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I will try to give an account of the complete moduli of higher dimensional
varieties. Let me begin by giving an overview of what we know about the
dimension 1 case. We have a moduli space Mg , introduced 150 years ago by
Riemann. There is this wonderful compactification Mg (the Deligne-Mumford
compactification, also due to Grothendieck, . . . ). The two are quite similar.
Then there is the space Mg,n, which again looks bigger, but the differences are
quite minor. In particular, there is M0,n, which is really very easy. It is a very
explicit combinatoria object, some blowup of Pn−3. There is also the moduli
space Mg,n,β, where you add some weights between zero and 1. Again, we
have the special case M0,n,β. Then we have the Kontsevich maps; the moduli
space of stable maps Mg,n(V ). There are many papers about these first of all
because of the importance of applications (e.g. Gromov-Witten theory), and
secondly because you can compute things.

I will speak about the dimension n > 1 case. The analogue of Mg is the
moduli space of surfaces of general type Mc2

1
,c2

. This space is already very
hard and very complicated. Mg is mysterious, but at least it is smooth as a
stack. Mc2

1
,c2

is not even equi-dimensional, and even describing its irreducible

components is hard. As I said, the difference between Mg and Mg is very
minor, so maybe we can still go somewhere. Also, even if the general case is
hopeless, there may be some examples we can work with. In particular, there
are analogues of M0,n and M0,n,β that can be described in complete detail.
Another special case is the case of abelian varieties; stable abelian varieties are
quite nice and can be described quite explicitly.

The plan for the course is this course

1. Complete moduli and MMP

2. Stable toric varieties

3. Hyperplane arrangements

4. Abelian varieties

5. Surfaces

The first lecture is introductory. The first four lectures should be quite
explicit. The last lecture is the case of the moduli space of surfaces of general
type.

The plan for today:
The very first example: degrees of curves
Redo for surfaces (KSB (Kollar? Sheppard? Bard?) 1989).
Redo for n-dimensional pairs; for stable maps.
Sings of MMP: k, klt, dlt, slc (sklt?, sdlt?).
Ex: curves, hyy arrs, toric vars.
Polytopes and toric vars.
(X, B1 + εB2) lc ⇔ B2 6⊃ T -orbits
Mg,n,β after Hassett
Exs: surfaces

The very first example. Suppose you have a 1-dimensional family X of curves
of genus g over some base S which is not complete. How do you complete it.
First you apply the stable reduction theorem, which says that after some base
change on S, th fiber can be made into a curve with simple normal crossings.
This may not be stable. How do we make it stable? If there are (−1)-curves, you
can contract them, leaving the surface smooth, so you contract them all. If there
is a (−2)-curve, you can contract it to a singular point, but the singularities
are rational double points of type An. After that, X0 is a stable curve which is
nodal with canonical class KX0

> 0 ample if and only if |Aut(X0)| < ∞. For
a curve E in the central fiber, KX0

·E < 0 if and only if E ∼= P1 and E2 = −1
and KX0

· E = 0 if and only if E ∼= P1 and E2 = −2.

Theorem 1.1. For every X → S0, there is a finite base change S′ → S and a
completion such that X′ → S′ is a flat family of stable curves.

The condition that K was ample means that KX′/S′ + X′
0 is ample and X′

0

nodal if and only if (X′, X′
0) has log canonical (lc) singularities. The nice thing

about curves is that you still have a reduction theorem in mixed characteristic.
So what do we do in dimension n? You have to give a label to everything. We

started with X′ → S′ and you did some stuff, ending up with the log canonical
model X′

can → S′ of the pair (X′, X′
0). You know that there is a theory of

minimal models in all dimensions, so we can repeat the procedure in higher
dimensions.

Suppose we have a family of surfaces. Then after base change, we get a
surface with normal crossings. Instead of contracting this and that, you just go
straight to the canonical model. KX′/S′+X′

0 ample and (X′, X′
0) lc, then we say

that X′
0 is semi-log canonical (slc). X′ = ProjS′

⊕
d≥0 π∗OX′(d(KX′ + X′

0)).

Compare to Proj
⊕

d≥0 H0(OX(d(KX′ + X′
0))); there is very little difference.
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You have to prove existence and uniqueness of the model. uniqueness is easy,
and existence is a recent result. The outcome is that for any 1-parameter family
of varieties of general type, there is a unique limit with ample canonical class
and something slc.

Where do we go from here? You can try to construct this moduli space in
general, or you can look at the special cases. You can use the theorem to guess
the answer, and then construct your moduli space by various other methods
(in the cases of toric, hyperplane arrangements, abelian varieties).

