Hom(sly, k) and Hom(A?sly, k)
are both three dimensional, it follows that d; is surjective, and since the
kernel of dy must contain the image of dy, we know that ds is the zero
map. This tells us that H'(sly, k) = 0, H*(sly, k) = 0, and H3(sly, k) =
Hom(A3sly, k) = k.

Solution 12.5. Let D € Der(g) and let X,Y € g. Then

[D> adX]’Der(E)(Y) = D([X> Y]) - [Xa D(Y)]
= [D(X), Y]+ [X, D(Y)] - [X, D(Y)]
= adD(X)(Y).
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Solution 13.1. Let x € b, so [z, h] = 0. Since ad,, is a polynomial in
ad,, we get that [z,,h] =0, so x, € h. Thus, it is enough to show that
any nilpotent element in b is zero (then z = x4+ x,, = , is semisimple).
We do this using property 4, that the Killing form is non-degenerate on §.
Ify € b, then B(x,,y) = tr(ad,, oad,). By Proposition 13.6, h is abelian,
80 [, y] = 0, so ad,, commutes with ad,. Thus, we can simultaneously
upper triangularize ad,, and ad, by Engel’s theorem. Since ad,, is
nilpotent, it is strictly upper triangular so tr(ad,, o ad,) = 0. So x, =0
by non-degeneracy of B.

Solution 13.2. Since A is a finite set in h*, we can find some h €
h so that a(h) # [(h) for distinct roots « and . Then this h is a
regular element which gives the right Cartan subalgebra, and the desired
properties follow from the properties on page 64.

Solution 13.3. If A does not span h*, then there is some non-zero h € b
such that a(h) = 0 for all @« € A. This means that all of the eigenvalues
of adj, are zero. Since h is semisimple, ad;, = 0. And since ad is faithful,
we get h = 0, proving property 1.

To prove 2, consider the a-string through 3. It must be of the form
93+na D F98+(n—1)a D -+ * D gg+ma for some integers n > 0 > m. From the
characterization of irreducible finite dimensional representations of sly,
we know that each eigenvalue of H, is an integer, so §(H,) = r € Z
(since [Hy, Xp] = B(H,)Xp). We also know that the eigenvalues of
H, are symmetric around zero, so we must have —r = (5 + sa)(H,)
for some s for which gg;sq is in the a-string through 3. Then we get
B(H,) + sa(H,) = f(a) + 2s = —r = —(«), from which we know that
s = —[(Hy,). Thus, gs_g(.)a # 0, s0 B — (B(Ha,))a is a root.

Finally, we prove 3. If a and § = ca are roots, then by property
2, we know that o(Hg) = 2/c and $(H,) = 2c are integers (note that
Hz = H,/c). It follows that ¢ = :t%, +1, or £2. Therefore, it is enough
to show that a and 2« cannot both be roots. To see this, consider the a-
string through 2a. We have that [H,, Xon] = 20(Hy) Xoa = 4X24, so the
a-string must have a non-zero element [Y,, X2, € g4, which is spanned
by X,. But then we would have that X, is a multiple of [X,, X,] =0,
which is a contradiction.

Solution 14.1. If A is reducible, with A = A; U Ay, then set h to be
the span of A;, and set g; = h; © P e, 9o (for i = 1,2). Then we have
that g = g1 ® go as a vector space. We must check that g; is an ideal (the
by symmetry, go will also be an ideal). From the relation [ga, 95 € gas s,
we know that it is enough to check that for oo € Ay,

[gaag—a] C b, and (1)
(80, h2] = 0. (2)
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Letting 5 € A,, we have that 5([X,,Ys]) = B(Ha) = 2((55) = 0 because
A; and A, are orthogonal; 1 follows because A, spans the orthogonal
complement of by in h. Similarly, we have [X,, Hg] = a(Hg)X, = 0; 2
follows because the Hz span bs.

