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4 Poincaré Series 19
The case of a finite group . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 More on Finite Groups and Reflection Groups 22
Groups generated by reflections . . . . . . . . . . . . . . . . . . . . . . . . 23

6 More CST 26
Semi-invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

7 Examples of Quotients by Finite Groups 30
Finite subgroups of SU(2) . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Lie algebras and algebraic groups . . . . . . . . . . . . . . . . . . . . . . . 32

8 Chevalley-Jordan decomposition 33
Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Chevalley-Jordan decomposition . . . . . . . . . . . . . . . . . . . . . . . . 35

9 Classifying Reductive Groups, Part I 37

10 Classifying Reductive Groups, Part II 40
Reductive groups in characteristic zero . . . . . . . . . . . . . . . . . . . . 41

11 Stability in the affine case 43

12 Degree d Hypersurfaces in Pn 46
Classical binary invariants (the case n = 1) . . . . . . . . . . . . . . . . . . 48

13 Lecture 13 51
Proj quotients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

14 Stability in the Projective case 55



2

15 The Hilbert-Mumford numerical criterion 59

16 Lecture 16 62
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

17 Stability of Hypersurfaces 66

18 Points in Pn. Linearization 69

19 Lecture 19 72

20 Lecture 20 76

21 More on Stability 79

22 Some toric examples 81
Toric Varieties as GIT quotients . . . . . . . . . . . . . . . . . . . . . . . . 82

23 Lecture 23 84
General An//T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

24 Lecture 24 87

25 Lecture 25 89
Chow quotient and Hilbert quotient . . . . . . . . . . . . . . . . . . . . . . 90

26 Chow quotients 92

27 The Moment Map 95
Definition of the moment map . . . . . . . . . . . . . . . . . . . . . . . . . 95

28 Lecture 28 98

29 Lecture 29 101

30 Lecture 30 104
Convexity Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

31 Convexity Theorems 107

32 The moment map for toric varieties 110

33 Moment maps and GIT quotients 113
Chow quotients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

34 Chow quotients in the toric case 115



3

35 Luna’s slice theorem 117

36 More about Luna’s slice theorem 118

37 Consequences of the slice theorem 121

38 Lecture 38 123

39 Lecture 39 125
Nagata’s example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126



4 1 Invariants and Quotients, v. 12-9

1 Invariants and Quotients

Let k̄ = k be an algebraically closed field.

Definition 1.1. An (affine) algebraic group G over k is a group object in the category
of affine varieties over k. i.e. an affine variety G, together with morphisms of varieties
µ : G× G → G (multiplication), i : G → G (inverse), and e : Spec k → G (identity)
satisfying the usual relations. ⋄

Example 1.2. The additive group Ga = (k,+), the multiplicative group Gm =
(k×,×), and the general linear group GL(n) = {X ∈ Matn×n(k)|X invertible} are
examples of algebraic groups. ⋄

Let X = Specm(k[x1, . . . , xn]/IX) be a affine variety (i.e. X is the set of ze-
ros in kn of some ideal IX ⊆ k[x1, . . . , xn]). The coordinate ring of X is k[X] =
k[x1, . . . , xn]/IX . We will usually suppose that k[X] is reduced. Suppose we have an
action of an algebraic group G on X. We’d like to construct and study the quotient
X/G. We can take the topological space quotient X/topG, but in general, this quo-
tient will not be an algebraic variety. The question is how to make a quotient which
is a variety.

Invariants

One approach is to consider the natural action of G on the ring R = k[X]. A regular
function onX/G should correspond to a regular function onX which is constant on G-
orbits. So one candidate for X/G is SpecmRG, where RG = {f ∈ R|f(gx) = f(x)}.
Note that we get a map ψ : X/topG → SpecmRG by sending a G-orbit Gx to the
maximal ideal {f ∈ RG|f(Gx) = 0} ⊆ RG.

A number of questions arise naturally.

1. Is RG finitely generated?

Hilbert proved that the answer to the first question is yes in case where G = GL(n)
and char(k) = 0. More generally, the answer is yes for reductive groups (Corollary
3.6), but no for arbitrary groups (there is a famous example due to Nagata [[⋆⋆⋆

ref]]).

2. Is the map ψ is an isomorphism of topological spaces? Do points of SpecmR
parameterize G-orbits?

In general, the answer to this question is no.

Example 1.3. Let X = An = kn and G = Gm = k× acting on X by homothety:
t · (x1, . . . , xn) = (tx1, . . . , txn). Then R = k[X] = k[x1, . . . , xn], with the action
t · xi = txi. The only invariant polynomials are the ones where no xi appears, the
constants, so RG = k and SpecmRG is a single point. But there is a G-orbit for each
direction (and one orbit containing just the origin). ⋄
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More generally, if Gx is a non-closed orbit, then any invariant regular function
must have the same value on the closure Gx as it has on the orbit Gx. Thus, if Gx
and Gy are two orbits whose closures intersect, there is no invariant regular function
that separates them, so they have the same image in SpecmRG. So if ψ is to be an
isomorphism, all orbits of the action must be closed.

Proj quotients

Instead of looking at the ring of regular functions, we can consider field of rational
functions K = Frac(R). A rational function on X/G should be a rational function
on X which is constant on G-orbits, so the rational functions on X/G should be
KG = {f ∈ K|f(gx) = f(x)}. This picks out a birational class that X/G should
belong to.

Example 1.4 (1.3 continued). In Example 1.3, we get KG = {f(x)/g(x)|f, g ∈ R
homogeneous with deg(f) = deg(g)}. We can “cover”X withD(xi) = {f(x)/xmi | deg(f) =
m} (this misses the origin, so it isn’t actually a cover). For these open sets, we can
form nice quotient varieties by taking max-spectra of the rings of invariants. Then
we can glue the quotients together to get Pn−1. ⋄

It turns out that this construction generalizes to something called a GIT quotient
or a proj quotient. In our example, the GIT quotient accounts for every orbit except
the origin.

Continuing our list of questions,

3. Is KG the field of fractions of RG?

Our example shows us that the answer is no in general. But in many cases, the answer
is yes. In particular, the answer is yes if X has at least one stable orbit [[⋆⋆⋆ ref
eventually]].

Definition 1.5. We say that the action of G on X is closed if the orbit of any point
is closed. ⋄

Example 1.6. If G is finite, then the action is always closed. ⋄

Example 1.7. (x, y) 7→ (x+ t, y) is a closed action of Ga on A2. ⋄

Example 1.8. For some action of a group G on a variety X, you can remove all the
G-orbits which are in the closures of other G-orbits. Then the action of G on the
remaining space is closed. ⋄

Example 1.9 (Example of 1.8). Let X = Matn×n(k) with G = GL(n) acting by
g ·A = gAg−1 for g ∈ G and A ∈ X. Then R = k[x11, . . . , xnn]. The coefficents of the
characteristic polynomial det(tIn − A) = tn − σ1t

n−1 + · · · ± σn are invariant regular
functions. For example σ1 is trace of A and σn is the determinant of A. I claim that
RG = k[σ1, . . . , σn].
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The G-orbits correspond to possible Jordan forms. Notice that if you conjugate a
Jordan block by a diagonal matrix, you can change the 1s on the first superdiagonal
to any other non-zero entries. Any polynomial function that vanishes on all these
matrices must also vanish on the matrix where the entries on the superdiagonal are
zero. This shows that the orbit corresponding to a non-trivial Jordan block contains
the corresponding diagonal matrix in its closure. [[⋆⋆⋆ Charley tells me that more
generally, reductive groups have the (characterizing?) property that when they act
on an affine scheme, every orbit has a unique closed orbit in its closure. Find ref (in
[MFK94]?)]]

Therefore, any invariant function is completely determined by its values on diago-
nalizable matrices. So on a given matrix, its values are completely determined by the
set of eigenvalues (with multiplicity). Any such function must be an algebraic com-
bination of the elementary symmetric functions on the eigenvalues, which are exactly
the σi, so the σi generate RG. By the way, the σi are also algebraically independent
[Sta99, Theorem 7.4.4].

Note that in this case, the answer to question 3 is yes. ⋄

Relationship to Moduli Spaces

Moduli spaces (i.e. parameter spaces for some class of object) can often be constructed
as quotients by some group action.

Consider the following problem: llassify degree 2 curves in A2 up to th action of
the Euclidean group G = SO(2) ⋊G0 (generated by rotations and translations).

A degree 2 curve is given by an equation ax2 + 2bxy + cy2 + 2dx + 2ey + f = 0.
This can be represented by a symmetric matrix v by noting that

ax2 + 2bxy + cy2 + 2dx+ 2ey + f =
(
x y 1

)

v︷ ︸︸ ︷

a b d
b c e
d e f





x
y
1




in which caseGmay be represented as the group of matrices of the form



p q l
−q p m
0 0 1




where p2 + q2 = 1, and the action is given by v 7→ gtvg. The reader can easily check
that this action corresponds to the change of coordinates obtained by applying the
rotation matrix

( p q
−q p

)
and then translating by (l,m):

(
x
y

)
7→
( p q
−q p

)(
x
y

)
+
(
l
m

)
.

The ring of regular functions on the quotient should be RG = k[a, b, . . . , f ]G?
Since the original space is 6-dimensional and the group is 3-dimensional, we hope to
find at least 6− 3 = 3 invariants to generate RG.

Since the determinant of any element of G is 1, the determinant D of v is an
invariant regular function. The “translation part” of G (where p = 1 and q = 0)
doesn’t change a, b, or c, and the “rotation part” doesn’t change trace or determinant
of
(
a b
b c

)
, so E = det

(
a b
b c

)
= ac− b2 and T = tr

(
a b
b c

)
= a+ c are two more invariants.
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Proposition 1.10. RG = k[D,E, T ].

Incidently, it’s also true that D, E, and T are algebraically independent.

Proof. By an argument similar to the one given in Example 1.9, k[a, b, c]SO(2) ∼=
k[E, T ] [[⋆⋆⋆ I haven’t checked this yet]]. On the other hand, a, b, c are invariant
with respect to the action of G0. So it suffices to prove that k[a, b, c, d, e, f ]G0 =
k[a, b, c,D]. We have that

k[a, b, c, d, e, f ]G0 ⊆ k[a, b, c, d, e, f, 1/E]G0

We will try to find the G0-invariants of the larger ring and then intersect with the
smaller ring to get the invariants of the smaller ring. Using the equation D = fE +
2bde − cd2 − ae2, we may replace the generator f by D. Now suppose we have a
G0-invariant function h. It must satisfy the relation

h(a, b, c, d, e,D, 1/E) = h(a, b, c, d+ al + bm, e+ bl + cm,D, 1/E)

For all values of a, b, c, d, e, D, l, and m (for which ac− b2 6= 0). Choosing a, b, and
c to be distinct non-zero values, we can choose values for l and m to replace d and
e by an arbitrary pair of values. So on the dense open subset where a, b, and c are
distinct non-zero values, h must be a polynomial that is independent of d and e. But
this implies that h must globally be independent of d and e.

So we have shown that k[a, b, c, d, e, f, 1/E]G0 = k[a, b, c,D, 1/E]. The intersection
of this ring with k[a, b, c, d, e, f ] is k[a, b, c,D], so k[a, b, c, d, e, f ]G0 = k[a, b, c,D], as
desired.

But two equations that differ by a scalar give the same curve, so we haven’t yet
found the moduli space of degree 2 curves. Now we consider the bigger group G̃
generated by G and k× (acting by scalar matrix). Now we want to compute the ring

of invariants RG̃ = k[D,E, T ]k
×

. D, E, and T are all homogeneous, but they are not
at all invariant. The action by k× is given by D 7→ r3D, E 7→ r2E, and T 7→ rT . So
RG̃ = k. This is not a good quotient, so we try removing some stuff.

Let’s restrict to the curves for which D 6= 0 (so the corresponding quadratic is
non-degenerate). Now let’s find k[D±1, E, T ]k

×

. Now we have invariants A = E3/D2,
B = T 3/D, C = ET/D.

Exercise. Show that A,B,C generate the ring of invariants.

But they are not algebraically independent since AB = C3. I claim that this is the
only relation. So the geometric quotient, the moduli space of (non-degenerate) degree
2 curves in A2, is the singular surface Specm(k[A,B,C ]/(AB−C3).

Classical binary invariants. Consider SL(2,C). The finite-dimensional irreducible
representations Vd are given by non-negative integers. You can think of Vd as {f(x, y)| deg f =
d}. with the obvious action of SL(2,C):

(
a b
c d

)
· f(x, y) = f(ax+ by, cx+ dy).
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2 Affine Geometric Quotients

An affine algebraic group G over an algebraically closed field k is an affine variety G
together with algebraic maps m : G × G → G, i : G → G, and e : ∗ → G, satisfying
the following commutative diagrams:

G×G×G m×1G //

1G×m
��

G×G
m

��

G×G m // G

G

1G
��

66
66

66
6

e×1G //

1G×e
// G×G
m

����
��

��
�

G

G×G
1G×i

//

i×1G

// G×G
m

��

G //

∆

OO

∗ e // G

This is equivalent to the coordinate ring k[G] being equipped with the structure of
a (commutative) Hopf algebra: algebra maps µ : k[G] → k[G] ⊗ k[G] (comultiplica-
tion), τ : k[G] → k[G] (antipode), and ε : k[G] → k (counit) satisfying the following
commutative diagrams:

k[G]
µ

//

µ

��

k[G]⊗ k[G]

µ⊗id

��

k[G]⊗ k[G]
id⊗µ

// k[G]⊗ k[G]⊗ k[G]

k[G]
µ

~~}}
}}

}}
}

id

��
3

3
3
3
3
3

k[G]⊗ k[G]
ε⊗id

//

id⊗ε
// k[G]

k[G] ε //

µ

��

k // k[G]

k[G]⊗ k[G]
id⊗τ

//

τ⊗id
// k[G]⊗ k[G]

m

OO

Basically, if you’re working with an affine algebraic group, you can forget the group
and just remember the Hopf algebra structure on its ring of regular functions. To go
back and forth between the Hopf algebra structure on k[G] and the group structure
on G, you use the following relations for f ∈ k[G] and g, h ∈ G (e ∈ G is the identity
element).

µ(f)(g, h) = f(gh) τ (f)(g) = f(g−1) ε(f) = f(e)

Example 2.1. If G = Gm = k×, then k[G] = k[t, t−1]. We have µ(t) = t ⊗ t,
τ (t) = t−1, and ε(t) = 0. ⋄

Example 2.2. If G = Ga = k, then k[G] = k[t]. We have µ(t) = t ⊗ 1 + 1 ⊗ t,
τ (t) = −t, and ε(t) = 1. ⋄

Representions of Algebraic Groups

If V is a finite-dimensional vector space, then a representation ofG on V is a morphism
of algebraic groups ρ : G → GL(V ). If V is infinite-dimensional (and we will need
infinite-dimensional representations), then you have to be a bit more delicate. So use
the notion of a comodule.
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Definition 2.3. A G-comodule structure on a vector space V is a k-linear map
σ : V → k[G]⊗ V (called a coaction) satisfying the diagrams

V
σ //

σ

��

k[G]⊗ V
µ⊗1V

��

k[G]⊗ V 1G⊗σ
// k[G]⊗ k[G]⊗ V

V
σ //

1V
$$III

IIIIIIII k[G]⊗ V
ε⊗1V

��

V

A morphism of comodules is a k-linear map φ : V → W that intertwines the coactions:
σW ◦ φ = (id⊗φ) ◦ σV . In particular, a subcomodule (or invariant subspace) is a
subspace W ⊆ V such that σ(W ) ⊆ k[G]⊗W . ⋄

Remark 2.4. Let’s check that the notion of a finite-dimensional comodule corre-
sponds to the notion of a finite-dimensional representations.[[⋆⋆⋆ what’s wrong
with the naive notion of an infinite-dimensional representation? Is GL(V ) not finite
type or is it not even algebraically definable (what is determinant?)?]]

Given a vector space V with basis {e1, . . . , en} and comodule structure σ : V →
k[G] ⊗ V , we have σ(ei) =

∑
j fij ⊗ ej for some fij ∈ k[G]. Then we can define

ρ∗ : k[GL(V )] → k[G] by xij 7→ fij and verify that the axioms of a comodule imply
that the induced map of varieties ρ : G→ GL(V ) is a group homomorphism.

Conversely, if ρ is a representation, then we can define a coaction σ : V → k[G]⊗V
by ei 7→

∑
j ρ

∗(xij) ⊗ ej. The fact that ρ is a group homomorphism implies that σ
satisfies the axioms of a coaction.

So from now on, we’ll use the terms “comodule” and “representation” inter-
changably. To go back and forth between the two, use the relation that for g ∈ G
and v ∈ V ,

σ(v) =
∑

fi ⊗ vi ⇐⇒ g · v =
∑

fi(g)vi. ⋄

Example 2.5. Let G = k×. Given m ∈ Z, we get a 1-dimensional representation
given by the action t·v = tmv. Using Remark 2.4, you may check that this corresponds
to the coaction v 7→ tm ⊗ v. ⋄

Remark 2.6 (Hom and ⊗). For any pair of representations V and W , the tensor
product V ⊗W has the structure of a represenation, given by the action g · (v⊗w) =
gv ⊗ gw (i.e. the coaction v ⊗ w 7→ ∑

figj ⊗ vi ⊗ wj, where v 7→ ∑
fi ⊗ vi and

w 7→∑
gj ⊗ wj).

Furthermore, Homk(V,W ) has the structure of a representation given by the action
(g·φ)(v) = g·

(
φ(g−1 ·v)

)
.1 In particular, the dual of a representation V ∗ = Homk(V, k)

has the structure of a representation (k is interpreted as the trivial representation),
making Homk(V,W ) ∼= V ∗ ⊗W an isomorphism of representations.

1The corresponding coaction is

(
v 7→ φ(v)

)
7→
(
v 7→ (m⊗ idV )(idk[G]⊗τ ⊗ idV )(idk[G]⊗σ)(idk[G]⊗φ)σ(v)

)
.

There is a string diagram yoga to figuring out these coactions.
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The invariants Homk(V,W )G consist of those linear maps φ for which φ(v) =
g · φ(g−1 · v) for all g ∈ G and v ∈ V . This is exactly the space of G-equivariant
maps (i.e. morphisms of representations) HomG(V,W ) = {φ ∈ Homk(V,W )|g ·φ(v) =
φ(g · v)}. ⋄
Proposition 2.7. Any representation V of an affine group G is a union of finite-
dimensional representations.

Proof. It is enough to show that any vector v ∈ V lies in a finite-dimensional repre-
sentation. We have that σ(v) =

∑N
i=1 fi ⊗ vi, a finite sum in which we can choose

the fi to be linearly independent. Now consider the space Mv = 〈v1, . . . , vN〉. First
of all, v =

∑
ε(fi)vi by one of the axioms of a coaction, so v ∈ Mv. Next we’ll show

that Mv is an invariant subspace. To see that, note that
∑

µ(fi)⊗ vi = (µ ⊗ 1V )σ(v) = (id⊗σ)σ(v) =
∑

fi ⊗ σ(vi)

by the other axiom of a coaction. Since the fi are linearly independent, we can choose
linear functionals λi ∈ Homk(k[G], k) such that λi(fj) = δij. Applying λi⊗idk[G]⊗ idV
to the left-hand side of the equation, we clearly get an element of k[G] ⊗Mv, and
applying it to the right-hand side, we get σ(vi). So σ(vi) is in k[G]⊗Mv, as desired.

Remark 2.8. The linear functional trick at the end of the proof of Proposition 2.7
also shows that if

∑
fi ⊗ vi =

∑
fi ⊗ wi and the fi are linearly independent, then

vi = wi. ⋄
Remark 2.9. The spaceMv constructed in the proof of Proposition 2.7 is actually the
smallest invariant subspace containing v. To see this, it suffices to show that for any
invariant subspace W containing v must contain each of the vi. Since W is invariant,
σ sends W into k[G] ⊗W , and since v ∈ M , we must have σ(v) =

∑S
j=1 hj ⊗ wj

for some hj ∈ k[G] and wj ∈ W . Applying the linear functional λi ⊗ id (where

λi(fj) = δij) to the equality
∑N

i=1 fi ⊗ vi =
∑S

j=1 gj ⊗ wj, we get vi =
∑S

j=1 λi(gj)wj
which is clearly in W . ⋄
Corollary 2.10. Any irreducible representation of G is finite-dimensional.

Proposition 2.11. Any representation of k× can be written as V =
⊕

m∈Z Tm, where
Tm = {v ∈ V |t(v) = tmv} = {v ∈ V |σ(v) = tm ⊗ v}.
Proof. It is clear that the Tm ∩ Tn = 0 for m 6= n, so we only need to show that
every v ∈ V can be written as a sum of elements of the various Tm. We have that
σ(v) =

∑N
i=1 t

i ⊗ vi for some vi ∈ V . By one of the axioms of a coaction, we have

v = (ε⊗ idV )σ(v) =
∑

ε(ti)⊗ vi =
∑

vi

So it is enough to show that vi ∈ Ti. Using the other axiom of a coaction, we have
∑

ti ⊗ ti ⊗ vi = (µ⊗ 1V )σ(v) = (id⊗σ)σ(v) =
∑

ti ⊗ σ(vi)

By Remark 2.8, we get that σ(vi) = ti ⊗ vi, so vi ∈ Ti as desired.
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Definition 2.12. A character of an algebraic group G is a group homomorphism
to k×. Equivalently, (using the weight 1 representation of k×) a character is a 1-
dimensional representation of G. The set of characters G∨ = HomGp(G, k

×) has a
group structure induced by the group structure on k×. The 1-dimensional representa-
tion associated to a character χ ∈ G∨ is denoted by Vχ, and has the action g·v = χ(g)v
(or the coaction v 7→ χ⊗v, where χ ∈ HomGp(G, k

×) ⊆ Hom(G, k) = k[G] is regarded
as a regular function on G). ⋄

Example 2.13. By Proposition 2.11, (k×)∨ ∼= Z. ⋄

Example 2.14 (Algebraic Torus). Let G = Gr
m = k× × · · · × k×. The group of

characters G∨ is a free abelian group of rank r. ⋄

Corollary 2.15 (to Proposition 2.11). Any representation V of an algebraic torus G
may be written as V =

⊕
χ Tχ, where Tχ = {v ∈ V |g · v = χ(g)v} = {v ∈ V |σ(v) =

χ⊗ v}.

Sketch Proof. We have that G = Gr
m. Restricting to each copy of Gm and applying

Proposition 2.11, we get a direct sum decomposition of V . The desired decomposition
is the common refinement of all of those decompositions.

Proposition 2.16. Suppose char(k) = 0, and let V be a representation of G =
Ga = k. Then there exists a locally nilpotent operator A ∈ Endk(V ) (i.e. for any
v ∈ V , AN(v)v = 0) such that the representation is given by t · v = exp(tA)v =
1 + tAv + 1

2
t2A2v + · · · (which terminates for each v because A is locally nilpotent),

or by the corresponding coaction v 7→∑
1
p!
tp ⊗ Apv.

Proof. For v ∈ V , σ(v) =
∑N

m=0 t
m ⊗ vm. As usual, we have

∑

m

(t⊗ 1 + 1⊗ t)m ⊗ vm = (µ ⊗ idV )σ(v) = (idk[G]⊗σ)σ(v) =
∑

m

tm ⊗ σ(vm)

By Remark 2.8, we have

σ(vm) =
N∑

n=m

(
n

m

)
tn−m ⊗ vn =

N−m∑

p=0

(
m+ p

m

)
tp ⊗ vm+p

=

N−m∑

p=0

tp

p!
⊗ (m+ p)(m+ p− 1) · · · (m+ 1)vm+p.

So we define

Avm =

{
(m+ 1)vm+1 m < N

0 else

[[⋆⋆⋆ but the vm may not be linearly independent, and they may not span.]][[⋆⋆⋆

You may define A on a space W = 〈w1, . . . , wN 〉 by Awm = (m+1)wm+1. Then using
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the action exp(tA), W is a representation. The calculation above gives a map from W
to V . This should show that you can define the operator A without worrying about
linear independence of the vm. Also, the operator A is unique. So you can define it
on Mv, then on some Mw, and the operators on the intersection should agree, so you
can extend to the sum of the two spaces]].

Remark 2.17. Proposition 2.16 is a result about algebraic representations of Ga.
If you consider the additive group G = Ga over C and any endomorphism A of a
vector space V (need not be locally nilpotent), having t act by exp(tA) gives V the
structure of a representation of G. But if A is not locally nilpotent, the corresponding
map G → GL(V ) is not algebraic. Another way to say this is that the coaction
V → k[G] ⊗ V does not send every element of V into k[G] ⊗ V , but into some
completion k[G]⊗̂V (in this case, the completion with respect to the topology V
inherits from C[[⋆⋆⋆ I think]]). ⋄

Reductive Groups

Definition 2.18. An affine group G is (linearly)2 reductive if any representation of
G is completely reducible. That is, one of the following equivalent3 conditions hold.

1. If W ⊆ V is an invariant subspace, then it has an invariant direct complement
(i.e. an invariant subspace W ′ ⊆ V such that V = W ⊕W ′).

2. V =
⊕

i∈I Vi with the Vi irreducible. ⋄

Remark 2.19 (Isotypic components). The decomposition V =
⊕

i∈I Vi with the Vi
irreducible is not canonical. For example, if the action of G on V is trival, then any
direct sum decomposition of V into 1-dimensional vector spaces works. However, there
is a canonical decomposition of V , called the decomposition into isotypic components.

Let J be the set of all irreducible representations of G. For a given j ∈ J , let Vj
be the corresponding irreducible represetation, let Tj be the sum of all subrepresen-
tations W ⊆ V for which W ∼= Vj . This Tj is called the Vj-isotypic component of V .
We claim that Tj ∼=

⊕
Ij
Vj for some index set Ij, and that there is a canonical decom-

position V =
⊕

j∈J Tj (canonical in the sense that the Tj are uniquely determined
and respected by any morphisms of representations).

First, let’s show that Tj ∼=
⊕

Ij
Vj . If W ⊆ V is an irreducible subrepresentation

and U ⊆ V is some subrepresentation (may not be irreducible), then the intersection
U ∩W is an invariant subspace of W . Since W is irreducible, we either have W ⊆ U ,
in which case W + U = U , or W ∩ U = {0}, in which case W + U ∼= W ⊕ U . So we
can build up Tj as a direct sum of copies of Vj , one copy of Vj at a time, applying
transfinite induction if we need to.

2We will usually drop the word “linearly”.
3To see that (1) implies (2), use transfinite induction on the dimension of V . To see that (2)

implies (1), [[⋆⋆⋆ you have to get that any partial decomposition of V into irreducibles can always
be continued]].
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By the assumption that V decomposes as a sum of irreducible subrepresentations,
we know that V =

∑
j∈J Tj.

4 We will prove by (transfinite) induction that V ∼=⊕
j∈J Tj. For j ∈ J and S ⊆ J with j 6∈ S, assume (by induction) that

∑
i∈S Ti

∼=⊕
i∈S Ti. Let W be an irreducible subrepresentation of the invariant subspace Tj ∩⊕
i∈S Ti. Then W is an invariant subspace of Tj ∼=

⊕
Ij
Vj . Composing the inclusion

W →֒ Tj with the projections Tj → Vj , we get maps W → Vj. If W 6= 0, one of these
maps must be non-zero, so by Schur’s Lemma,5 it must be an isomorphism. So we
must have W ∼= Vj . Similarly, for some i ∈ S, the projection of W onto the Ti must
be non-zero, from which we get that W ∼= Vi, contradicting j 6∈ S. It follows that
Tj∩

⊕
i∈S Ti = 0, so Tj+

⊕
i∈S Ti

∼= Tj⊕
⊕

i∈S Ti. By (transfinite) induction we build
direct sum decomposition V =

⊕
j∈J Tj. [[⋆⋆⋆ This feels more complicated than

it has to be]]
Finally, suppose V =

⊕
j∈J Tj and W =

⊕
j∈J Rj are the isotypic component

decompositions of two representations, then any morphism of representations f : V →
W must send Tj to Rj for each j. Otherwise, we would get a non-zero morphism
Ti → Rj for i 6= j. Composing with the inclusions Vi →֒ Ti and the projections
Rj → Vj, we get a bunch of morphisms Vi → Vj , at least one of which must be
non-zero. By Schur’s lemma, we get that Vi ∼= Vj , contradicting i 6= j. ⋄

Proposition 2.20. The following conditions on an algebraic group G are equivalent.

a. G is reductive.

b. Any representation V decomposes as V = V G⊕W . (Note this implies WG = 0)

c. For any surjection V ։ W of representations, V G → WG is surjective.

d. For any representation V and any v ∈ V G, there exists f ∈ (V ∗)G such that
f(v) = 1.

Proof. (a ⇒ b) follows from Remark 2.19: V G is the trivial isotypic component and
W is the sum of the other isotypic components.

(b⇒ c) Let V = V G⊕V ′ and W = WG⊕W ′. By a Schur’s Lemma argument like
the one at the end of Remark 2.19, there are no non-zero morphisms of representations
V G → W ′ or V ′ → WG. So the only way a morphism V → W can be surjective is if
V G →WG is surjective.

(c ⇒ a) Let W ⊆ V be an invariant subspace. We have the surjection of rep-
resentations Homk(V,W ) → Homk(W,W ) given by restriction. Taking invariants,
we have HomG(V,W ) → HomG(W,W ), which is surjective by (c). So there exists
some ψ ∈ HomG(V,W ) that restricts to idW ∈ HomG(W,W ). The kernel ψ is a
complementary invariant subspace to W .

4Note that if V is not completely reducible, it is not the sum of its isotypic components.
5Schur’s Lemma stattes that any morphism f : W → U of irreducible representations is either

zero or an isomorphism. To prove it, simply note that ker f ⊆ W and im f ⊆ U are invariant
subspaces.
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(c ⇒ d) Let W be the linear subspace of V spanned by v. Since v ∈ V G, W
is isomorphic to the trivial 1-dimensional representation k. We have a surjection of
representations V ∗ ∼= Homk(V, k)→ Homk(W, k). By (c), the induced map (V ∗)G →
HomG(W, k) = Homk(W, k) is surjective, so there exists some f ∈ (V ∗)G lifing the
linear functional that is 1 on v.

(d ⇒ b) Choose a basis for V G, so V G = span{vi}i∈I. Choose fi ∈ (V ∗)G such
that fi(vi) = 1. Then W =

⋂
i∈I ker(fi) is an invariant complementary subspace to

V G.

Example 2.21. We proved that any torus is reductive in any characteristic. ⋄

Theorem 2.22 (Maschke’s Theorem). If G is a finite group with char(k) ∤ |G|, then
G is reductive.

Proof. Let’s prove property (c). Pick a linear functional f ∈ V ∗ such that f(v) = 1.
Then define f̄(w) = 1

|G|
∑

g∈G f(g(w)). This f̄ is an invariant functional such that

f̄(v) = 1.

Example 2.23. Suppose k = C, and let G be a semi-simple connected Lie group.
By the classification of complex semi-simple Lie groups, G is actually an algebraic
group (for example, G = SL(n, C)). Then Weyl’s theorem states that every finite-
dimensional representation of G is completely reducible (you have to use that infinite-
dimensional representations are unions of finite-dimensional representations). Thus,
G is reductive. ⋄

Note that GL(n,C) =
(
SL(n,C) × C×)/µn. It turns out that every reductive

group is obtained by taking a semi-simple group, producting with a torus, and quo-
tienting by a finite group.
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3 Reductive Groups acting on Affine Varieties

The Reynolds operator and Hilbert’s Theorem

Suppose G×X → X is an action of a reductive group G on an affine variety X. There
is a corresponding ring morphism σX : k[X]→ k[G]⊗k[X], and the axioms of a group
action exactly correspond to this dual morphism being a coaction, so R = k[X] is a
representation of G. The fact that this coaction is a ring homomorphism (rather than
just a k-linear map) corresponds to the fact that G acts on R is by ring automorphisms
(rather than just k-linearly).

If X is a variety of finite type, then R is finitely generated algebra over the
ground field: R = k[x1, . . . , xn]/I . Since G is reductive, then we get the decompo-
sition R = RG ⊕ R′, so in addition to the obvious embedding RG →֒ R, we have a
canonical projection R → RG,1 called the Reynolds operator, which we will denote
f 7→ f̄ .[[⋆⋆⋆ should mention Reynolds operator earlier . . . the term is used for the
projection V → V G in general]]� Warning 3.1. This projection is not a homomorphism of rings since R′ is not

an ideal of R.2 However, the following lemma shows that R′ is an RG-module,
so the projection is a homomorphism of RG-modules. y

Lemma 3.2. R′ is an RG-module. In particular, the projection R→ RG is RG-linear.

Proof. By definition of RG, we have that σX(f) = 1 ⊗ f . Since σX is a ring homo-
morphism, we have σ(fh) = (1⊗ f) · σ(h) for any h ∈ R. That is, multiplication by
f is a morphism of representations R→ R. By Remark 2.19, it must respect isotypic
components. In particular, it must send RG to RG and R′ to R′.

Theorem 3.3 (Hilbert). Suppose R = k[x1, . . . , xn] =
⊕

d≥0 Rd (the natural grading,
where each xi has degree 1), and G is a reductive group acting on SpecR such that
the action of G respects the grading, so G · Rd = Rd (or σ(Rd) ⊆ k[G]⊗ Rd). Then
RG is a finitely generated (graded) k-algebra.

Proof. It is clear that RG inherits a grading from R. Consider RG
>0 =

⊕
d>0 R

G
d =(⊕

d>0 Rd)
G. Let I be the graded ideal in R generated by RG

>0. Since R is noetherian,
there is a finite set of homogeneous f1, . . . , fn ∈ RG

>0 which generate I . We will show
that f1, . . . , fn generate RG as a ring.

Given h ∈ RG
d , we want to show that h ∈ k[f1, . . . , fn]. Since h ∈ I , we have

h =
∑
firi for some homoegenous ri ∈ R. Applying the projection to RG, and using

that h, fi ∈ RG and Lemma 3.2, we have h =
∑
fir̄i. Now each r̄i is a homogeneous

element of RG of degree less than d, so by induction on d, r̄i ∈ k[f1, . . . , fn], so
h ∈ k[f1, . . . , fn] as desired.

1The projection is canonical because the invariant complement R′ is canonical. It is the direct
sum of all the non-trival isotypic components of R.

2For example, consider the action of G = µ2 on R = k[x] given by x 7→ −x. Then RG = k[x2]
and R′ = xk[x2].
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Lemma 3.4. Suppose an algebraic group G (which need not be reductive) acts on an
affine variety X. Then there exists a G-equivariant closed embedding X →֒ An such
that the action of G on X extends to a linear action of G on An.

Proof. Let s1, . . . , sn be generators for k[X] such that the subspace generated by the
si is an invariant subspace (we proved that each generator lies in a finite-dimensional
invariant subspace, so take the sum of all of those). If σX(si) =

∑
j fij ⊗ sj, define

an action of G on k[x1 . . . , xn] by σ(xi) =
∑

j fij ⊗ xj. This is a linear action of
G on An, and we have an invariant map k[x1, . . . , xn] → k[X] given by xi 7→ si.
This is a surjection since the si were chosen to generate k[X], so it induces a closed
immersion.

Remark 3.5. Note that a linear action of G on An is the same thing as a G-comodule
structure on k[x1, . . . , xn] that respects the grading. ⋄

Corollary 3.6 (Hilbert’s Theorem + Lemma 3.4). If a reductive group G acts on an
affine variety X, with coordinate ring R = k[X], then the ring of invariants RG is
finitely generated.

Proof. By Lemma 3.4, we get a surjection of comodules k[x1, . . . , xn] ։ R, where
the action of G on k[x1, . . . , xn] respects the grading. Since G is reductive, we get a
surjection k[x1, . . . , xn]

G → RG. By Hilbert’s Theorem (3.3), k[x1, . . . , xn]
G is finitely

generated, so RG must also be finitely generated.

The Orbit-closure Relation and Separation Lemma

For an arbitrary algebraic group G acting on a variety X, the inclusion RG →֒ R
induces a map on spectra φ : X = SpecmR → SpecmRG =: X//G whose properties
we’d like to study.

Remark 3.7. If G is a reductive group and I ⊆ R is an invariant ideal, then I is a
subrepresentation of R = RG⊕R′, so I = (I ∩RG)⊕ (I ∩R′) (c.f. Remark 2.19). ⋄

Lemma 3.8. If G is a reductive group and n ⊆ RG is an ideal, then (Rn)G = n. In
particular, if n is proper, then Rn is proper.

Proof. We have that Rn is an invariant ideal, so by Remark 3.7, Rn = (Rn ∩ RG)⊕
(Rn ∩ R′). So (Rn)G = Rn ∩ RG = n + (R′n ∩ RG). By Lemma 3.2, R′n ⊆ R′, so
(Rn)G = n.

Corollary 3.9. If G is reductive, φ : X → X//G is surjective.