You can redo this for n-dimensional pairs. So we have a family of surfaces
with divisors. The stable reduction theorem still works. The log canonical
model is not for (X′, X′

0) but for (X′, X′
0) +

∑
biBi.

When you do this stuff carefully, you run into hard technical problems for
surfaces. Q: does the formation of the log canonical ring commute with base
change. That depends on the moduli functor. If you do it carefully, you run into
problems (not in the special cases), and I will try to delay them until Saturday.

You can redo this for stable maps. Suppose you have a variety (say a curve)
X and a stable map X → V (parts of X collapse). We say X is stable if KX > 0
and X nodal, and we say the map is stable if KX/V > 0 and X nodal. So you
just think of families X → S0 × V , and in the construction, you do everything
over S′×V . All the same general machinery works to give you the unique limit
of any family of stable maps. This higher dimensional moduli should exist in
this case as well.

Singularities of MMP: lc, klt, dlt, slc. You know the first three (from the
pre-reading). slc will be the generalization to the “nodal case.”

For a pair (X, B) to be lc, X should be a normal variety over k = k, and
B =

∑
biBi, where 0 < bi ≤ 1 and Bi are (not necessarily distinct) Weil

divisors. There should exist a log resolution f : Y → X (i.e. Y smooth and the
exceptional set of f union f−1

strict trans Supp(B) has simple normal crossings).
We need KX + B to be a Q-Cartier divisor, so N(KX + B) is Cartier. In this
case, we can write KY = f∗(KX +B)+

∑
Ej irr divs ajEj. Then lc means that

all aj ≥ −1 (which implies bi ≤ 1), klt means that all aj > −1 (which implies
bi < 1), and dlt means that there is a Y with Exc(f) is a union of divisors and
all aj > −1 for all exceptional divisors. Note that dlt depends on the resolution;
if you keep going, you might get some −1’s. Some finite generation result for
klt which can be pushed to dlt.

Example 1.2 (Curves). Let X be a curve, with some divisors Bi (may not be

distinct). What does it mean for the pair (X, B) to be lc? It means that X is
smooth and whenever Bi coincide for i ∈ I, then

∑
i∈I bi ≤ 1. It is klt if for

every such colletion,
∑

bi < 1 (in particular, this implies all bi < 1). In this
case, dlt is the same as lc. ⋄

Example 1.3 (Hyperplane arrangements). You have hyperplanes Bi inter-
secting in Pr−1. What does it mean for (Pr−1, B) to be lc? It means that
for every I ⊂ {1, . . . , n},

∑
i∈I bi ≤ codim Bi (if the intersection is non-empty.

klt means that this inequality is strict. ⋄

Example 1.4 (Toric varieties). Suppose X is a toric variety with a torus T
acting on it. Let B1 = X rT . Then toric geometry tells us two standard facts:
(1) KX + B1 = 0 in a canonical way, and (2) (X, B1) is lc (this follows from
the first fact because a toric variety always has a toric resolution; pull back
KX + B1 = 0 to get 0 = KY + f−1B+exceptional divisors with aj = −1). If
you add another divisor B2, then (X, B1 + εB2) for 0 < ε ≪ 1 is lc if and only
if B2 6⊃ T -orbits. The reason is that when you resolve, you add exceptional
divisors with aj = −1, so you are maxxed out. This already tells you that if
you work with coeffiecients 1 and ε, then you are in the toric situation. ⋄

I cannot teach you about polytopes and toric varieties in 5 minutes; I hope
you already know how to see a variety if I show you a polytope.
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Fix a weight β = (b1, . . . , bn) (rational numbers 0 < bi ≤ 1).

Definition 2.1. A stable pair is (X, B =
∑

biB) where X is projective con-
nected reduced, and Bi are Weil divisors such that

1. (on singularities) slc

2. (numberical) KX + B ample

A stable map is f : (X, B) → Z satisfying two conditions; the first are the same,
and the second is changed to saying that KX + B is ample over Z (e.g. if the
map is finite, this is a non-condition). ⋄

Ideal theorem: Fix a dimension, β, and some other invariants, then there
exists a projective moduli space M of stable maps.

Example 2.2. The weighted moduli spaces Mg,β due to Hassett. This is
indeed a projective smooth stack. If g = 0, it is a fine moduli space (i.e. it is a
smooth projective variety). ⋄

The goal is to generalize to higher dimensions. We’ll sometimes use this
dream theorem for inspiration.

When you talk about moduli spaces, you need a functor. The minimal condi-
tion is that you look at flat families. Here you have to be more careful because
the Bi are only Weil divisors, not Cartier divisiors. We’ll be more careful about
this later.