Conversely, if g = g1 & go as a Lie algebra, then take root decom-
positions g1 = h1 & P,ep, Go and g2 = ha ® Pyep, 95, With respect to
regular elements hy € h; and hy € hy. Then for x1 € g and x5 € go, We
have that [hy + ho,x1 + x2] = [h1, 21] + [ha, x2]; it follows that hy + hy
is a regular element in g. The Cartan given by this element is clearly
h1 @ bho. If 2 € g, C g1, then we have [hy + hg, 2] = a(hi)x 4+ 0, so «
is a root. Similarly, each § € A, is a root. Since we have accounted
for all the root spaces of g; and of go, we have a root decomposition

8= (1 ®bh2) ®Doca, 8o D Dpecn, 85- This shows that A =A; U Ay,

Solution 14.2. Note that Adg, = exp(ady,)exp(—ady,)exp(adx,). If
h € b, then adx_h = —a(h)X, and adx_ adx_ (h) = a(h)adx, (X.) = 0.
Using the power series expansion for exp, we get that

exp(adx,)(h) = h — a(h)X,.
Similarly, we apply exp(—ady,) to the result
exp(—ady, ) (h—a(h)X,)

=h—a(h)Y, — a(h) (X, — [Ya, Xa] + %[Ya, Yo, Xa]] +0)

M |
—H,

—10(Ha)Ya=—Ya

and then apply exp(adx,)

exp(ady,) (h—a(h) (Xa+ Ha))
—h— a(h)Xe — a(h) ((Xa +0) + (Ho — o Ha) X + o))
— h— a(h)H..

This shows that Adg,(h) = bh. For A € h*, we get

2(\, @) N

2\(H,) , ,
(h) — (L) a(h) (using Equation 14.2)

(ra(A), h) = A(h) —

A
A(h — a(h)H.,) (a(H,) =2)
— (\, Ads, (h)).
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Solution 15.1. It is immediate to verify RS1 and RS3. One may check
that the proposed sets of simple roots are correct by checking that every
root can be written as a non-positive or non-negative integer combination
of the proposed simple roots. It is not hard to verify that the given root
systems satisfy r,(A) = A for each o € A.

Finally, it is enough to verify RS2 in the case where 3 is a simple root.
Since every root is an integer sum of simple roots, it is enough to consider
the case where « is also a simple root. This amounts to checking that
the given number of lines between « and (3 is correct, which is relatively
straightforward (keeping in mind Warning 15.5).

Solution 16.1. It is enough to check that the proposed endomorphisms
of T(Y) ® Sh @ T(X) satisfy (Serl). Then the universal property g
(from Remark 16.2) and the universal property of Ug (from Proposition
7.1) tell us exactly that there is a unique algebra homomorphism Ug —
End(T(Y) ® Sh® T(X)) such that X;, Y;, and H; act as described. We
get (Serla), (Serlb), and (Serld) by construction. We need only check
that H,; H; acts in the same way as H; H;. It is clear that H; H;(10b®c¢) =
H;H;(1®b® c). Now we induct on the degree of a.
= (YkHZHj — aikYkHj
— ajkYkHi + CijCLikYk)(a (029 b (029 C) (Serlb)
=H;H;(Ya®b® c) (7, 7 symmetric)
This shows that the representation is well defined.
Solution 16.2. It is easy to check by induction that in Ug,
H X = X[ Hy, +rapX], and
ViX] = XYy — r0u (X{ T H + (r = 1D)X] 7).
Since ad is a representation, it follows that
[Hy. 05 = adpady, " X
= ad;(_iaijadeXj + (1 — aij)akiad;a”Xj
= (akj + ari — agiag;)05;
Vi, 0] = ady " [Ys, X;] = 0 (if k # j)
—H; aij X;j
n 1-a;; — —aij ——
Y5, 053] = ady ™ [Y;, X;] =(1 — aij)ady” [H;, X
+ (1 — aij)aijad;(j”Xj
= ajiad)_(?”Xi

which is zero if a;; = aj; = 0, and is zero if a;; < 0.
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Solution 17.1. It is enough to show that each basis vector of A®E is

in the orbit of w. Let py, p,, and p; be the projections onto span{u},

span{vy, va, v3}, and span{vy, w; } respectively. For xz,y € S := {u, vy, vo, v3, w1, wo, w3},
let ¢,_., be the element of gl(7) sending x to y, and sending the rest of

S to zero. Then a little messing around produces

i T W ‘ T xTr-Ww

%(pv - pu) U1 A V2 A U3 ¢v1—>u u A V2 A U3
%p1 + %pu — %Id UNAVL AW | Quyswy WA VLA Wo

¢v3—>w1 + ¢w2—>u (%1 A V2 A wq ¢v3—>w3 (%1 A (% A w3

Any other basis vector can be obtained from one of these (up to a sign)
by permuting indices and/or swapping v’s and w’s, so we can get all of
them.!