Proof. For any maximal ideal m ∈ SpecmRG, Rm ∩RG = m by Lemma 3.8. So Rm

is contained in some proper maximal ideal M ∈ SpecmR. We have that M∩RG = m

(since m is maximal in RG and M ∩RG cannot contain 1), so φ(M) = m.
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Lemma 3.10 (Separation Lemma). Suppose Z1 and Z2 are Zariski-closed G-invariant
subsets of X with Z1 ∩ Z2 = ∅. Then there is an invariant function f ∈ RG such
that f(Z1) = 0 and f(Z2) = 1.

Proof. Let I1 and I2 be the ideals of Z1 and Z2. Since Z1 ∩ Z2 = ∅, I1 + I2 = R,
so we may write 1 = g1 + g2 for gi ∈ Ii. Applying the projection to RG, we have
1 = ḡ1 + ḡ2. Since Ii are invariant ideals, ḡi ∈ Ii by Remark 3.7. Take f = ḡ1.

Definition 3.11. If G × X → X is an action of an algebraic group on a variety
and x ∈ X is a point, then the orbit G · x of x is the image of the restricted map
G× {x} → X. [[⋆⋆⋆ I’d like to add a functorial definition, but it’s probably not
worth it.]] ⋄

Note that any invariant function must be constant along an orbit, so each fiber of
φ is a union of orbits.

Lemma 3.12. Every orbit Gx is open in its Zariski closure.

Proof. By Chevalley’s constructibility theorem [EGA, Theorem IV1.1.8.4 and Propo-
sition 0III.9.2.2], for any finitely presented morphism of varieties f : A → B, f(A)
contains an open set of f(A). So Gx contains an open subset U of Gx. But then
Gx
⋃
g(U), which is open.

Remark 3.13. In the differential category, this lemma can be false. For example, you
can wrap a 1-parameter subgroup around a 2-dimensional torus so that the subgroup
is dense. In the algebraic category, such nasty things can’t happen. ⋄

Definition 3.14. Two orbits O and O′ are closure equivalent if there exists a finite
set of orbits O = O0, O1 . . . , On = O′ such that Oi ∩Oi+1 6= ∅. ⋄

If O ∼ O′, then it is clear that all invariants agree on them, so φ(O) = φ(O′).

Proposition 3.15. Suppose a reductive group G acts on an affine variety X, and
that O1 and O2 are two orbits, then the following conditions are equivalent.

1. O1 ∼ O2

2. φ(O1) = φ(O2)

3. O1 ∩O2 6= ∅

Proof. We’ve already proven (1⇒ 2) since all invariants agree on these orbits.
(2⇒ 3) Suppose O1 ∩O2 = ∅, then by the Separation Lemma (3.10), there is an

inivariant which is 1 on one of them and 0 on the other, contradicting (1).
(3⇒ 1) trivial.

Corollary 3.16. So the fibers of φ : SpecmR→ SpecmR//G are closure equivalence
classes of orbits.
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Example 3.17. G = k× acts on A2 by t · (x, y) = (tx, t−1y). It is not difficut to see
that RG = k[xy]. The fibers are {xy = C} If C 6= 0, there is just one orbit in the
fiber (a hyperbola in the real picture). But if C = 0, then the fiber consists of three
orbits, {x 6= 0}, {y 6= 0}, and {(0, 0)}. But note that the fiber contains only one
closed orbit. ⋄

Proposition 3.18. For a reductive group acting on an affine scheme, every closure
equivalence class has exactly one closed orbit.

Proof. (Existence) Pick an orbit O of minimal dimension. By Lemma 3.12, O is open
in O. But O is invariant, so it is a union of orbits. If O contained any orbit other
than O, that orbit would have to be of smaller dimension. Thus, O = O.

(Uniqueness) Suppose O1 and O2 are two closed orbits in the same orbit-closure
equivalence class. Then by Proposition 3.15, O1 ∩ O2 6= ∅. But the only way two
orbits can intersect is if they are equal.

In particular, every point in the geometric quotient corresponds to a closed orbit.
In Example 1.3 (k× acting on kn by scaling), there is only one closed orbit, so the
quotient has only one point.

Corollary 3.19. If G is reductive with a closed action on an affine variety, then
there is a bijection between G-orbits and points of the geometric quotient.

Example 3.20 (A non-reductive counterexample). Suppose G ∼= Ga = C acts on
A2 = C2 by t · (x, y) = (x + ty, y). In this case, RG = k[y]. The horizontal lines
{y = c}c6=0 are orbits; each one corresponds to a point in X//G. But every point
on the line {y = 0} is fixed, so there is a line of closed orbits which get sent to the
origin in X//G = Specm k[y]. This is a closed action where orbits do not correspond
to points in the quotient because φ identifies some of the closed orbits. ⋄

Example 3.21. G = Z/2 acting on A2 by (x, y) 7→ (−x,−y). ThenRG = k[x2, xy, y2] =
k[u, v, w]/(v2−uw). Geometrically, X//G is a quadratic cone in 3-dimensional space.
[[⋆⋆⋆ does this example illustrate something special?]] ⋄

Proposition 3.22. Suppose a reductive group G acts on an affine variety X, then
φ : X → X//G is an open submersion (i.e. the topology on X//G is induced by φ;
U ⊆ X//G is open if and only if φ−1(U) ⊆ X is open).

Proof. Since φ is surjective (Corollary 3.9), it suffices to show that for an invariant
closed subset Z ⊆ X, the image φ(Z) ⊆ X//G is closed. Let I ⊆ R be the G-invariant
ideal corresponding to Z (we’re taking the reduced induced structure on Z). Then
the ideal IG = I ∩ RG ⊆ RG corresponds to the closure of the image of Z. So we
need to show that the map Z = Specm(R/I)→ Specm(RG/IG) = φ(Z) is surjective.
But since G is reductive, invariants is exact, so RG/IG ∼= (R/I)G, so φ(Z) ∼= Z//G.
Applying Corollary 3.9, we have that Z → φ(Z) is surjective.
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4 Poincaré Series

The first problem set has been posted at math.berkeley.edu/~serganov/274/.
Given an action of an algebraic group G on an affine variety X, we would like

to determine RG and understand its properties. Poincaré (or Hilbert) series are an
important tool for doing this.

Assume that G acts on a vector space V linearly. Then R = k[x1, . . . , xn] =
Sym∗(V ∗), with its natural grading, and G acts in a way that respects the grading,
so RG inherits a grading. [[⋆⋆⋆ move]]

Definition 4.1. Suppose M =
⊕

Md a graded k-module. Then the Poincaré series
of M is PM (t) =

∑
d≥0 diml(Md)t

d. ⋄

Remark 4.2. You may have seen Poincaré series before. A closed subschemeX ⊆ Pn

of projective space corresponds to a graded ideal I ⊆ k[x0, . . . , xn] = S. Then S/I is
a graded k-algbra, and its Poincaré series is usually called the Hilbert function of X.
The Hilbert function is an important invariant of X. For example, the dimension of
X is equal to the degree of its Hilbert function. ⋄

Lemma 4.3. [[⋆⋆⋆ add tensor product here?]] If 0 → M → N → K → 0 is a
short exact sequence of graded A-modules, then PN = PM + PK .

Proof. 0→ Md → Nd → Kd → 0 is exact, so dim(Nd) = dim(Md) + dim(Kd).

Remark 4.4. Using basically the same proof, we see that for a finite exact sequence
of graded modules

0→ · · · →Mi →Mi+1 → · · · → 0

the alternating sum
∑

(−1)iPMi
(t) of the Poincaré series is zero. ⋄

[[⋆⋆⋆ mention shifting grading here? it’s very useful to regard a morphism that
shifts grading as a graded morphism to a shifted module]]

Example 4.5. Let R = k[y1, . . . , yn], where deg yi = di for some di > 0. Then

PR(t) =
1

(1− td1) · · · (1− tdn)
. ⋄

[[⋆⋆⋆ example of Sym∗(V ) and Λ∗V ?]]

Theorem 4.6 (Hilbert-Serre). Suppose R = k[y1, . . . , yn] with deg yi = di. If M is a
finitely generated graded R-module, then

PM (t) =
F (t)

(1− td1) · · · (1− tdn)

for some F (t) ∈ Z[t, t−1].

math.berkeley.edu/~serganov/274/


20 4 Poincaré Series, v. 12-9

Proof. We prove the result by induction on n, the number of generators of R. If
n = 0, the result is clearly true, with PM (t) being the “graded dimesion” of M as a
graded vector space over k. Now suppose n > 0. Let M ′ and M ′′ be the kernel and
cokernel of multiplication by yn.

0→M ′ → M
yn−→M [dn]→ M ′′ → 0

By Remark 4.4, we get the identity

PM ′ − PM + tdnPM − PM ′′ = 0. (∗)

Since M ′ and M ′′ are graded modules over k[y1, . . . , yn−1], the induction hypothesis
tells us that

PM ′(t) =
F ′(t)

(1− td1) · · · (1− tdn−1)
and PM ′′(t) =

F ′′(t)

(1− td1) · · · (1− tdn−1)

for some F ′(t), F ′′(t) ∈ Z[t, t−1]. Solving for PM in (∗), we get the desired result.

Another way to get a proof is to construct a finite resolution by free modules.

Corollary 4.7. If G is a reductive group acting on an affine scheme SpecmR,

PRG(t) =
F (t)

(1− td1) · · · (1− tdn)
for some F (t) ∈ Z[t, t−1]..

The case of a finite group

Example 4.8. Let G = Z/n = 〈g〉 act on C2 by g 7→
(
ω 0
0 ω−1

)
where ω is a

primitive n-th root of unity. Then k[x, y]G = k[xy, xn, yn] = k[u, v, w]/(un − vw).
Regarding RG as a module over the subring k[xn, yn], it is free with generators
1, xy, (xy)2, . . . , (xy)2n−2, so

PRG(t) =
1 + t2 + · · ·+ t2n−2

(1− tn)2
. ⋄

Lemma 4.9. For a linear representation W of a finite group G, dimWG =
1

|G|
∑

g

tr g.

Proof. Recall the Reynolds operator that we constructed in the proof of Maschke’s
Theorem (2.22), 1

|G|
∑
g : W → WG. Since it is a projector, its trace is the dimension

of the image.

Proposition 4.10 (Moilen’s formula). For a finite group G acting linearly on a vector

space V , PRG(t) =
1

|G|
∑

g∈G

1

det(1− gt).
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Proof. We have k[V ] = Sym∗(V ∗) =
⊕

d≥0 Symd(V ∗), and we’d like to compute

PRG(t) =
∑

d≥0

dim(Symd(V ∗))Gtd

Any element g ∈ G is of finite order, so it must act diagonalizably. So for some basis
{xi} of V ∗, g acts by the diagonal matrix diag(a1, . . . , an). Then g acts on Symd(V ∗)
by g · (xc11 · · ·xcnn ) = (ac11 · · · acnn )(xc11 · · ·xcnn ). Then we have

1

det(1− gt) =
n∏

i=1

1

1− ait
=
∑

d≥0

(
tr g|Symd(V ∗)

)
td

Applying Lemma 4.9 completes the proof.
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5 More on Finite Groups and Reflection Groups

Today we’ll consider the case of a finite group G acting linearly on a vector space
V = SpecmR[V ]. We’ll assume that char(k) ∤ |G| (so representations are completely
reducible). Using Moilen’s formula (Proposition 4.10), we can compute the Poincaré
series PRG(t). The idea is that by looking at PRG(t), you can sometimes guess what
RG is. Before we do an example, let’s consider a very interesting class of finite groups
that act on A2 = C2.

[[⋆⋆⋆ on the McKay correspondence]] Let V = C2, with the usual action of
SL(2,C). We get an induced action of SL(2,C) on Sym2 V so that the “squaring”
map σ : V → Sym2 V given by v 7→ v · v is SL(2,C)-equivariant. Let x and y be
the coordinates on V , and let z1, z2, and z3 be the coordinates on Sym2 V , with σ
corresponding to the map z1 7→ x2, z2 7→ xy, z3 7→ y2. The image of σ (the cone
z2
2−z1z3) is invariant under the action of SL(2,C), so SL(2,C) respects the quadratic

form z2
2−z1z3 [[⋆⋆⋆ this is where we’re using SL(2,C) rather than GL(2,C) (which

only respects the form up to scalar))]]. So the induced homomorphism γ : SL(2,C)→
GL(3,C) actually factors through SO(3,C). It is easy to see that kerγ = {±1}. Now
consider SO(3,R) ⊆ SO(3,C).1 We have that γ−1(SO(3,R)) = SU(2) [[⋆⋆⋆

how to see this?]] Givne a finite subgroup H ⊆ SO(3,R), we get a finite subgroup
G = γ−1(H) ⊆ SU(2). In this way, we can find many finite groups that act on C2.

Example 5.1. Let H ⊆ SO(3,R) be the group of rotations of the cube; H is ab-
stractly isomorphic to S4. Now consider G = γ−1(H), a non-trivial central extension
of S4. We have |H| = 24 and |G| = 48.

Now we consider the action of G on V and try to describe the geometric quotient
V //G = Specm k[V ]G. We’d like to use Moilen’s formula to compute PRG(t), so we
need to be able to compute det(1−gt) for every g ∈ G. So we make a table, recording
the possible diagonal forms of g, the order of g, and the number of elements of the
given form: [[⋆⋆⋆ how to make this table?]]

form

(
1 0
0 1

) (
−1 0
0 −1

) (
e

2πi
3 0

0 e−
2πi
3

) (
−e 2πi

3 0

0 −e 2πi
3

) (
i 0
0 −i

) (
ω 0
0 ω−1

) (
−ω 0
0 −ω−1

)

order 1 2 3 6 4 8 8
number 1 1 8 8 18 6 6

where ω = 1+i√
2

= e2πi/8. Applying Moilen’s formula (4.10), we have that PRG(t) is

1

(1− t)2
+

1

(1 + t)2
+

8

1 + t+ t2
+

8

1− t+ t2
+

18

1 + t2
+

6

1 +
√

2t+ t2
+

6

1−
√

2t+ t2

1We’re cheating a little bit here. Up to isomorphism, there is only one non-degenerate quadratic
form on C2, but there are four non-isomorphic non-degenerate quadratic forms on R2, and we want
the positive definite one. With our choice of σ, we actually get the form with signature (1,−1,−1)

instead of (1, 1, 1). But we can change coordinates on Sym2 V so that σ becomes z1 7→ x2+y2

2i
,

z2 7→ xy, z3 = x2
−y2

2 . Then the image of σ is the surface z2
1 +z2

2 +z2
3 = 0, and the action of SL(2, C)

respects the quadratic form z2
1 + z2

2 + z2
3 .
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Simplifying, we get [[⋆⋆⋆ I haven’t verified this yet]]

P (t) =
1− t6 + t12

(1 + t6)(1− t8) =
1 + t18

(1− t12)(1− t8)

From this, we see that RG is a free module over the polynomial ring k[f8, f12] (for
some invariants f8 and f12 of degrees 8 and 12), with generators 1 (of degree 0) and
f18 (some invariant of degree 18).

So RG has three generators, but what are the relations? We already know that
f8 and f12 have no relations among them. But f2

18 must satisfy some relation. By
simple degree considerations, we see that the degree (RG)36 is spanned by f12f

3
8 and

f3
12, so we must have

f2
18 = af12f

3
8 + bf3

12

for some a, b ∈ k. Later, we’ll show that you can make a = b = 1 [[⋆⋆⋆ ref
once we’ve done it]]. So V //G ∼= Specm k[x, y, z]/(x2− yz3 − y3) is a surface with a
singularity at the origin. This is a so-called simple singularity. ⋄

Proposition 5.2. Let G act faithfully on an irreducible affine variety X = SpecmR,
and let K be the field of fractions of R. Then

1. RG ⊆ R is an integral extension.

2. KG is the field of fractions of RG.

3. KG ⊆ K is a normal extension, with Galois group equal to G.

Proof. (1) Given f ∈ R, consider the polynomial Pf (x) =
∏

g∈G(x − g(f)). It is
clear that Pf is a monic polynomial, that it is invariant under the action of G (so
Pf ∈ RG[x]), and that f is a root of Pf . Thus, RG ⊆ R is an integral extension.

(2) Suppose f/h ∈ KG, then we need to show that it can be written as the ratio
of invariant functions. By (1), h satisfies some monic polynomial hn + an−1h

n−1 +
· · · + a0 = 0 where ai ∈ RG and a0 6= 0. So h(hn−1 + an−1h

n−2 + · · · + a1) =
−a0 is an invariant element of R. Multiplying the numerator and denominator by
(hn−1 + an−1h

n−2 + · · · + a1), we have reduced to the case where f/h ∈ KG, and h
is invariant. Then since f/h = g(f/h) = g(f)/h, we have that f = g(f) for every
g ∈ G. [[⋆⋆⋆ here we’re using that X is reduced and irreducible. Alternatively, if
char(k) ∤ |G|, we can apply the Reynolds operator to f/h to get f/h = f̄/h.]]

(3) follows from (1) (as soon as you get an integral extension, ... use the primitive
element theorem and the fact that the action is faithful)[[⋆⋆⋆ ]]

Groups generated by reflections

In this section, we assume that k = k̄ and char(k) = 0.
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Definition 5.3. Let V be a vector space. A linear map r ∈ End(V ) is a reflection2

if r 6= id, r has finite order, and r fixes a hyperplane Hr. ⋄

So in some basis, the matrix of r is diagonal, with all but one entry on the diagonal
equal to 1, and the remaining entry is a root of unity. The hyperplane Hr is defined
by some non-zero linear function ℓr ∈ V ∗, which is determined up to scalar.

Given a reflection r and a function f ∈ R = k[V ], note that f and r(f) agree on
Hr, so f − r(f) vanishes along Hr. But the only polynomials that vanish along Hr

are those that are divisible by ℓr.

Definition 5.4. Given a reflection r, we define the Demazure operator Dr : R → R

by f 7→ f − r(f)

ℓr
. ⋄

Lemma 5.5. If r ∈ G is a reflection, then Dr : R→ R is RG-linear.

Proof. Let f ∈ RG and h ∈ R, then r(f) = f by assumption, so

Dr(fg) =
fh − r(fh)

ℓr
=
fh− r(f)r(h)

ℓr
= fDr(h).

Lemma 5.6. Let G ⊆ GL(V ) be generated by reflections, and let I ⊆ R be the ideal
generated by RG

>0. Let g1, . . . , gm and u1, . . . , um be homogeneous non-zero elements of
R, with the gi ∈ RG. If g1u1+· · ·+gmum = 0 and u1 6∈ I, then g1 ∈ RGg2+· · ·+RGgm.

[[⋆⋆⋆ There should be a good way to think about this lemma in terms of the
ring of coinvariants RG = R/I .]]

Proof. We will do induction on the degree of u1. If deg u1 = 0, then u1 = 1 (up
to scalar), so g1 = −g2u2 − · · · − gmum. Applying the Reynolds operator, we have
g1 = −g2ū2 − · · · − gmūm.

Now suppose deg u1 > 0. For a reflection s ∈ G, we apply Ds to the relation to
get g1Ds(u1) + · · · gmDs(um) = 0, a relation of lower degree. If the conclusion of the
lemma is not true, then we must have Ds(u1) ∈ I by induction, so u1 − s(u1) ∈ I .
But this is true for all reflections s ∈ G. Since G is generated by reflections, any
g ∈ G may be written as a product of reflections g = s1s2 · · · sb, and we see that

u1 − g(u1) =
(
u1 − s1(u1)

)
+ s1

(
u1 − s2(u1)

)
+ · · · + s1 · · · sb−1

(
u1 − sb(u1)

)

so u1 − g(u1) ∈ I for all g ∈ G. In particular, 1
|G|
∑

g

(
u1− g(u1)

)
= u1 − ū1 ∈ I . But

since ū1 ∈ I , this implies that u1 ∈ I .

Theorem 5.7 (Chevalley-Shephard-Todd). Suppose G ⊆ GL(V ). The ring k[V ]G is
isomorphic to a polynomial ring if and only if G is generated by reflections.

2Sometimes called a pseudoreflection.
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It turns out this is equivalent to saying that the corresponding geometric quotient
has no singularities. Today, we’ll prove that if G is generated by reflections, then
k[V ]G is a polynomial ring.

Proposition 5.8. If G is generated by reflections, then k[V ]G is a polynomial ring.

Proof. Let f1, . . . , fr be a minimal homogenous generating set for the ideal I ⊆ R
generated by RG

>0 such that deg f1 ≤ · · · ≤ deg fr. In the proof of Hilbert’s theorem
(3.3), we showed that the fp generate RG as a ring. So we need only to show that
there are no algebraic relations among the fp.

Claim. If R = k[x1, . . . , xn], then for each fp, there is some i such that
∂fp

∂xi
6∈ I.

Proof of Claim. Suppose that
∂fp

∂xi
∈ I for all i. Since deg f1 ≤ · · · ≤ deg fr and

deg
∂fp

∂xi
< deg fp, we must have

∂fp

∂xi
∈ Rf1 + · · ·+Rfp−1 for all i. Then we get

fp · deg fp =
∑

i

xi
∂fp
∂xi
∈ Rf1 + · · ·+Rfp−1

Since char(k) = 0, deg(fp) is invertible, contradicting the minimality of the set
{f1, . . . , fr}. Claim

Now suppose h(t1, . . . , tr) ∈ k[t1, . . . , tr] such that h(f1, . . . , fr) = 0. We may
assume h is homogeneous (where deg ti = deg fi) and of minimal degree. By the
claim, there is some xi such that ∂f1

∂xi
6∈ I . By the chain rule, we have

0 =
∂h

∂xi
(f1, . . . , fr) =

r∑

p=1

∂h

∂tp
(f1, . . . , fr) ·

∂fp
∂xi

.

Since ∂f1
∂xi
6∈ I , Lemma 5.6 tells us that

∂h

∂t1
(f1, . . . , fs) =

r∑

p=2

cp
∂h

∂tp
(f1, . . . , fs)

for some cp ∈ RG. But ∂h
∂t1

has degree strictly smaller than h, so this is an algebraic
relation of smaller degree among the fp, a contradiction.

Remark 5.9. Note that we must have r = n because K is a finite extension of KG,
the fraction field of RG. ⋄
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6 More CST

There is a classification of complex reflection groups. Of course, the usual reflection
groups are Coxeter groups (1934). Shephard and Todd in 1954 classified all finite
complex reflection groups. [[⋆⋆⋆ add refs to bibliography and put this comment
some place else (after complete proof of CST?)]]

Recall that for a finite group G (with char(k) ∤ |G|) acting linearly on an n-
dimensional vector space V = SpecmR, Moilen’s formula tells us that

PRG(t) =
1

|G|
∑

g∈G

1

det(1− gt) .

If the eigenvalues of the action of g are a1, . . . , an, then 1
det(1−gt) = 1

(1−a1t)···(1−ant)
. The

identity element of G is the only term in the sum that contributes 1
(1−t)n , and the only

terms that contribute a multiple of 1
(1−t)n−1 are reflections, the g which have a single

non-trivial eigenvalue. So by expanding PRG(t) as a Laurent series around t = 1, we
can extract |G| and the number of reflections in G.

Lemma 6.1. In the Laurent series expansion PRG(t) =
∑∞

i=−n ci(1 − t)i, c−n = 1
|G|

and c1−n = 1
2|G| |SG|, where SG ⊆ G is the set of reflections in G.

Proof. As we’ve already noted, the identity element is the only term in Moilen’s
formula that contributes a pole of order n, so the lowest order term in the Laurent
series expansion will be 1

|G|(1− t)−n.
We’ve also seen that the only elements g ∈ G that contribute a pole of order n−1

are the reflections. If the only non-trivial eigenvalue of g is ε, then the coefficient of
(1− t)1−n in the Laurent series expansion of 1

det(1−tg) is

d

dt

( −(1− t)n
(1− t)n−1(1− εt)

)∣∣∣∣
t=1

=
(1− εt)− ε(1− t)

(1− εt)2

∣∣∣∣
t=1

=
1

1− ε.

If g is a reflection of order 2, then ε = −1, so it contributes 1
2

to the coefficient of
(1− t)n−1. Otherwise, g 6= g−1, and together these two reflections contribute

1

1− ε +
1

1− ε−1
=

1− ε−1 + 1− ε
1− ε− ε−1 + εε−1

= 1

to the coefficent of (1− t)1−n, so we may think of g and g−1 as each contributing 1
2
.

Adding these contributions up and multiplying by the 1
|G| from Moilen’s formula, we

get c1−n = 1
2|G| |SG|.

Proposition 6.2. If

PRG(t) =
1

(1− td1) · · · (1− tdn)

then |G| =
∏

i di and |SG| =
∑

i(di − 1).
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Proof. Let the Laurent series expansion be

1

(1− td1) · · · (1− tdn)
= PRG(t) =

∞∑

i=−n
ci(1− t)i.

Then we compute

c−n =
(1− t)n

(1− td1) · · · (1− tdn)

∣∣∣∣
t=1

=
1∏

i(1 + t+ · · · + tdi−1)
=

1∏
i di

c1−n =
d

dt

( −(1− t)n
(1− td1) · · · (1− tdn)

)∣∣∣∣
t=1

=
d

dt

(
−
∏

i

1

1 + t+ · · ·+ tdi−1

)∣∣∣∣
t=1

=
∑

i

di(di − 1)

2d2
i

· 1∏
j 6=i dj

=
1

2
∏

j dj

∑

i

(di − 1).

Now the result follows from Lemma 6.1.

Proposition 6.3. If

PRG(t) =
1

(1− td1) · · · (1− tdn)

then G is generated by reflections.

Proof. [[⋆⋆⋆ For some reason]] RG must be a polynomial algebra [[⋆⋆⋆ this
should probably just be part of the hypothesis of the proposition]]. Suppose RG =
k[f1, . . . , fn] with deg fi = di. Let H ⊆ G be the subgroup generated by all the
reflections in G. By Proposition 5.8, RH = k[h1, . . . , hn] and PRH (t) = 1

(1−te1)...(1−ten)
.

We may assume that d1 ≤ · · · ≤ dn and e1 ≤ · · · ≤ en.
We claim that ei ≤ di. To see this, suppose dp < ep for some p. By degree

considerations, and using that RG ⊆ RH ⊆ R, we have that fi = Qi(h1, . . . , hp−1) for
some polynomials Qi and all i ≤ p. But Q1, . . . , Qp ∈ k[h1, . . . , hp−1] must satisfy an
algebraic relation since the Krull dimension of k[h1, . . . , hp−1] is p−1. This contradicts
the algebraic independence of the fi.

On the other hand, the number of reflections in G and H must be equal, so∑
i(di − 1) =

∑
i(ei − 1). Combining this with the inequality ei ≤ di, we must have

ei = di for all i. Then by Lemma 6.1, we have

|H| =
∏

i

ei =
∏

i

di = |G|

so G = H, so G is generated by reflections.

Combining Lemma 6.1 with Propositions 5.8 and 6.3, we get the following theorem.

Theorem 6.4 (Chevalley-Shephard-Todd). Suppose G ⊆ GL(V ). The ring k[V ]G

is isomorphic to a polynomial ring if and only if G is generated by reflections. If
this is the case, with k[V ]G = k[f1, . . . , fn] and deg fi = di, then |G| =

∏
i di and

|SG| =
∑

i(di − 1).
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Question: do the other symmetric functions in the di give you more information?
Answer: I don’t see how. Maybe if you write out more terms in the Laurent series
expansion, you’ll get something.

Lemma 6.5. For any linearly independent set {y1 + I, . . . , yk + I} in R/I (where I
is the ideal generated by RG

>0), the set {y1, . . . , yk} is RG-linearly independent in R.

Proof. We use induction on k. If k = 1, then the result is clear since R has no
zero-divisors.

Suppose you have a relation h1y1+· · ·+hkyk = 0 for some hi ∈ RG. By assumption,
y1 6∈ I , so by Lemma 5.6, we get that h1 ∈ RGh2+· · ·+RGhk, say h1 = u2h2+· · · ukhk.
Substituting into the previous relation, we get the relation

h2(y2 − u2y1) + · · ·+ hk(yk − uky1) = 0.

Since the ui ∈ RG reduce to scalars in R/I , {y2 − u2y1 + I, . . . , yk − uky1 + I} is
a linearly independent set in R/I , so we have h2 = · · · = hk = 0 by the inductive
hypothesis, and then h1 = 0 by the base case.

Proposition 6.6. If G is generated by reflections, then R is a free RG-module.

We already discussed that we know the rank because we know that K is a degree
|G| extension of KG.

Proof. To choose a set of generators, consider the ideal I = RG
>0 ⊆ R. Choose

homogeneous elements y1, . . . , yℓ ∈ R such that y1+I, . . . , yℓ+I form a basis for R/I .
By induction on degree, the yi generate R as an RG-module. So we need only to show
independence. [[⋆⋆⋆ they generate by the graded version of Nakayama’s lemma:
for any graded ideal I and any finitely generated module M , M = IM ⇒ M = 0 and
generators for M/IM lift to generators of M .]]

Independence follows from Lemma 6.5

More generally, a finite extension of polynomial algebras is free. [[⋆⋆⋆ the same
proof doesn’t work ... can we get it to work?]]

Semi-invariants

Suppose G acts on X. Suppose I have a character χ : G→ k×. A function satisfying
the condition f(gx) = χ(g)f(x) is called semi-invariant. So even though f is not
invariant, the corresponding line kf(x) is invariant.

Suppose you want some rational function f/g to be invariant, it suffices for f and
g to be semi-invariant with the same character.

We are going to construct semi-invariants for groups generated by reflections.
Look at the set SG of all reflections. Clearly G acts on SG by conjugation. For each
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s, we have the associated hyperplane Hs and a linear functional ℓs = H⊥ ⊆ V ∗.
Decompose SG as a union of orbits. SG = O1 ∪ · · · ∪Ok. Then define

fOi
=
∏

s∈Oi

ℓs.

We claim that this is semi-invariant. This is easy to check using the identity

g(ℓs) = ℓgsg−1 .

(up to scalar).

Proposition 6.7. Any semi-invariant can be written uniquely in the form fa1

O1
· · · fak

Ok
f0,

where f0 ∈ RG, and 0 ≤ ai ≤ ord(s) where s ∈ Oi.

Proof. First, induction on degree. Pick a semi-invariant f . If it is not invariant, pick
some s ∈ SG such that s(f) = εf for ε 6= 1. Then I claim that ℓs|f because ℓs
divides f − s(f) = (1− ε)f . Then ℓs′ |f for any s′ in the orbit of s. Then procede by
induction.
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7 Examples of Quotients by Finite Groups

Example 7.1. Sn acts on An by permuting the coordinates: π(x1, . . . , xn) = (xπ(1), . . . , xπ(n)).
In this case, the invariants RG is the algebra of symmetric functions k[σ1, . . . , σn]. Sn
is generated by reflections (the transpositions). For the reflection s = (i j), we
get ℓs = xi − xj. We can verify that d1d2 · · · dn = n! = |Sn|. We also know that∑

(di − 1) = n(n− 1)/2 is the number of reflections.
Now let’s look for semi-invariants. SG has just one orbit O, for which fO =∏

i<j(xi − xj) = ∆, the Vandermonde determinant. We have that π(∆) = sgn(π)∆.
⋄

Example 7.2. Now consider the subgroup An ⊆ Sn. Since every element of RAn is
invariant under An, the action of Sn is really an action of Z/2. So RAn decomposes
(as a vector space) into a subspace invariant under the action of Sn and a subspace
where Sn acts by −1. [[⋆⋆⋆ more generally, if H ⊳ G with G/H abelian, then the
action of G on RH is really the action of the abelian group G/H, so it decomposes into
isotypic components for irreps of an abelian group. Since irreps of an abelian group
are 1-dimensional, RH has a basis of semi-invariants]]. We have that k[x1, . . . , xn]

An =
k[σ1, . . . , σn]⊕∆k[σ1, . . . , σn]. We have that ∆2 is some specific symmetric polynomial
that you can express in terms of symmetric functions. ⋄

Example 7.3. Consider the group Γ of symmetries of a cube (not just rotations).
We have that |Γ| = 48. It is generated by reflections, but it should be clear that there
are two types (conjugacy classes) of reflections. If the coordinates of the cube are
(±1,±1,±1), then one type of reflection is with respect to x⊥i , and the other with
respect to (xi ± xj)⊥.

First let’s find invariants and semi-invariants. We know that d1 + d2 + d3 = 12
and d1d2d3 = 48. There is one solution: (d1, d2, d3) = (2, 4, 6). We have one invariant
given by the quadratic form: h2 = x2

1+x
2
2+x

2
3. But we also have h4 = x4

1+x
4
2+x

4
3 and

h6 = x6
1 + x6

2 + x6
3. These are the invariants. We have semi-invariants h̃3 = x1x2x3,

h̃6 =
∏

i<j(xi ± xj). ⋄

Example 7.4. Now let’s take H ⊆ Γ the subgroup of rotations of the cube. Clearly
the invariants hi remain invariants. But we get one more invariant: h9 = h̃3h̃6. You
know you have all the invariants because the subgroups is index 2 [[⋆⋆⋆ so the ring
of invariants is a module of rank 2 over the other guy?]]. ⋄

Example 7.5. Recall that we have a 2-fold cover γ : SU(2) → SO(3,R). We got
this by considering the squaring map C2 → Sym2 C2 ∼= C3. Let G = γ−1(H) (with H
as before). We get three invariants: f8, f12, and f18.

Since γ is of degree 2, all degrees multipy by 2. f4 = γ−1(h2), f8 = γ−1(h4),
f12 = γ−1(h6), and f18 = γ−1(h̃9). But since γ(V ) is the vanishing locus of h2, that
invariant goes away. We get the relation

f2
18 + f12f

3
8 + f3

12 = 0
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So the corresponding quotient is the surface x2 + yz3 + y3 = 0. This is what is called
a simple singularity. ⋄

Simple singularities. Consider locally maps like φ : Cm → C with φ(0) = 0. We’d
like to classify germs of such maps at 0 [[⋆⋆⋆ something to do with classifying
orbits]]. If non-singular, then easy, but if singular, then we have to work harder.

Smooth map φ is simple (or φ−1(0) is a simple singularity) if whenever we deform
it a little bit, there are only finitely many orbits (under the action of the group) in a
small neighborhood. That is, a small neighborhood of φ intersects non-trivially with
a finite number of orbits of G. [[⋆⋆⋆ orbits of the group D̃iff(Cm) × D̃iff(C) (the
twiddle means you work germy).]]

Finite subgroups of SU(2)

Given G ⊆ SU(2), we get an image group in SO(3). Let’s classify these groups.
The main result is that you get rotation groups, dihedral groups, and rotations of
polytopes.

G ⊆ SO(3,R) acts on S2. Consider P = {p ∈ S2|Stab(p) 6= {1}}. This is a
finite set with a G-action, and they will correspond to vertices, edges, and faces of
the polytope.

Write P as a union of orbits P = P1⊔· · ·⊔Pd. Let g = |G|, and let gi = |Stab(pi)|
for any pi ∈ Pi. Then {(g, p)|p ∈ P, g ∈ G r {1}, gp = p} can be counted in two
ways. Counting elements of the group: each non-trivial rotation fixes two points, so
we get 2 · (g − 1). On the other hand, we can count by orbits, in which case we get∑d

i=1
g
gi

(gi − 1). So we get

2g − 2 = gd −
∑ g

gi
⇒ d = 2 +

d∑

i=1

1

gi
− 2

g
.

From this, we can see that d can only take values 1, 2, or 3. The gi are never 1, so
the sum is less than or equal to 1

2
|G|. You can check that d = 1 is impossible. For

d = 2, there is only one possibility: g1 = g2 = g, which happens when the group is
generated by a single rotation, so it is a cyclic group. Finally, if d = 3, we can write
1+ 2

g
=
∑

1
gi

, so the gi cannot be too big. One of them must be 2, so the possibilities
are

– d = 3, g1 = g2 = 2, g3 = g/2. You get the north pole, south pole, and a polygon
on the equator. This is the dihedral group.

– d = 3, g1 = 2, g2 = g3 = 3, g = 12. Symmetries of a tetrahedron.

– d = 3, {gi} = {2, 3, 4}, g = 24. Rotations of the cube, S4.

– d = 3, {gi} = {2, 3, 5}, g = 60. Rotations of the dodecahedron, A5.
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We’re interested in subgroups of SU(2). In the first case (d = 2) you get the
same group, but in all the other cases, you get a non-trivial central extension. For
the dihedral case, you get 〈

(
ε 0
0 ε−1

)
,
(

0 1
−1 0

)
〉

group invariants relations type

Z/n f2 = xy, fn = xn, f̄n = yn fnf̄n − fn2 = 0 An−1

D̃n f2n, f2n+2, f4 f2
2n+2 + f4f

2
2n + fn+1

4 Dn+1

tetrahedron f6, f8, f12 f4
6 + f3

8 + f2
12 E6

cube f8, f12, f18 f2
18 + f12f

3
8 + f3

12 E7

dodeca f12, f20, f30 f2
30 + f3

20 + f5
15 E8

For a simple singularity φ(x, y, z) = 0, call it X0. We deform to get φ(x, y, z) = ε,
which we call Xε. Study it in a neighborhood of 0. H2(X,Z) is a lattice, equiped
with a quadratic form (index of intersection). On the other hand, you have a Dynkin
diagram, which gives you the root lattice, which will be isomorphic (with it’s usual
form) to H2(X,Z).