Let’s review the dimension 1 case again. What does the mysterious condition
slc mean for curves? (X, B) is a curve with points, then

1. (slc) when {Bi|i ∈ I} coincide,
∑

i∈I bi ≤ 1.

2. (numerical) for all irreducible components E ⊆ X, deg(KX + B)|E > 0.
This degree is 2p0(E) − 2

∑
Bi⊆E 1 + E(X − E).

What is the definition of slc in higher dimensions? () You should require that in
codimenison 1, it is at worst nodal. This already implies that it is Gorenstein
in codimension 1, so you have the notion of ωX . () You also require that
the Bi do not contain the components of the double locus. () We ask that
[ω⊗N

X (N
∑

biBi)]
∨∨ be invertible. This allows us to talk about KX +B; it will

be a Q-Cartier divisor. Next, you can take a normalization, in which you will
have the divisors Bi and the double locus. () We would like to require that
(Xν , Bν + (double locus)) is lc. We’re almost done. (4) We ask that X is (S2)
(Serre condition 2, which is normal minus R1).

The other condition is dlt, which is better than lc because it implies Cohen-
Macaulay, and lc only implies normal. Similarly we may want sdlt, which would
imply Cohen-Macaulay, whereas slc only implies S2. I will not give a definition
of sdlt, but there is a reasonable candidate.

Stable toric varieties

I use the word stable by analogy with stable curves; some people use the word
“broken” toric varieties, which kind of gives you an idea of what they are.

(TV) the segment is the polytope for P1. (STV) two intervals glued at ends
should be two P1’s meeting at a point. (TV) square is P1 × P1, triangle is
P2. Triangle with corner cut is BlptP

2. With two corners cut is is the blow-up
at two points; one curve can be blown down to get P1 × P1. (STV) [[⋆⋆⋆

picture]] If we glue two triangles to two adjacent edges of a square, that is two
P2’s glued to a P1 ×P1 along a couple of P1’s, and all three of these intersect at
a point. There is a 1-parameter family where this guy is a limit of P2’s . . . you
“break” two corners of the triangle and leave them hinged.

(TV) In toric geometry, there is a correspondence. Fix a lattice Λ ∼= Zr and
a torus T = (C×)r (you don’t have to work over C, but I will for simplicity).
Then there is a correspondence between {integral polytopes with vertices in
Λ} and {(X, L) polarized linearized toric variety} (X normal projective toric
variety and L is an ample line bundle with T action). Q: does toric variety
mean normal. VA: yes, I do require normal.

(STV) To ∆ =
⋃

P α ∈ {coplex of integral polytopes} we associate an element
of {family of (X, L) polarized STV}. Stanley-Riesner varieties are the ones that
come from breaking a polytope, but you can have two triangles joined at a vertex
or multiple edges between two vertices. H0(∆, Aut) = Aut(X). Something is

parameterized by H1(∆, Aut). We have C0 → C1 ∂
−→ C2. In our example,

C1 = C× ⊕ C×, C0 = (C×)2 ⊕ (C×)2 ⊕ (C×)2, C2 = 0, and the first homology
is zero.

Example 2.3. [[⋆⋆⋆ picture: triangle in a triangle; corresponding vertices
joined]] Here, we will get H1 = C×. ⋄



2 Valery Alexeev 4

In a huge class of examples, the varieties I get are slc.
Our first example [[⋆⋆⋆ two triangles on a square]] the topological space

|∆| is a manifold with boundary. This implies that X is Cohen-Macaulay.

Example 2.4. [[⋆⋆⋆ picture: two triangles glued at a vertex]] is not S2 and
not CM. ⋄

Consider the variety [[⋆⋆⋆ first example; two triangles on a square]], with
the three boundary edges are B1, B2, and B3.

Lemma 2.5. (X,
∑

Bi) is slc and KX +
∑

Bi = 0.

Proof. It is S2 because it is CM. The next condition is to look at the normal-
ization which is [[⋆⋆⋆ picture: break off the hinged parts]] and check that
you get lc.

Now condier adding an additional divisor [[⋆⋆⋆ picture]]. This is a tropical
picture

Lemma 2.6. (X,
∑

Bi + εBn+1) is slc if and only if Bn+1 does not contain
any T -orbits.

The proof is the same. When you break off the hinged parts, the extra divisor
is a line that intersects each of the other lines (on the boundary) at one point
each.

We either work with all weights 1, or with a bunch of 1’s and an ε. The 1’s
correspond to the boundary and the ε corresponds to an ample Cartier divisor.