Solution 18.1. Every regular semisimple element is in some Cartan
subalgebra; namely, the Cartan subalgebra of elements that commute
with it. We will show that regular semisimple elements are dense in g.

Choose a basis for g, which gives you a corresponding basis for gl(g)
Say g has rank r. Let I be an indexing set so that for a matrix A € gl(g),
the set {M,(A)} er is the set of all (n — ) x (n — r) minors of A.
Define f, : g — k by f,(z) = det (Mv(adx)). Since ad is linear, f, is a
polynomial map for each v. Now consider union of all of the zero sets
of all of the f,. This is a Zariski closed set, so its complement in g is a
Zariski open set. Since g has a regular element (a semisimple element h,
where ad), is rank n—7), that open set is non-empty, and since g = A4imse
is irreducible, this set is dense.

Solution 18.2.

Solution 18.3. It is not hard to set up a recursive calculation with
the numbers in the hint. Alternatively, note that the Kostant partition
function tells us exactly that

chM\) =e* [ Q+e+e2+.)

aceAt

= H (1—e )L

aceAt

You can easily (have your computer) compute the coefficients of this
power series. For example, to compute the character of a Verma

'Since w is not quite invariant under permutations of the indices or swapping
of v’s and w’s, you sometimes have to tweak a sign (e.g. to get w; A wa A v1, take

T = ¢w3~>v1 - ¢v2~>u)-
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module of G, I think of e as x and of e*? as y. Then the following

Mathematica code returns the first 144 multiplicities.

Nmax = 12;

mySeries=Series[

(1) (1-y) (1- x yA- x"2 y)(1- x73 y)(1- x73 y°2))~(-1),
{x,0,Nmax},{y,0,Nmax}] ;

TableForm[Table[SeriesCoefficient[

mySeries,{i,j}],{i,0,Nmax},{j,0,Nmax}]]

Solution 20.1. Since G is abelian, g is the abelian Lie algebra R",
whose simply connected Lie group is R™. Thus, G is a quotient of R" by
a discrete subgroup (i.e. a lattice). Since G is compact, this lattice must
be full rank, so G = T".

Solution 20.2. Consider the representation G — End(A*PT.G) ~
End(R) = R* given by h +— A"PAd,. Since G is compact, its image
must also be compact, but the only compact subgroups of R* are {1}
and {£1}.

If G is connected, the image must be {1}, so the adjoint action on
A™PT.G is trivial. It follows that Rjw. = Ljw. = wp, l.e. that w is right
invariant.

If G is not connected, then we may have Rjw, = —wy,. That is, the
left invariant form agrees with the right invariant form up to sign. Since
the volume form determines the orientation, changing it by a sign does
not change the measure.

Solution 23.1. In H, the norm of any non-zero vector is 1. It is
immediate to check that the reflection of a non-zero vector v through
another non-zero vector u is

ru(v):{u ifu=w

v4+u ifu#wv

so reflection through a non-zero vector fixes that vector and swaps the
two other non-zero vectors. Thus, the reflection in H generate the sym-
metric group on three elements S5, acting on the three non-zero vectors.

If w and v are non-zero vectors, then (u,v) € H & H has norm
1+ 1 =0, so one cannot reflect through it. Thus, every reflection in V'
is “in one of the H’s,” so the group generated by reflections is S3 x Ss.
However, swapping the two H’s is clearly an orthogonal transformation,
so reflections do not generate Oy (Fa).
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Bold page numbers indicate that the index entry was defined, used in a
theorem, or proven on that page. [talic page numbers indicate that the
index entry was exemplified or used in an example on that page. If the
index entry is a result, then the page number is bold only for the pages

on which the result is proven.