We’ve been talking about maps C3 → C. But there is a theorem that for any
Cm → C, you get the same singularities. Any singularity is of the form (x2 + xy +
z3) + (x2

1 + · · · x2
m), a surface singularity plus some quadratic part.

In the theory of Lie groups and the theory of algebraic groups, there is a very
small difference between the usual Dynkin correspondence. I’d like to point out why
the characteristic 0 case is very nice, and why we get many more reductive groups in
characteristic 0.

Lie algebras and algebraic groups

Assume that X is an affine variety. We have a tangent space TxX = (mx/m
2
x)

∗, where
mx is the maximal ideal in the local ring at x. We can think of it as TxX = Der{Ox →
k}. Or we can think of vector fields Der(O(U),O(U)) for any open set U ⊆ X. (If
you don’t work with an affine variety, you need to take sheafy derivations). In our
case, X = G is an affine non-singular variety (because the dimension of the tangent
space is uniform).

For derivations d1, d2, the bracket [d1, d2] = d1◦d2−d2◦d1 is again a derivation. We
can consider right-invariant derivations. Those derivations which commute with the
maps Rg : G→ G, given by multiplication by g on the right. g = {d|d ◦Rg = Rg ◦ d}.
In terms of hopf algebras, ∆ ◦ d = (d ⊗ id) ◦∆.



8 Chevalley-Jordan decomposition, v. 12-9 33

8 Chevalley-Jordan decomposition

A new set of exercises has been posted.
I’m going to talk about algebraic groups. The main goal is to describe reductive

algebraic groups in any characteristic. Recall that we’re only talking about affine
algebraic groups. So we may assume G ⊆ GL(V ).

Last time I used right-invariant derivations, but I actually prefer left invariant.
We have g = {d|Lg ◦ d = d ◦ Lg} ⊆ Derk[G]. This condition is equivalent to

(id⊗d) ◦ ∆ = ∆ ◦ d in the Hopf algebra k[G]. Algebraically, for x ∈ TeG, we can
realize x ∈ Der(Oe, k). We have Lg(x) = gx. The vector field Lx = (id⊗x) ◦∆ is left
invariant. Another way to describe this is that Lxf |g = Lg(f)|e.

So we have g ∼= TeG. In particular, since the group G is non-singular, dimG =
dim g. In fact, we’ve constructed a functor from the category of affine algebraic groups
to the category of finite-dimensional Lie algebras. To see this, you have to check that
for a homomorphism φ : G → H of algebraic groups, the induced Dφ|e : g → h is a
homomorphism of Lie algebras. We’ll call this functor Lie.

Remark 8.1. If G is a Lie group, or analytic complex group, then if G is connected,
then g almost determines G. For a Lie algebra g, there is a unique connected simply-
connected group G̃ such that Lie(G̃) = g. And any other connected Lie group G with
the same Lie algebra is a quotient of G̃ by some central discrete subgroup Γ.

However, this is not true in the algebraic category. We’ve discussed the algebraic
groups k× and k. Both have the same Lie algebra (the unique 1-dimensional Lie
algebra), but neither is a quotient of the other. Basically, in differential geometry, we
have the exponential map, which is very powerful. But in the algebraic category, we
have some other tools which are perhaps even better. ⋄

In our case, we always have G ⊆ GL(V ). So first, we’ll compute the Lie algebra of
GL(V ). It is gl(V ), the matrix algebra, with the bracket [X, Y ] = XY − Y X. Since
G is a closed subgroup, we just have to compute the tangent space to the identity.

How do you compute this? Consider A = k[ε]/ε2. We have that Lie(G) = {X ∈
gl(V )|1 + εX ∈ G(A)}.

Example 8.2. We have the group SL(V ) = {g ∈ GL(V )| det g = 1}. So sl(V ) =
{X| det(1 + εX) = 1 + ε tr(X) = 1} = {X| tr(X) = 0}. ⋄

Given the Lie algebra, what can you say about the group? Like reductivity or
some other properties?

Representations

If we have a representation G→ GL(V ), we automatically get a representation g→
gl(V ). This works if V is finite-dimensional. Otherwise, we have σ : V → k[G] ⊗ V .

Then any x ∈ g acts by V
σ−→ k[G]⊗ V x⊗id−−→ V .
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Given a representation V of G, we have V G = {v|gv = v for all g ∈ G}. Similarly,
we get V g = {v|Xv = 0 for all X ∈ g}.

Exercise. V G ⊆ V g.

The inverse is not true! For example, if G is finite, then g is trivial. The inverse is
true if char(k) = 0 and G is connected (which means irreducible). This is very useful
because often checking that something is invariant under an infinitessimal action is
easier than checking that it is invariant under a global action.

Proposition 8.3. G connected and char(k) = 0, thne V G = V g.

Proof. Suppose v ∈ V g. Then consider the map φ : G → V given by g 7→ gv. We
have Dφ|e = 0 by assumption. Since φ is equivariant with respect to the action
of G, Dφ = 0 [[⋆⋆⋆ Use that Dg never sends non-zero things to zero and the
commutative square you get from applying D to the equivariance square]]. Since G
is connected, the image must be a point. [[⋆⋆⋆ need a result: in characteristic
zero, the kernel of d : A → ΩA/k is exactly k. This uses that A is faithfully flat over
k (actually, we have a section, so we don’t need the faithfully flat yoga)]]

Note that we need the fact that if the differential of a map is zero, then the map is
constant, which is clearly not true in characteristic p. To see this, consider the action
of k× on V by t · v = tpv. Then the action of Lie(k×) is trivial.

The same is true with invariant subspaces. Suppose W ⊆ V is a G-invariant
subspace, then it is invariant with respect to the action of g. But the converse is only
true if char(k) = 0 and G is connected. The argument is similar.

Since G ⊆ GL(V ), consider the stabilizer of some v ∈ V , Gv = {g ∈ G|gv = v},
and gv = {X ∈ g|Xv = 0}. We always have Lie(Gv) ⊆ gv, but other containment is
not always true. If char(k) = 0, then Lie(Gv) = gv and Tv(G · v) = gv. Note that it
doesn’t make a difference if G is connected in this case.

Example 8.4 (Adjoint representation). A group G can act on itself by conjugation:
x 7→ gxg−1. The identity is preserved, so it preserves g = TeG. Thus, we have
a representation Ad: G → GL(g). In the case G = GL(V ), then g = gl(V ), and
the action is honestly action by conjugation: X 7→ gXg−1. In general, this is an
automorphism of g as a Lie algebra, not just a linear automorphism!

We get a corresponding representation ad : g→ gl(g). This is given by ad(X)(Y ) =
[X, Y ]. ⋄

If char(k) = 0 and G is connected, then kerAd = Z(G). If G is connected and g

is abelian, then G is abelian as well. This is not true in characteristic p, and here is
an example.

Example 8.5. G =
{( a 0 0

0 ap b
0 0 b

)
|a ∈ k×, b ∈ k

}
then g =

{( t 0 0
0 0 s
0 0 0

)
|s, t ∈ k

}
. g is

abelian, but G is not. We have that kerAd = {
( 1 0 0

0 1 b
0 0 1

)
}, but Z(G) = {1}. ⋄
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Chevalley-Jordan decomposition

This is nice and works in all characteristics. However, we will assume k = k̄.

Theorem 8.6. Any operator x ∈ Endk(V ) on a finite dimensional space can be
written uniquely as a sum of a semi-simple (diagonalizable) operator and a nilpotent
operator X = Xs +Xn such that

1. [Xs, Xn] = 0

2. There exist polynomials p(t) and q(t) with zero constant coefficients such that
Xs = p(X) and Xn = q(X).

This is basically Jordan normal form of the operator, plus something else. If
X is invertible, then Xs is also invertible. Then X = Xs(1 + X−1

s Xn) = XsXu.
The operator X−1

s Xn is not nilpotent, but 1 + X−1
s Xn is unipotent, meaning that

(x − 1)N = 0. This is Chevalley decomposition. The following doesn’t work for Lie
groups, but is true for algebraic groups.

Theorem 8.7. If G ⊆ GL(V ) is a closed algebraic subgroup, then g ∈ G⇒ gs, gu ∈
G, and x ∈ g⇒ xs, xu ∈ g.

The proof follows from a simple observation.

Lemma 8.8. Suppose H ⊆ G are affine groups, and suppose IH is the ideal corre-
sponding to H. Then H = {g ∈ G|g(IH) ⊆ IH} and h = {x ∈ g|x(IH) ⊆ IH}.

Proof. The containments ⊆ should be clear.
Suppose g ∈ G such that g(IH) ⊆ IH, and let f ∈ IH . It is enough to show that

f(g−1) = 0 [[⋆⋆⋆ this shows that g−1 ∈ H, so g ∈ H]]. But f(g−1) = (gf)(e) = 0
(since gf ∈ IH and e ∈ H).

From this lemma, we get the theorem because gs and gu are polynomials in g! As
soon as g preserves some space, gs and gu must also preserve it. [[⋆⋆⋆ we’re taking
G = GL(V ) and H = G, and regarding GL(V ) as sitting inside of End(V ) to apply
the Jordan form theorem]]

It looks like the decomposition depends on the choice of embedding G ⊆ GL(V ),
but in fact the decomposition is natural.

Remark 8.9. For any representation ρ : G → GL(V ), ρ(gs) is always semi-simple
and ρ(gu) is always unipotent.

Suppose we define G as being in GL(W ), so G ⊆ GL(W ), then gs and gu act semi-
simply and unipotently on W by construction. So gs and gu are semi-simple (resp
unipotent) operators onW ∗, so they are semi-simple (resp unipotent) on Sym∗(W ∗) =
k[W ], so they are semi-simple (resp unipotent) on k[G] = k[W ]/IG. V ⊗ V ∗ → k[G],
given by v⊗ψ 7→ 〈ψ, gv〉. If I let G act only on the V and not the V ∗, then the map
is equivariant. So any finite-dimensional representation appears in k[G] [[⋆⋆⋆ For
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the map to be injective, you need V to be irreducible, so we’re only showing that gs
and gu act as expected on irreducible representations]]. If you like, k[G] is an injective
generator for the category of algebraic G-modules. ⋄

For Lie groups, this doesn’t hold. For example, consider the Lie algebra
(
t t
0 t

)
.

Expoentiating, we get a Lie group. First, note that the Lie algebra is not closed under
taking semisimple and nilpotent parts.

Q: is the problem that we can have Lie subgroups that aren’t closed? A: no, that’s
not the only problem. You can find a closed subgroups which is not a Zariski closed
subgroup, in which case the decomposition result fails. Moreover, you can take bad
representations which violate the decomposition result.
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9 Classifying Reductive Groups, Part I

Today we’ll try to classify reductive groups in characteristic p.
Last time, we showed that any g ∈ G has a natural decomposition g = gsgu. Let

Gs ⊆ G be the set of semi-simple elements and Gu be the set of unipotent elements.
In general Gu ⊆ G is a Zariski closed set (the vanishing locus of (1 − x)N for some
N).

Fact from linear algebra: any commuting set of semi-simple (diagonalizable) ma-
trices can be simultaneously diagonalized.

Consider the case where G is an abelian group. In this case, GsGs = Gs and
GuGu = Gu, so we get a decomposition G = Gs × Gu as a group. We already know
that Gu is closed, and we get that Gs is closed. This gives us a decomposition of the
Lie algebra g = gn ⊕ gu.

Proposition 9.1. Suppose G = Gs is an abelian group. Then G = Γ×G0, where Γ
is a finite group (with char(k) ∤ Γ) and G0 is isomorphic to a torus.

Proof. We have G ⊆ GL(V ) for some V . Since all elements of G are diagonalizable
and they commute, they are simultaneously diagonalizable, so in some basis for V ,
G is a closed subgroup of the group of diagonal matrices, so we are describing closed
subgroups of a torus. So we have G ⊆ T a closed subgroup in a torus. R = k[T ] ∼=
k[t±1

1 , . . . , t±1
n ]. Consider the character lattice T ∨. Then R =

⊕
χ∈T∨ k · tχ, where tχ

is the monomial such that g · tχ = χ(g)tχ. Define L = {χ ∈ T ∨|tχ(G) = 1} ⊆ T ∨.
T ∨/L = Γ∨ × Zm for some finite group Γ∨. So G = Γ ×G0, where G0 is a torus

of rank m. [[⋆⋆⋆ We’re using that G∨∨ = G and that −∨ is exact here]]
[[⋆⋆⋆ next three paragraphs are to show that p ∤ |Γ|]] Consider Q ⊆ R, the

linear subspace spanned by all expressions of the form tχ − tχ′

where χ, χ′ ∈ L, and
let IL be the ideal generated by Q. We have IL =

⊕
χ∈T∨/LQχ, where Qχ = tχQ.

Note that Q1 = Q. It is clear that this ideal is invariant under the action of G since Q
is invariant under the action of G. It is also clear that IL ⊆ IG because it is generated
by Q and every element of Q vanishes on G.

Now R =
⊕

χ∈T∨/LRχ, where Rχ = {f ∈ R|f(gx) = χ(g)f(x) for all g ∈ G} =⊕
χ′−χ∈L k · tχ

′

. Each Qχ has codimension 1 in Rχ because Rχ/Qχ is a 1-dimensional
vector space (the generators of Qχ identify all the basis vectors of Rχ). If J is some
G-invariant ideal, then J =

⊕
χ∈T∨/L(J ∩ Rχ) [[⋆⋆⋆ present this better]]. So the

ideal IL is a maximal G-invariant proper ideal in R because any ideal that contains
Rχ must be all of R since tχ

′

Rχ = Rχ′+χ. So we must have IG = IL.
Finally, we’d like to show that p ∤ |Γ|. This is equivalent to showing that T ∨/L

doesn’t have an element of order p. If there is an element of order p, then you can find
χ 6∈ L such that χp ∈ L. But then χp − 1 ∈ IG, so χ− 1 ∈ IG (because IG is radical
(since G is required to be a variety), so χ−1 ∈ IG, so χ ∈ L. [[⋆⋆⋆ more generally,
if we don’t require G to be reduced, I think we get that Γ is a diagonalizable group
scheme.]]
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Lemma 9.2. Suppose G is a reductive group, then Z(G)s = Z(G).

Proof. Suppose u ∈ Z(G)u with u 6= 1, and suppose G→ GL(V ) is a representation
on which u acts non-trivially. Then ker(u− 1) is a G-invariant subspace of V , but it
doesn’t split because (u− 1) is a nilpotent operator.

Proposition 9.3. If G is a reductive group, then gs = g.

Proof. We can assume G is not abelian, because in the abelian case, it’s already
clear. Pick a representation V of G. Consider Symp(V ) ⊇ W = {up|u ∈ V }. W is an
invariant subspace.

Claim: If g has a non-zero nilpotent element, then there is no g-invariant subspace
W ′ such that Symp V = W ⊕W ′. The action on Symp V is g(xi) =

∑
aijxi

∂
∂xj

. So

W ⊆ (Symp V )G. Suppose we have a non-zero nilpotent element A ∈ g. Pick x, y
such that Ax = y and Ay = 0. Then Axp = 0 and A(xyp−1) = yp. Any W ′ must
contain a vector of the form xyp−1 + zp [[⋆⋆⋆ because in the quotient Symp(V )/W ,
we have some element xyp−1, so take a lift]], and when we apply A to it, we get into
W , so W ′ is not invariant.

Proposition 9.4. Suppose G is connected and gs = g. Then G is abelian (and must
therefore be a torus).

Proof. Let G ⊆ GL(V ). We will induct on the dimension of G and the dimension of
V . The idea is to find a subgroup which is connected, so it must be a torus, and then
procede.

I will assume k 6= Fp, but note that if k = Fp, then you can change base to some
transcendental extension and apply the proof. The conclusion is stable under base
change. I want to have elements of infinite order, and elements in an algebraic group
over Fp are of finite order.1

Step 1. G has a dense set of elements of infinite order. If g ∈ G is of finite order, its

characteristic polynomial pg(t) ∈ Fp[t] [[⋆⋆⋆ or Q[t] if in characteristic zero]]. The
coefficients are σi(g) ∈ Fp, the elementary symmetric functions. Since G is connected,
it is impossible because the set of values of a regular function is a constructible set
[[⋆⋆⋆ a constructible set contains an open subset of its closure, so the only dense
constructible sets are those that contain an open subset, but Fp ⊆ A1

k contains no
open subset, so the only constructible subsets of Fp are finite sets.]]. So each σi(g)
is constant, so every g must have the same characteristic polynomial as the identity
element of G, (1 − t)n, so all elements are unipotent. So the closed subgroup Gu is
equal to G, implying g = gu, a contradiction. Density follows similarly [[⋆⋆⋆ you
get that the σi are constant on an open neighborhood of the identity]].

Step 2.

1Note that since GLn(Fq) is a finite group, all its elements are of finite order. It follows that all
elements of GLn(Fp) are of finite order, so all closed points of a group G over Fp are of finite order.
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Lemma 9.5. For s ∈ Gs, let CG(s) = {g ∈ G|sgs−1 = g} and Cg(s) = {x ∈
g|Ads(x) = x}. Then LieCG(s) = Cg(s).

Proof. LieCG(s) ⊆ Cg(s) is clear, so we only need to show that the dimensions are
equal. The result is true in the case G = GL(n) because the condition of being the in
the centralizer looks exactly the same in the group and the Lie algebra, and it is some
linear condition CG(s) = {g|gs = sg} (even if s is not semi-simple, btw). So all the
p-th power problems don’t appear here at all. [[⋆⋆⋆ CG(s) may be non-reduced in
general, and the GLn argument works in general. The argument that follows is for
CG(s)red rather than CG(s).]]

Now consider two locally-closed Zariski sets. Y = {gsg−1s−1|g ∈ G} and S =
{gsg−1s−1|g ∈ GL(n)} (remember that G ⊆ GL(n) is a closed subgroup). Y ⊆ S∩G,
so TeY ⊆ TeS ∩ g. Define n = TeS, then gl = Cgl(s)⊕ n [[⋆⋆⋆ s is semisimple, so
it always acts diagonalizably. Choose a basis where Ads is diagonal. Then 1−Ads is
some diagonal operator for which TeS is the image and Cgl(s) is the kernel, so you get a
direct sum decomposition]]. We have the decomposition g = Cg(s)⊕m [[⋆⋆⋆ again
using the diagonal 1− Ads]]. Then m = g ∩ n [[⋆⋆⋆ g ⊆ gl is a subspace invariant
under the action of the diagonal operator 1 − Ads]]. This gives dimTeY ≤ dimm.
But we also have dimTeY +dimCG(s) = dimg = dimCg(s)+dim m by the usual dim
group is dim orbit plus dim stabilizer. But this tells me that dimCG(s) ≥ dimCg(s),
which is what we wanted.

The moral is that if an element is semi-simple, you get the same sort of thing you
usually get in characteristic 0.
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10 Classifying Reductive Groups, Part II

Statements we proved last time:

1. If G = Gs and G abelian, then G = Γ×G0 where G0 is a torus and Γ is a finite
group with char(k) ∤ |Γ|.

2. s ∈ Gs, then Lie(CG(s)) = Cg(s). From which we get the corollary: If Cg(s) = g

and G is connected, then s ∈ Z(G).

3. If G is reductive, then Z(G) = Z(G)s.

4. If G is reductive and char(k) > 0, then g = gs.

Then we were in the middle of the following

Proposition 10.1. Suppose g = gs and G is connected. Then G is abelian (and
therefore a torus).

So we get a description of reductive groups in characteristic p.

Proof. We were doing induction on dimG and dimV , where G ⊆ GL(V ). By ex-
tending our ground field, we showed that the elements of infinite order is a dense
set.

Let g ∈ G be of infinite order, and letH = [CG(g)]0 (connected component). Since
g is of infinite order, dimH ≥ 1 (since it isn’t finite since it contains the powers of
g). If for any infinite order element g we get H = G, then we are done since elements
of infinite order form a dense set. So we may assume H 6= G. Then by induction on
dimG, H is abelian and hence is a torus.

Since H is a torus, we get the decomposition V =
⊕

χ∈P Vχ, where P ⊆ H∨ and
Vχ = {v ∈ V |hv = χ(h)v}. Similarly, we get g =

⊕
χ∈Q gχ for some Q ⊆ H∨. Now it

is easy to check that gχVη ⊆ Vχη. This tells me that gnχVη ⊆ Vχnη. But P is finite, so
if χ 6= 1, we must have that gχ is nilpotent. But since g = gs, there are no nilpotent
elements, so gχ = 0 for χ 6= 1. Thus, the adjoint action of H on g is trivial. So
H ⊆ Z(G).

Suppose |P | > 1. Then since the action of G commutes with the action of H, each
Vχ is G-invariant. We have projections π : G → Gχ ⊆ GL(Vχ). But by induction on
dimV , each Gχ is abelian. So G is abelian.

So we may assume |P | = 1. So H consists only of scalar matrices. Then G̃ =
[G ∩ SL(V )]0 has dimension smaller than G, and G is generated by G̃ and H. By
induction on dimG, G̃ is abelian.

Corollary 10.2. If G is a reductive connected group and char(k) = p > 0, then G is
a torus.

Theorem 10.3. G is reductive in characteristic char(k) = p > 0 if and only if G0 is
a torus and p ∤ |G/G0|.
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Proposition 10.4. G is reductive if and only if G0 is reductive and G/G0 is reductive.

Proof. Suppose G is reductive, and let V be a representation of the quotient group
G/G0. It lifts to a representation of G, and the representation must split completely
because G is reductive.

Now suppose V is a not completely reducible representation of G0, then W =
k[G] ⊗k[G0] V is a finite-dimensional representation of G which is not completely
reducible. [[⋆⋆⋆ check for yourself]]

Now suppose G0 and G/G0 are reductive. Recall that it is enough to show that
V = V G ⊕ W . We have that V = V G0 ⊕ W ′ since G0 is reductive, and we have
V G0 = V G ⊕W ′′ as a representation of G/G0. [[⋆⋆⋆ it is easy to check that W ′ is
invariant under the action of G]]

By the way, we had a little question about why it was enough to check something
on finite-dimensional representations. One of the criteria was that if V → W is
surjective, then so is V G → WG. Since every representation is a union of finite-
dimensional representations, we get what we want.

Remark 10.5 (Restricted Lie algebras). Suppose char(k) = p > 0. You can check
that if D ∈ Der(k[G]), then Dp is again a derivation (follows from the binomial
theorem). So we have a homomorphism of derivations D 7→ Dp (it plays well with
the bracket). Left invariant derivations are sent to left invariant derivations, so we
get a homomorphism g→ g, denoted by x 7→ x(p). Such a Lie algebra (there are some
axioms) is called a restricted Lie algebra. ⋄

Example 10.6. If G = k, then k[G] = k[t] and g = k · ∂
∂t

. We have that ( ∂
∂t

)p = 0,
so our map is x(p) = 0.

On the other hand, if G = k×, then k[G] = k[t, t−1] and g = k · t ∂
∂t

. Now we have
(t ∂
∂t

)p = t ∂
∂t

.
So even though these algebras are isomorphic, they are distinguishable as re-

stricted Lie algebras. ⋄

Reductive groups in characteristic zero

Definition 10.7. A Lie algebra g is simple if it is not abelian and g has no non-trivial
proper ideals. We say g is semi-simple if it is a direct sum of simple Lie algebras. ⋄

The point of 261 is that semi-simple algebras are possible to classify in character-
istic 0 over an algebraically closed field. In characteristic p, I think it is also possible,
but there are more of them and it is more difficult.

Definition 10.8. A group G is simple (resp. semi-simple) if its Lie algebra g is. ⋄

Theorem 10.9 (Weyl’s Theorem). Every finite-dimensional representation over a
semi-simple Lie algebra is completely reducible.
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Theorem 10.10. Any semi-simple algebraic group G is reductive in characteristic
zero.

Proof. It is sufficent to check for G connected since finite groups are reductive. We
showed that in this situation W ⊆ V is an invariant subspace if and only if W ⊆ V
is g-invariant.

Remark 10.11. If a module is completely reducible over an algebraic closure, then it
is completely reducible over the original field, so you don’t need algebraically closed.

⋄

Now assume G is reductive. Then the adjoint representation AdG is completely
reducible, so adg is completely reducible. Thus, we have g = g1⊕ · · · ⊕ gk. Each gi is
a submodule (ideal) with no proper non-trivial ideals, so each gi is either simple or
1-dimensional. Thus, we may rewrite g = g1 ⊕ · · · ⊕ gr ⊕ Z(g) = gss ⊕ Z(g), where
each gi is semi-simple and Z(g) is the center. Note that [g, g] = gss.

Fact: [[⋆⋆⋆ exercise]] If G is a connected algebraic group, then G′ = [G,G] =
{ghg−1h−1|g, h ∈ G} is a closed connected subgroup with Lie algebra LieG′ = [g, g].

Now assume G is connected and reductive. Then G′ × Z(G)0 → G is surjective.
By fact (3), Z(G)0 is a torus. So G is a quotient of a product of a semi-simple group
G′ with a torus by a finite central subgroup.

Typical example: GLn = (SLn × k×)/µn.

Theorem 10.12. If char(k) = 0, then G is reductive if and only if G is a quotient
of Gss × T (Gss semi-simple and T a torus) by some finite subgroup.

It’s clear that any such quotient is reductive. I’ve implicitly used the following.

Exercise. If G1 and G2 are reductive, then G1 ×G2 is reductive.
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11 Stability in the affine case

There is some confusion of terminology. Depending on which books you read, “stable
points” means slightly different things.

Suppose G is an affine algebraic groups that acts on an affine variety X. We know
that for a point x ∈ X, the orbit G · x is locally closed. The stabilizer Gx is a closed
subgroup, and we have

dimGx + dimG · x = dimG.

We can define a function d(x) = dimGx. We say that x is regular if d(y) is constant
in an open neighborhood of x. This definition works perfectly well for any scheme.

It’s clear that X≥d = {x ∈ X|d(x) ≥ d} is a closed set [[⋆⋆⋆ we’re applying
some kind of semi-continuity result here. If G is flat, then the action map G×X → X
is flat, so G×X → X ×X is flat, so by semi-continuity, the dimensions of the fibers
is upper semi-continuous. The fibers along the diagonal are exactly the stabilizers of
points]]. Therefore, the set of all regular points, Xreg, is open. It is also clear that
Xreg = Xreg

0 ⊔Xreg
1 ⊔· · ·⊔Xreg

k , where Xreg
i = {x ∈ Xreg|d(x) = i}. If X is irreducible,

then Xreg = {x| dimGx is minimal}, which is the union of the largest-dimensional
orbits.

Proposition 11.1. Suppose G is affine and X is irreducible with X = Xreg. Then
the action of G is closed.

Proof. Consider φ : X → Y = Specm k[X]G. The fibers φ−1(y) are closure equivalence
classes and contain a unique closed orbit. The closed orbit has the minimum possible
dimension. But each orbit has the same dimension, so each closure equivalence class
is just one orbit.

[[⋆⋆⋆ Alternative: if G · x 6= G·x, then G · x contains G·y of smaller dimension.
You don’t need X irreducible or G affine.]]

Definition 11.2. x ∈ X is stable if G ·x is closed and x is regular. x ∈ X is properly
stable if it is stable and Gx is finite.1 ⋄

Remark 11.3. Alternative definition: x ∈ X is stable if G · x is closed and not
contained in the closure of any other orbit. [[⋆⋆⋆ If x is in the closure of another
orbit, it’s clearly not stable. On the other hand, if it’s not stable, then any open
neighborhood intersects an orbit of higher dimension (by that same semi-continuity
result).]] [[⋆⋆⋆ you need to use reductive somewhere; otherwise, we have the
example of the Ga action t · (x, y) = (x, tx+ y).]] ⋄

Suppose G is reductive, and consider φ : X → Y = Specm k[X]G. Let X irreg =
X rXreg, and let Z = φ(X irreg). [[⋆⋆⋆ Z is closed because the topology on X//G
is induced by the topology on X]]

Lemma 11.4. The stable points are Xs = X r φ−1(Z).

1Sometimes, when people say “stable,” they mean properly stable.
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Proof. Suppose x 6∈ φ−1(Z). Then G · x is in some fiber φ−1(y) for some y ∈ Y . If it
is not closed, then there is a smaller-dimensional orbit G · z in its closure equivalence
class (so z is not regular). Then φ(x) ∈ φ(Z).

On the other hand, let x ∈ φ−1(Z). Suppose x ∈ φ−1(z), so its closure equivalence
class contains a non-regular point (by definition!). Either x is not regular, or it’s orbit
is not closed.

Example 11.5. k× acts on A2 by t · (x, y) = (tx, t−1y). Then the only invariant is
xy. (A2)reg = A2 r {(0, 0)}, but (A2)s is the complement of the axes. Indeed, every
orbit except the axes is closed and regular. So (A2)s = {(x, y)|xy 6= 0}. ⋄

Later on, we’ll study stable points for non-affine quotients as well.
For any f ∈ k[X], let Xf = {x ∈ X|f(x) 6= 0}.

Proposition 11.6. x ∈ X is stable if and only if there exists an invariant function
f ∈ k[X]G such that x ∈ Xf and the action of G on Xf is closed.

Proof. Let IZ ⊆ k[X]G be the ideal of functions vanishing on Z ⊆ X//G. Since the
fibers of φ are orbit-closure equivalence classes, it is not hard to check that for an
invariant function f , the action of G on Xf is closed if and only if f ∈ IZ [[⋆⋆⋆ if
the action on Xf is closed, how do you get that f ∈ IZ?]]. Given x ∈ Xs, we have
that φ(x) 6∈ Z by the Lemma. So there is some invariant function f ∈ IZ that doesn’t
vanish on φ(x). Then Xf is a neighborhood of x on which the action is closed.

The point is that the notion of an affine quotient only makes sense if you have
stable points. Otherwise, you may as well throw out the notion. For example, if
k× acts on An by homothety, then there are no stable points, and the quotient is
correspondingly bad.

Definition 11.7. A quotient X → X/G is a geometric quotient if the fibers are
G-orbits. ⋄

So consider the restriction φ : Xs → Xs//G ⊆ X//G. This will be a geometric
quotient (meaning that the fibers are orbits). If Xs is non-empty, then it is an open
set for which there is a good quotient.

This leads to another definition.

Definition 11.8. x ∈ X is pre-stable if it has a G-invariant affine open neighborhood
U such that the action of G on U is closed. ⋄

Note that in the example of k× acting on An by homothety, everything except the
origin is pre-stable. By the Proposition, any stable point is prestable (take U = Xf ).

So we can take the geometric quotients Ux//G and glue these quotients together
to get the prestable quotient Xpre//G. This is a geometric quotient (in the sense that
the fibers are orbits) [[⋆⋆⋆ in order for the gluing construction to make sense, we
need to prove that for a geometric quotient φ : U → U//G and an invariant open
subset W ⊆ U , φ(W ) ∼= W//G]][[⋆⋆⋆ Actually, the property of a map being an
affine quotient is stable under arbitrary base change since (R⊗RG S)G ∼= S]]
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Example 11.9. Take k× acting on A2 by homothety. The prestable points are A2 r
{0}. We have the open cover U1 = {x 6= 0} and U2 = {y 6= 0}. Then U1/G =
Specm k[y/x] and U2/G = Specm k[x/y]. ⋄

Example 11.10. Let k× act on A2 by t ·(x, y) = (tx, t−1y). (A2)pre = A2r{0}. Take
the same cover U1 and U2. Then U1/G = Specm k[yx] and U2/G = Specm[yx]. When
we glue them together, we get the non-separated line! The two origins correspond to
the two non-closed orbits. ⋄

Proposition 11.11. Let X be affine and irreducible, and let G be reductive. Assume
that Xs 6= ∅. Let R = k[X] and K = K(X) = Frac(R). Then KG = Frac(RG).

[[⋆⋆⋆ We showed something similar for a finite group before.]] This proposition
somehow tells you that if you have stable points, then the affine quotient is pretty
good.

Proof. Suppose h/f ∈ KG is an irreducible fraction (no non-units divide both h and
f) [[⋆⋆⋆ not clear you can get such a thing]]. [[Then we want to show that f ∈ RG.]]
We want to show that h/f = b/a for some b, a ∈ RG.

RG
� _

��

� � // RG[h/f ]
� _

��

R
� � // Rf

X

φ

��

Xf
? _oo

��

Y Y ′ψ

dominant
oo

where Y ′ = SpecmRG[h/f ]. If y ∈ Y s = φ(Xs), then ψ−1(y) is just one point. This
tells me that h/f is algebraic over RG, for otherwise, the dimension of Y ′ would be
bigger than the dimension of Y . Suppose it satisfies some polynomial of degree n.
Then the preimage of a generic point would be n points. But you only get one point
on the stable locus, so the polynomial is of degree 1, so we have ah

f
= b. [[⋆⋆⋆ so

we didn’t need that irreducible fraction business after all. But we have to note that
in general, the closure of an orbit is a union with smaller-dimensional orbits.]]

Next time, we’ll do some examples, like the moduli space of smooth surfaces.
Then we’ll do the proj quotient.
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12 Degree d Hypersurfaces in Pn

Consider the space of homogeneous degree d polynomials in k[x0, . . . , xn], Vn,d =
{f(x0, . . . , xn) =

∑
i0+···+in=d ai0,...,inx

i0
0 · · ·xan

n }. Then the space of degree d hyper-

surfaces in Pd is Hn,d = P(Vn,d). Ultimately, we’ll want to understand these surfaces
up to isomorphism (or projective equivalence), so we’ll be interested in the quotient
V×
n,d/GL(n + 1) = Hn,d/GL(n + 1).

First of all, consider the degree d polynomials corresponding to smooth hyper-
surfaces Vsm

n,d = {f | ∂f
∂x0

= · · · = ∂f
∂xn

= 0 has only the trivial solution}, and the

projectivization Hsm
n,d, the space of smooth hypersurfaces of degree d. Let Hsing

n,d be

the complementary space, corresponding to Vsing
n,d . [[⋆⋆⋆ it should be clear that

Vsing
n,d ⊆ Vn,d and Hsing

n,d ⊆ Hn,d are closed immersions, but I don’t see a good way to
show it.]]

Lemma 12.1. Hsing
n,d is a hypersurface in P(Vn,d).

Proof. Consider M = {(x, h)|x ∈ Pn, h ∈ Hn,d, h singular at x}. Then we have

M
π1

��~~
~~

~~
~~ π2

""DD
DD

DD
DD

Pn Hsing
n,d

We get dim π−1
1 (x) ≥ dimHn,d− (n+1) because saying that the hypersurface cut out

by f is singular at x amounts to imposing the n + 1 conditions ∂f
∂x0

= · · · = ∂f
∂xn

= 0
(it follows that f(x) = 0). Since all the points of Pn are identical, we have that π1 is
locally a product, so we get

dimM = dimPn + dim π−1(x) ≥ dimHn,d − 1.

[[⋆⋆⋆ moreover, this inequality holds for every component of M since the ”(n+ 1)
conditions” argument works locally]] A generic singular surface will have a zero-
dimensional (so finite) singular locus [[⋆⋆⋆ how to see this easily?]], so there is an
open subset of Hsing

n,d over which π2 is finite. It follows that

dimHsing
n,d ≥ dimHn,d − 1.

But since Hsing
n,d is a closed subscheme and there exist non-singular surfaces, we get

that dimHsing
n,d = dimHn,d − 1.

So we have some homogeneous polynomial on Vn,d, called the discriminant, D,
which vanishes exactly on those degree d forms f that give singular surfaces. [[⋆⋆⋆

make this a definition]]
Since the action of GL(n + 1) on Vn,d doesn’t change whether or not a form

corresponds to a singular surface (and it respects the degree), the action of GL(n+1)
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must act on D by a scalar. That is, D is a semi-invariant of the group GL(n + 1).
Since the only characters of GL(n + 1) are powers of the determinant [[⋆⋆⋆ good
way to see this?]], D is an invariant of SL(n+ 1).

We have a finite-to-one (where finite is degD) projection {f ∈ Vn,d|D(f) = 1} →
Hsm
n,d,

1 equivariant with respect to the action of SL(n+ 1).

Remark 12.2. In the case d = 2, we know what Hn,d/SL(n+1) is: quadratic forms
are determined by their rank, so the quotient space is discrete. ⋄

Lemma 12.3. If d > 2, then the stabilizer of any h ∈ Hsm
n,d in SL(n+ 1) is finite.

Proof. By considering the finite-to-one cover[[⋆⋆⋆ make this better]], it is enough
to show that the stabilizer of any degree d form f (with D(f) = 1) in GL(n + 1)
(and so SL(n + 1)) is finite. Since we are in characteristic 0, this is equivalent to
computing the stabilizer in the Lie algebra [[⋆⋆⋆ exactly what result are we using
here?]]. We have g = gl(n+ 1). We have the action given by (aij) 7→

∑
aijxi

∂
∂xj

. We

want to show that Stabg(f) = 0, so we must show that there is no non-zero (aij) such
that

∑
aijxi

∂f
∂xj

= 0. We may rewrite the equation as

ℓ0
∂f

∂x0
+ · · ·+ ℓn

∂f

∂xn
= 0

for some linear forms ℓi. Assume that such linear forms exist, with some of the ℓi
non-zero (assume ℓ0 6= 0).