Definition 2.7. A stable toric variety over Z is as follows. We have a torus
T = (C×)r acting on PN (r < N), and in PN , we have a closed T -invariant
subvariety Z. We define a stable toric variety over Z to be a finite morphism
f : X → Z from a stable toric variety X. ⋄

Theorem 2.8 (main theorem). Fix ∆. Then there exists a projective moduli
space (which is a scheme) of stable toric varieties over Z, MT (Z, ∆).

The theorem is much more general; this corresponds to the multiplicity-free
case. Doesn’t have to be a torus; you can do it for spherical varieties. The
proof is in one of my papers with . . . . I won’t try to give the proof.

How is this different from the toric Hilbert scheme? In that case, you’d look
at subschemes of Z. These would normally be non-reduced and non-normal. I
insist that we work with nice normal S2 toric varieties. Why can’t I just restrict
to the reduced case?

Example 2.9. {tx0x2 − x2
1 = 0} is a family (the parameter is t). As t → 0,

in Hilb, we get x2
1 = 0, a double line. In MT , you break the P1 segment by

removing a point. This somehow says that the map to P2 is a 2-to-1 map, not
an embedding. ⋄

1-parameter degenerations

I have the curves Xt from the previous example, with maps Xt → P2, and I have
f∗O(1) = Lt, and a morphism

⊕
H0(P2,O(d)) →

⊕
H0(Xt, L

d
t ). H0(OP2(1))

has a basis x0, x1, x2 (corresponding to the two endpoints of the segement and
the one in the middle). Fix isomorphisms (Xt, Lt) ∼= (P1,O(2)). Then the map
H0(OP2(1)) → H0(Xt, Lt) is given by xi 7→ tδi,1ei. To compute the limit (how
to break the picture), you take the lower convex hull of the height function and
project the linear parts down. This is how you prove that every family has a
unique limit point.

You have this height function h. You can take the discrete Laplace dual.
Every face will correspond to a point in the dual space. Dimension 1 is too
small, so let’s do a 2-dimensional picture.

[[⋆⋆⋆ picture big triangle breaking into our first example]] This should be
the projection of some height function. The height function is defined on the six
lattice points. If you take the discrete Laplace dual, you get [[⋆⋆⋆ tropical
picture: trivalent tree to depth 2]]. This is trop(ft : (X, L)t → Z). If you take
a different family, you may still get the same limit, but the tropical thing will
change.

So far, I have stable toric varieties over Z. The MMP interpretation is that
(X,

∑
Bi) → Z is stable map. I proved that this is slc and the other condition.

Here, we have all weights are 1. Stable toric pairs (X, D) will have weights all
1’s and an ε. This is a special case of the previous on. If we have L = OX(D),
we get φ|H0(X,L)|∗ : X → PN = Z ⊃ H = {x0 + · · ·+ xn = 0}, then D = f∗H .

Conclusion for today: there is a moduli space of stable toric varieties. I used
MMP here for motivation, but then independently on constructs this moduli
space. I will use this in the later lectures in two ways. Tomorrow I’ll describe
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higher dimensional generalizations of one of the guys. On Friday, I’ll consider
the compactification of the moduli space of abelian varieties, and this will cor-
respond to stable toric pairs.

When you look at 1-parameter degenerations, they are described by height
functions. How many height functions do you have (if you allow real heights)?
It looks like Rm. You can say that two heights are equivalent if they give
you the same subdivision. This gives a fan on Rm. This defines a secondary
toric variety. the main component of MT (Pn, D) is a possibly non-normal toric
variety and its normalization is this guy.
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Quiz for today: Suppose you have a family of [[⋆⋆⋆ triangle]] Xt
∼= P2 → Z

degenerating to [[⋆⋆⋆ that breaking of the triangle you always draw for proper
non-projective]] X0 = limt→0 → Z. Can this happen? If you recall, you have
to have some height function that the broken picture is a projection of. This
should remind you of that famous picture of Escher. If you didn’t know, that
picture is not really possible; it is an optical trick. However, there is a point
in the moduli space for this stable toric variety. The result is that the moduli
space of stable toric varieties has multiple components; not everything can be
written as a limit of things in the main component.

I will state three main theorems and try to give as many examples as possible.
Fix positive integers r, n ∈ N (n divisors in Pr−1), and a weight β = (b1, . . . , bn),
with bi rational 0 < bi ≤ 1.

Theorem 3.1. There exists a family (X , B1, . . . , Bn) → Mβ(r, n) such that
every fiber (X,

∑
biBi) is a stable curve. Moreover, there is an open subset

Mβ(r, n) ⊆ M β(r, n) such that the restriction of the family is a family of lc
pairs (Pr−1 , Bi). Furthermore, all fibers are non-isomorphic.