adjoint representation, 8, 30, /2,
56, 96
Ado’s Theorem, 8
a-string, 68, 85
An
and sl, 1, 74
antipode, 24

b, 51
Baker-Campbell-Hausdorff, 14
bialgebra, 25
Bn

and sp(2n), 82

construction of, 80
Borcherds, Richard E., 4, 118186
Bott periodicity, 132

cardboard denominator, see Weyl
denominator
Cartan, 115, 163, 170
criterion, 58
decomposition, 65
formula, 44
involution, 116
matrix, 85
subalgebra, 65, 69
subgroup, 72
Casimir operator, 59, 107, 178
central extension, 47, /8, 153
character, 98
chV, see character
Clifford algebra, 126
Clifford groups, 133
Cn
and so(2n + 1), 82

construction of, 80
cohomology

Hochschild, 7

of Lie algebras, 41
compact groups, 114
Complete reducibility, see Weyl’s

Theorem

comultiplication, 24
connected, 119
coroot, 70
counit, 24
covering map, 19
Coxeter diagram, 78
Coxeter group, 70

2,51
Danish, 24
deformation

of a Lie algebra, 46
deformations

of associative algebras, 35
derived series, 51
Dn

and so(2n), 82

construction of, 80
dual pairing, 26
Dynkin diagram, 77

Es

construction of, 81
Engel’s Theorem, 65
Engel’s Theorem, 52, 190
exponential map, 13

Fy
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construction of, 81
fermions, 120
filtered space, 31

gl, 48

gl(n), 7,51, 112

Gram-Schmidt, 123

Guage groups
idxbf, 124

Heisenberg algebra, 36, 67
Heisenberg group, 122
Hopf Algebras, 24

Hopf ideal, 28

invariant form, 56
Iwasawa decomposition

idxbf, 123

Jacobi identity, 6
joke, 198
Jordan decomposition, 57
absolute, 63, 64
under the adjoint representa-
tion, 57

Kac-Moody algebra, 48
Kazhdan-Luztig multiplicities, 108
Killing form, 56

Knutson, Allen, 4

Kontsevitch, Maxim, 38

Kostant partition function, 101

ETEX, 4
length, 75
Lie algebra
free, 86
Lie algebra, 6
of a Lie group, 9
Lie algebra cohomology, 41
Lie derivative, 7
Lie group, 6
Lie ideal, 9
Lie’s Theorem, 53
loop algebra, 48

loop space, 48
lower central series, 51

metaplectic group, 123
minuscule representation, 104

nilpotent, 51
element, 64
group, 118

one-parameter subgroup, 13
orthogonal group

not generated by reflections,
135

PBW, 34, 86, 99-101
Poincaré-Birkhoff-Witt, see PBW

quadratic form, 127

rank, 66, 71
real form, 6, 115, 119

compact, 115
reductive, 112, 115
regular element, 64
representations, 29
Reshetikhin, Nicolai, 4, 6-49
root, 65

lattice, 99

positive, 74

simple, 74

properties of, 74—75

root space, 65
root decomposition, 65
root system

abstract, 71

dual, 81

irreducible, 71

Schur polynomial, 113
semisimple, 55

element, 64
Serganova, Vera, 4, 50-117
Serre relations, 85, 102
Serre’s Theorem, 82, 85—89
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s((2), 66, 67
s((3), 66, 96
sl(n), 64, 104, 110
s0(2n), 82
so(2n + 1), 82
solvable, 51
group, 118
sp(2n), 82
spinor norm, 134
star product, 37
SU(n), 114
super Brauer group, 132
super Morita equivalence, 130
superalgebra, 128
symmetric space, 170

transvections, 136
triality, 92

unipotent group, 118

unitary trick, 62

universal cover, 20

universal enveloping algebra, 27—
35

upper triangular, see b

useful facts about solvable and nilpo-
tent Lie algebras, 51-52

Vandermonde determinant, 112
variety of Lie algebras, 7
Verma module, 100-109
Virasoro algebra, 124

weight, 96
dominant integral, 99
fundamental, 104
highest, 99
lattice, 99
weight decomposition, 96
properties of, 96—97
weight space, 96
Weyl chamber, 99
Weyl character formula, 105—113
Weyl denominator, 106

Weyl dimension formula, 110
Weyl group, 72-76

Weyl vector, 106

Weyl’s Theorem, 62
Whitehead’s Theorem, 59
wreath product, 121

Zariski open set, 69, 193
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