I claim that ∂f
∂x0

is not a zero divisor on C = Spec
(
k[x0, . . . , xn]/(

∂f
∂x1
, . . . , ∂f

∂xn
)
)
.

It is clear that the dimension of all components of C is at least one. If ∂f
∂x0

were

a zero-divisor on C , then VC( ∂f
∂x0

) = Spec
(
k[x0, . . . , xn]/(

∂f
∂x1
, . . . , ∂f

∂xn
)
)

would be at
least 1-dimensional. But this is exactly the affine cone on the singular locus of the
surface corresponding to f . Since the surface was assumed to be non-singular, the
affine cone must consist of just the origin.

Thus, we must have ℓ0 ∈ ( ∂f
∂x1
, . . . , ∂f

∂xn
), which is impossible since deg f > 2.

We’ve actually proved

Proposition 12.4. Every h ∈ Hsm
n,d is properly stable with respect to the action of

SL(n+ 1).

So we can consider the geometric affine quotient Hsm
n,d/SL(n + 1). The point is

how to find the invariants, which is not easy at all.
First, let’s consider the case n = 1. The problem of finding all the invariants is

still unsolved (the first person who worked on this was Cayley?). [[⋆⋆⋆ I think this
was done recently by Ben Howard, John Millson, Andrew Snowden, and Ravi Vakil]]

1This is finite because all the coefficents can be multiplied by any deg(D)-th root of unity to give
another form corresponding to the same surface with D = 1
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Classical binary invariants (the case n = 1)

We’re looking for SL(n + 1)-invariants in Vn,d. We have the action on the d-th
symmetric power of the standard representation, and we’re looking for invariants. If
n = 1, we have Vd = V1,d. Geometrically, this is d points on P1. Smoothness means
that no two points coincide. In this case, we can explicitly write the discriminant.

First of all, Vd = {ξ0xd + dξ1x
d−1y+

(
d
2

)
ξ2x

d−2y2 + · · ·+ ξdy
d}. The action is given

by f(x, y) 7→ f(ax+by, cx+dy), where ad− bc = 1. If you have two polynomials, you
can measure if they have a common zero (this is called the resultant)[[⋆⋆⋆ look
stuff up about the resultant]]. Consider

Res
(∂f
∂x

∣∣
y=1

,
∂f

∂y

∣∣
y=1

)
.

This is a polynomial of degree 2d − 2 and it is clearly an invariant. [[⋆⋆⋆ I don’t
see why you can specialize to y = 1 ... you might have many points come together at
infinity]]

For example, if d = 2, then D(ξ) =
∣∣( ξ0 ξ1

ξ1 ξ2

)∣∣. For d = 3, we have

D(ξ) =

∣∣∣∣∣∣∣∣

ξ0 2ξ1 ξ2 0
0 ξ0 2ξ1 ξ2
ξ1 2ξ2 ξ3 0
0 ξ1 2ξ2 ξ3

∣∣∣∣∣∣∣∣

Next we calculate PV (t) =
∑

k≥0 dimSymk(V )Gtk.
[[⋆⋆⋆ resume editing here]]

Vd are all the irreducible representations of SL(2) ∋
{( q 0

0 q−1

)}
= Gm. Let gq =

( q 0
0 q−1

)
acting on V . For d ≥ 0, we define the character of V is chV = trV

( q 0
0 q−1

)
=∑

m∈Z
amq

m ∈ C[q, q−1]. Characters behave very well with tensor products and direct
sums. For any representation, we have chV =

∑
cd chVd, and chVd = qd + qd−2 +

· · · q−d. Suppose chV =
∑
bmq

m. Then dimV G = Res0(q − q−1) · chV . You check
this by [[⋆⋆⋆ ]]

In fact, we have the following formula.

∑
ch Symk(V )tk =

1

(1− t detV (q − q−1))

You get this by looking at eigenvalues of this matrix and you get what you want.
Therefore, we get

PV (t) =
∑

dim(Symk V )Gtk = −Res0(q − q−1)
1

1− t det
( q 0

0 q−1

) .

This is a Moilen formula for G. The proof is exactly the same as for the Moilen
formula.
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Remark 12.5. If K is a compact topological group (maximal compact group in G),
like SU(2) ⊆ SL(2,C), then we get

PV (t) =

∫

K

1

1− t det g
dg

where dg is the invariant volume form on K such that
∫
K
dg = 1. Every element of

SU(2) is diagonalizable, so it is conjugate to
(
eiθ 0
0 e−iθ

)
. But the formula is constant

on conjugacy classes. If you think of SU(2) as S3, then the conjugacy classes are S2s.
If you do the calculation, you can reduce the integral to

1

π

∫ 2π

0

sin2 θ

1− t det
(
eiθ 0
0 e−iθ

) dθ

where q = eiθ. You can reduce this to the contour integral

− 1

2πi

∮
q − q−1

1− t det
( q 0

0 q−1

)dq

⋄

Now our problem is to compute

Pd(t) = PVd
(t) = −Res0(q − q−1)

d∏

i=0

1

1− tqd−2i

( q 0
0 q−1

)
acts on Vd by diag(qd, qd−2, . . . , q−d).

Now introduce quantum binomial coefficients. We define

[d]q =
qd − q−d
q − q−1

[d]q! = [d]q[d− 1]q · · · [1]q
[p
d

]
q

=
[p]q!

[d]q![p− d]q!

Claim. Pd(t) =
∑

k≥0 Res0(q − q−1)
[
d+k
k

]
q
tk

which is just a calculation
I define

Φ(q, t) =

d∏

i=0

1

1− tqd−2i
=
∑

k≥0

[
d + k

k

]

q

tk

and get

Φ(q, q2t) =
1− q−dt
1− qd+2t

Φ(q, t)
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Then you solve to get that if Φ(q, t) =
∑
ck(q)t

k, we get the recurrence

ck = ck−1
qk+d − q−k−d
qk − q−k .

Immediately from that, we get the Cayley-Sylvester formula. If

m(d, k) = dim(Symk Vd)
G

then we get

m(d, k) =

{
0 dk is odd

coeff of udk/2 in (1−uk+1)···(1−uk+d)
(1−u2)···(1−ud)

else

Next time we’ll do the case d = 4 and n = 2, d = 3 (elliptic curves).
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13 Lecture 13

Last time somebody asked if in characteristic p the stabilizer is also finite. The answer
is of course yes because dim gx ≥ dimGx. Since we showed that the stabilizer in the
Lie algebra is zero, so the group is finite. Of course, the problem is that GL(n + 1)
is not reductive in finite characteristic.

Question: Does the the quotient space we’ve been working with represent the
correct functor? Answer: We’ll discuss all this stuff next week.

Recall what we did last time. We proved the Cayley-Sylvester formula. We had
Vd = V1,d, and we showed that

dim(Symk Vd)
SL(2) =

{
0 dk odd

coef of udk/2 in ...
...

Example 13.1 (d = 4). The is the case of four points in P1. We are looking for the

coefficient of u2k in (1−uk+1)···(1−uk+4)
(1−u2)(1−u3)(1−u4)

. This will be the same as the coefficient of u2k

in 1−uk+1−uk+2−uk+3−uk+4

(1−u2)(1−u3)(1−u4)
(even though these things are completely equal). We can

rewrite this as

1

(1− u2)(1− u3)(1− u4)
− uk+1(1 + u+ u2 + u3)

(1− u2)(1− u3)(1− u4)

=
1

(1− u2)(1− u3)(1− u4)
− uku

(1− u)(1− u2)(1− u3)

The u2k coefficient of this is the same as the uk coefficient of

1

(1− u)(1− u3/2)(1− u2)
− u

(1− u)(1− u2)(1− u3)

[[⋆⋆⋆ subbing u 7→ u1/2 for the first term and taking out a uk in the second part]]
Eventually, I should get 1

(1−u2)(1−u3)
. To get this, I multiply by (1 + u3/2) to get

that I want the coefficient of uk in

1 + u3/2− u
(1− u)(1− u2)(1− u3)

and then I can forget about [[⋆⋆⋆ something ... the u3/2?]]
So we have Pu(t) = 1

(1−t2)(1−t3) . So we have two algebraically independent invari-

ants f2 and f3 (of degree 2 and 3 respectively).
I have Sym2(V2) = V4 ⊕ V0. We may regard V2 as having basis x2 = u, 2xy = v,

and y2 = w. Then Q = 4uw − v2 is invariant under SL(2), so it spans the V0.
The form A = ξ0x

4 +4ξ1x
3y+ 6ξ2x

2y2 + 4ξxy3 + ξ4y
4 is some element of Sym2 V2.

I may rewrite A = ξ0u
2 + 2ξ1uv + 2ξ2uw + ξ2v

2 + 2ξ3vw + ξ4w
2.
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I get a map SL(2,C) → SO(3) = {x ∈ SL(3)|xtQx = Q} as we’ve seen before.
We have tr(AQ) = 0, which is the condition that cuts out V4 [[⋆⋆⋆ ?]].

In matrix form Q =
( 0 0 2

0 −1 0
2 0 0

)
and A =

( ξ0 ξ1 ξ2
ξ1 ξ2 ξ3
ξ2 ξ3 ξ4

)
.

We have det(A+ λQ) = 4λ3 − f2(ξ)λ− f3(ξ) remains invariant under element of
SO(3) and therefore under SL(2,C). Explicitly

f2(ξ) = det
(
ξ0 ξ2
ξ2 ξ4

)
− 4det

(
ξ1 ξ2
ξ2 ξ3

)

f3(ξ) = det
( ξ0 ξ1 ξ2
ξ1 ξ2 ξ3
ξ2 ξ3 ξ4

)

and we get the discriminant is the resultant D = f3
2 − 27f2

3 . ⋄

The next example is more interesting. V2,3 = {f =
∑

i+j+k=3 aijx
iyjzk} is the

space of degree 3 forms in 2 + 1 variables. We have dimV2,3 = 10. These are cubic
curves in P2. In the case of complex geometry, the smooth ones are just tori.

The idea is that every smooth curve of degree 3 is in fact an abelian group, of the
form C/Γ for some lattice Γ = Zω1 + Zω2.

We define W (z) = 1
z2

+
∑

γ∈Γr0
1

(z−γ)2 − 1
γ2 . This is a doubly periodic function,

with W (z+ ω1) = W (z+ ω2) = W (z). The integral around the parallelogram has to
be zero, so W (z) cannot have a single pole in the parallelogram. We write out the
Laurent series

W (z) =
1

z2
+ 3G2z

2 + 5G3z
4 + · · ·

G2 =
∑

γ∈Γr0

1

γ4

G3 =
∑

γ∈Γr0

1

γ6

W ′(z) = − 2

z3
+ 6G2z + 20G3z

3

So we get (W ′)2−4W 3 + g2W + g3 = 0 [[⋆⋆⋆ by some reason]] with g2 = 60G4 and
g3 = 140G6.

We get the map z 7→ (W : W ′ : 1) and 0 7→ (0 : 1 : 0). The image is a cubic curve
in C P2.

We get the curve 4X3 − g2XZ
2 − g3Z

3 = Y 2Z. This is called the Wierstrauss
normal form of the curve. We suspect that g2 and g3 are the invariants.

For Z = 1, we get 4x3 − g2x − g3 = y2. This is non-singular when something
something, which gives me an expression for the discriminant D = g3

2 − 27g2
3 .

Whatever Γ you pick, it turns out that D will not vanish, so you’ll get a non-
singular curve. This should remind you of the previous example.

We notice that C has the structure of an abelian group. Pick a point and call it
O. Given two points a and b, you draw the line through them; it intersects in a third
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point c. Then draw a line connecting O to c, and this intersects in a third point,
which we call a+ b.

From this we see that every smooth cubic has 9 inflection points. To see this,
consider the tangent line to O, it will intersect at some other point O′. An inflection
point is a solution to the equation 3a = O′. But the group is C/Γ, so we know that
there are 9 solutions to this equation.

In particular, the curve has an inflection point. In Weirstrauss normal form, we
get a special inflection point (0 : 1 : 0), with tangent line z = 0. Given any curve, you
transform it to one that satisfies these conditions. Once you have these conditions,
the curve is given by an equation of the form

f = ax3 +
︷︸︸︷
bx2z+cxz2 + dz3 + ezy2 +

︷ ︸︸ ︷
hxyz + fyz2

Using the transformations y 7→ αy + βx+ γz and z 7→ x+ δz, you can get rid of the
overbraced terms.

Next we’ll show that Hsm
1,4/PSL(2) and Hsm

2,3/PSL(3) are isomorphic. Given a
smooth cubic curve C , we map it to P1 as follows. Given a point a, you map it to
the line connecting O and a (O gets mapped to the tangent line). It is clear that this
map C → P1 is a double cover of P1. The branch points are exactly the solutions to
a+a = O′, the 2-torsion points (of which there are 4). We claim that these branching
points determine C uniquely (the choice of O is actually unimportant once you take
the group actions into account). It turns out that a PSL(3) orbit in Hsm

2,3 corresponds
exactly to a PSL(2) orbit in Hsm

1,4 . The best way to do this is by a calculation.
First you have to check that orbits are sent to orbits. You check that when

you change your O, the branch points are related by a projective transformation.
This is again the result that a doubly periodic function with a double pole in the
parallelogram is defined almost uniquely.

[[⋆⋆⋆ this is Gale duality]]
Question: where to read more? Answer: In [Muk03].
What are the degrees of g2 and g3? We didn’t compute them. You pick some

linear transformation with a given determinant and see what it does to g2 and g3.
You use the transformation x 7→ x, y 7→ t−1y, and z 7→ t2z (which has determinant
t). Then you see that g2 must have degree 4 and g3 must have degree 6.

Proj quotients

Let X ⊆ P(V ) be a projective variety. Then X = ProjR for some graded ring R.
Suppose a reductive group G acts linearly on V and induces an action on X. If you
take the GL(V )-invariants of the whole ring, you clearly don’t get any invariants
(because of scalar action). You may as well assume G = G ∩ SL(V ) since we’re
interested in everything being projective. The the most natural quotient to consider
is X//G = ProjRG.
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In the affine case, we tried to find when invariants separate orbits. In the projective
spectrum, we get all rational functions f/g where f, g ∈ RG. The trouble comes up
when all invariants are zero.

The plan is to define stable and semi-stable points and discuss the Hilbert-Mumford
criterion.
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14 Stability in the Projective case

We assume we have a faithful representation V of a reductive group G ⊆ GL(V ).
Suppose X ⊆ P(V ) is an invariant subvariety under the action of G. ThenX = ProjR
for some graded ring R =

⊕
Rn. We define X//G = ProjRG.

Definition 14.1. A point x ∈ X is semi-stable if there exists an invariant homoge-
neous function f ∈ RG

>0 such that x ∈ Xf (where Xf is the open set where f does
not vanish). We say x is stable if it is semi-stable and the action of G on P(V )f is
closed.

A point which is not semi-stable is called unstable, and the affine cone on Xunst

is sometimes called the nilpotent cone. ⋄

Remark 14.2. Note that the definition of stability depends on the choice of embed-
ding of X into P(V ). [[⋆⋆⋆ it has to be that way because there is no equivalence of
categories between graded rings and projective varieties, so you can’t define a canoni-
cal quotient like we did in the affine case. When you choose the graded ring that you’re
taking invariants of, you’re effectively chooseing a line bundle with a linearization.]]
Note that the notion of semi-stability does not depend on the embedding. ⋄

Remark 14.3. Note that the invariant function f is constant along G-orbits (and
hence is constant on closures of G-orbits). So as soon as a G-orbit is contained in
Xf , the closure of that G-orbit is also contained in Xf (as soon as f is non-zero on
the orbit, it is non-zero on the closure). ⋄

Every point is actually a line in V . Let Xa ⊆ V be the affine cone overX (without
0), and let xa = kv r {0} be the line corresponding to x (without 0). [[⋆⋆⋆ We
don’t use this next lemma ... I thought we would need it, so I wrote it up]]

Lemma 14.4. Suppose 0 6∈ G · v, then the stabilizers Gx and Gv have the same
dimension.

Proof. It is clear that Gv ⊆ Gx. Given and element g ∈ Gx, we have that g · v = λgv
for some λg ∈ k×. So we get an exact sequence

0→ Gv → Gx
λ−→ A1

The kernel of λ is Gv by definition of Gv. The image of λ is essentially G · v ∩ kv,
so since 0 6∈ G · v, we must have that the image of λ does not contain 0 in its
closure. It follows that the image of λ (which is isomorphic to Gx/Gv) is finite, so
zero-dimensional.

Proposition 14.5. Let xa = kv. Then x is semi-stable if and only if 0 6∈ G · v, and
x is stable if and only if G · v is closed and v is regular (i.e. v is stable with respect
to the action of G on V ).
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Proof. Suppose 0 6∈ G · v. By the Separation Lemma, there is some f ∈ RG such
that f(0) = 0 and f(v) = 1. Then f = f1 + · · ·+ fn for homogeneous fi (of positive
degree). Since the action of G on V is linear, the action of G on R respects the
grading, so since f is invariant, each of the fi must be invariant. At least one of these
fi is non-zero on v, so Xfi

witnesses semi-stability of v.
On the other hand, if 0 ∈ G · v, then for any homogeneous invariant function f of

positive degree, we have f(v) = f(0) = 0, so x cannot be stable.
Now suppose x is stable, so there is an invariant homogeneous function f such

that Xf is a neighborhood of x on which the action is closed. Since all the points
y ∈ Xf are stable (so semi-stable), we have that 0 6∈ G · vy for all y. By the lemma,
we get that

Now suppose G · v is closed and v is regular. As before, we get a homogeneous
invariant function f such that Xf

If G · v is closed, then x ∈ Xf for some f . In Xf , we have a closed orbit, but
Xf is already affine. Using the remark, we can check stability on Xf . We already
proved this equivalence when we talked about the affine case. [[⋆⋆⋆ I don’t see
why v is regular. Where did we prove that if the action on an open neighborhood
is closed, then the points in that neighborhood are regular? It must use that G is
reductive.]]

From the point of view of invariants, unstable points are invisible. If you want
to construct ProjRG, you can take some homogeneous f ∈ RG

n , then you have
RG
f = {h/fn| deg h = n · deg f}. We can make the quotient SpecmRG

f , and glue
all these affine pieces together. The problem is that unstable points are missing in
this construction.

So we only get a rational map X 99K X//G, but we get an honest map Xss →
X//G := Xss//G, and this map is a surjective submersion (topology is induced on the
target). In that sense, it is a categorical quotient. However, several orbits are still
glued together.

If we consider Xs → Xs//G, then the preimage of every point is a single orbit; it
is a geometric quotient.

Now let us consider the case where X is a quasi-projective variety. Suppose
X ⊆ X ⊆ P(V ), with X = ProjR. In this case, we need to change the definitions of
stable and semi-stable points. We say x ∈ X is semi-stable if there exists an f ∈ RG

n

such that x ∈ Xf and Xf is affine. It is stable if furthermore the action on Xf is
closed.

We can construct Xss//G by gluing together the Xf//G. In this situation, we
always get a separable scheme [[⋆⋆⋆ ]]. In this way, I can recover the definition of
the affine quotient.

Suppose we have an affine variety X, then we can find an equivariant closed
immersion X ⊆ V . Let W = V ⊕ ku, where the action of G on u is trivial, then
X ⊆ X ⊆ P(W ). We see immediately from the definition that Xss//G is the affine
quotient.
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Example 14.6. All this works for any reductive Lie group and reductive Lie algebra.
Consider that adjoint representation Ad: G = GL(n) → Aut(gl(n)). So GL(n)

acts on the set of all matrices by conjugation. P(g)/G. We have det(A − λI) =
(−1)nλn + σ1(A)λn−1 + · · · + σn(A). The nilpotent cone is indeed the cone of all
nilpotent elements (when all the σi(A) = 0).

What are the stable points. They are exactly the matrices with distinct eigen-
values. In other words, the discriminant of the characteristic polynomial should be
non-zero.

So the projective quotient in this case is going to be Proj k[σ1, . . . , σn]. This is usu-
ally called weighted projective space. [[⋆⋆⋆ is this isomorphic to usual projective
space?]] ⋄

Example 14.7. G = SL(2) and V = V4 = {ξ0x4 +4ξ1x
3y+6ξ2x

2y2 +4ξ3xy
3+ξ4y

4}.
In this case, we computed the invariants, f2 and f3, last time.

We already proved that the smooth points are stable, but perhaps we can have
more stable points. We’d also like to compute the nilpotent cone.

Each element of V gives me four points in P1. If these are distinct, then we’re in
the smooth case. So suppose we’re in the situation where two of the points coincide.
Since the form must be invariant under SL(2), we can assume the form is of the form
x2(ax2 + bxy + xy2), so ξ3 = ξ4 = 0. The form is unstable if and only if f2 = f3 = 0,
which only happens if ξ2 = 0 (i.e. when c = 0). Thus, the unstable points are
those which have one point with multiplicity three (i.e. either 3 and 1, or all 4 points
together).

To see that the form x2(ax2 + bxy + xy2) is unstable, apply the element
(
t 0
0 t−1

)

to get at2x4 + btx3y + cx2y2. As t → 0, we get cx2y2 in the closure, which is where
the points are broken up as 2 and 2. So in this case, stable is equivalent to smooth.
But in general, this will not be the case. ⋄

Remember that a point is properly stable, which means stable with finite stabilizer.
Suppose an algebraic torus T of dimension n acts on a vector space V of dimension

N . Suppose further that there are properly stable points. The action of T can be
diagonalized, so in some set of coordinates, t · (x1, . . . , xN) = (χ1(t)x1, . . . , χN(t)xN)
for some characters χi ∈ T ∨ with

⋂
i kerχi finite.

We have Zn ∼= T ∨ ⊆ Qn ⊆ Rn. Each torus has two lattices associated to it. One
is the lattice of characters. The other lattice is the lattice of 1-parameter subgroups

P = {λ : k× → T}. By composition (k×
λ−→ T

χ−→ k×) we get a natural pairing
P × T ∨ → Z, which is a non-degenerate pairing.

Consider our set of N characters as a set of vectors in Zn ⊆ Rn. For x ∈ V , let
the support (with respect to the given set of characters) be Supp(x) = {χi|xi 6= 0}.
Given µ1, . . . , µk ∈ Rn, we let C(µ1, . . . , µk) = {∑aiµi|not all ai = 0 and ai ≥ 0}.

Proposition 14.8. Under all the assumptions we have in place. Given x ∈ V with
Supp(x) = {χ1, . . . , χk}. Then x is semi-stable if and only if 0 ∈ C(χ1, . . . , χk). x is
properly stable if
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1. dim〈χ1, . . . , χn〉 = n,

2. 0 is an interior point of C(χ1, . . . , χk).

If x is unstable, then 0 is not in C , so all the χi must be in some open half-space.
But if x is semi-stable, then the χi must all be in some closed subspace. If x is stable,
then there is no closed half-space which contains all the χi.

Next time, we’ll prove the proposition. Then we’ll start proving the Hilbert-
Mumford criterion for stability.
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15 The Hilbert-Mumford numerical criterion

Remark 15.1. The quotient we construct depends on the embedding X → P(V )
because the notion of stability depends on the embedding. ⋄

Proposition 15.2. Let T be a torus of dimension n acting on AN , with the sta-
bilizer of a generic point being finite. Let the action be given by t · (x1, . . . , xN ) =
(χ1(t)x1, . . . , χN(t)xN). We regard the χi as vectors in T ∨ ∼= Zn ⊆ Qn ⊆ Rn. We
defined Supp(x) = {χi|xi 6= 0} = {χ1, . . . , χk}

x is semi-stable if 0 ∈ C(Supp(x)) and it is stable if 0 is an interior point.

Proof. Suppose 0 6∈ C(χ1, . . . , χk), then there exists a λ ∈ (RN )∗ such that 〈λ, χi〉 > 0
for 1 ≤ i ≤ k. In fact, since there are finitely many χi, we may assume λ ∈ (QN )∗,
so after rescaling, we may assume λ ∈ (ZN )∗ = (T ∨)∗. So λ defines a 1-parameter
subgroup λ : k× → T .

Now we consider limt→0 λ(t)x. By the condition that λ is positive on the χi, we
have that λ(t)x = (ta1x1, . . . , t

aNxN) for strictly positive ai [[⋆⋆⋆ at least for those
i for which xi 6= 0]]. So the limit is zero, so 0 ∈ T · x, so x is unstable.

If 0 ∈ C(χ1, . . . , χk), then we can choose a1, . . . , ak ∈ R≥0 not all zero such that∑
aiχi = 0. Consider the exact sequence

0 // K // Qk // T ∨ ⊗Q

(a1, . . . , ak)
� //
∑
aiχi

Since R is flat over Q, we get an exact sequence

0→ K ⊗ R→ Rk → T ∨ ⊗ R.

By assumption, we have an element of K ⊗ R for which all the ai are non-negative
and not all zero. Since K is dense in K⊗R, we can find rational non-negative ai (not
all zero) such that

∑
aiχi = 0. After scaling, we may assume they are integers. Then

the function f(x) = xa1

1 · · ·xak

k is T -invariant and non-zero at x (by the definition of
Supp(x)). So x is semi-stable.

Note that the dimension of the span of {χ1, . . . , χk} is n if and only if the stabilizer
of x is finite. This is because a 1-parameter subgroup λ is in the stabilizer of x if
and only if {χ1, . . . , χk} ⊆ λ⊥, and a subgroup of the torus is finite if and only if it
contains no non-trivial 1-parameter subgroups.

If 0 is in the interior of C(χ1, . . . , χn), then the dimension of the span of the χi
must be n; otherwise, C(χ1, . . . , χk) would have no interior. So the stabilizer of x
must be finite. We can choose the ai to be strictly positive integers. Then Vf = {x|all
xi 6= 0}. Then every point in Vf has the same support as x, so every point in Vf has
finite stabilizer, so all points are regular, so the action is closed on Vf .

This result allows you to draw pictures to find out which points are stable and
which are not.
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We have the following corollary, which says that stability can be checked on 1-
parameter subgroups. If x is unstable, then we may find the 1-parameter subgroup
λ : k× → G which demonstrates instability. On the other hand, in the other cases
(when x is (semi)-stable) I can’t find such a 1-parameter subgroup.

Corollary 15.3. In the case G = T , proper stability can be checked on 1-parameter
subgroups.

Theorem 15.4 (Hilbert-Mumford numerical criterion). If G is reductive, then

1. x is semi-stable if and only if it is semi-stable for any 1-parameter subgroup,
and

2. x is properly stable if and only if it is properly stable for any 1-parameter sub-
group.

Semi-stable for a 1-parameter subgroup means that 0 is not in the closure. Stable
means that the orbit is closed and the stabilizer is finite.

For any reductive group, you get a maximal torus. All maximal tori are conjugate,
and any 1-parameter subgroup lies in a maximal torus. Checking stability for all 1-
parameter subgroups is annoying, but checking it for maximal tori is easier.

I used [MFK94], and there is one statement that isn’t completely clear to me.
Other people do it differently.

Lemma 15.5. For x ∈ V , suppose y ∈ G · xr G · x. Let O = k[[t]] and K = k((t)),
with m = (t) ⊆ O. Then there exists γ ∈ G(K) such that γ · x ∈ O⊗ V and γ · x ≡ y
modulo m.

γ(t) ∈ G is a laurent series. When I apply it to x, I get a formal power series
γ(t) · x ∈ k[[t]]V , and limt→0 γ(t)x = y.

Proof. Let Z = G · x. Consider φ : G → Z given by g 7→ g · x. This is a dominant
open immersion (recall that the orbit is open in its closure [[⋆⋆⋆ ref]]). I claim
that there is a curve C ⊆ Z such that y ∈ C and C ∩ G · x 6= ∅ [[⋆⋆⋆ this is
like checking valuative criteria on an open set]]. Suppose Z r G · x ⊆ {h(x) = 0}.
If dim my/m

2
y > 1, then there is an f ∈ my such that f 6≡ h modulo m2

y. Take
{f(x) = 0}. Keep decreasing the dimension to get a curve.

We may take some curve C1 whose image is in C , so we have

s ∈ C1

φ
��

C1
oo � � //

φ|C1

��

G

φ

��

y ∈ C Coo � � // Z

The map φ|C1
is not surjective, but it is dominant. We can take the projective

completions of the affine curves C and C1 and extend the map. Let s ∈ C1 be a point
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that maps to y. We may assume C1 is non-singular at s by taking normalization if

needed. Let U be an open neighborhood of s. We have γ : U r s→ G
φ−→ C . γ has a

pole at s. φ(γ(U)) ⊆ C , φ(s) = y. [[⋆⋆⋆ once you go from G to C , the pole goes
away]]

Let Os be the local ring of s ∈ C1, and Ks the field of fractions. We’ve constructed
γ ∈ G(Ks) and the condition at the end of the previous paragraph means that
γ · x ∈ Os ⊗k V and γ · x ≡ y modulo ms.

Now we just complete with respect to the maximal ideal and since s was a smooth
point, you get k[[t]].

The next result I’ll only prove for SL(n), because it involves some structure theory
of semi-simple groups.

Theorem 15.6 (Iwahori). Let G be a reductive algebraic group. Then each dou-
ble coset in G(O)\G(K)/G(O) contains a (unique![[⋆⋆⋆ probably]]) 1-parameter
subgroup λ(t).

Consider the case of SL(n). Start with a matrix X = (xij) ∈ G(K), so each
xij is a Laurent series. We have a valuation (the smallest power of t that appears;
the order of the zero/pole). Choose v(xij) minimal. By multiplying on the left and
right by permutation matrices, we may assume (i, j) = (1, 1), so v(x11) is minimal.
Multiplying X on the left by some matrix, we can do Gaussian elimantion (we can
divide because we chose v(x11) minimal) to get the first column to be all zeros below
x11. Similarly, we can get all zeros to the right of x11. Now repeat on the smaller
matrix until we get a diagonal matrix by induction. So we may assume we have the
matrix diag(z11, . . . , znn). Since we are in SL(n), the product of the zii is 1. Each zii
is of the form tai · fi where the fi ∈ k[[t]] = O are invertible. So we have

∑
ai = 0

and
∏
fi = 1. So we multiply our matrix on the left by diag(f−1

1 , . . . , f−1
n ) to get our

1-parameter subgroup.
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16 Lecture 16

Recall the setup: We have K = k((t)) ⊇ O = k[[t]] ⊇ m = (t). We proved that

SpecK // G

φ
��

G · x ∋ y

if φ(g) = g · x, there is a point g ∈ G(K) such that limt→0 g(t)x = y and such that
φ(g) ∈ O ⊗k V .

We proved Iwahori’s theorem (kinda): If G is reductive, and g ∈ G(K) is a point,
then g(t) = A(t)λ(t)B(t) where A,B ∈ G(O) and λ is a 1-parameter subgroup.
The action of the 1-torus λ is diagonalizable, so you can think of the action of λ as
λ(t) = diag(ta1, . . . , tan).

Lemma 16.1. Suppose λ(t) is a 1-parameter subgroup of G, x ∈ X, and B ∈ G(O)
such that the limit limt→0 λ(t)B(t)x = y exists. Then the limit limt→0 λ(t)B(0)x = z
exists and z ∈ G · y.

Proof.

Theorem 16.2. x is semi-stable (resp. properly stable) with respect to the action of
G if and only if it is semi-stable (resp. properly stable) for any 1-parameter subgroup
λ of G.

Proof. It is clear that if the point is semi-stable with respect to G, then it is semi-
stable with respect to a subgroup.

Now suppose x is semi-stable for any 1-parameter subgroup λ, but x is not stable
with respect to G. Since x is unstable, 0 ∈ G · x. So there is a point g ∈ G(K) such
that limt→0 g(t)x = 0. By Iwahori, we have g(t) = A(t)λ(t)B(t) for some 1-parameter
subgroup λ and A,B ∈ G(O). There is a natural homomorphism G(O) → G(k) given
by evaluating at t = 0. We may write A(t) = A1(t)A0 and B = B1(t)B0, where A0

and B0 are constant and A1 and B1 are 1 modulo t. Suppose λ(t) = diag(tb1, . . . , tbn)
in some basis.

0 = lim
t→0

A(t)λ(t)B(t)x

0 = lim
t→0

λ(t)B1(t)B0x (left multiply by A(t)−1)

If all bi > 0, this is no condition. If bi ≤ 0, then we get that (B0x)i = 0. So we
conclude that

lim
t→0

λ(t)B0x = 0.

[[⋆⋆⋆ we can ignore B1(t) because it goes to 1 as t → 0. This implication only
works in one direction: if limt→0 λ(t)B1(t)B0x = 0, then limt→0 λ(t)B0x = 0. The
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other way doesn’t work]] But B0x ∈ G · x, so B0x is a point in the orbit of x which is
not stable. That means that x is unstable with respect to the 1-parameter subgroup
B−1

0 λ(t)B0.
Assume that x is not properly stable with respect to G. We have to consider two

cases.
Case (a). G · x 6= G · x.[[⋆⋆⋆ Remark: we actually show that the orbit of x is

closed if and only if it is closed under the action of all 1-parameter subgroups]] Let
y ∈ G · xrG · x. Then we get y = limt→0A1(t)A0λ(t)B(t)B0x, so we have

lim
t→0

λ(t)B1(t)B0x = A−1
0 y.

By the same sort of condition as in the first part of the proof, we have a limit
z = limt→0 λ(t)B0x. A

−1
0 y may have more zero coordinates than z. If bi > 0, then we

get (A−1
0 y)i = 0. If bi = 0, we get (A−1

0 y)i = (B0x)i, and if bi < 0, we get (B0x)i = 0.
It is easy to check that limt→0 λ(t

−1)(A−1
0 y) = z componentwise. So we have that

z ∈ G · y. This implies that z 6∈ G · x, showing that the orbit of x under the action
of a 1-parameter subgroup is not closed.

Case (b). G · x = G · x, but Stab(x) is not finite. The stabilizer is the fiber of the
map G→ G · x. If the fiber is not finite, then it is affine. By the same argument as
before, there is a point g(t) ∈ G(K)rG(O) such that g(t)x = x (because the stabilizer
is not proper). Letting g(t) = A(t)λ(t)B(t), we compute limt→0 λ(t)B1(t)B0x = A−1

0 x.
By the same argument as before, we have that the limit limt→0 λ(t)B0x = z exists.
The implies that λ(t) ∈ Stab(z). z lies in the closure of the orbit, but the orbit is
closed, and is stabilized by λ (looking at coordinates of z ... the only non-zero ones
are those for which bi = 0), so z is not properly stable with respect to a 1-parameter
subgroup, so niether is x.

Applications

In the case of SL(n). Any 1-parameter subgroup is diagonalizable. In that basis,
the diagonal matrices form a maximal torus. All maximal tori are conjugate. So we
can check stability with respect to G by checking it for all maximal tori using the
condition we proved before.

First let’s consider the case of Hn,d.

Proposition 16.3. f ∈ V1,d (d ≥ 2) is semi-stable if the multiplicity of each point is
≤ d/2, and f is properly stable is the multiplicity of each point is < d/2.

Proof. In this case, G = SL(2). Any 1-parameter subgroup in some basis is
(
t 0
0 t−1

)
.

I’ll draw the picture of characters in the case d = 6. [[⋆⋆⋆ draw x6−iyi at position
2i− 6; the usual 7-dimensional representation of SL(2)]]

If f =
∑
aix

d−iyi, then Supp(f) = {xd−iyi|ai 6= 0}. The unstable situation is
when x4|f or y4|f (that’s when the convex hull of the support misses 0). Similarly,
the semi-stable situation is where x3|f or y3|f .
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Now let’s consider plane cubics. V2,3, which is 10-dimensional. Here we have G =
SL(3). The maximal torus is diagonal matrices diag(t1, t2, t3) such that t1t2t3 = 1.
Now it is convinient to draw the torus as 2-dimensional, with three weights that add
up to zero, induced from the 3-dimensional torus. [[⋆⋆⋆ triangle with 10 monomials
of degree 3, x3, y3, z3 are the vertices. two monomials in the interior of each edge]].
The zero is the monomial xyz.

Unstable forms (so-called nil forms) are all basically the same, the forms supported
at y3, xy2, x2y, x3, y2z (up to renaming the variables). Then the form can be written
as

zy2 = ay3 + bxy2 + cx2y + dx3.

If d 6= 0, we can apply the transformation x 7→ x+ αy to get

zy2 = ay3 + bxy2 + dx3

applying z 7→ z + ay + bx and rescaling, we get that the curve is of the form

zy2 = x3.

So the nil curves are exactly the cuspidal cuves.
But there are degenerations. If d = 0, then we have

zy2 = ay3 + bxy2 + cx2y

this is a line tangent to a quadratic curve.
We can have further degeneration (the quadric can degenerate). Then you get

three lines meeting at a point, and the lines could lie on top of each other.
We already proved in general that smooth curves are stable.
Now let’s consider the semi-stable forms. The maximal support is y3, xy2, x2y, x3, y2z, zx2, xyz

(up to permuting the variables). This corresponds to the form

zp(x, y) = q(x, y)

where p is a quadratic form. After some change of coordinates, we can get rid of the
coefficient of y2z, so we get that p is non-degenerate. It can be written as

z(x2 + y2) = q(x, y)

and after z 7→ z + αx+ βy and some more dancing, we can get

zy2 = x3 − zx2

A nodal cubic.
There is one more situation (which is in the closure of this one), where the support

is y3, y2x, y2z, x2y, xyz, yz2. This must be of the form yp(x, y, z) = 0 which is a line
and a quadric (not tangent). It can further degenerate to three lines, not all meeting
at a point (corresponding to xyz = 0 in some basis). I think we’ve now listed all the
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orbits of the action. Question: if all these are semi-stable, why do only some of them
appear in the quotient? Answer: only the most general one appears ... the quotient
identifies the things in the closures of the semi-stable orbits.

We have the SL(3)-invariants g2 (of degree 4) and g3 (of degree 6). We get the
quotient Proj k[g2, g3], which I believe is isomophic to P1, as we can see from the
charts g3

2/g
2
3 and g2

3/g
3
2 .
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17 Stability of Hypersurfaces

Even though we can’t find invariants, we can now tell which hypersurfaces are stable
with the numerical criterion.

Recall that we have Vn,d = Symd(kn+1), the space of forms of degree d in n+1 vari-
ables. We have an action of SL(n+1) on P(Vn,d) = Hn,d, the space of hypersurfaces of
degree d in Pn. If we choose homogeneous coordinates (x0, . . . , xn), then any f is some
degree d form in the xi. We can define Supp(f) = {(i0, . . . , in) ∈ Zn+1

≥0 |ai0,...,in 6= 0},
the Newton polytope of f .

In this case, the support is a subset of ∆d = {a = (a0, . . . , an) ∈ Zn+1
≥0 |

∑
ai = d}.

We’ve shown that f is unstable if and only if for some choice of coordinates,
the convex hull C(Supp(f)) does not contain zero. However, it get’s more and
more complicated to draw pictures, so another condition is desirable. Let T =
{(t0, . . . , tn)|t0 · · · tn = 1} be the torus of SL(n+ 1). We have the set of 1-parameter
subgroups Λ = {λ = (λ0, . . . , λn) ∈ Zn+1|

∑
λi = 0}. Then f is unstable if and only

if for some choice of coordinates, there exists λ ∈ Λ such that 〈λ, a〉 > 0 for any
a ∈ Supp(f). Similarly, f is semi-stable if and only if for any choice of coordinates
and for any λ ∈ Λ, there exists a ∈ Supp(f) such that 〈λ, a〉 ≤ 0. f is stable if and
only if for any choice of coordinates and for any λ ∈ Λ, there exists a ∈ Supp(f) such
that 〈λ, a〉 < 0. [[⋆⋆⋆ stability is the same as proper stability here]]

The main idea is that stability is a geometric property. Everything is described
by the badness of the singularity on your hypersurface. We’ll consider the case of
cubic surfaces.

For a projective hypersurface cut out by f , let P be a point (in affine coordinates
x1, . . . , xn). We say that P is singular if f(P ) = 0 and all the first derivatives of f
vanish at P . Then we can write f = p(x1, . . . , xn) + · · · , where p is a quadratic form.

Definition 17.1. P is an ordinary double point if p is non-degenerate quadratic form.
Multiplicity k means that all the (up to) k-th partial derivatives of f vanish at P . ⋄

In the case of a cubic surface with homogeneous coordinates x, y, z, w, let’s assume
(0, 0, 0, 1) is a singular point. Then we have

f(x, y, z, w) = wp(x, y, z) + q(x, y, z)

where p is quadratic and q is cubic. If we have a double point, then we could have
rk(p) = 3 (ordinary double point), rk(p) = 2 (we have f = wxy + q(x, y, z), so p
looks like the intersection of two planes; the line x = y = 0 is called the axis of the
singularity), or rk(p) = 1 (we have f = wx2 +q(x, y, z)), or rk(p) = 0 (triple point, in
which case f is independent of w, so you just have a product of a line and an elliptic
curve)

Theorem 17.2. A cubic surface X in P3 is stable if and only if X has only finitely
many singularities, all of which are ordinary double points. X is semi-stable if and
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only if it has finitely many singularities, all of which are either ordinary double points
or rank 2 double points with axis not contained in X.[[⋆⋆⋆ like wxy + z3]]

Proof. In this case, our ∆3 is a tetrahedron, like this [[⋆⋆⋆ picture with vertices
x3, y3, z3, w3, two more on each edge and one more on each face]]. We have already
changed coordinates so that we get no w3 or w2 terms. If a surface has a double point
of rank 2k < 3, then it is clearly unstable because you only have one element of the
support at ”height 1” [[⋆⋆⋆ height being the number of w terms]].

If X has a double point of rank 2 and is semi-stable, then z3 must be in the
support of the form, so we get that the axis cannot be in X.

For the other direction, we draw the picture. Let Λ+ = {(λ0 ≥ λ1 ≥ · · · ≥ λn)},
which we can always get to by permuting the coordinates. This Λ+ is a convex cone
in the lattice. We introduce a partial order on ∆d by setting a ≤ b if 〈λ, a〉 ≤ 〈λ, b〉
for any λ ∈ Λ+. [[⋆⋆⋆ incomplete picture]]

x3

x2y
�� ??

?

xy2

�� ??
?

x2z
��

� ??
?

y3

??
xyz

��
� ??

?

jjjjjjjjjjj x2w
��

�

xz2

WWWWWWWWWWWWWWW
??

?
y2z

�� ??
xyw

yz2

��
� OOO

OOO y2w xzw

z3

??
?

yzw
��

� ??
? xw

2

z2w yw2

zw2

w3

Suppose X is not stable, then we will try to find a point which is not an ordinary
double point. Since X is unstable, there is some choice of coordinates and some λ
such that 〈λ, a〉 < 0 for all a ∈ Supp(f). We may reorder coordinates so that λ ∈ Λ+.
Since λ0 + · · · + λ3 = 0, we get that the monomials w3, zw2, yw2, z2w, yzw do not
appear in the support of f .

First case: Suppose z3 ∈ Supp f . Then xyw is not in the support because z+x+
y + w = 0 [[⋆⋆⋆ ]]. Then everything below this point is also not in the support.
Then the only place w can appear is in x2w, so I get that (0, 0, 0, 1) is a double point
of rank 1.

Next case: suppose xzw ∈ Supp f , then y3 6∈ Supp f , so nothing below it is in the
support, so everything is divisible by x, so the surface is reducible, so it has many
singular points.
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Final case: suppose z3, xzw 6∈ Supp f , then nothing below them is in the support
either. Then w appears in three places, but there is no term with a z, so (0, 0, 0, 1) is
a double point of rank 2.

Now suppose X is semi-stable. It might happen that 〈λ, a〉 ≥ 0 for all a ∈ Supp f ,
so we have to consider some more cases. Now λ could be zero on both xzw and y3

for example. These cases are boundary cases. We only need to consider the cases
where λ1 = 0 or λ2 = 0. It’s a little bit more work, and there is one tricky point that
I haven’t quite figured out.

Suppose λ1 > 0 and λ2 = 0. Then xzw 6∈ Supp f . In this case, we remove xzw
and everything below it, which leaves me with a rank 2 singularity at (0, 0, 0, 1).

Another case: λ1 = λ2 = 0. Then xw2, y2w 6∈ Supp f . Again, once I remove these
two points and the things below them, I’m left with a singularity of the form [[⋆⋆⋆

]] which is again a double point of rank 2
Finally, there is a special case: λ = (2, 0,−1,−1). In this case, you remove xw2,

and the maximal support gives you f of the form ay3 + xp(x, y, z, w). In this case,
there is a singularity which is not an ordinary double point. Take x = y = 0. On this
line, I have a solution to p(0, 0, z, w) = 0. There are two solutions, which give you
singular points with sub-maximal rank.
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18 Points in Pn. Linearization

The plan is to do one more example about points and then talk about linearization.
We already discussed the case of points on a line. Now we’ll talk about d unordered

points in Pn. This is the same as hyperplanes in the dual space. So we can consider
the closed set of completely decomposible forms of degree d in n+ 1 variables. That
is, f(x) = f1(x) · · · fd(x) where each fi is of degree 1.

Proposition 18.1. A set S ⊆ Pn with |S| = d is stable (resp. semi-stable) with
respect to the action of SL(n+ 1) if and only if for any linear projective subspace Z,
we have

|S ∩ Z|/d < (dimZ + 1)/(n + 1) (resp. |S ∩ Z|/d ≤ (dimZ + 1)/(n + 1)). (∗)

Example 18.2. For 6 points in P2, you have a stable set only if no two points
coincide. Otherwise, we get 2/6 = 1/3 (taking Z to be a point), so we don’t get strict
inequality. Moreover, in a stable configuration no 4 points can be colinear because
then we get 4/6 = 2/3 (here Z is a line).

For semi-stability, no 3 points can coincide and no 5 points can be on a line. ⋄

Proof. Choosing a coordinate basis, we define Supp f to be those monomials which
appear in f . f is unstable if for some choice of coordinates and for some λ ∈ Λ+, we get
〈λ, a〉 > 0 for all a ∈ Supp f . f is stable (semi-stable) if for any choice of coordinates
and any λ ∈ Λ+, there is some a ∈ Supp f such that 〈λ, a〉 < 0 (〈λ, a〉 ≤ 0).

We define a partial order on monomials, given by a ≤ b if 〈λ, a〉 ≤ 〈λ, b〉 for all
λ ∈ Λ+.

Claim. If f is completely reducible, then Supp f has a smallest element with respect
to this partial order.

Proof. We have f(x) = f1(x) · · · fd(x), with fi =
∑

j a
i
jxj. Let xji be the smallest

element in Supp fi, then the product of these is the smallest element in Supp f .
�Claim

Now we pick a set of fundamental weights of Λ+ (the terminology comes from
representation theory). Let ωi = (n+1− i, . . . , n+1− i,−i, . . . ,−i) (where there are
i copies of n+1− i and n+ 1− i copies of −i). The ωi generate Λ+ in the sense that
any λ ∈ Λ+ is a positive linear combination of the ωi. It is clear that it is enough
to check the stability (or semi-stability) condition (〈λ, a〉 < 0 or 〈λ, a〉 ≤ 0) on the
fundamental weights.

Suppose there is a Z such that (∗) fails. Z is given by the equation xp+1 = · · · =
xn = 0 in some coordinate system (dimZ = p + 1). Let k = |S ∩ Z|. If a ∈ Supp f ,
then a0 + · · · + ap ≥ k and ap+1 + · · ·+ an ≤ d− k. We compute

〈ωp+1, a〉 ≥ (n− p)k − (d − k)(p+ 1) = (n+ 1)k − d(p+ 1) > 0

where Supp f ⊆ ∆d = {(a0, . . . , an)|
∑
ai = d}. So S is unstable.
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Suppose (∗) holds for all Z. We may assume Z is cut out by xp+1 = · · · = xn = 0.
Let k = |S ∩ Z|. We have k/d ≤ (dimZ + 1)/(n + 1). Then we’d like to show that
mina∈Suppf{〈ωp+1, a〉} ≤ 0. I can find a point a ∈ Supp f such that a0 + · · ·+ ap = k
and ap+1+· · ·+an = d−k. This check is for all p [[⋆⋆⋆ ]], so the point is semi-stable
(or stable)

The quotient comes from the embedding X →֒ P(V ), where G acts linearly on
V . One question is why we can do this in all cases. The other question is how the
quotient depends on the embedding.

Recall that if X is affine, then we proved (very easily) that there is a closed
immersion X →֒ V and a linear action on V such that the embedding is equivariant.
Now we drop the assumption that X is an affine scheme.

Suppose X is an algebraic variety. To embed it into projective space, we start
with a line bundle L. Suppose W ⊆ Γ(X,L) is a linear subspace which is base-point
free (i.e. there is no x ∈ X such that all s ∈W vanish at x). Then we get an induced
map X → P(W ∗), given by sending x to the hyperplane in W of sections which are
zero at x. If X is a projective variety, then you usually take W = Γ(X,L). If the
map is a closed embedding, then L is called very ample.

Let PicX = {line bundles on X}/ ∼=, with the group structure given by ⊗ and
L−1 = L∗. A line bundle is sometimes also called an invertible sheaf.

Suppose σ : G×X → X is an action. A linearization of L is an action σ : G×L→
L so that the following square commutes and the action is linear on fibers.

G× L
id×π

��

σ̄
// L

π

��

G×X σ // X

Given a linearization, you can twist it by a character of the group. Suppose L is the
sheaf of sections of L. G acts linearly on L (a sheaf of OX-modules) and it acts on
OX. We must have g∗f(x) = f(gx) and g · gs = g∗(f)g · s.

Example 18.3. PGL(n+1) acts on Pn, but the line bundle L = O(1) is not lineariz-
able. The sections of O(1) would have to be an (n + 1)-dimensional representation.
If we had the group SL(n + 1), we could act on the representation. Another thing
we could do it take a big tensor power of the sheaf. The tangent bundle has an
action of PGL(n + 1). If I take the top exterior power of the tangent bundle, I have∧top T (Pn) ∼= O(n + 1). ⋄

We define PicGX to be the group of line bundles with G-linearization (a vector
bundle with G-linearization is sometimes called a G-bundle). We have a homomor-
phism α : PicGX → PicX. The kernel tells us how many linearizations there are on
a given line bundle.
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To compute the kernel of α, we just need to find all linearizations on OX. We have
the standard linearization. Any other action must be given by g·f(x) = Φ(g, x)g∗f(x)
where Φ(g, x) ∈ O(G×X)×. We must have Φ(e, x) = 1. We also get the condition

Φ(gh, x)f(ghx) = (gh)·f(x) = h·(g·f)(x) = Φ(h, x)g·f(hx) = Φ(h, x)Φ(g, hx)f(ghx)

[[⋆⋆⋆ is the action of G on Γ(X,OX ) a left or a right action? I think it’s a left
action, in which case we should have g∗f(x) = f(g−1x)]]which tells us that

Φ(gh, x) = Φ(h, x)Φ(g, hx).

Moreover, two functions Φ and Φ′ give isomorphic linearizations if there is some
φ ∈ O(X)× such that

φ(x)Φ(g, x) = Φ′(g, x)φ(gx).

So Φ(g, x) = φ(gx)
φ(x)

Φ′(g, x). We define Z1(G,O(X)×) = {Φ ∈ O(G × X)×|Φ sat-

isfies the cocycle condition} and B1(G,O(X)×) = {Φ|Φ(g, x) = φ(gx)
φ(x)

for some

φ ∈ O(X)×}. Then kerα is given by H1 = Z1/B1.
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19 Lecture 19

We started talking about linearization last time, and there was a little discussion.
If the zero section of L is G-invariant, then the action is linear. If you have a map
A1 → A1 which is an isomorphism sending zero to zero, then it must be linear.

On the elements of L, it will be a left action, but on sections, it’s a right action.
Last time, we discussed the homomorphism α : PicGX → PicX. We described

the kernel of α as H1 = Z1(G,O(X)×)/B1(G,O(X)×), where Z1(G,O(X)×) = {Φ ∈
O(G×X)×|Φ satisfies the cocycle condition} and B1(G,O(X)×) = {Φ|Φ(g, x) = φ(gx)

φ(x)

for some φ ∈ O(X)×}.

Theorem 19.1 (Rosenlicht). Suppose X and Y are irreducible varieties. Then the
natural map O(X)××O(Y )× →O(X ×Y )× is surjective. Namely, f(x, y) ∈ O(X×
Y )× can always be written as f(x, y) = γ(x)β(y).

Proof. This is a local statement [[⋆⋆⋆ γ and β are unique upto scalar, so we can
glue]], so we may assume that X and Y are affine. We choose an embedding X →֒ X
into a proper normal variety (normalizing if needed) [[⋆⋆⋆ do the reduction to the
normal case]]. For a given y ∈ Y , consider φy(x) = f(x, y) on X , which is invertible
on X, but it could give a divisor on X . Since X r X =

⋃
Zi divisors Zi [[⋆⋆⋆

and some higher codimension stuff]]. So we have div(φy(x)) =
∑
mi(y)Zi. Since

the mi are continuous functions [[⋆⋆⋆ why are they continuous?]], they must be
constant. So div(φy(x)) = div(φy0(x)) so φy(x)/φy0(x) = β(y) [[⋆⋆⋆ here we’re
using properness of X to say that φy/φy0 ∈ k×, and normalness to make divisors
behave nicely]], and we have f(x, y) = φy0(x)β(y).

[[⋆⋆⋆ div(φy) should be equal to the intersection of div(f) with the fiber over y.
But div(f) is supported on (XrX)×Y =

⋃
Zi×Y , so it is of the form

∑
miZi×Y .]]

[[⋆⋆⋆ We assume that X r X consists of codimension 1 pieces, but if there are
pieces of higher codimension, they don’t mess anything up]]

[[⋆⋆⋆ another approach: We have div(f) =
∑
miZi × Y for some integers mi.

Choose a rational function γ ∈ O(X) such that div(γ) =
∑
miZi. Then when γ(x),

regarded as a function on X × Y has the same divisor as f(x, y), so the ratio is an
invertible function β(x, y). Since X is proper, β must be constant along fibers, so it
is really β(y).]]

Now I have a cocycle Φ(g, x) = χ(g)β(x). We may rescale χ and β (inversely) so
that χ(e) = 1. The cocycle condition becomes

χ(gh)β(x) = χ(g)β(hx)χ(h)β(x).

It follows that β(x) is constant [[⋆⋆⋆ after you cancel the β(x)’s, the β(hx) is the
only dependence on x]], so β(hx) = 1 since β(x) = χ(e)β(x) = Φ(e, x) = 1. So we
have Φ(g, x) = χ(g). Thus, any cocycle is a character since χ(gh) = χ(g)χ(h).

Now we have
0→ G∨

X → G∨ → kerα→ 0
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the right map is surjective because we have a linearization of OX, and we’ve shown
that any other differs by a character. G∨

X = {χ(g) = φ(gx)/φ(x)|φ ∈ O(X)×}, which
is the group of characters arrising from semi-invariants on X.

Example 19.2. If G∨ = 1 (like in the case of SL), we get that kerα is trivial, so
linearizations are unique.

If O(X)× = k× (like in the projective case), then G∨
X = 1, so then kerα = G∨. ⋄

Theorem 19.3. Let G be a connected affine algebraic group. Then O(G)× = k×G∨.

We’ve already seen this for a torus.

Proof. We have the multiplication m : G × G → G. Given f ∈ O(G)×, we have
m∗f(g, h) = f(gh). On the other hand, I know that f(gh) = f1(g)f2(h). Rescale f
so that f(e) = 1 and rescale f1 and f2 (inversely) so that f1(e) = 1 (it follows that
f2(e) = 1). Then f1(g) = f2(g) = f(g) by substituting h = e or g = e.

Given a linearization, we have

G×X σ //

p2

��

X

X

the two pullbacks σ∗L and p∗2L are isomorphic. The data of a linearization is exactly
the data of this isomorphism (satisfying a cocycle condition). We have that for g ∈ G,
g∗L = σ∗L|X×e.

Proposition 19.4. In the case where G is connected, L has a G-linearization if and
only if σ∗L ∼= p∗2L. [[⋆⋆⋆ that is, if an isomorphism exists, you can find an iso
satisfying the cocycle condition]]

Proof. By assumption, there is ψg : L → g∗L, and we have to check that it can be
made into an action. First we normalize so that ψe = id. Now I have to check the
following diagram

L

ψh

��

ψgh
// (gh)∗L

h∗L
h∗◦ψg◦(h∗)−1

::vvvvvvvvv

The two maps differ by an automorphism. There is a function F (g, h) ∈ O(X)× such
that ψgh ◦F (g, h) = h∗ ◦ψg ◦ (h∗)−1 ◦ψh. Since F (g, h) ∈ O(X)×, I can think of it as
a function of three variables: F (g, h, x) = F1(g)F2(h)F3(x) by the Theorem.

We know that F (e, h, x) = F (g, e, x) = 1, so we get F2(h)F3(x) = 1 and F1(g)F3(x) =
1, so F1, F2, and F3 must be constant. [[⋆⋆⋆ this proof can probably be rewritten
more cleanly with everything taking place on G×G×X]]
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This is a strange result. It is related to the structure of affine algebraic groups in
general.

Now our goal is to construct the following sequence

0→ kerα→ PicGX → PicX → PicG

Remark 19.5. Given f ∈ O×
X, we get a nonvanishing function F (g, x) = f(gx)/f(x).

By the theorem, we get F (g, x) = χ(g)β(x), where we may rescale so that χ(e) = 1.
Then it is easy to see that β is identitcally 1, so f(gx)/f(x) = χ(g). It is easy to
check that χ is a character. Thus, we’ve constructed a map O×

X(X) → G∨. The
image of this map is exactly G∨

X , and the kernel is (O×
X)(X))G, G-invariant invertible

regular functions. So we’re shooting for a long exact sequence

0 // (O×
X(X))G // O×

X(X) // G∨
EDBC

GF@A
// PicGX // PicX // PicG

This is certainly a long exact sequence in some cohomology theory. The left column
is probably happening on the quotient stack [X/G], the middle one on X, and the
right one on G. ⋄

Proposition 19.6. Let X be non-singular, with G an affine connected algebraic group
acting on X. Let F be a line bundle on G × X. Fix some x0 ∈ X. Then F ∼=
p∗1(F |G×x0

)⊗ p∗2(F |e×X).

Lemma 19.7. If G is a connected affine group, then there is an open set U ⊆ G such
that U ∼= (k×)n × km.

We’ll prove this lemma later, but for now, we’ll do some examples and use it to
prove the proposition.

Example 19.8. G = SL(n). Then we have the subgroups T ⊆ G (the diagonal
matrices), N+ ⊆ G (strictly upper triangular matricies), and N− ⊆ G (strictly lower
triangular matricies). Then U = N−TN+ is clearly an open subset of G. Since the
three subgroups don’t intersect, there is a unique way to write an element of U as a
product, so U ∼= N− × T ×N+. The T is a torus, and the N± are affine spaces. ⋄

There is a statement in Hartshorne which I’ll use: Cl(X×A1) ∼= Cl(X). Another
statement we’ll use: if Z ⊆ X is a subvariety of codimension 1, we have an exact
sequence

Z · Z → Cl(X)→ Cl(X r Z)→ 0.

In particular, if Cl(X) = 0, then Cl(X r Z) = 0. And if Z is of codimension bigger
than 1, it doesn’t change Cl whne you remove it.
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Now we have U × X ⊆ G × X. Let Z = G r U . Then we have Cl(U × X) =
Cl(X) (since you’re just removing stuff of high codimension from X ×An). We have
F (U×X) = p∗2(F1). Let F2 = p∗2(F1)⊗F−1. Then the divisor of F2 will be supported
on Z ×X, which has some irreducible components Zi ×X. So F2 = p∗1(F3) for some
line bundle F3 on G.

This allows me to define the map PicX → PicG in the sequence

0→ kerα→ PicGX
α−→ PicX → PicG.

It is defined by sending L to p∗2L⊗ σ∗(L)−1 on G×X, which should then come from
something on G [[⋆⋆⋆ will be added next time]]. We want a map so that the
map is exact [[⋆⋆⋆ we’ve already proven this because linearizable if and only if
p∗2L
∼= σ∗L]].

I’ll also have to show that PicG is a finite group.
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Theorem 20.1. If G is an affine algebraic group, then PicG is finite.

We can assume G is connected (since PicG ∼= G/G◦ ×PicG◦ and G/G◦ is finite).

Proposition 20.2. Suppose L is a line bundle on G. Let L× be the complement of
the zero section. Then we can define a group structure on L× such that we have the
following exact sequence of groups:

1→ k× → L× δ−→ G→ 1.

Moreover, the pullback of L along δ to L× is L×-linearizable.

Proof. Let π : L→ G be the projection.

L× L
π×π

��

// p∗1L ⊗ p∗2L

��

φ

∼
// m∗L //

��

L

π

��

G×G id
// G×G id

// G×G m
// G

[[⋆⋆⋆ in general, we showed that any bundle on G × X is a product of a bundle
on G and one on X. This allows us to construct the isomorphism φ. Note that
m∗L|e×G ∼= L.]][[⋆⋆⋆ the map L×L→ p∗1L⊗ p∗2L is the map V ×W → V ⊗W on
fibers.]] We want to show that the composition across the top row, µ : L × L→ L is
a group structure. But µ is only determined up to scalar. We identify Le ∼= k ∋ 1,
and consider

L //

��

L× {1}

��

µ
// L

��

G // G× {e} // G

I have µ(u, 1) = χ(π(u))u, where χ(g) ∈ O(G)×. Similarly, I get µ(1, v) = η(π(v)).
So I rescale φ, by chaning it to φ ◦ (χ−1 ⊗ η−1).

Then I need to check associativity of µ. We want µ ◦ (id×µ) = µ ◦ (µ ⊗ id).
I know that if we apply π, the thing is associative. Last time, we proved (using
the Rosenlicht result) that the cocycle condition is automatically satisfied. We have
µ ◦ (id×µ)(u, v, w) = ψ(π(u), π(v), π(w))µ◦ (µ× id)(u, v, w). By Rosenlicht, we have
ψ(g, h, k) = ψ1(g)ψ2(h)ψ3(k). But we have by construction ψ(e, e, e) = 1, so ψi(e) = 1
(after rescaling). Then we get 1 = ψ(g, e, e) = ψ1(g) and similarly, ψ3 and ψ2 are
identically 1.

So µ : L× × L× → L× is a group. The second statement (about linearization)
comes from the same µ : L× × L→ L.

Lemma 20.3. Let L ∈ PicG. Then there exists a algebraic group G′ and a finite
cover γ : G′ → G such that γ∗L is is trivial (and therefore linearizable).
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Remark 20.4. In fact, if you have a linearizable line bundle L on G, it must be
trivial as a line bundle. This is because the linearization canonically identifies all the
fibers of L, so you get an isomorphism L ∼= Le ×G. ⋄

Proof. Consider the sequence

1→ k× → L× π−→ G→ 1.

We know that π∗L is L×-linearizable. Since L× is an algebraic group, there is a
faithful representation V , so L× ⊆ GL(V ). The action of k× = T breaks V up as
V = Vη1 ⊕ · · · ⊕ Vηk

where Vη = {v ∈ V |tv = η(t)v}. For any t ∈ k× and g ∈ L×,
we have tgv = g(g−1tg)v. But η(g−1tg) = η(t) because L× is a connected group (the
conjugation acts trivially on the space of characters T ∨ ∼= Z).

So L×(Vη) = Vη. Suppose η1 6= 1. Then we have ρ : L× → GL(Vη1). I can take
G′ = ρ−1(SL(Vη1)). Since η1 is non-trivial, G′ has the same dimension as G. Since
π∗L was L×-linearizable, it is G′-linearizable, and hence trivial.

I claim this means that some power of L in PicG will be trivial. Consider the
exact sequence

1→ Γ→ G′ → G→ 1.

I claim that L⊗|Γ| is G-linearizable because the Γ action in the G′-linearization is
trivial.

Corollary 20.5. Every element of PicG has finite order.

Lemma 20.6. PicG is a finitely generated abelian group.

Proof. Recall that we have a dense open subset U ⊆ G of the form U ∼= (k×)n×Am.
Let Z = Gr U =

⋃
Zi, then we get an exact sequence

⊕
Z · Zi → Cl(G)→ Cl(U) = 0.

So PicG = Cl(G) is finitely generated.

Recall that we constructed the exact sequence

0→ kerα→ G∨ → PicGX → PicX → PicG.

Since PicG is finite, we get the following corollary.

Corollary 20.7. Let L be a line bundle on a smooth variety X and let G be a
connected group.1 Then there exists an n > 0 such that L⊗n is G-linearizable.

Remark 20.8. If G is not connected, then you can linearize over the connected part
and then deal with the finite part. ⋄

1We used G connected in proving that if p∗2L
∼= σ∗L, then L linearizable. We need connected

because we use the Rosenlicht result.
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Remark 20.9. We needX smooth because we want the Weil divisors to be the same
as Cartier divisors. ⋄

Theorem 20.10 (Linearization Theorem). Let G be a connected affine algebraic
group acting on a smooth quasi-projective variety X. Then there exists a representa-
tion G→ GL(V ) and a G-equivariant embedding X →֒ P(V ).

This is the analogue of the result for X affine. The reason this was harder is that
we didn’t have functions on X, so we had to choose a line bundle.

Proof. Take any very ample line bundle L. By taking some power, we may assume L
is G-linearizable. Then Γ(X,L) is a representation of G. Since L is ample, there is
a finite-dimensional subspace W ⊆ Γ(X,L) such that X → P(W ∗) is an embedding
(mapping x to hx = {s ∈ W |s(x) = 0}). As we’ve shown before, W is inside a
finite-dimensional invariant subspace (so we may assume W is G-invariant).

For X projective and a very ample G-linearized line bundle L, we can construct
the quotient X//LG = Proj(

⊕
Γ(X,L⊗n)).

We can define Xs(L) (resp. Xss(L)) to be the stable (resp. semi-stable) locus with
respect to the embedding coming from L. That is, x ∈ X is L-semi-stable if there is
an invariant section f ∈ Γ(X,L⊗n) such that f(x) 6= 0, and L-stable if furthermore
the action of G on Xf is closed. Note that this implies that the orbit of x is closed.

If X is projective, then x ∈ X is stable.
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21 More on Stability

I’m going to talk a bit more about stability. We assume that G is always reducitve.
Let L be a G-linearized line bundle on X. We define Xss(L) = {x ∈ X|∃f ∈

Γ(X,L⊗n)G, f(x) 6= 0}. IfX is only quasi-projective, then I also require that Xf be an
affine variety (which is automatic ifX is projective). We defineXs(L) = {x ∈ Xss(L)|
the G-action on Xf is closed}. Note that these sets don’t change if we replace L by
L⊗r .

If X is projective and L is ample, we have the following criterion. Consider
X →֒ P(V ), where V = Γ(X,L⊗d). Then x is semi-stable if and only if for any
v ∈ kx, 0 6∈ G · v. Moreover, x is stable if and only if G · v is closed and x is a regular
point in X [[⋆⋆⋆ equivalently, v is regular in Xa.]].

For the semi-stability criterion: the condition 0 6∈ G · v implies (by the Separation
Lemma) that there is a homogeneous polynomial f ∈ k[V ]G which does not vanish
at v. Conversely, if 0 ∈ G · v, then any invariant homogeneous function must vanish
at v.

For the stability criterion: let f be a homogeneous invariant function such that
x ∈ Xf . Note that Xf is affine. If x is stable, then G · x is closed in Xf . I claim that
this implies that G · v is closed in V . For any point w ∈ G · v, it is automatically in
Xf , so the line y = kw is in Xf . We have y ∈ G · x, so there is some point on the
same line where f doesn’t vanish, so f doesn’t vanish on the whole line. Conversely,
if G · v is closed, then G ·x is closed. Now we have to do regularity. If we have Xf on
which the action of G is closed, then each point must be regular.

Recall that in the affine situation, the stable points are regular points with closed
orbits. We had the quotient map φ : X → Y . We showed thatXs = Xrφ−1(φ(X irreg)).
The action of G is closed on this open set. If there is a closed orbit with small di-
mension, then it is in the closure of some larger orbit. The fibers of φ are closure
equivalence classes. We need a semi-continuity result to get that the fibers of φ have
upper semi-continuous dimensions.

Now suppose X is projective. We define X//LG = Proj
⊕

n≥0 Γ(X,L⊗n)G =
Xss//G (piecewise gluing) [[⋆⋆⋆ semi-stable or stable?]]. If X is not projective,
there is another way to define it by gluing. We have Xss(L) =

⋃k
i=1 Xfi

, where we can
assume that fi are invariant sections of the same power of L, L⊗r. Let Ui = Xfi

. Then
O(Ui) = {g/fni |g, fn ∈ Γ(X,L⊗rn)}. We have O(Ui)

G = {g/fni |g, fn ∈ Γ(X,L⊗rn)G}.
Let Yi = SpecmO(Ui)

G. We can glue them together in the natural way. [[⋆⋆⋆ I’m
worried you might need stable points to get geometric quotients to glue ... no, it
should work]]. We can define Yij ⊆ Yi, Yj as a localization, then glue. It’s a bit of
work to show that this Xss//G does not depend on the choice of open cover. This is
called a categorical quotient, Y . We have a map Xss → Y . This map is surjective
and an open submersion.

Categorical quotients. Suppose G acts on a variety X. Suppose φ is a G-invariant
map φ : X → Y . Suppose that for any G-invariant map q : X → Z, there exists a
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unique factorization q : X
φ−→ Y → Z. The categorical quotient is uniquely deterem-

ined. People usually require more.
Good quotients. (1) We require φ to additionally be a surjective open submersion

(U ⊆ Y is open if and only if φ−1(U) is open). (2) We also require that for any
open set U ⊆ Y , φ∗(OY (U)) ∼= OX(φ−1(U))G [[⋆⋆⋆ LHS means fuctions which are
constant on fibers: φ−1OY (φ−1(U)). maybe this is called φ#]].

Geometric quotients. We additionally impose (3) the fibers of φ are orbits of the
G-action.

These three conditions actually imply by themselves that φ is a categorical quo-
tient.

Proof. Suppose q : X → Z is G-invariant. Cover Z by affine sets: Z =
⋃
Vi. Consider

φ(q−1(Vi)) = Ui, which are open sets on Y by (1). We have q−1(Vi) ⊆ φ−1(Ui). Since
the fibers are orbits (3), this should actually be an equality. Since φ is surjective
(1), we have Y =

⋃
Ui. Since q is G-invariant, we have a homomorphism O(Vi) →

O(q−1(Vi))
G = O(φ−1(Ui)) = O(Ui). This gives a map Y → Z.

Charley: there is a proof in Borel that shows that (1) and (2) imply that φ is a
categorical quotient.[[⋆⋆⋆ nevermind, it’s slightly different]] Vera: I think he uses
something else too. Suppose you have (1) and (2) and (3′) if W1 and W2 are closed
G-invariant sets in X with W1 ∩W2 = ∅, then φ(W1) ∩ φ(W2) = ∅. Then you can
get that φ is a categorical quotient.

Proof. Let Vi be as in the previous proof. Define Wi = X r q−1(Vi) (these are closed
sets). Define Ui = Y r φ(Wi). Since

⋂
Wi = ∅, the Ui are an open cover of Y . Then

procede exactly as in the previous proof.

The main point is that Xss//G is a categorical quotient and Xs//G is geometric
quotient. Then we’ll talk about linearizations. And toric varieties.
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22 Some toric examples

Last time we talked about categorical, good, and geometric quotients.

Proposition 22.1. If X is affine and G is reductive, then φ : X → Y = Specm k[X]G

is a categorical quotient. Moreover, the restriction to the stable locus, φ : Xs → Y s,
is a geometric quotient.

Proof. We already proved that φ is a surjective open submersion. The categorical
quotient property follows from the Separation Lemma: if W1,W2 ⊆ X are closed
G-invariant subsets that don’t intersect, then φ(Wi) are closed subsets of Y which
don’t intersect. The proof is at the end of the last lecture.

The action ofG onXs is closed (almost by definition), so the fibers of the restricted
map are orbits.

Now suppose X is an arbitrary algebraic variety (prefered irreducible, but not
always needed). Suppose L ∈ PicGX, then we constructed Xss(L)//G by gluing
together the affine quotients for the Xf1, . . . , Xfk

, where the fi are invariant sections
of some tensor power of L. Since each of the Xfi

//G is a categorical quotient, you can
check that gluing them together you still get a categorical quotient.

Theorem 22.2. Suppose G is a reductive group acting on an algebraic variety X,
with L ∈ PicGX. Then φ : Xss(L) → Xss(L)//G is a good categorical quotient, and
the restriction φ : Xs(L)→ Xs(L)//G is a geometric quotient. There exists an ample
line bundle M on Xss//G such that φ∗(M) ∼= L⊗r, so the quotient is a quasi-projective
variety. [[⋆⋆⋆ you don’t even need L to be ample, though it will be ample on Xss

almost by hypothesis.]]

Recall that we have the Yi = Xfi
//G. One way to define M is to say what

the transition functions between the Yi are. We take the transition function to be
fi/fj = φ∗(αij). Then you can get that φ∗M is a power of L.

All this depends on how you choose your L and the linearization.

Certain class of examples. Let X = An and G a reductive group acting linearly
on X. Even in such a simple situation, we get many differnt quotients. We have
to calculate PicGX. We have that PicX = {1} and O(X)× = k×. From the exact
sequence, we get that PicGX = G∨.

Take x ∈ An and u ∈ A1. The total space of the bundle is An×A1. Given χ ∈ G∨,
we define the linearization g(u, x) = (χ−1(g)u, gx). Call this linearized bundle Lχ.

If χ = 1, then all the invariants are of the form unf(x), where f(x) ∈ k[An]G. So
when we take the proj quotient, we get the usual affine quotient X//G = X//Lχ=1

G =

Xss(Lχ=1)//G. But in other cases, we get other quotients.

Example 22.3. Consider the action of G = k× by homothety: t · (x1, . . . , xn) =
(tx1, . . . , txn). We have different linearizations, t · (u, x1, . . . , xn) = (tau, tx1, . . . , txn).
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When a = 0, the only invariant section is the zero section, so the quotient is
An//G = ∗. If a > 0, then An//G = ∅.

If a < 0, then it doesn’t matter which negative a you take because L and L⊗r

give the same quotient. In fact, as soon as the set of semi-stable points is the same,
the quotients are isomorphic because the quotient is the categorical quotient. This
gives us invariants ux1, . . . , uxn. So the quotient is Proj k[ux1, . . . , uxn] ∼= Pn−1 =
An//Lq

G. ⋄

Q: is there always some “best” choice where the quotient has maximal dimension?
A: you still get different birational models.

You want dimX//G = dimX − dimG · x for generic x. If you have such a
thing, then Xs(L) is non-empty. If you have two such linearized bundles, you have
Xs(L1) ∩ Xs(L2) = U is an open set. So the two quotients will be birationally
equivalent, with generic point given by the fraction field of O(U)G.

Example 22.4. ConsiderG = k× acting on A4 by t·(x1, x2, x3, x4) = (tx1, tx2, t
−1x3, t

−1x4).
The possible linearizations are t · (u, x1, x2, x3, x4) = (t−au, tx1, tx2, t

−1x3, t
−1x4).

We get three cases as before. If a = 0, the generating invariants are z13 =
x1x3, z14 = x1x4, z23 = x2x3, z24 = x2x4, and they satisfy the relation z13z24 − z14z23.
Let Y0 = X//L0

G. We have that Y0 is a quadatic cone with a singularity at 0.
What are the semi-stable points in this case? Define V + = {x1 = x2 = 0} and
V − = {x3 = x4 = 0}. The semistable locus is Xss(L0) = A4 r (V + ∪ V −).

If a = 1, then we have all the old invariants (z13, z14, z23, z24), but also t1 = ux1

and t2 = ux2. NowXss(L1) = A4rV +. This Xss is not affine, but I can glue together
Xt1 and Xt2 . We get Y+ ⊆ P1 ×A4. Relations are z13t2− z23t1 = 0, z14t2− z24t1 = 0,
z13z24 − z23z14 = 0. We get a map p+ : Y+ → Y0. We get that p−1

+ (y) is a point if
zij 6= 0 and p−1

+ (0) = P1. This is sort of a “partial blow-up.” [[⋆⋆⋆ this is one of
the resolutions of the toric variety which is a cone on a square]] You can check that Y+

is non-singular. This is called a small resolution because the fibers are codimension
bigger than 1. The projectivization of the tangent space is 2-dimensional (it’s the
P1×P1 sitting inside the P3 which is really the projectivization of the tangent space).
Y+ is a blow up of the subvariety z12 = z23 = 0.Note that V +//G ∼= P1.

If a = −1, then everything is very similar, but we get t3 = ux3 and t4 = ux4.
The relation you get is the “transpose” of the one in the case a = 1. Again, we get a
resolution p− : Y− → Y0.

By the symmetry of the situation, Y+ and Y− are isomorphic, but not as varieties
over Y0. ⋄

Toric Varieties as GIT quotients

We’re in the situation X = An and G = T is a torus acting linearly on An. Then
we have a large group of linearizations (it is T ∨). Whenever we take An//Lχ

T , it will

have the action of a bigger torus. t · (x1, . . . , xn) = (χ1(t)x1, . . . , χn(t)xn). χ stands
for linearization. The semi-invariants are all monomials. So in An, we have a big



22 Some toric examples, v. 12-9 83

torus, U = (A1 r 0)n. On the quotient An//Lχ
T , the torus U acts, giving the quotient

the structure of a toric variety.
Next time, we’ll consider the following example,

(
x1 x2 x3
y1 y2 y3

)
, with the action of(

t1 0
0 t2

)
on the left and diag(s1, s2, s3) on the right. So we have an action of a 5-

dimensional torus (except that a 1-dimensional subtorus acts trivially). The quotient
turns out to be a projective surface.
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If the group G acts on An, then a linearized line bundle is determined by a choice
of character. The action on the line bundle (which must be trivial) is given by
g ·(f(x), x) = (χ(g)f(x), g ·x), where f is a regular function. So the invariant sections
are those regular functions f for which χ(g)f(x) = f(g · x), the semi-invariants with
character χ. The invariant sections of the n-th tensor power are semi-invariants with
character χn. The proj quotient is Proj

⊕
n≥0 Γ(An,O⊗n

X )G.

Example 23.1. Consider matrices
(
x1 x2 x3
y1 y2 y3

)
modulo the action of diagonal matrices

on the left and right (call this torus T ). Each coordinate has a weight with respect
to the torus action. If I draw them all together, I get the picture [[⋆⋆⋆ prism on
a triangle with x’s on top and y’s on bottom. actually a 4-dimensional picture with
the prism in a plane (not through zero)]]

The quotient depends on the choice of a character χ = (a1, a2|b1, b2, b3). For
example, the character of the action on x1 is (1, 0|1, 0, 0). That is, x1 is a semi-
invariant function with character (1, 0|1, 0, 0). Even though T is 5-dimensional, the
action factors through a 4-dimensional torus, but these coordinates are convinient.
All the coordinates have characters that lie on one side of a plane, so the quotient
is projective [[⋆⋆⋆ The proj quotient is always projective over RG = Γ(An,O⊗0)G,
the degree zero part of the graded ring that defines the proj quotient. I think this
comment means that RG = k, so the quotient will always be projective over Spec k.]].

If χ = 0, then the quotient is a point.
If I take χ = (3, 0|1, 1, 1). Then the quotient is Proj k[x1x2x3] [[⋆⋆⋆ really

u3x1x2x3, but we’ll ignore the u’s because that’s just to get the grading]].
In general, we get the invariants Rχ =

⊕
Rχ
d where Rχ

d = {f ∈ k[An]|f(tx) =
χd(t)f(x)}, the semi-invariants with character χ.

Suppose χ = (1, 1|1, 1, 0). Then we get Proj k[x1y2, x2y1], which is P1. We’ve
increased the dimension, but we’d really like to get a 2-dimensional quotient because
the orbits are 4-dimensional.

Let χ1 = (2, 1|1, 1, 1). Then invariants are α1 = y1x2x3, α2 = x1y2x3, and α3 =
x1x2y3, which generate all invariants. The quotient is X//Lχ

T = Proj k[α1, α2, α3] =

P2 = Y1. Consider the open set where all the xi are non-zero. Then by the action of
the torus, we can make x1 = x2 = x3 = 1. Then we have yi = αi, and we can multiply
the second row by any unit t2, so we get a copy P2. Note that if all the αi = 0, then
the point is unstable because we can get the orbit to have 0 in its closure. We have
three special lines, given by αi = 0 for i = 1, 2, 3.

If α2 = α3 = 0, then we have the orbit corresponding to
(

1 1 1
∗ 0 0

)
. But we see that

if we evaluate the αi on
(

0 ∗ ∗
∗ ∗ ∗

)
, we get α2 = α3 = 0, so this whole set gets sent to a

single point in P2.
Let χ2 = (1, 2|1, 1, 1). As before, we get three invariants β3 = y1y2x3, β2 = y1x2y3,

β1 = x1y2y3, with the identification
(
β1 β2 β3

1 1 1

)
. We have the identification βi = 1/αi.

Except we see that over the point P we found in the previous paragraph, we get the
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line β1 = 0. That is, every element of the form
(

0 ∗ ∗
∗ ∗ ∗

)
gives you a different point on

the line β1 = 0. Call the quotient Y2
∼= P2.

Now let’s add these characters together to consider the case χ3 = (3, 3|2, 2, 2).
Here there are plenty of semi-invariants. z = x1x2x3y1y2y3, v1 = x2

1x2y2y
2
3, v2 =

y2
1x2y2x

2
3, w1 = x1y1y

2
2x

2
3, w2 = x1y2x

2
2y

2
3 , u1 = y2

1x
2
2x3y3, and u2 = x2

1y
2
2x3y3. The

proj of the ring generated by these is a surface in P6. The relations are given by
z2 = v1v2 = w1w2 = u1u2 and z3 = u1v1w1 = u2v2w2. Call the quotient Y3.

You can see that Xss(Lχ3
) is the intersection of the semi-stable points of χ1 and

χ2. The set of semi-stable points drops, and the size of the quotient goes up, which
is what normally happens.

Outside of the three special lines on Y1 and Y2, we get that the two are isomorphic.
Consider the closure of the rational map from Y1 to Y2, which is a surface in P2×P2.
This surface will be Y3. Over any point other than the three distinguished points,
you get a unique point, and over the special points, you get a P1. To see that, you
can glue out of two pieces

(
0 1 1
1 α2 α3

)
and

(
0 β1 β2

1 1 1

)
.

The upshot is that Y3 is the blowup of Y1 at the three special points. Y3 is a del
Pezzo surface. In this case, I believe this is “the biggest” quotient. In general, there
need not be a biggest one, like in the example from last time.

You can get the same surface if you blow up two points on P1 × P1. Perhaps for
a suitable choice of character, you can get the quotient P1 × P1. ⋄

General An//T

Fix a torus T of dimension r acting on An = {(x1, . . . , xn)|xi ∈ k}, given by t ·
(x1, . . . , xn) = (χ1(t)x1, . . . , χn(t)xn), with χ1, . . . , χn ∈ T ∨. Let a ∈ Zn be a =
(a1, . . . , an), and define xa = xa1

1 · · · xan
n . I’m interested in monomials because all the

semi-invariants will be monomials. We define Supp(a) = {i|ai 6= 0}. Given I ⊆
{1, . . . , n}, we define xI =

∏
i∈I xi. We define M = {a ∈ Zn|∑ aiχi = 0} ⊆ Zn ⊆ Rn.

We can define the group-algebra of M , which will be a subring of Laurent polynomials
in t1, . . . , tn. More generally, for a submonoid S ⊆ Zn, we define k[S] to be the ring
k[S] = {xa|a ∈ S}.

Fix a character χ. Let’s describe the quotient An//Lχ
T . In our case, Sk = {a ∈

Zn
≥0|
∑
aiχi = kχ}. Then k[Sk] is the space of semi-invariants corresponding to the

character kχ, and k[S0] is exactly the ring of T -invariant polynomials. Let S =⋃
k≥0 Sk and consider the ring k[S] =

⊕
k[Sk].

To construct the quotient, I’ll glue it out of Xf ’s as always. I have the ideal
k[S]>0 ⊆ k[S] generated by positive degree monomials. Choose a minimal set of
monomial generators {f1, . . . , fp} of this ideal. Define Ui = {x ∈ An|fi(x) 6= 0}.
These are all semi-stable points by definition, and the Ui cover Xss. I define Ri =
{g/fki | deg g = k deg fi}.

Each fi is a monomial, so fi = xmi. Let Ji = Suppmi. Then Ui = {x ∈ An|xj 6= 0
for all j ∈ Ji}. Define σ∨

i = {a ∈ Rn|aj ≥ 0 for all j 6∈ Ji}.
Claim. Ri = k[σ∨

i ∩M ].
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Proof. It is clear that any g/fki ∈ k[M ]. But for any element h ∈ σ∨
i ∩ M , by

multiplying by a sufficiently high power of fi, I can make all the exponents for coor-
dinates in Ji non-negative. Say hfki has positive exponents for all coordinates in Ji
are non-negative.

We have the inclusion M ⊆ Zn. We get the dual map (Zn)∗ → M∗. Next time
we’ll talk about fans.
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24 Lecture 24

We were considering the action of T on An by the characters χ1,. . . , χn. We fix
a character χ, which gives us a linearization of the structure sheaf. We defined
M = {a ∈ Zn|

∑
aiχi = 0}. The quotient is given by Y = An//Lχ

T = Proj k[S]. We

chose monomial generators f1, . . . , fp for k[S]>0. Each fi is of the form xmi, and we
defined Ji = Suppmi.

We defined polyhedral rational cones σ∨
i = {a ∈ Rn|aj ≥ 0 for all j ∈ Ji}.

Y =
⋃
Yi, where O(Yi) = Ri = k[σ∨

i ∩M ].
I can think of T as sitting inside the larger torus U ∼= (Ar{0})n. U has a natural

action on An, given by (s1, . . . , sn) · (x1, . . . , xn) = (s1x1, . . . , snxn), so we get a
natural map T → U . We get another torus Q = (U/T )0 (connected component of the
identity, so it’s really a torus). We have that M ∼= Q∨, and k[M ] = k[Q] ⊃ Ri [[⋆⋆⋆

LHS is monoid algebra, and RHS is coordinate ring]]. We have the comultiplication
∆: k[M ]→ k[M ]⊗k[M ] comming from the group structure on Q. On the other hand,
we can restrict to Ri to get ∆: Ri → k[M ]⊗Ri. So Q acts on each Yi, and they glue
together equivariantly, so we get an action of Q on Y . This isn’t too surprising; we
quotiented by a subgroup, so the quotient group should still act. Moreover, Y has
one open dense orbit.

Consider (Zn)∗ ⊆ (Rn)∗. The natural embedding M →֒ Zn gives the dual map
(Zn)∗ → M∗. Let M∗

R = M∗ ⊗Z R. Then we get a map (Rn)∗ → M∗
R.

We introduce a basis {ε1, . . . , εn} for (Zn)∗. By ε̄i, we denote the images of the
εi in M∗

R. We have the collection J1, . . . , Jp. We say that σi is the cone generated
by {ε̄j|j 6∈ Ji}. We define Σ to be the collection σ1, . . . , σp. It is clear (almost by
definition) that σi is dual to σ∨

i ∩M .

Lemma 24.1. σk ∩ σℓ is a face of σk and σℓ.

A face is a subcone such that there is a linear functional which is zero on the
subcone and positive on the rest of the cone.

Proof. We have that O(Yk∩Yℓ) = Rk(x
−c] = Rℓ[x

c] for c ∈M , with Supp c ⊆ Jk∪Jℓ.
Then 〈c, σk〉 ⊆ R≥0 and 〈c, σℓ〉 ⊆ R≤0. It follows that 〈c, σk ∩ σℓ〉 = 0.

Example 24.2. Pn−1 = An//k×. In this case, we have J1, . . . , Jn, where Ji are one-
element sets (since the generators for k[S]>0 are the xi). We have one relation ε1 +
· · · + εn = 0. σi is generated by all the εj for which j 6= i. In the case n = 3, we get
a partition of the plane by three cones. ⋄

Example 24.3. t·(x1, x2, x3, x4) = (tx1, tx2, t
−1x3, t

−1x4). Now I get ε̄1+ε̄2 = ε̄3+ε̄4.
The fan will be in three dimensions. It will be the cone on a square, with ε1 and ε2

opposite corners of the square.
In the case of Y0, I just get J1 = ∅, so I get a single cone, which is not simplicial.

This gives a quotient with a singularity.
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In the case of Y+, I get J1 = {1} and J2 = {2}, so I break my square cone into two
simplicial cones (one excluding ε1 and the other excluding ε2). Similarly, Y− breaks
the square cone into two simplicial cones, but the other way. ⋄
Example 24.4. Recall the action of the 5-dimensional torus on the 6-dimensional
space

(
x1 x2 x3
y1 y2 y3

)
. In this case, the natural basis is ε1, ε2, ε2 (corresponding to the x’s)

and δ1, δ2, δ3 (corresponding to the y’s). They satisfy the relations ε̄i + δ̄i = 0 and∑
ε̄i = 0.
Recall that in the biggest quotient, I have 6 pieces that are being clued together.

The two other quotients we got were obtained by taking just the ε̄i and we got the
other quotient by taking just the δ̄i. We should also be able to remove ε̄3 and δ̄3 to
get P1 × P1 as a quotient. To do that, we’d have to choose a character which would
give something like J1 = {ε3, δ3, δ1, ε2}. ⋄

Geometric meaning of Σ. I can identify M∗ with the dual lattice to M , so M∗ is
the lattice of 1-parameter subgroups of Q. If you think about M⊥ ⊆ (Zn)∗, you get
the lattice of 1-parameter subgroups in T .

There is an open Q-orbit Y 0 ⊆ Y which is isomorphic to Q itself if none of the
σ contains a line (such a line would correspond to a subtorus that stabilizes every
point). [[⋆⋆⋆ how can such a bad cone ever happen?]]

Given a generic point y ∈ Y 0, we can define M∗
0 = {λ ∈M∗| limt→0 λ(t)y exists}.

We say that λ ∼ µ if limt→0 λ(t)y = limt→0 µ(t)y. Note that this is independent of
choice of y ∈ Y 0. Each equivalence class is the interior of a face. To see this, identify
k[M ] with k[y±1

1 , . . . , y±1
ℓ ] ⊃ Rσ. Pick a monomial yb.

lim
t→0

λ(t)yb =





yb if 〈b, λ〉 = 0

0 if 〈b, λ〉 > 0

DNE if 〈b, λ〉 < 0

So we’re checking locally in each open affine which coordinates become zero.
If Y is complete, then M∗

0 = M∗ because limits must always exist. In other words,⋃
σi = M∗

R.

Corollary 24.5. The faces are in bijection with the orbits of Q in Y . Moreover, the
dimension of a face is equal to the dimension of the stabilizer of a point in the orbit.
So if the fan is non-degenerate, the origin corresponds to the open orbit.

σ is simplicial if it is spanned by linearly independent rays (i.e. it’s generated by
a partial basis of Rn). A fan is simplicial if every cone in it is simplicial.

Proposition 24.6. Suppose that kerχ1 ∩ · · · ∩ kerχn is finite. Σ is simplicial if and
only if An(Lχ)

ss = An(Lχ)
s.

Proof. Suppose σ is not simplicial, then we have some relation
∑

i6∈Jσ
ciε̄i = 0. Then∑

ciεi ∈M⊥. This
∑
ciεi corresponds to a 1-parameter subgroup λ(t) of T . Choose

x ∈ An such that xi = 1 for i ∈ Jσ and xi = 0 for i 6∈ Jσ. Then λ(t) ∈ Stab(x), so x
is semi-stable but not stable.
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No class on Monday. I’ll also be away Thanksgiving week, so there won’t be class
then.

Obtaining a toric variety as a quotient. Think of Zs ⊆ Rs ⊇ Σ = {σ}, where the
σ are rational polyhedral cones.

We pick ε̄1, . . . , ε̄n ∈ Zs which are the generators of cones. Assume {ε̄1, . . . , ε̄n}
generate all of Zs (as a lattice). For a cone σ ∈ Σ, we associate the set Jσ = {i|ε̄i is
not a generator of σ}. We define V = An r {xJσ = 0|σ ∈ Σ} [[⋆⋆⋆ we’re taking an
intersection in that last set]].

Claim. The toric variety YΣ is a categorical quotient V //T , where T is defined as
below. Moreover, if Σ is simplicial, then the quotient is a geometric quotient.

We define an s × n matrix A whose columns are ε̄i. We find an n × r matrix
B such that AB = 0. Let χj be the rows of B (the χj are a basis for the kernel
of A). Then we define the action of an r-dimensional torus T by t · (x1, . . . , xn) =
(χ1(t)x1, . . . , χn(t)xn).

The map Zn → Zs is surjective (by our assumption). The kernel is another free
abelian group

0→ Zr B−→ Zn A−→ Zs → 0.

We regard these free abelian groups as lattices of 1-parameter subgroups of the tori
in the short exact sequence

0→ T → U → Q→ 0.

We also get the short exact sequence of character lattices

0→ Q∨ → U∨ → T ∨ → 0

whereQ∨ is what we calledM before. Alsmost by construction, k[M ] = k[x±1
1 , . . . , x±1

n ]T .
I can write V =

⋃
σ∈Σ VxJσ . By construction, V is covered by these open sets. What

are invariant functions O(VxJσ )G? it is exactly k[σ∨ ∩M ]. Each of the affines is a
categorical quotient, so when we glue them together, we get a categorical quotient.

Remark 25.1. It may not be true that this is a Mumford quotient (exists a line
bundle with linearization so that this is the semi-stable quotient). It is known that
there are toric varieties that are proper but not projective, and Mumford quotients
are always quasi-projective. ⋄

Remark 25.2. If we drop the assumption that the ε̄i generate Zs, but generate a
finite-index subgroup, then YΣ is the quotient of V by T × Γ, where Γ is some finite
abelian group (Γ will be the cokernel of A : Zn → Zs?). We get a morphism U → Q,
and the kernel of this morphism will contain Γ as a subgroup. ⋄
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Example 25.3. [[⋆⋆⋆ ε̄1 = (0, 1), ε̄2 = (1, 0) and their negatives, with the upper
left and lower right maximal cones missing]] This is the fan of P1 × P1 minus two
points. we have

A =

(
1 0 −1 0
0 1 0 −1

)
B =




1 0
0 1
1 0
0 1




We have (t, s) = (x1, x2, y1, y2) = (tx1, sx2, ty1, sy2), χ(t, s) = ts. We have V =
A4 r{x1x2 = 0, y1y2 = 0}. The points where x1 = y1 = 0 or x2 = y2 = 0 are unstable,
so they are always removed. We’ve also removed x1 = y2 = 0 and x2 = y1 = 0. ⋄

Example 25.4. [[⋆⋆⋆ cone generated by ε̄1 = (2, 1) and ε̄2 = (1, 2)]] We get
Z2/〈ε̄1, ε̄2〉 = Z/3. The acting torus is actually trivial here. The map U → Q is given
by (t1, t2) 7→ (t21t2, t1t

2
2). This is surjective [[⋆⋆⋆ ]], with kernel {e, (ε, ε), (ε2, ε2)}

where ε = 3
√

1. The quotient is A2/(Z/3). ⋄

Chow quotient and Hilbert quotient

Here’s a way to compactify quotients.
Idea: Suppose X is projective and irreducible, and G acts on X. The main

problem with the quotient is that there is some open space of good orbits (e.g. stable
with respect to some linearization). So in general, there exists some Zariski open set
U ⊆ X with the follwoing property. For x ∈ U , G · x is a closed subvariety of X,
so we can regard it as an algebraic cycle (say its dimension is r). For x, y ∈ U , the
closures of the orbits will be rationally equivalent cycles, so they represent the same
homology class in Hr(X,Z) [[⋆⋆⋆ we’ll prove that there is a U with this property
later]].

U//G →֒ Cr(X, δ), the Chow variety (the variety of algebraic cycles with cohomol-
ogy class δ), where δ ∈ Hr(X,Z). If you like, you can think about U//G as being in
Hilbr(X).

Definition 25.5. The Chow quotient X//CG is the closure of U//G in Cr(X, δ). ⋄

Note that no linearization is involved so far.
Realization of the Chow variety. Consider Cr(Pn, d), the variety of subvarieties of

Pn of dimension r and degree d. Then we’ll restrict to X. Classically, this was under-
stood with Chow forms. Pick r+1 linear forms ℓ0, . . . , ℓr on Pn. For an algebraic cycle
Z =

∑
ciZi, there exists a polynomial RZ(ℓ0, . . . , ℓr) with the following properties.

(∗) RZ1+Z2
= RZ1

RZ2
, and (∗∗) If Z is an irreducible variety, RZ(ℓ0, . . . , ℓr) = 0 if

and only if Z ∩ {ℓ0, . . . , ℓr = 0} 6= ∅.
Cr(Pn, d) is the projectivization of the space of homogeneous polynomials in

ℓ0, . . . , ℓr of degree d.
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Example 25.6. Consider two points in P2, with coordinates (x1, y1, z1) and (x2, y2, z2).
A form is of the form ax+by+cz. The form RZ will be (ax1+by1+cz1)(ax2+by2+cz2),
which is in the space of quadratic forms in a, b, c. So we are interested in those forms
which are the product of two linear forms. This is the condition that it’s rank is at
most 2. C0(P

2, 2) is then the projectivization of the space of quadratic forms with
zero discriminant, which is of dimension 4. This is singular when the rank drops to 1,
which corresponds to the case when two points coincide. The space of forms of rank
1 is a P2 embedded by the Veronese map. ⋄

If you do the same with Hilbert schemes, what will happen? The Hilbert scheme
and the Chow variety will agree when two points do not coincide, but they will be
different on the degenerate locus.

Consider A2 ⊆ P2. You are looking for ideals I ⊆ k[x, y] such that the quotient
is 2-dimensional. If two points don’t coincide, then this ideal is the intersection of
two maximal ideals. If the two points coincide, then I cannot be the square of a
maximal ideal (the quotient would be 3-dimensional), so the Hilbert scheme records
the ”direction of collision”, whereas the Chow variety doesn’t see this. So the Hilbert
scheme is non-singular, whereas the Chow variety was singular. The Hilbert scheme in
this case is exactly the resolution of the singularities of the Chow variety. In general,
there is a map from Hilbert to Chow.

Next we’ll show that for any Mumford quotient, you get a map to the Chow
quotient. The Chow quotients are difficult to compute in general, but it has been
done in the case of toric varieties, for example. This Chow quotient is not a categorical
quotient, which is bad, but there are many good sides too.
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26 Chow quotients

Next the plan is to talk about Chow quotients. Then we’ll need moment maps. That
will probably take at least a week.

Let X be a projective variety with an action of a reductive group G. We defined
the Chow quotient X//CG. There exists a Zariski open set U ⊆ X such that for any
two points x, y ∈ U , the orbit closures Gx and Gy represent the same homology class
as algebraic cycles. Such orbits are called generic orbits. You can look on an affine
set, then look at invariant functions fi(x) = ci cutting out the orbit. If you perturb
them a bit, then you’ll get the same homology class. You can take U as small as
you like, so you can just take the regular orbits. Then you get a geometric quotient
U/G. [[⋆⋆⋆ U may not be G-invariant. you just restrict the equivalence relation
generated by G to U , and U/G is the quotient by this relation]]

We defined the Chow variety Cr(X, δ), the projective variety parameterizing all
algebraic cycles of dimension r which represent homology class δ. Later we’ll give a
construction of this variety.

We get an embedding U/G →֒ Cr(X, δ). The Chow quotient is defined as the
closure of the image. [[⋆⋆⋆ it’s probably obvious that the map is quasi-compact
and quasi-separated so you get a scheme-theoretic closed image]]

Example 26.1. Consider A4 ⊆ P4 with the action of k× given by t(x1, x2, x3, x4) =
(tx1, tx2, t

−1x3, t
−1x4). We discussed before that we have three quotients Y0, Y+, and

Y−, where Y0 is the usual affine quotient, given by z1z2 = z3z4. We had two maps
Y+ → Y0 and Y− → Y0, each of which is kind of a “partial blowup” of the cone point.
This is related to the fact that we have the decomposition k4 = V+⊕ V−. Depending
on the linearization, we get that the semi-stable points are the complement of V+ or
V−.

What is the Chow quotient in this case? Every orbit G · x can be projected onto
V+ or V−. It’s not hard to see that under each projection, the image is a line. So
associated to each orbit are two lines ℓ1 and ℓ2, with G · x ⊆ ℓ1 ⊕ ℓ2. It’s actually a
hyperbola, given by uv = c, where u and v are coordinates on ℓ1 and ℓ2. As soon as
c 6= 0, all these orbits are rationally equivalent, so we take our U to be the union of
all of those. If c = 0, then the hyperbola degenerates and you get a “limit algebraic
cycle”. This cycle ℓ1 +ℓ2 is actually the union of three orbits, ℓir{0} and {0}. Notice
that ℓ1 r {0} is a semi-stable orbit in one case, and ℓ2 r {0} is semi-stable in the
other case. Note that the degenerate cross is rationally equivalent to the hyperbola,
so the cross is the limit in the Chow variety. The Chow variety is very large. The
Chow quotient has a point for each hyperbola and an extra point for the degenerate
cross for each pair of lines. Q: you don’t have a canonical choice of coordinates on
the ℓi. A: yes, but it doesn’t matter.

So the (affine part of the) Chow quotient Y has maps to Y+ and to Y−. [[⋆⋆⋆

why?]] We also have a map Y → Y0. There is a general theory that these affine maps
can be extended. The preimage of the singular point in Y0 is P1 × P1. This is in fact
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the blowup of the singular point of Y0. It’s a good exercise to check what’s going on
at infinity, but I won’t do it now.

There is a paper by Sturmfels-Kapranov-somebody else where they describe Chow
quotients for toric varieties in general. ⋄

Remark 26.2. Note that the Chow quotient is not a categorical quotient. That is,
there is no regular morphism X → Y . In the example, the orbit ℓ0 r {0} appears in
many limit cycles, so there is no natural way to send it to a single limit cycle. You
should also be able to see it from the toric description. ⋄

The following is from a paper [[⋆⋆⋆ from Kapranov, Chow quotient of Grassma-
nians, I.M. Gelfand seminar http://arxiv.org/abs/alg-geom/9210002, Theorem
0.3.1. There is also a paper of Hu]]

Proposition 26.3. Let X be a smooth projective variety and G a reductive group
acting on X. Assume the stabilizer Gx is finite for generic x ∈ X. Moreover, assume
that Gx is not unipotent for any x ∈ X. Let Z =

∑
niZi be a cycle in the chow

quotient (i.e. a point on the Chow variety). Then every irreducible component Zi is
the closure of exactly one orbit.

In the example, we have the cross, which has two components, each of which is
the closure of an orbit.

Proof. [[⋆⋆⋆ proof in the case of a torus]] Let G be a torus. Suppose the statement
is false, so there is some Zi which is not the closure of a single orbit. Then there is a
rational invariant function f on Zi which is not constant [[⋆⋆⋆ linearize the action,
look at lattice of laurent polynomials, so there must be an invariant laurent polynomial
because the dimension of the variety is greater than that of the torus]][[⋆⋆⋆ For a
torus, you can always find an affine open neighborhood of any orbit. Throw away some
orbits to get a non-constant regular function. You can always throw away something
so that the action is closed. Cover by affines, and separate orbits by invariants.
Invariants on open sets give you rational functions on the whole space.]][[⋆⋆⋆ the
invariant rational function on Z can be lifted because it is a ratio of semi-invariants.
Semi-invariants can be lifted by complete reducibility; the same reason you can lift
invariant regular functions]]. But since G is a torus, the rational function is a ratio of
two semi-invariants [[⋆⋆⋆ was one of the exercises]], f = p(x)/q(x), and every semi-
invariant is a regular semi-invariants on Zi. So we can lift them to get p(x), q(x) ∈
k[V ]G (where X ⊆ P(V )). Z = limt→0 Z(t), where Z(t) is the closure of one orbit,
so f is constant on Z(t) for any t 6= 0, so by continuity, it must be constant on Z, a
contradiction.

Remark 26.4. In general, the proposition is not true. Consider the diagonal action
of SL(2) on C2 × C2 = {(v1, v2)|vi ∈ C2}. We can naturally embed into P2 × P2 and
extend the action in the natural way.

What are the generic orbits? SL(2) preserves determinant and can map one pair
to another pair, so we get an invariant det(v1, v2). If v1 is not proportional to v2, we

http://arxiv.org/abs/alg-geom/9210002
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get a generic cycle in the Chow quotient, and it degenerates to the case det(v1, v2) = 0,
in which case we get that the two are proportional, a 3-dimensional set. In this set,
we have a 1-parameter family of orbits. v1 = λv2 is an orbit. Clearly the proposition
is not true in this case because the cycle det(v1, v2) cannot be the closure of an orbit
because the orbits are 2-dimesional.

The point is that in this case, the stabilizer of (e1, λe1) is
(

1 ∗
0 1

)
, which is unipotent.

⋄

How do we finish the proof of this proposition? There’s a proof with Luna’s slice
theorem. Pick up a generic point x ∈ Zi. If the proposition fails, then the dimension
of the stabilizer of x is positive by dimension reasons, so there is a non-trivial torus
T in the stabilizer since the stabilizer is not unipotent. For the torus, the proposition
is already proven. Pick a curve x(t) such that x(0) = x and x(t) is generic (in the
sense of Chow quotient) if t 6= 0. Now we can tak the Chow quotient with respect to
T . Consider the cycle C =

∑
miCi which is the limit of T · x(t) as t→ 0. This cycle

is contained in Z. So we can find yi ∈ Ci such that x ∈ Ty. From this, we get that
x ∈ Gy, but we have to check that x 6∈ Gy [[⋆⋆⋆ this is the part I don’t have an
argument for]]. Then we are done by dimension considerations.
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Suppose X is a projective variety with an action of a reductive group G, with finite
generic stabilizer, and Stab(x) never unipotent. If Z ∈ X//CG, then each component
of Z is the closure of a single G-orbit.

Proof. Suppose not. Let x ∈ Zi generic, so its orbit Gx is maximal-dimensional
among orbits in Zi. If the result is not true, we know that dim(Stab(x)) > 0. Since
this stabilizer is not unipotent, there is a non-trivial torus T ⊆ Stab(x). Suppose
X ⊆ Pn, with the action on Pn linear. Consider Tx(Pn) = Tx(Gx) ⊕ N , with N
a T -invariant subspace of Tx(Pn). Next, take S = x + N ⊆ Pn. By definition, S
is transverse to Gx. So there is an open neighborhood x ∈ U such that S will be
transverse to any orbit Gy for y ∈ U . If y ∈ Zi, then by dimension and transversality,
Gy intersects S in finitely many points. On the other hand, S is a T -invariant
subvariety by construction, so the action of T on Zi ∩ S is trivial.

Now consider a curve x(t) ⊆ S ∩X with x(0) = x and Stab(x(t)) finite for t 6= 0
[[⋆⋆⋆ why can we find such a curve in S ∩ X?]]. Now I define C(t) = T · x(t).
Outside of Z, T acts with finite stabilizer, so dimC(t) = dimT . It degenerates to a
cycle C , which lies in Zi ∩S (on which the action of T is trival). But we showed that
the components of C must be closures of single T -orbits, a contradiction.

[[⋆⋆⋆ for transversality, it looks like we really used that X is smooth.]]
Let me introduce the next theorem, which I’ll only prove later, after we’ve done

the symplectic moment map.

Theorem 27.1. Suppose k = C, and X is projective with an action of a reductive
group G. Let L ∈ PicGX. Then there exists a morphism of algebraic varieties
X//CG→ X//LG. If Xs(L) 6= ∅, then this is morphism is birational.

[[⋆⋆⋆ btw, can we characterize when Mumford quotients have maps between
them? It should be some kind of chamber decomposition of PicGX. Is the Chow
quotient the fiber product of all the Mumford quotients?]]

Definition of the moment map

Let M be a real symplectic manifold of dimension 2n with symplectic form ω ∈ Ω2M ,
dω = 0, and ω non-degenerate at all points. Assume K is a connected real Lie
group which acts on M and preserves ω. Since ω is non-degenerate, we get an
identification ω : T ∗M ∼= TM . Let v ∈ V ect(M) such that Lv(ω) = 0 (i.e. v is
a Hamiltonian vector field).1 Then (at least locally), there exists a function Hv

such that 〈dHv , w〉 = ω(v, w) for all w ∈ V ect(M). This follows from the Darboux
lemma, which gives us coordinates p1, . . . , pn, q1, . . . , qn such that ω =

∑
pi∧qi. Then

1For a differential k-form α, dα is a (k + 1)-form and ivα = α(v,−) is a (k − 1)-form. Lvα =
ivdα + d(ivα).
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v =
∑

∂H
∂pi

∂
∂qi
− ∂H

∂qi

∂
∂pi

(possibly in the other order). If such a function exists globally

(e.g. if M is simply connected), then the field is Hamiltonian. Denote the set of such
vector fields by HV ect(M)

C∞(M) has a Poisson bracket {f, g} = ω(df, dg) = ω(df) · g, where we’re thinking
of ω as an isomorphism T ∗M

∼−→ TM . Then we get a short exact sequence

0→ R→ C∞(M)
ω◦d−−−−−→

f 7→{f,−}
HV ect(M)→ 0

which is in general a non-trivial central extension of Lie algebras.
Let k = Lie(K). From the action, we have a map k → HV ect(M). Assume we

can lift this to a Lie algebra homomorphism k → C∞(M). This is always possible,
for example, if k is a semi-simple Lie algebra (because semi-simple Lie algebras don’t
have non-trivial central extensions). If u ∈ k, we will write Lu for the image in
HV ect(M). Assume every Lu is Hamiltonian (which will always be true if M is
simply connected). [[⋆⋆⋆ notice that the lift is not unique; you can replace all the
Hu by Hu + const and still get a lift. Actually, since k → C∞(M) is required to be
Lie algebra homomorphism, it’s only determined up to an element of HomLie(k,R).
In particular, if k is semi-simple, the map is unique]]

Under all these assumptions, we can define a map µ : M → k∗, given by 〈µ(x), u〉 =
Hu(x) for x ∈M and u ∈ k. [[⋆⋆⋆ This µ is defined only up to shift, since any two
lifts k→ C∞(M) will differ by an element of Hom(k,R) = k∗.]]

Remark 27.2. K acts on k by the adjoint representation. It also acts on HV ect(M).
The map µ is K-equivariant. Infinitesimally, you can write it as 〈dµ(x)(ξ), u〉 =
ω(ξ, Lu) for ξ ∈ TxM . ⋄
Example 27.3. If X is any smooth variety, there is a canonical symplectic variety
associated to it, namely M = T ∗X. If x1, . . . , xn are local coordinates on M , then
the coordinates on the fibers are pi = ∂

∂xi
, and ω =

∑
dpi ∧ dxi. If I have any vector

field v =
∑
fi

∂
∂xi

on X, it automatically induces a vector field on M .

Exercise. Check that Hv =
∑
pifi.

⋄
Example 27.4. Let K = U(n + 1) act on Cn+1. This extends to an action on PnC
(thought of as a real manifold!). It is easy to check that the action on Pn is transitive.
By definition, U(n + 1) are those transformations that preserve the Hermitian form
(v, w) on Cn+1. In coordinates, (v, w) =

∑
viwi. Such a form defines a Kahler

form on Pn, which can be written in homogeneous coordinates
∑n

i=0
dzi dzi
P

|zi|2 , called the
Fubini-Study form. On the imaginary part of k this form is a symplectic form ω.

We get a moment map µ : Pn → k∗. k is the space of skew-hermitian matrices,

which I identify with hermitian matrices (A
t
= A) by multiplying by

√
−1.

If x ∈ Pn, pick a vector v ∈ Cx. Define 〈u, µ(v)〉 = vtuv
vtv

, where v is regarded as a
column vector. It is not hard to see that this is an equivariant map. If g ∈ U(n+ 1),

then 〈u, µ(gv)〉 = vtgtugv
vtgtgv

, but gtg = 1, so this is 〈gtug, µ(v)〉. ⋄
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Next time we’ll talk about the relation of this stuff to Mumford quotients.
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Last time, we considered the case K = U(n + 1) acting on Pn in the standard way.
We have a Hermitian form which induces the symplectic form, so we get a moment
map µ : Pn → k∗ defined by

〈µ(v), u〉 = (uv, v)

(v, v)

where we’ve identified k∗ with the space of hermitian matrices. The pairing (−,−) is
the hermitian form on V = Cn+1. In the formula, v ∈ V , and u ∈

√
−1k∗.

If the group is reductive, we can identify k with k∗ by the Killing form [[⋆⋆⋆

doesn’t the group need to be semi-simple for that?]]. In this case, we can write the

moment map as µ(v)w = w− (u,w)
(v,v)

v, the projection onto the orthogonal complement
of v. Here, I’m assuming the form is skew-linear in the first coordinate and linear in
the second one.

Since everything we’re going to study is related to this example, I want to talk
more about it.

If K is a compact group [[⋆⋆⋆ btw, compact groups always complexify to re-
ductive groups]], and V is a complex linear representation of dimension n+ 1. Then
by compactness, there is a positive definite hermitian form (−,−) on V . So I get a
map K → U(n+1), giving the dual map u(n+1)∗ → k∗. So for an arbitrary compact
group, the moment map is induced by the one in the example.

Consider the case K = T , the maximal torus of GL(V ), so t∗K
∼= Rn+1. If I choose

an orthonormal basis {e0, . . . , en} for V , then

µ(z0, . . . , zn) =
(|z0|2, . . . , |zn|2)∑ |zi|2

.

So the image is the simplex {(a0, . . . , an) ∈ Rn+1|∑ ai = 1}. In general, when K is
a torus, the image of the moment map is a convex polytope.

If G is an arbitrary reductive group over C, then by Cartan’s theorem, it has one
compact real form K ⊆ G (up to conjugation), with KC

∼= G. If G is connected, it
can be proven that K is connected. See, for example, Helgason’s book. Here are the
classical cases:

G K

C× S1

SL(n,C) SU(n)
SO(n,C) SO(n,R)
Sp(2n,C) SU(n,H)

If X is a projective complex variety, we find an ample line bundle L ∈ PicGX.
This gives us an immersion X →֒ P(V ), which is G-equivariant (V = Γ(X,L⊗N ) for
some N). Since K ⊆ G, we get a map µ : X → k∗.

Theorem 28.1. (1) A point x ∈ X is semi-stable if and only if 0 ∈ µ(G · x) [[⋆⋆⋆

we’re using the particular moment map we defined at the beginning of the lecture;
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actually, we require the map k∗ → C∞(M) to be a Lie algebra map]]. (2) µ−1(0)
is K-invariant (since 0 is invariant). Every semi-stable orbit either does not meet
µ−1(0) or they meet in a single K-orbit. We get an isomorphism of topological spaces
µ−1(0)/K

∼−→ X//LG.

Example 28.2. G = T the maximal torus in SL(V ). The the image of the moment
map is a simplex whose center is at 0. The preimage µ−1(0) = {(z0, . . . , zn)||z0| =
|z1| = · · · |zn|}. This is exactly one K-orbit, since K = {diag(t0, . . . , tn)||ti| = 1}.
The semi-stable orbit is the open orbit. There are other orbits corresponding to the
faces of the simplex. ⋄

This theorem gives you a nice criterion for semi-stability, and it reduces to an
“easier” case where the group is compact.

The proof of the Theorem is due to Kempf and Ness. Consider f(v) = (v, v) =
‖v‖2 as a function on V . Restrict to some orbit O = G · v.

Proposition 28.3.

1. v ∈ O is a critical point (of the restriction f : O → R) if and only if µ(v) = 0.

2. Every critical point is a minimum.

3. If f has a minimum on O, then it attains it at a single K-orbit (f is clearly
K-invariant).

4. f has a minimum on O if and only if O is closed.

Proof. (1) Suppose v is a critical point on O = G · v. TvG · v = g · v, so it is a critical
point if and only if

d

dt
(eutv, eutv)

∣∣∣
t=0

= 0

for all u ∈ g. We have g = k ⊕ m, where k are skew-hermitian matrices and m are
hermitian. When you calculate the LHS, you only need to consider the linear term
in t, so the condition becomes

(v + uvt+ · · · , v + uvt+ · · · ) = (v, v) + ((uv, v) + (v, uv))t+ · · ·

But skew-hermitian means that (av, v) = (v, av), so we get that the condition for
being a critical point is that (bv, v) = 0 for all b, which is equivalent to µ(v) = 0.

The idea for (2-4) i to do it first for the case where G is a torus, and then do the
general case using a bit of structure theory. In all these proofs, we can basically reduce
to the case of a torus because of the Hilbert-Mumford criterion. So let’s consider the
case G = T .

Then the action is diagonalizable: t(x1, . . . , xn) = (χ1(t)x1, . . . , χn(t)xn). Since
the form is invariant under the action of the torus, we can choose the T -eigenbasis
to be orthonormal with respect to the form. T = (C∗)m. We have a surjection



100 28 Lecture 28, v. 12-9

Cm exp−−→ T . We have that (tv, tv) =
∑
|xi|2|χi(t)|2, which we regard as a function on

Cn. We have (t1, . . . , tn) = (es1, . . . , esn), so the form looks like
∑ |xi|2|eℓi(s)|2, where

ℓi are some linear functions on Cm. This function is invariant with respect to K, so if
we write Cm = Rm+

√
−1Rm, the imaginary part does not contribute to the form. If

I define φ(s) = ‖ exp(s ·v)‖, we get the factorization φ : Rm → R. The restriction of φ
to any line (parameterized by τ ) is given by

∑
cie

aiτ . We can see that if the function
is not constant on the line, it has a positive second derivative. That is, φ is convex
when restricted to a line, and strictly convex if it is not constant. How can it happen
that φ is constant? Only if each ℓi is zero. φ(s0 + τ~r) constant implies that ℓi(~r) = 0
for all i = 0, . . . , n, which implies that ~r is in the stabilizer of es0v. If v is a critical
point, then I know that there are some directions where φ is constant, and these will
form a subspace. φ(τ~r) constant if ~r ∈ Stab(v), and the function φ : Rm/Stab(v)→ R
is strictly convex, so it has a single critical point, which then must be a minimum.
From this, we get (2) and (3) for a torus. We’ll finish proving this theorem next time.
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We had the map µ−1(0)/K → X//LG. We were working on the criterion for semi-
stabilty: x is semi-stable if and only if µ(G · x) contains 0. The argument was based
on the result of Kempf-Ness that if you consider f(v) = (v, v) = ‖v‖2 restricted to an
orbit G · v, we have

1. If v 6= 0, then v is a critical point of f is and only if µ(v)=0. We proved this
last time.

2. Every critical point is a minimum.

3. If minimum is obtained on G · v, then it obtained on a single K-orbit.

4. A minimum is attained if and only if the orbit G · v is closed.

(2) and (3) were proven as follows. First restrict to the case G = T is a torus. Let
t = Lie(T ) and tK be the lie algebra of the compact subgroup, and Stabt(v) the
stabilizer of v. We have

φ : t
exp−−→ T

f(tv)−−−→ R

We have that φ =
∑
aie

ℓi(s). Since all the stabilizers are conjugate, it’s clear that φ
is constant along Stabt(v) and along tK . So I can consider φ : t/(Stabtv + tK) → R.
This φ is not constant along any line, so it has strictly positive second derivative.
From this, you get (2) and (3) for a torus.

To get (2) and (3) in general, we need some knowledge about complex reductive
groups. See Helgason’s book “Symmetric spaces and Lie algebras”.

Proposition 29.1. Fix a redictive group G over C and a maximal compact subgroup
K ⊆ G. Let T be the set of all maximal tori T in G such that T ∩K is a maximal
compact subgroup of K. Then G =

⋃
T∈T KT .

It’s pretty clear how we’re going to get (2) and (3) for G from this result. Let’s
prove the Proposition in the case G = GL(n).

Proof. The maximal compact subgroup of G = GL(n) is K = U(n). A maximal torus
T can always be diagonalized in Cn. We have that T ∈ T if and only if the eigenbasis
can be chosen to be orthogonal. The “polar decomposition” says that X ∈ GL(n,C)
can be written uniquely as X = UH, where U is unitary and H is positive definite

hermitian. This is easy to see: X
t
X is a positive definite hermitian operator, so take

H =
√
X
t
X and U = XH−1.

But hermitian operators are diagonalizable, and the eigenbasis can be chosen to
be orthogonal.

Now let’s prove (2) and (3). Suppose v, w ∈ G · v and f(v) = f(w) is a minimum.
We have w = g · v for some g = k · t where k ∈ K and t ∈ T ∈ T . Since f is
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K-invariant, we have that f(v) = f(tv), and for T we know that the theorem is true.
So v and tv are in the same K-orbit, so t ∈ TKStabv(t) (TK = T ∩K), so w ∈ K · v.

If v is a critical point on G · v, then it is a critical point on K · Tv, where T ∈ T .
It is a minimum on K · Tv for all T , so it is a minimum on

⋃
KTv = Gv.

Now let’s prove (4). I need another fact about reducitive groups. The main idea is
to use the Hilbert-Mumford criterion. Recall we proved that if G·v is not closed, then
one can find a 1-parameter subgroup λ(t) ⊆ G such that limt→0 λ(t)v = w 6∈ G · v.
This λ(t) lies in some torus T . Assume for now that we may choose T ∈ T . Choose
an orthogonal basis v1, . . . , vN for V such that λ(t)vi = tbivi and b1 ≥ b2 ≥ · · · ≥ bN .
If v =

∑
civi, then we see that ci = 0 whenever bi < 0. Then we see that

(λ(t)v, λ(t)v) =
∑
|ci|2|t|bi.

with all bi ≥ 0. So as t goes to zero, we see that the length of v decreases, so it cannot
be a minimum of f . The only way the length doesn’t change is if λ(t)v = v for all v.
So it remains to show that we may choose T ∈ T such that λ(t) ⊆ T .

Every 1-parameter subgroup canonically defines a parabolic subgroup. Consider
the adjoint action of G on g. The action Adλ(t) on g is diagonalizable. It defines a
Z-grading on g, g =

⊕
gi, where gi = {x ∈ g|Adλ(t)x = tix}. We have that [gi, gj ] ⊆

gi+j , so p =
⊕

i≥0 gi ⊆ g is a Lie subalgebra. The corresponding Lie subgroup P ⊆ G
is a parabolic subgroup. In this way, you get all parabolic subgroups. The algebro-
geometric characterization of parabolic subgroups is that G/P is projective if and
only if P is projective.

Proposition 29.2. For any 1-parameter subgroup λ(t) ⊆ G, there is an element
g ∈ P (the associated parabolic subgroup) such that gλ(t)g−1 is contained in some
T ∈ T .

Proof. Again, let’s prove this only in the case G = GL(n). We can choose a basis
e1, . . . , en in which λ(t) is diagonal, say λ(t)ei = taiei, with a1 ≥ a2 ≥ · · · ≥ an. The
problem is that the ei may not be orthogonal. Define ẽ1 = e1, ẽ2 = e2 − (e2, ẽ1)ẽ1,
ẽi = ei−

∑
j<i(ei, ẽj)ẽj. This change of basis is given by some upper triangular matrix

g, which lies in P . In general, you have to be careful so that you choose g to lie in
your algebraic group.

Now let’s prove (4). If the orbit Gv is closed, then f attains a minimum. Suppose
f has a minium at v on the orbit G · v 6= G · v. By the Hilbert-Mumford criterion,
we can find λ(t) such that limt→0 λ(t)v = w 6∈ G · v. Choose g as in the proposition,
and you get limt→0 λ(t)g

−1v = g−1w. You can think of the parabolic as a block
upper triangular matrix. Where bi < 0, v must have zero coordinates, and when you
multiply by by g−1, you don’t distrub that. So we get limt→0 gλ(t)g

−1v = 0, and we
saw that f being minimum of v implies the 1-parameter subgroup fixes v.

Theorem 29.3.

(a) x ∈ X is semi-stable if and only if 0 ∈ µ−1(Gx).
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(b) µ−1(0)/K → X//LG is a homeomorphism.

Proof. Recall the definition of semi-stability: x ∈ P(V ) is semi-stable if and only if
0 6∈ G · v, where v is a vector on the line defined by x. The point is that G · v has
only one closed orbit Z because V is affine. So x is semi-stable if and only if Z 6= {0}.

Consider f on the orbit closure G · v. This minimum exists, and by (4), this
minimum must be at some w ∈ Z. If w 6= 0, then µ(w) = 0 by (1). If w = 0, then
0 6∈ µ(G · x) (µ is not defined at 0, so if the minimum of f is at 0, there is no other
ciritical point, so by (1), the image doesn’t contain 0).

The closure equivalence class of G·v meets µ−1(0) at most at one K-orbit. It meets
it only if the corresponding point x ∈ P(V ) is semi-stable. So we get an embedding
µ−1(0) →֒ Xss(L), and we have the map Xss(L) → X//LG. The composition is K-
equivariant, so we have a continuous bijection from a compact space to a hausdorff
space (use the complex topology on X//LG), so it’s a homeomorphism.

Next time, we’ll prove convexity of the image of µ in the case G is a torus. Then
we’ll return to Chow quotients.
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Example 30.1. Suppose we have n points in P1. We haven’t discussed this problem
yet, but we’ve considered ordered n-tuples. We have an SL(2) action on (P1)n. There
are lots of linearizations, but there is one which is symmetric, the one coming from
the standard action (C2)⊗n (you can get more via the Veronese embeddings). We
have a natural map (C2)n → (C2)⊗n. We checked the stability condition in the case
of numbered points, but stability only depends on the connected component of the
group, so we have that the semi-stable points are the ones where the multiplicity of
each point is ≤ n/2.

We have K = SU(2) ⊆ SL(2). Let ν : P1 → su(2)∗ ∼= R3 be the moment map for
the action on P1. Think of su(2) as hermitian 2 × 2 matrices with trace zero. The
image of the moment map will be the sphere in R3. The image of ν will be the set

of matrices X such that X
t
= X and tr(X) = 0. This means that the eigenvalues of

X must be {1/2,−1/2}, and X is of the form
(
a b
b a

)
where −a2− bb = −1/4. This is

exactly the usual identification if P1 with S2.
So for (x1, . . . , xn) ∈ (P1)n, we have µ(x1, . . . , xn) =

∑
ν(xi). So µ−1(0) is the

set of sets of n points on the sphere such that the sum of them is zero. We have to
quotient this by the action of SU(2), which is just given by rotation of the sphere
(via the map K = SU(2)→ SO(3,R)).

If n = 4, we know the quotient is X//G ∼= P1, given by the cross-ratio. We want
to classify sets of four points x1, . . . , x4 ∈ S2 such that

∑
xi = 0, up to rotation.

Let y = x1 + x2 and x3 + x4 = −y. We can rotate so that y perpendicular to the
equator. Fixing the vertical axis, we can still rotate x3 to be on some fixed meridian.
Under these conditions, everything is determined uniquely by x1. It lies on some line
of latitude, so x2 must be on at the same latitude, and opposite longitude. Now we
know that x3 is on the meridian, and x4 must be at the opposite longitude. ⋄

Convexity Theorems

Suppose M is a compact connected symplectic manifold and T ∼= (S1)n is a real torus
acting on M , preserving the symplectic form ω. Suppose we have a moment map
µ : M → t∗ = Rn.

Theorem 30.2.

(a) µ−1(c) is connected for all c.

(b) µ(M) is convex.

(c) Let Z = {x ∈ M |dµ(x) = 0} = Z1 ⊔ · · · ⊔ ZN (the Zi are the connected
components). Each Zi is a non-singular manifold, and µ(Zi) = ci is a single
point. Moreover, µ(M) is the convex hull of the ci. In particular, µ(M) is a
convex polytope.
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Theorem 30.3. Suppose M is a complex variety with Kähler structure, and TC is a
complex torus acting on M such that the real torus TK preserves the Kähler structure.
Given y ∈M , let Y = TC · y and Y its closure. Suppose a moment map µ exists.

(a) µ(Y ) = P is a convex polytope.

(b) If S is an open face of P , then µ−1(S) is exactly one orbit of TC whose complex
dimension is equal to the real dimension of S.

(c) µ : Y /TK → P is a homeomorphism of topological spaces.

It is clear that a projective toric variety is exactly such a situation. On the other
hand, we have the fan of the variety. The relationship between the fan Σ of Y and P
is that Σ is the dual fan of P .

We can regard P ⊆ Rn and Σ ⊆ (Rn)∗. For a face S of P , the corresponding cone
in Σ is σ = {λ ∈ (Rn)∗|λ attains its maximum (on P ) at S}. The moment map is not
unique (because you can shift by scalar of scale), but the fan is uniquely determined.
For example, [[⋆⋆⋆ picture for P2, but equalateral rather than what I’m used to]].
It is often more conviniant to work with the polytope rather than the fan.

Let Hn be the n × n hermitian matrices. We have a natural action of U(n)
(since Hn is naturally u(n)), given by g · X = g−1Xg = gtXg. The orbits are given
by eigenvalues (λ1, . . . , λ)n). Each orbit M is a real manifold, but it’s actually a
complex manifold. The isotropy group is U(n1)× · · · × U(nk), where n = n1 + · · · nk
and the ni are the multiplicities of the eigenvalues. So the quotient by the isotropy
group is a flag variety. What is the moment map of the orbit M [[⋆⋆⋆ with respect
to the action of T n = {diag(eiθ1, . . . , eiθn)} ⊆ U(n)]]? It is just the projection onto
the diagonal: µ(X) = (x11, x22, . . . , xnn). We get that µ(M) is the convex hull of
{(λs(1), . . . , λs(n)|s ∈ Sn}. Such convex hulls are called permutohedrons. These orbits
are actually all the same variety. You have a lot of choice in the eigenvalues, but all
the combinatorial and topological characteristics will be the same. All that matters
is the multiplicities n1, . . . , nk.

Let’s start the proof of the first theorem.
We have (M,ω) and f1, . . . , fn are commuting functions (in the sense that {fi, fj} =

0) such that the corresponding vector fields Lfi
= ω(dfi) generate some torus LieT = t

(which may have larger dimension than n. [[⋆⋆⋆ the flow of the Hamiltonian may
not correspond to a closed 1-parameter subgroup]]. Then we have f : M → Rn fac-

toring as M
µ−→ t∗ = Rm projection−−−−−−→ Rn. [[⋆⋆⋆ now we’ve started denoting the

dimension of the torus in the theorem by m.]]
Now we can rephrase the theorem as

(a) f−1(c) is connected.

(b) f(M) is convex.

If n = 1, then (b) is trivial. In general, (a) ⇒ (b). Suppose by induction that I’ve

proven it up to n. Now given g : M
f−→ Rn+1 π−→ Rn for any projection π. By induction,
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the preimage under g of any point is connected. We have f(M) ∩ π−1(c) = f(g−1(c))
is connected because f is continuous and g−1(c) is connected. But π−1(c) is a line.
But this means that f(M) is convex.

Now let’s do the proof of (a) in the case where n = 1. For this, we use some Morse
theory. f is non-degenerate (in the Morse sense) if it has isolated critical points and

the hessian D2f =
(

∂2f
∂xi∂xj

)
is non-degenerate.

If the signature of the hessian D2f is never 1 or n− 1, then the preimage f−1(c)
is always connected. This is because the preimage is a quadric which can only have
two connected components if the signature is ±1. The basic idea is to prove that the
Hamiltonian is a non-degenerate Morse function.
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31 Convexity Theorems

Proposition 31.1. Let M be a compact connected symplectic variety. Suppose f ∈
C∞(M) such that ω(df) = Lζ ∈ V ect(M) where ζ ∈ tf (the Lie algebra of some
compact torus T with a Hamiltonian action on M). Let Z = {x ∈ M |df(x) = 0} =
Z1 ⊔ · · · ⊔ ZN , where each Zi is a connected component of the cricical locus Z. Then

(a) Each Zi is a smooth manifold.

(b) For x ∈ Zi, the hessian D2f(x)|TxM/TxZi
is a non-degenerate quadratic form.

(c) The form in (b) has even signature (even number of positive eigenvalues, so
also an even number of negative eigenvalues, since dimM is even).

(d) The restriction of ω to Zi is non-degenerate, so Zi is symplectic.

Remark 31.2. Say K is compact (or reductive, in the algebraic case), and let Z
be the set of fixed points. Then Z is non-singular. To see this, consider the action
σ : K ×M → M and dσ(x) : k ⊕ TxM → TxM . For a fixed point x ∈ Z, the group
(and the Lie algebra) acts on the tangent space. The tangent space TxZ is just
(TxM)k = (TxM)K . This proof will work in the algebraic setting if the group is
reductive. We have a decomposition TxM = (TxM)K0 ⊕ N , where N is the normal
bundle to Z. If x is in a connected component of Z, dim(TxM)K0 is fixed because
representations of a reductive or compact group are discrete, so the dimension of the
normal bundle is fixed, so Z is smooth. This proves part (a). ⋄

Proof. Let tf = LieTf . Then Z is fixed by Tf since the 1-parameter subgroup gener-
ated by Lζ fixes Z.

Let x ∈ Zi, so TxM = TxZ⊕N . We know that ζ infinitesimally preserves the form
because the action is symplectic: ω(ζv, w) + ω(v, ζw) = 0. We also know that the
eigenvalues of ζ are purely imaginary because if we exponentiate, we get a unitary
matrix. Consider VC = V ⊗R C. If ζv = pv and ζw = qw are eigenvectors, then
ω(v, w) 6= 0 implies that p + q = 0. So we get a decomposition (after complexifying)
VC = V0 ⊕ V1 ⊕ · · · ⊕ Vk where V0 = ker ζ and ω(Vi, Vj) = 0 for i 6= j. So dimVi = 2
and the restriction of ζ is

(
pi 0
0 −pi

)
. TxM = TxZ ⊕V R

1 ⊕ · · ·⊕V R
k . Since pi was purely

imaginary, the action of ζ on V R
i is

(
0 qi

−qi 0

)
where qi =

√
−1pi; we can choose a basis

so that ω(e1, e2) = 1. Locally, we can choose coordinates x1, . . . , xk, y1, . . . , yk such
that Hζ =

∑k
i=1 qi(x

2
i + y2

i ) + O(higher), so we know the terms that contribute to
the signature of the hessian, and we see that the signature is even. Something about
qixi

∂
∂yi
− qiyi ∂

∂xi
. From the decomposition of TxM , we see that the restriction of ω to

TxZ is non-degenerate since ω(TxZ, Vi) = 0.

So we’ve proven that the preimage of a point under the moment map of a projec-
tion to a 1-dimensional space is connected.
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Proof of Theorem. Assume the preimage of a point is connected for n commuting
Hamiltonians. Suppose we have n + 1 commuting Hamiltonians f1, . . . , fn+1. We
want to show f−1

1 (c1) ∩ · · · ∩ f−1
n+1(cn+1) is connected. We know that N = f−1

1 (c1) ∩
· · · ∩ f−1

n (cn) is T -invariant and connected. We want to show that fn+1 : N → R
satisfies (a), (b), and (c). Since the number of connected components of the fiber is
semi-continuous, it is enough to prove the result for a generic cn+1. So we may assume
df1(x), . . . , dfn(x) are linearly independent for x ∈ N (which we can assume because
they generate the torus; if they aren’t independent generically, we can remove one
of them). Let x ∈ N be a critical point of fn+1|N , so dfn+1(x) +

∑n
i=1 bidfi(x) = 0.

Consider φ = fn+1 +
∑
bifi. Define Zφ = {y ∈ M |dφ(y) = 0}. Then by defi-

nition, x ∈ N ∩ Zφ. By transversality, we have that Tx(N ∩ Zφ) = TxN ∩ TxZφ.
ω(df1)(x), . . . , ω(dfn)(x) ∈ TxN because these are vector fields of the action of the
group and N is T -invariant. Since the dfi are linearly independent, they are linearly
independent when restricted to TxN . All the arguments in the proof of the Propo-
sition can now be repeated. φ is the hamiltonian of some vector field: ω(dφ) = Lζ .
This ζ has purely imaginary eigenvalues and xxxx, so the argument works the same
way.

Once you know that the indexes of critical points are even, you get connectivity
of the fibers. This is some result from Morse theory (it’s work of Bott?). If you have
an isolated critical point, when you pass a critical point, it looks like x2

1 + · · ·+ x2
k −

x2
k+1− · · · −x2

n = ε, whose fibers are connected unless k = 1 or k = n− 1 (depending
on the sign of ε).

To finish the Theorem, we have the moment map µ : M → t∗ = Rn. We have (a)
µ−1(c) is connected. From this, we get (b) µ(M) is convex as we explained last time.
Moreover, (c) if Z = Z1 ⊔ · · ·ZN = {x ∈ M |dµ(x) = 0}, then µ(Zi) = ci (a single
point!), and µ(M) is the convex hull of the ci.

Recall that µ = (f1, . . . , fn), where the fi are commuting Hamiltonians. Take an
arbitrary linear combination f =

∑
bifi for bi ∈ R. If this combination is generic,

then Tf = T and df = 0 if and only if dµ = 0. That means that the Zi go to one
point since they are fixed points of f . And maxm∈M f is attained at one of the Zi.
So maxx∈µ(M )(b1x1 + · · · bnxn) is attained at some ci. So we have a convex set, and
for a generic linear functional, the maximum is attained at one point, and there are
a finite number of such points. This implies that the convex set is a polytope, the
convex hull of those points.

Let me talk a little bit about the second theorem. Suppose M is a complex variety
(think Pn) with Kähler structure. Let T be a complex torus acting on M , preserving
the Kähler structure. Again we get a moment map. For y ∈ M , consider Y = Ty,
which is a toric variety. In most cases, this Y is singular, so we can’t use the previous
theorem. The moment map µ : Y → t∗K (the Lie algebra of a compact form of the
torus). Then we get a bijection between faces of the image of µ and T -orbits in Y .
And the quotient Y /TK is homeomorphic to the polytope µ(Y ).

The point is that a Kähler manifold has a symplectic structure and a Riemannian



31 Convexity Theorems, v. 12-9 109

structure. We have two isomorphisms ω, g : T ∗M → TM and ω∗, g∗ : TM → T ∗M ,
with ω ◦ ω∗ = −1 (since it is skew-symmetric) and g ◦ g∗ = 1 (since it is symmetric).
The Kähler condition says that J = g ◦ ω∗ = ω ◦ g∗ and it satisfies J2 = − id.

We can consider T as the product of TK, the compact torus, and H. For T = C×,
H = R+ and K = S1. Consider µ : M → Rn. Acting by K doesn’t change the image
under µ, but acting by an element of H moves you around in the image of µ. For
some h ∈ LieH and y ∈ Y , exp(hs)y is a curve in M whose image we can look at
under µ. For generic h, the curve goes to a vertex. But if h is perpendicular to a
face, the curve flows to the face.
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32 The moment map for toric varieties

Bott-Morse theory reference for the fact we didn’t prove last time. Non-degenerate
critical manifold (Annals of Mathematics 60 1954)

We have a Kähler manifoldM (has compatible symplectic form ω and Riemannian
form g). Let T be a complex torus acting on M so that the unique maximal compact
subgroup K preserves the Käher structure. Suppose we have a moment map µ : M →
k∗.

Let Y ⊆ M be a T -orbit, and let Y be its closure. Now consider µ : Y → k∗. If
the action is algebraic and M is a smooth algebraic variety, Y may still be a singular
variety.

We can write T = H ·K, where K ∼= (S1)n (n = dimC T ) and H ∼= (R>0)
n. We

get a corresponding decomposition of the Lie algebra t = k ⊕ h. If we regard t as a
complex space, k =

√
−1h, so we may identify the two: h ∼= k.

Without loss of generality, we may assume T acts with finite stabilizer on Y ,
because we can quotient by the connected component of the identity of the stabilizer
(which is a torus, so the quotient is a torus). Then the stabilizer Ty is a finite group,
so it must be in K. [[⋆⋆⋆ because K is the maximum compact subgroup of T , not
just a maximal compact subgroup.]]

More or less by definition of the moment map, 〈dµx(v), a〉 = ωx(v, La(x)), where
x ∈ M , v ∈ TxM and x ∈ k. We have ωx(v, La(x)) = gx(Jv, La(x)), where J is the
complex structure on M . Using the identification of h with k, we have the relation
〈dµx(v), h〉 = gx(v, Lh), where h ∈ h (regarded as being in k by

√
−1).

Consider the function φh(x) = 〈µ(x), h〉. On the other hand, I can construct the
flow exp(hs)x, where x ∈ M and s is a parameter. This will be the gradient flow of
φh. This is because

d

ds
〈µ(exp(hs)x, h〉

∣∣∣∣
s=0

= gx(Lh, Lh).

This will bring you to a (local) maximum of φ. Now let y ∈ Y . Define yh =
lims→∞ exp(hs)y. This limit exists because we are on a projective variety, and this
point is a local maximum of the functions φh. Q: it might happen that you flow
to some critical point which is not a maximum. A: something about being able to
approach things using 1-parameter subgroups. For now, let’s just say it’s a critical
point. I think it won’t matter for the proof.

If t ∈ T , then (ty)h = t · yh. If h is chosen generically, then
√
−1h will generate

all of K. Then yh must be a fixed point of K, h must be in Stabh(y
h), and φh must

be maximal. In this situation yh is independent of y because we are working on the
closure of a single torus orbit (you can flow to any point from the big T -orbit), so yh

must be a maximum of φh. {yh|y ∈ Y } is a single T -orbit.
〈µ(x), h〉 = φh(x), when h varies, this has maxima at finitely many points. Conider

〈a, h〉, a linear functional associated to some a ∈ h. The maximum (on µ(Y )) of this
function is attained on µ({fixed points of T in Y }). There are finitely many points
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µ(Zi ∩ Y ) (the Zi are connected components of the critical locus of µ). µ(Y ) lies in
the convex hull P of the points ci = µ(Zi ∩ Y ).

Now pick y ∈ Y . Consider the composition ν : h
h7→(exph)y−−−−−−→ H · y µ−→ h∗ ∼= h ∼= Rn

(with the standard inner product). Then dνy = dµy. The first map is a diffeomor-
phism. µ(H · y) = µ(T · y) because the moment map is K-equivariant. dν is therefore
invertible, and ν is a diffeomorphism onto its image. The pre-image of every point is
just one point. If there were two points, there’s a 1-parameter subgroup that joins
them, and φh increases along 1-parameter subgroups.

Claim. µ(Y ) = P r ∂P .

We may assume that µ(y) = 0 by shifting if neccesary. We take h ∈ h such that
‖h‖ = 1. then (µ((exphs)s), h) is an increasing function (it’s the restriction of φh to
a Hamiltonian flow), and the limit as s→∞ will be µ(yh) ∈ ∂P .

Let r = dist(0, ∂P ). Then ‖yh‖ ≥ r. By Cauchy-Schwartz, ‖µ((exphs)y)‖ is
big. So for some s = sh, we have ‖µ((exphs)y)‖ = r/2. So we get a star-shaped
neighborhood of the origin 0 ∈ U ⊆ h such that µ(∂U) is the sphere of radius r/2.
So im(ν) contains a ball of radius r/2 with center µ(y). Now I can move the image
around, so this is true for any point inside of P , so the image is the whole interior.
You pick a point in the interior, look at the distance to the boundary, and you can
show that the ball of half the radius is in the image.

We have that µ−1(µ(y)) = Ky is a single K-orbit because we have a diffeomor-
phism and Y = H ·Ky. If α ∈ ∂P , we have that µ−1(α) is connected, and therefore
a single K-orbit. This tells us that the map Y /K → P is a homeomorphism of
topological spaces.

Y

��

µ

!!CC
CC

CC
CC

C

Y /K // P

We need a bijection between T -orbits on Y and faces of P . If Sh ⊆ P is a face, let
h ∈ h be such that the maximum of (h, ζ) (as ζ runs over P ) is reached on S, I claim
S = {µ(yh)|y ∈ Y }. You might think there are several T -orbits going to the same
face, but then the fibers of boundary points would have multiple K-orbits.

Now let’s check that the dimensions agree. Given Tz ∈ Y , we can repeat all the
arguments inductively. But for the big orbit, we know that the dimensions agree.

We see also that the polytope is dual to the fan, exactly because Sh = {µ(yh)|y ∈
Y }. The dual fan to µ(Y ) is Σ, where σS = {h|maxζ∈P (h, ζ) is attained at the face
S}.

Example 32.1. Consider the grassmannian Gr(4, 2) of 2-dimensional subspaces of
C4. Let T be the maximal torus in SL(4) (which is 3-dimensional). Consider the
grassmannian as 2 × 4 matrices (zij) of full rank modulo the action of GL(2). We
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have plüker coordinates pij = det
( z1i z1j
z2i z2j

)
. The equation for Gr(4, 2) in P5 is p12p34−

p13p24 + p14p23 = 0. We get the moment map

µ((zij)) =

∑
|pij |2(εi + εj)∑
|pij |2

For the standard ε1, . . . , ε4 ∈ R4. The fixed point of the torus action correspond to
choosing two of the columns to be zero. The image of the moment map is an octahe-
dron [[⋆⋆⋆ once you project out one dimension, which corresponds to quotienting
the 4-dimensional torus by the 1-dimensional torus that acts trivially ... the image of
the moment map lies in the plane x+y+z+w = 3.]], with the vertices corresponding
to opposite plücker coordinates.

Since you know that the orbits are faces and the vertices are fixed points, the
stable T -orbits are the ones which correspond to the whole octahedron. The semi-
stable orbits are the ones that correspond to either a pyramid or a square slice [[⋆⋆⋆

how does a pyramid correspond to an orbit? It’s not a face.]] [[⋆⋆⋆ We’re applying
the Hilbert-Mumford criterion . . . , what’s the relationship between possible supports
of points and the image of the moment map?]]. In principle, it could happen that
you get the origin on a single edge, but that never happens, because such an edge
would correspond to two of the three terms in the relation being zero, and this cannot
happen without the third also being zero. Unstable orbits correspond to triangular
faces, edges, and vertices.

We will see that this is equivalent to the question of 4-points in P1. ⋄



33 Moment maps and GIT quotients, v. 12-9 113

33 Moment maps and GIT quotients

There will be no class Friday, Monday, Wednesday, but we’ll have two extra classes
after Nov. 4. I’ll send out an email.

Let’s recall some things. Suppose G is a reductive group acting on a projective
variety X, and L ∈ PicGX, which automatically gives an equivariant embedding
X →֒ Pn, and we have a canonical map µ̄ : Pn → su(n + 1)∗. Let K ⊆ G be a
maximal compact subgroup, so we get a map su(n + 1)∗ → k∗. Composing, we get

a map X → k∗. We have µ̄(z)(v) = v − (z,v)
(z,z)

z for z, v ∈ Cn+1. We showed that

X//LG
∼= µ−1(0)/K is an isomorphism of topological spaces.

In the case G = T ⊆ (C∗)n+1 is the torus. Then I have µ : X → Pn → Rn+1 ∼=
((C∗)n+1)∨R

γ−→ T ∨
R , where T ∨

R = T ∨ ⊗Z R. If X = T · x, then µ(X) = P is a convex
polytope. We have an isomorphism of posets between orbits and faces of the image
of µ. The embedding T ⊆ (C∗)n+1, we have the characters χ0, . . . , χn. We choose the
standard basis ε1, . . . , εn in Rn+1, then the formula for µ̄ is

µ̄(z) =

∑
|zi|2εi∑
|zi|2

.

In particular, µ̄(Pn) = ∆n is the convex hull of ε0, . . . , εn. So we have X → Pn →
∆n

γ−→ P , with γ(εi) = χi. We have P = µ(X) is the weight polytope or moment
polytope of X. It is the convex hull of χ0, . . . , χn. Some of these characters may be
interior points. The ones on the outside are the ones that correspond to fixed points
of the action.

Suppose H ⊆ T is a subtorus. We want to consider X//LH, which has an action
of T . It is a toric variety with torus T/H. How do we relate the polytopes of these
two toric varieties? Under the moment map, the moment polytope will have vertices
in the lattice of characters. The inclusion H ⊆ T induces a map π : T ∨

R → H∨
R . Let

Q = π(P ).

Proposition 33.1. X//LH is a toric variety with moment polytope equal to π−1(0).
If 0 6∈ π−1(0), then the geometric quotient is trivial.

Proof. Consider µ̃ : X → H∨
R . By the theorem of Kirwan, if KH ⊆ H is a maximal

compact subgroup, µ̃−1(0)/KH
∼= X//LH. Now consider the group that preserves the

fiber of µ̃ over 0. First of all, all of KH preserves the fiber. In fact, StabT(µ̃
−1(0)) =

K · S, where S = T/H. Pick any point x ∈ µ̃−1(0). The restriction µ : S · x→ Ĥ⊥
R =

{χ ∈ G∨|χ|H = 1}. Now I can use the theorem again to say that this is the moment
map restricted to the fiber.

Suppose we’ve fixed L ∈ PicX, but I allow the linearization to vary (by a char-

acter). We get for each χ ∈ Ĥ an element Lχ ∈ PicGX. We can also take L⊗m for

any m, so I can take χ ∈ ĤQ. If mχ ∈ Ĥ, we can take the linearization χ on L⊗m.
[[⋆⋆⋆ hats and checks are the same thing, right?]]
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Proposition 33.2. X//Lχ
H is a toric variety whose fan is the dual fan to π−1(χ)∩P .

Corollary 33.3. The quotient X//Lχ
H is non-degenerate (has stable orbits, so has

the right dimension) if and only if π−1(χ) ∩ P has full dimension, or equivalently, χ
is an interior point of Q.

It’s clear that you get chambers in Q where the preimage polytope is combinato-
rially the same. Therefore, we get a nice unerstanding of how the quotient changes
based on linearization. Note that we’ve fixed L. If we change L, P changes. In the
case X = P, then there is only one choice of L, so we get a complete understanding
in that case.

Proof of Proposition. µ̃m : X → Pn → P(Symm(Cn+1)) → Rn+1 → T̂RP → ĤR.
Taking the Veronese map just gives you m · ∆n, which maps to m · Q. We have
εi 7→ χi + χ, so mεi 7→ m(χi + χ). So taking the preimage of chi under this map µ̃m
of zero is m · µ̃−1(χ).

Chow quotients

Next time I’ll talk about this paper of Kapranov, Sturmels, somebody else. For now,
let me prove a result I promised you before.

Let X be a complex projective variety (though I think it works for characteristic
zero, since you may be able to reduce to the case of a subfield of C). We can talk
about algebraic cycles of homology class δ ∈ H2k(X,Z). The space of these cycles
is denoted Ck(X,∆), which turns out to be a projective variety. Pick a generic
orbit of a reductive group G, and consider it’s closure G · x. For generic x, we get
G · x ∈ Ck(X, δ). Remember that the Chow quotient is the closure of the image of
this open set of X under the map x 7→ G · x ∈ Ck(X, δ). Note that this definition of
the quotient does not depend on any linearization.

Theorem 33.4. If L ∈ PicGX is a non-degenerate linearization (i.e. there exist
stable orbits), then there is a regular birational map X//CG→ X//LG.

It’s clear that if I take the closures of stable orbits, I get a bijection. Now consider
a limit cycle. Let Z(t) ∈ Ck(X, δ), with Z(t) ∈ U for t 6= 0 (these are irreducible),
and Z(0) is a limit cycle. [[⋆⋆⋆ I should probably say that G is connected.]] The
support of Z(0) contains at least one semi-stable orbit. For this I just have to check
that 0 ∈ µ(Z(0)). But 0 ∈ µ(Z(t)) for any t 6= 0, so by continuity of µ, we get
0 ∈ µ(Z(0)). It might contain several semi-stable orbit, but they all go to the same
point of X//LG. That is, any equivariant rational function must take the same value
on all these orbits. To see this, suppose it is false. That is, suppose there is a rational
invariant function f which takes different values on different obrits. But f is constant
on Z(t) for t 6= 0, so by continuity, we get that f |Z(0) must be constant.
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34 Chow quotients in the toric case

I put some exercises on the web which you can do while I’m away.
Recall that we have the situation that X is a projective toric variety, and we

consider the quotient X//H, where H ⊆ T is a subtorus. We have the map π from

P ⊆ T̂R to Q ⊆ ĤR.
We first define the fiber polytope Σ(P,Q). We define a volume form dqq on ĤR

(such that the volume of the lattice parallelopiped is 1). Let s : Q→ P be a continuous

section, then we get Is =
∫
Q
s(q) dq ∈ T̂R. Define Σ(P,Q) = {Is|s a continuous

section}. This polytope is contained in the fiber over the center of mass of Q. The
main result is that this fiber polytope is the polytope of the Chow quotient.

Proposition 34.1. The moment polytope of X//CH is Σ(P,Q).

Proposition 34.2 (Billera-Sturmfels). The dual fan to Σ(P,Q) is the common re-
finement of all dual fans to polytopes that arrise as fibers of π : P → Q.

For the proof of 34.1, we can restrict to the case X = Pn and T = (C×)n+1. In

general, we have ∆n
γ−→ P

π−→ Q, and the notion of fiber polytope is well-behaved. So
we may assume ∆n = P .

π : ∆n → Q. We have the corners ε0, . . . , εn, which are mapped to π(εi) = χi; let
A = {χi}. Some of these are vertices of Q, and some are interior points. Look at all
triangulations of Q with vertices in A (not all elements of A need to be involved).
For a triangulation τ , consider φτ =

∑
σ∈τ vol(σ(i0, . . . , ik))(εi0 + · · ·+ εik).

Claim. Σ(P,Q) is the convex hull of the φτ .

The idea is that the extreme sections give you points on the vertices of your fiber
polytope, and triangulations give you these extremal sections.

Chow variety. Let Z ⊆ Pn be an irreducible subvariety of dimension k. Consider
HZ = {L ∈ Gr(n+1, n−k)|P(L)∩Z 6= ∅}. If Z is irreducible, thisHZ is an irreducible
hypersurface in Gr(n+ 1, n− k) [[⋆⋆⋆ exercise]]. The equation RZ(ℓ0, . . . , ℓk) = 0
giving HZ is called the Chow form. If you have a cycle, the chow forms multiply.
Think of L as given by ℓ0 = · · · = ℓk = 0 (the ℓi are linear forms). Since RZ is a
form on the grassmannian, it is a form in the minors of the corresponding matrix,
with coefficients ℓji . In other words, RZ depends only on the plüker coordinates, and
of course it only is defined up to scalar, so we consider RZ ∈ P(Symd∧k+1(Cn+1)).

The group GL(n + 1) (and it’s maximal torus T ) acts on Cn+1, so it acts on
P(Symd

∧k+1
(Cn+1)). This action is compatible with the action on something.

To find the polytope of Pn//H, pick a generic point (like [1 : · · · : 1]), and let Z be
the closure of the H-orbit. The Chow quotient Pn//H will be a toric variety with the
torus T/H. Consider T · RZ . The vertices of the corresponding polytope µ(T · RZ)
are T -weights of the representation Symd(

∧k+1(Cn+1)), so it’s clear that the have the
same weights as φτ . The weights are of the form

∑
i0<···<ik mi0...ik(εi0 + · · ·+εik), with∑

mi0...ik = d, so combinatorially what I said makes perfect sense.
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How to actually find RZ? In general, you can use the Koszul complex. Fix
some r ≫ 0. Let Z be an irreducible projective variety. The Koszul complex is
Ki
r(ℓ0, . . . , ℓk) = Γ(OZ(i + r)) ⊗ ∧i(Ck+1). Fix a basis e0, . . . , ek for Ck+1. The

differential will be given by ∂(f⊗ω) =
∑
ℓif⊗ei∧ω. It turns out that K·r (ℓ0, . . . , ℓk)

is exact if and only if L ∈ HZ . To see this, consider the corresponding complex of
sheaves (don’t take global sections), which is the complex of forms, and the differential
is wedging with the form

∑
ℓiei. If L 6∈ HZ , this form is not zero at any point of

the variety, so locally the complex is exact because it is just muliplication by a 1-
form. If there is a point where the form vanishes, then it’s clear you get cohomology.
The idea is to make r large enough that the sheaf is generated by global sections.
This is a finite-dimensional complex with finite lenght. Generically, the complex
is exact. You can measure this using the determinant of the complex. For the

complex 0 → A
∂−→ B → 0, you get det ∂ ∈

∧topA∗ ⊗
∧topB. In general, det ∂ ∈∧top(K0)∗⊗∧top(K1)⊗∧top(K2)∗ · · · . [[⋆⋆⋆ somehow the idea is to divide by the

images of the maps. Locally, you write the matrices, take a suitable minor, and take
the first minor, divide by the determinant of the next minor, then multiply by the
determinant of the next minor, and so on. This is a functorial ratio of minors]]. The
complex is not exact if and only if you have a pole or a zero. From this, it’s clear
that this hypersurface HZ is either the set of poles or the set of zeros of det ∂. If you
want, you can look at the paper. The main claim is

Claim. RZ(ℓ0, . . . , ℓk) = det(K·r (ℓ0, . . . , ℓk))(−1)k+1

.

Now you have a formula for computing the Chow form.
Now I take 1-parameter subgroups in T , written as tλ. λ : A → Z you can as-

sume the weights are positive because you’re working in projective space. A regular
triangulation is one so that there exists a strictly convex function Q → R which is
linear on simplices σ ∈ τ . The height at each vertex is λi. So to each tλ, we can
associate a special triangulation. It’s not hard to see that in the fiber polytope, only
the regular triangulations give you vertices ... the others give you interior points.
limt→∞ tλZ =

∑
vol(σ)Lσ, where Lσ = span{ei0, . . . , eik} is the span of the vertices

of σ. To do this, you should study the complex K·r (tλℓ0, . . . , tλℓk). There is a filtra-
tion, and it is possible to calculate the associated graded complex. The limit will be
something like limt→∞ tλRZ =

∏
(σ-minor)vol(σ). This is a technical thing done in the

work of Koushinerenko. If you want to show the degree of the cycle Z, it is clearly
the volume of Q because the degree is the sum of the volumes.

Corollary 34.3. deg(H · [1 : · · · : 1]) = vol(Q).

Part of this stuff I’ll put in the exercises.
After the break, I’d like to talk about Luna’s slice theorem and stable vector

bundles.
No class Nov. 20,23,25, but we’ll have classes Nov. 30, Dec. 2, 4, 7, 9.
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35 Luna’s slice theorem

I was out sick, but I got Pablo’s notes, which I’ll try to transcribe later.



118 36 More about Luna’s slice theorem, v. 12-9

36 More about Luna’s slice theorem

Theorem 36.1 (Luna’s slice theorem). Let X be an affine variety with an action of
a reductive group G, and let x ∈ X be a point with closed orbit G · x. Then there
exists an affine subvariety S ⊆ X (called an étale slice) such that

(a) x ∈ S

(b) S is Gx-invariant

(c) φ : G ∗Gx S → X, given by sending (g, s) to gs, is excellent

(d) imφ is affine.

Recall that being excellent means that

G ∗Gx S
φ

//

��

X

��

S//Gx φG

// X//G

is cartesean and the horizontal arrows are etale.

Example 36.2. Let G be a reductive group (thing G = SL(n) if you like) with Lie
algebra g, and consider the adjoint action. x ∈ g, then G · x is closed if and only if
x is semi-simple. Let x ∈ greg = {x ∈ gss|Zg(x) = t the Lie algebra of the maximal
torus}. In this example, the slice is given by treg = t ∩ greg. I have G ∗T t → g

and G ∗T treg → greg. The second map is not an isomorphism; it’s a covering. The
preimage of a point is the intersection of the orbit with the maximal torus. What is
true that that treg/W → greg//G is an isomorphism, where W = N(T )/T is the Weyl
group. ⋄

Proof of Luna. Step 1. Reduce to the case where X = V is a linear representation
of G. We have X ⊆ V is a closed immersion for some V . Suppose we have a slice
G ∗Gx S → V , then I claim that G ∗Gx (S ∩X) → X is also a slice.

Exercise. If φ : Y → X is excellent and Z ⊆ X is a G-invariant closed subvariety,
then φ−1(Z)→ Z is excellent.

Step 2. x ∈ V , and TxV = Tx(G · x) ⊕ N where N is Gx-invariant because Gx

is reductive (because the orbit is closed; see last lecture). I have a natural map
φ : G ∗Gx N → V , given by φ(g, n) = g(x+ n).

(a) φ is G-equivariant

(b) G · (e, 0) has the minimal dimension, and is therefore closed.

(c) the restriction of φ to this orbit G · (e, 0) is an isomorphism onto the orbit of x
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(d) dφ|(e,0) is an isomorphism, so φ is étale at (e, 0).

Lemma 36.3 (Fundamental Lemma). Let G be reductive, with X and Y affine. Let
φ : Y → X be a G-equivariant map with φ(y) = x such that Gx and Gy are closed
orbits, φ|Gy : Gy → Gx is an isomorphism, and φ is étale at y. Then there exists an
open affine set U in Y such that

(a) y ∈ U ,

(b) U = p−1
Y (pY (U)),

(c) φ|U : U → X is excellent

(d) φ(U) is affine.

Y
φ

//

pY

��

X

pX

��

Y //G
φG

// X//G

It should be clear that applying this lemma will finish the proof, so we just need to
prove it.

Let R = k[X] and S = k[Y ]. let r and s be the ideals of Gx and Gy respectively.

Define R̂ = lim←−R/r
n. We have φ∗ : R → S, with the induced map RG → SG. We

have R̂G = lim←−R
G/(r ∩RG)n.

The map is étale at y (and so at each point of the orbit), so it is étale in some
neighborhood. From this, we see that φ∗ : R/rn → S/sn is an isomorphism, so we get

an induced isomorphism R̂→ Ŝ.
I need to do a digression. Let R be a k-algebra with an algebraic action of G.

Then R =
⊕
R(M) is a sum of isotypic components, where M runs over irreducible

representations of G up to isomorphism, and R(M) is a direct sum of (possibly
infinitely many) copies of M . Each isotypic component is an RG-module.

Theorem 36.4 (finite generation of coinvariants). R(M) is a finitely generated RG-
module.

This follows from

Theorem 36.5. Suppose R is noetherian. If N is any R-module (and G-module,
compatibly) finitely generated over R, then NG is finitely generated over RG.

To prove this, pick generators n1, . . . , nk ∈ NG for RNG ⊆ N . For n ∈ NG, I
have n =

∑
aini, so n =

∑
āini after applying the Reynolds operator.

To get the first theorem, apply this theorem to N = R⊗M∗ and use the fact that
(R ⊗M∗)G ∼= R(M).

R̂(M) = lim←−R(M)/(rn ∩R(M)). On the other hand, R̂(M) = R(M) ⊗RG R̂G.
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Lemma 36.6. R̂(M) ∼= R̂(M). In particular, R̂G ∼= R̂G.

Follows from the following. There exists m0 ≥ 1, n0 ≥ 0 such that for any n ∈ Z,
we have rm0n+n0 ∩ R(M) ⊆ (rG)nR(M) ⊆ rn ∩ R(M). I’ll give you a sketch and you
can fill in the details yourself.

A = R ⊕⊕ rntn ⊆ R[t]. Then AG is finitely generated over RG, say with gener-
ators a1t

m1, . . . , ast
ms , and A(M) is finitely generated over AG, say with generators

b1t
n1 , . . . , bℓt

nℓ . Let m0 = maxmi and n0 = maxni. For ā ∈ rm0n+n0 ∩R(M) ⇒ ā =
atm0n+n0 . atm0n+n0 =

∑
pj(a1t

m1 , . . . , ast
ms)︸ ︷︷ ︸

∈(rG)ntn

bjt
nj .

So I get R⊗RG R̂G ∼= S⊗SG ŜG. Taking invariants, I get R̂G ∼= ŜG. So φG is étale
at pY (y).

R = R⊗RG SG is regular functions on the fiber product, k[X×
X//G Y ]. Using the

results we have, we can prove R⊗SG ŜG = R⊗RGSG⊗SG ŜG = R⊗RG R̂G ∼= S⊗SG ŜG.
By a theorem from commutative algebra, I can put a local ring downstairs because
the completion of a local ring is flat. R⊗SG Sloc ∼= S⊗SG SGloc. So we can find f ∈ SG
such that after localization of SG, I get what I need, an isomorphism Rf

∼= Sf . Take
Uf = Yf ∩ p−1

Y (V ), where V is the open set where φG is étale, so we get the property
of the fiber product for Uf .

Now we need the image to be affine. Pick f1 which is zero on X r φ(Uf ) and pull
it back.
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37 Consequences of the slice theorem

There will be class Monday and Wednesday of next week.
The proof from last time was from a paper of Knope.
We have

Y
φ

//

��

X

��

Y //G
φG

// X//G

For y ∈ Y if φ is étale, then it will be étale i a neighborhood. We get that φG is
étale in a neighborhood V . Let D be the set of points where φ is not étale. We
can separate it by some invariant (since y is a point with closed orbit). There exists
f ∈ k[Y ]G such that Yf ⊇ Gy, and on Yf , φ is étale.

Since we know φG is étale, I know orbit closure equivalence classes go to orbit
closure equivalence classes, and I want to prove that φ restricts to isomorphisms on
the fibers. On each orbit, it could be a covering map. We know it’s an isomorphism
on the orbit Gy, and we want to conclude that it is an isomorphism on all orbits. If
φ were a finite map, it would be clear [[⋆⋆⋆ ]].

If you have φ : Y → X a G-equivariant map of normal varieties, sending closed
orbits to closed orbits, with the preimage of each point finite, then there is Z and a
factorization Y →֒ Z (open immersion) and Z → X finite. If in addition Y //G →
X//G is finite, Z = Y . So by taking a smaller neighborhood, we can make the
downstairs map finite, making the upper map finite.

We always assume G is a reductive group acting on an affine variety X. Let
p : X → X//G. A subset U of X is saturated if U = p−1(p(U)).

Proposition 37.1. If the orbit of x ∈ X is closed, then there is a p-saturated neigh-
borhood U of x such that for any y ∈ U , Gy is conjugate to some subgroup of Gx.

Proof. Any point can be moved by G to (e, s) = z ∈ G ∗Gx S. Then Gz ⊆ Gx.

Example 37.2. Let SL(2) act on binary cubic forms V3. A generic closed orbit has
a stabilizer (of order 3), but x2y ∈ V3 has no stabilizer. So you really need the orbit
of the point to be closed for the proposition to hold. ⋄

Proposition 37.3. Suppose x ∈ X as before (Gx closed) and suppose x is a smooth
point. Then for some étale slice S there exists an excellent Gx-equivariant morphism
ψ : S → TxS (which can be identified with the normal bundle to the G-orbit).

Proof. To construct the slice, we started with X ⊆ V = Tx(Gx) ⊕ N , so I get S →֒
N → TxS, the later map being the Gx-invariant projection. This map satisfies the
conditions of the Fundamental Lemma, so we can apply it to get the proposition.

As a consequence, over C, we have analytic slices.



122 37 Consequences of the slice theorem, v. 12-9

Theorem 37.4. Suppose X is a complex affine variety and all as before, with x a
smooth point with closed orbit. Then there exists a G-invariant analytic neighborhood
of Gx which is isomorphic to some G-invariant analytic neighborhood of the zero
section of the normal bundle to Gx.

The most interesting application is that you can describe the fibers of p : X →
X//G. Each fiber has a unique closed orbit Gx. We can locally identify X//G and
S//Gx, so we get an isomorphism p−1(p(Gx)) ∼= G∗Gxp

−1
S/Gx

(pS/Gx
(x)) by carteseanness

of the square in Luna’s slice theorem.
If x is non-singular, I have Tx(Gx)⊕Nx = TxX, whereNx is a representation of Gx.

Let nx be the nil cone in Nx, the closure equivalence class of 0. Then p−1(p(Gx)) ∼=
G ∗Gx nx.

Example 37.5. For a Lie algebra, the nil cone is indeed the cone of all nilpotent
elements. The closed orbits are the orbits of semi-simple elements. Let g = gl(n)
and G = GL(n). Since Gx is closed, x is semisimple, so in some basis it is diagonal.
Say the eigenvalues are λi with multiplicitymi. Then Gx = GL(m1)× · · ·×GL(mk).
What is Nx? Tx(Gx) is the space of matrices with zeros in those blocks, so Nx =
gl(m1)⊕ · · ·⊕ gl(mk). So the fiber p−1(p(x)) = {x+n1 + · · ·+nk|ni nilpotent matrix
in the i-th block}. If you think about this, this is a fancy way to prove the Jordan
normal form theorem. ⋄

If V is a linear representation of a reductive group G and p : V → V //G, with
v ∈ V , then v = s + n, where s has closed G-orbit in V and n lies in the nil cone
Gs-orbit in V .

Consider the case X//G is a single point, so k[X]G = k. Then X has a unique
closed orbit Gx. So there exists an affine Gx variety Y such that

(1) k[Y ]Gx = k, with the closed orbit of Y a fixed point.

(2) X
∼−→ G ∗Gx Y .

Suppose x is also a non-singular point, then Y is a linear representation of Gx (since
the nil cone is the whole space). [[⋆⋆⋆ !]]

Corollary 37.6. Suppose X smooth with k[X]G = k, and the closed orbit is a fixed
point. Then X ∼= V with a linear action.

Problem: Suppose you have the action of a reductive group on An. Is this action
linear? In general, no! But if k[An]G = k and the closed orbit is a fixed point, then
it’s true.
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38 Lecture 38

Two more applications of the slice theorem.

Lemma 38.1. If a reductive group G acts on an affine variety X, then for any y ∈ X
there exists a 1-parameter subgroup λ(t) ∈ G such that limt→0 λ(t)y = y0 and Gy0 is
closed.

Proof. Let Y = Gy, and let Gx be the unique closed orbit in Y (this orbit is affine, so
the stabilizer Gx is reductive). By what we proved last time, I have the isomorphism
Y ∼= G ∗Gx Z, where Z has a unique closed Gx-orbit. Z may be singular, but we
can Gx-equivariantly embed it into a vector space V so that x goes to 0. For any
v ∈ V , there is a 1-parameter subgroup λ̃(t) ∈ Gx such that lim λ̃(t)v = 0 by Hilbert-
Mumford. y = (g, v) and take λ(t) = gλ̃(t)g−1 and it works.

Luna stratification: assume X is smooth affine and G is reductive. Recall that if
x ∈ X has closed orbit, then by the Luna slice theorem, some étale neighborhood is
isomorphic to a fiber bundle. TxX = Tx(Gx) ⊕ Nx, where Nx is Gx-invariant. We
know that some étale neighborhood of x is isomorphic to G ∗Gx Nx.

Consider M = {G ∗H M |M a linear representation of H, a reductive subgroup
of G}/ ∼, where ∼ is G-equivariant isomorphisms. If x ∈ X and Gx is closed,
we associate to x the isomorphism class [G ∗Gx Nx]. Any point in the same orbit

gives an isomorphic fiber bundle. So we have, X
p−→ X//G

γ−→ M. So we can define
(X//G)µ = γ−1(µ) and Xµ = p−1(X//G)µ.

Theorem 38.2. 1. MX = imγ is a finite set.

2. X//G =
⊔
µ∈MX

(X//G)µ, and each (X//G)µ is a non-singular locally closed
subvariety of X//G.

3. All fibers of p : Xµ → (X//G)µ are isomorphic (in fact, it’s a locally isotrivial
fibration; there is an étale cover making it the trivial fibration).

Example 38.3. Consider the case X = g = gl(n) and G = GL(n) with the adjoint
action. Then p : X → An ∼= An/Sn (the coefficients of the characteristic polynomial),
and I have the étale cover An → An given by taking roots (this is the quotient by
Sn).

Let x ∈ X be semi-simple, so the orbit is closed. In some basis, x is block identity
(with eigenvalues λi with multiplicities mi). So MX can be identified with the set
of partitions of n. When they are all different (all multiplicites 1), you get the open
stratum. This stratification is Sn-invariant, so it descends to the quotient An/Sn. ⋄

Sketch of Proof. Gx is closed. G ∗Gx Nx is an étale neighborhood. In this neighbor-
hood, we consider Y = {y ∈ G∗GxNx|Gy is conjugate to Gx}. It is enough to consider
elements of the form (e, v) and use G to move them around. We see that (e, v) ∈ Y
is and only if v is fixed by Gx. We have Nx = NG

x ⊕Mx, and Y ∼= G ∗Gx N
G
x , so Y
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looks like a subspace of G∗Gx Nx. Xλ is (étale) locally isomorphic to Y = G∗Gx N
Gx
x .

It’s clear that this thing is locally closed. So after the étale cover, the stratum is a
subspace. If S is a slice, then there is an étale map p : (S/Gx)λ → NGx

x . The fiber is
isomorphic to the nil cone mx ∈ Mx.

Remark 38.4. If X//G is irreducible, then we have a single open stratum (X//G)p,
usually called the principal stratum. Then we have Xp → (X//G)p. This is the
only stratum such that the fibers are non-singular. If x ∈ Xp has closed orbit, then
p−1(p(x)) ∼= G ∗Gx mx, and k[Mx]

G = k, so mx = Mx, and G ∗Gx Mx is non-singular.
For all other strata, the fibers are nil cones, which can never be non-singular.

In the example of the adjoint representation, the fibers are closed orbits over the
principal stratum. ⋄

Exercise. If M is a linear representation of G, then the nil cone is non-singular if
and only if M = MG ⊕W , where k[W ]G = k.

We always have the assumption that G is reductive, and in characteristic zero,
this cannot be improved. We want the results to work for Chevalley groups (like
GL(n, F ) and SL(n, F )) in finite characteristic, and it does! We can replace linearly
reductive by geometrically reductive.

Definition 38.5. G is geometrically reductive if for any linear representation V and
any v ∈ V G r 0, there exists m > 0 and F ∈ Symm(V ∗) such that F (v) = 1. ⋄

This is equivalent to the following. Suppose you have an exact sequence of finite-
dimensional representations

0→ W → V → k → 0

where k has the trivial G-action. Then there exists an m > 0 such that

0→ Symm−1 V ⊗W → Symm V → Symm k = k→ 0

splits. [[⋆⋆⋆ exercise]]
There are two key results.

Theorem 38.6 (Nagata?). If G is geometrically reductive and R is a finitely gen-
erated k-algebra (or just noetherian ring?) with a G-action, then RG is a finitely
generated algebra.

This allows us to define X//G = Specm k[X]G.

Theorem 38.7. If a geometrically reductive group G acts on an affine variety X,
and Z1, Z2 ⊆ X are two disjoint closed G-invariant subsets, then there exists an
f ∈ k[X]G such that f(Zi) = i.
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Assume G is geometrically reductive and acts on some ring R. Suppose I ⊆ R is a
G-invariant ideal. [[⋆⋆⋆ when G was reductive, we had RG/IG ∼= (R/I)G]] Then
RG/IG ⊆ (R/I)G.

Lemma 39.1. If r ∈ (R/I)G then for some m, rm ∈ RG/IG.

Proof. r is contained in some finite-dimensional G-invariant subspace V ⊆ R. So we
get the exact sequence

0→W = I ∩ V → V → kr → 0

where W ⊆ V is invariant and kr is the trivial representation. As we showed last
time, if we take a symmetric power, the sequence splits:

0→ Symm−1(W )V → Symm(V )→ krm → 0

splits.

Now we’ll prove the first theorem from the end of the last lecture.

Remark 39.2. Suppose (R/I)G is finitely generated. Then by the lemma, RG/IG ⊆
(R/I)G is an integral extension of rings, so RG/IG is finitely generated as well. ⋄

We’ll prove the theorem first for graded rings (like with Hilbert’s theorem), and
use induction on Krull dimension.

Step 1. R =
⊕

i≥0 Ri graded with R0 = k. We induct on the Krull dimension.

Consider the ideal R · RG
>0. Since R is noetherian, we can choose finitely many

generators for the ideal (which we may assume are invariant) f1, . . . , fk. Let f = f1.
By induction on Krull dimension, we may assume (R/Rf)G is finitely generated.
There are two cases: either f is a zero-divisor or it’s not.

(a) Suppose f is not a zero-divisor. Then (Rf)G = RGf . Pick α1, . . . , αs repre-
sentatives of generators for RG/(Rf)G in RG. Then f, α1, . . . , αs generate RG. To see
this, given x ∈ RG, we have x = (α1, . . . , αk) + fy, with deg y < deg x; now induct
on degree of x.

(b) Suppose f is a zero-divisor, then J = Ann(f) is a G-invariant ideal. Then
RG/(Rf)G and RG/JG are finitely generated by the inductive hypothesis (and in-
duction on number of generators). Pick α1, . . . , αp representatives of generators of
RG/(Rf)G in RG and β1, . . . , βq representatives of generators of RG/JG. Now con-
sider B = k[α1, . . . , αp, β1, . . . , βq]. Let c1, . . . , cn be representatives of generators of
(R/J)G as a B/B ∩ J -module. Then fci ∈ RG because f(gci − ci) = 0 for all g ∈ G.

Claim. RG = B[fc1, . . . , fcn]
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Let x ∈ RG, then there is a b ∈ B such that x− b ∈ fR because the natural map
B → RG/(fR)G is surjective. So x − b = fc, fc is G-invariant so c ∈ (R/J)G. So
x = b+ fc ∈ B[fc1, . . . , fcn].

Note that for this argument (b), we did not use the assumption that R is graded.
Step 2. General case. Let A = k[x1, . . . , xn] with R = A/I for some G-invariant

ideal I . I know that AG/IG is finitely generated by the graded case. We have
AG/IG ⊆ (A/I)G is an integral extension. If RG is an integral domain, then it is
sufficient to check that the field of fractions Q((A/I)G) if finitely generated over
Q(AG/IG). If it is not an integral domain, then I can use the same argument as in
part (b) of Step 1.

Now let’s prove the second theorem from the end of last lecture (the separation
lemma). We have invariant ideals I(Z1) and I(Z2) such that I(Z1) + I(Z2) = k[X].
Let 1 = α+β with α ∈ I(Z1) and β ∈ I(Z2). Then β(Z1) = 1 and β(Z2) = 0, but β is
not invariant. There is aG-invariant finite-dimensional subspace V ⊆ k[X] containing
β. Let φ1, . . . , φn be a basis for V . We may assume φi = gi · β for some gi ∈ G. We
get a map φ : X → An. By invariance of Z1 and Z2, we get that φ(Z1) = (1, . . . , 1)
and φ(Z2) = (0, . . . , 0). By geometric reductivity, there is a G-invariant homogeneous
polynomial F (φ1, . . . , φn) such that F (Z1) = 1 and F (Z2) = 0.

In one book I used, I found this theorem. There is a third notion of a reductive
group. A group G is algebraically reductive if its unipotent radical is trivial. The
unipotent radical is the maximal normal unipotent subgroup, which is the intersec-
tion of the kernels of all irreducible representations. In characteristic zero, this is
equivalent to linearly reductive.

Theorem 39.3 (Popov). Suppose char(k) = 0[[⋆⋆⋆ maybe not needed]]. If on ev-
ery affine variety X with G-action, k[X]G is finitely generated, then G is algebraically
reductive.

A couple of books I found later: Invariant Theory by Popov and Vinberg, Birkhauser
DMV seminar Algebraic Transformation Groups and Invariant Theory, and Lectures
on Invariant Theory by Dolgachev.

Nagata’s example

G = C · G′ acts on An × An = A2n (coordinates xi and yi). The G′ action is given
by (xk, yk) 7→ (xk + αkyk, yk) for

∑
aijαj = 0 and i = 1, 2, 3, αi ∈ k. The C action is

c · (xi, yi) = (cixi, ciyi) where c1 · · · cn = 1 and ci ∈ k×.
In some basis, this is block diagonal with blocks

( ci αi
0 ci

)
, with determinant 1. This

group has dimG = 2n − 4. Take n = 9. For a suitable choice of aij, we don’t get a
finitely generated ring of invariants k[x, y]G.

Step 1. The aij are a 3× 9 matrix. Suppose det(aij)i,j=1,2,3 6= 0 (the first minor is
non-singular). Let zi =

∑n
j=1 aij(xjt/yj) where t = y1 · · · yn for i = 1, 2, 3.
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k(x, y)G = k(t, z1, z2, z3). Checking that they are invariant uses the calculation
g(xjt/yj) = xj/yj + αj.

k(x1, . . . , xn, y1, . . . , yn) = k(z1, z2, z3, x4, . . . , xn, y1, . . . , yn) = k(t, z1, z2, z3, x4, . . . , xn, y1, . . . , yn−
If I pick H ⊆ G such that α5 = · · ·αn = 0, we get that x4 is not invariant, and that’s
the only thing H acts on, so we can eliminate the x4. Procede inductively to get

k(t, z1, z2, z3, x4, . . . , xn, y1, . . . , yn−1 = · · · = k(t, z1, z2, z3)

The nine columns of (aij) can be regarded as nine points p1, . . . , p9 in P2. Let Rm

be the set of homogeneous polynomials f(z1, z2, z3) which have multiplicity at least
m at each pi.

Step 2. We have that k[x, y]G = {∑ fm(z1, z2, z3)t
−1|fm ∈ Rm}.

k[x, y]G = k[z1, z2, z3, t, t
−1]∩ k[x, y]. I claim you can only invert t and that the zi

don’t get inverted. This is because k[x1, . . . , xn, y
±1
1 , . . . , y±1

n ] = k[z1, z2, z3, x4, . . . , xn, y
±1
1 , . . . , y±1

n ],
and then we just impose the condition that it’s actually a polynomial in the yi.

f =
∑
fi1,i2,i3,mz

i1
1 z

i2
2 z

i3
3 t

−m. Each zi =
∑
aijxjy1 . . . ŷj . . . yn. When I divided by

t, everything is okay except yj.
Multiplicity condition follows from the fact that all yi must be in non-negative

powers.
Step 3. Cubic curve C comes into the picture. A cubic curve is an abelian group

(depending on a choice of zero, which we choose to be an inflection point).

Claim. The order of p1 + · · · + p9 is m if and only if there exists a homogeneous
polynomial f(z1, z2, z3) non-zero on C which has multiplicity m at each pi.

Proof. Let p + q + r = 0 on C . In the group of divisors, we have [p] + [q]− [r]− [0]
is the divisor of a rational function. This is equivalent to saying that r + p + q = 0.
Then m[p1] + m[p2] + · · · + m[p9] − 9m[0] is the divisor of a rational function. The
numerator of this rational function must have zeros of multiplicity m at each pi. The
rational function is F/ℓ3m, where ℓ is the equation of the tangent line at 0.

We’re going to choose the pi such that p1 + · · ·+ p9 does not have finite order.
Consider f =

∑
fm(z1, z2, z3)t

−m as a polynomial in x and y. If deg f = d, then
deg fm = k and I have the condition nk −mn = d because each zi has degree n in x
and y. So k = m+ d/n (and n = 9). So we have a double grading, and we’re going
to calculate the degree of each element in the double grading.

Let Rk,m = {f(z1, z2, z3) of degree k and multiplicity at each pi at least mi}. This
is a finite-dimensional space and I can estimate its dimension. It is the dimension of all
polynomials of degree k minus the dimension of polynomials with small multiplicities.

dimRk,m ≥
1

2
(k + 1)(k + 2)− 9

2
m(m+ 1)

The last term comes from looking at f(p1, z2, z3), which is a polynomial in two vari-
ables of degree less than m, and there are 9 such conditions.

=
1

2
(k − 3m)(k + 3m+ 3).
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This Rk.m is a piece in the invariant ring. The dimension is positive if k > 3m. On
the line k = 3m, I have dimension 1. The polynomial must divide the polynomial
which defines my cubic (suppose it’s given by h(z1, z2, z3) = 0), so we can decrease
the degree, which shows that we have dimension is exactly 1 on that line. When I
draw a parallel line, the dimension increases along the line just from the formula.
Now we can see that there cannot be finitely many generators. If there were, they
would correspond to some points in the picture.
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