The weight domain (the possible values of β) is D = {β = (bi)|0 < bi ≤
1,

∑
bi > r}. It looks like a cube, with a corner cut off by the inequality.

We take a chamber decomposition, where the walls are
∑

i∈I bi = k for all
I ⊆ {1, . . . , n} and for all 1 ≤ k ≤ n − 1. For example, something on the
boundary lies on a different chamber from something in the interior. [[⋆⋆⋆

picture]]

Theorem 3.2. (1) If Ch(β) = Ch(β′), then Mβ = Mβ′ and (X , Bi)β =

(X , Bi)β′ . (2) if β′ ∈ Ch(β), then we get a commutative (not cartesian) dia-
gram

Xβ
//

��

Xβ′

��

Mβ
// Mβ′

Moreover, if β′ > β (in every coordinate), then Mβ
∼
−→ M β′ and Xβ → Xβ′

is birational (when you go down, it doesn’t have to be birational). (3) For all

β > β′, we have morphisms (dashed is rational map)

Xβ
//__

��

Xβ′

��

Mβ
// Mβ′

and on fibers, X′ is the log canonical model for (X,
∑

b′iBi) (in particular, the
model exists).1

Theorem 3.3. (1) Every X is Cohen-MaCaulay, and X r
⋃

Bi is Gorenstein.
(2) for β in the maximal chambers, then X is Gorenstien and Bi are Cartier.

Example 3.4. Suppose we have (P2 + 5 lines)t in general position, and as
t → 0, the lines converge to two triple points [[⋆⋆⋆ picture, with numbered
lines]]. Let’s take β = (1, 1, 1, 1, 1). If the sum of the weights is less than one,
the lines can all coincide. If the sum of weights is less than 2, then three lines
can go through the same point. Here the sum is 5, so we get general position.
What happens in the limit? In the central fiber, you’d blow up the two points.
You get the blowup of P2 at two points. You’ve blown up a 3-fold, so you get
two extra P2’s. The lines will break up [[⋆⋆⋆ picture with ears + picture
with triangle ears (tropical?)]]. You would think that this is the limit, but it’s
not. If you try this with weights (1, 1, 1, 1, 1− ε), then this is indeed a stable
pair (K + B is ample). If you compute (K + B) · C, where C is a piece of line
number 5, you get ε. So so long as ε > 0, you’re stable, but for ε = 0, that curve
has to be contracted, so the actual picture is [[⋆⋆⋆ picture + picture with
triangles]]. Let’s call the weight β′ = (1, 1, . . . , 1); this is in the closure. There
is another way to go to the closure; consider the weights (1+ε

2
, 1+ε

2
, 1, 1, 1− ε).

Now there was no reason to blow up the first point; you only had to blow up the
second point, so the picture is [[⋆⋆⋆ picture]]. We have morphisms [[⋆⋆⋆

triangle picture]]; one is birational, but the other is not; we lost a whole P2. ⋄

In addition to producing progressively cooler pictures, I’d like to tell you
about how to construct these things.

I will start with the Grassmanian of r-dimensional subspaces of Cn with the
Plüker embedding G(r, n) →֒ P(

∧r
Cn). We have the torus T̃ = (C×)n acts

1The map to the log canonical model is only rational. For surfaces, it is usually an acutal

map if you work with normal surfaces.
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on the Grassmanian, T = Ĩ the diagonal copy of C×. there are
(
n
r

)
Plüker

coordinates pi1,...,ir
with i1 < · · · < ir , which have characters in Zn (each

entry is zero or 1). There is a hypersimplex ∆(r, n), which is (1) the convex
hull of these (2) {(xi) ∈ Rn|0 ≤ xi ≤ 1,

∑
xi = r}. [V ⊂ Cn] ∈ G(r, n) has

an embedded toric variety T [V ] (over G(r, n)). There is a moment polytope
PV (called the metroid polytope). PV is the convex hull of the V (pI) such
that pI(V ) 6= 0. It is also {(xi) ∈ Rn|KPr−1 +

∑
xiBi = 0, (Pr−1,

∑
xiBi lc}.

V r →֒ Cn fixed, so we get Pr−1 ∼= PV →֒ Pn−1, with Bi = PV ∩ Hi where
Hi = {zi = 0}. Note that the definition still works if something is contained in
something.

Example 3.5. Begin with a hyperplane arrangement (Pr−1,
∑

biBi) =
(PV,

∑
biBi) which is lc. Over G(r, n), I have the universal family U ⊆

Pn−1 × G(r, n), π : U → G(r, n). I have the point [PV ⊆ Pr−1] ∈ G(r, n).
I take the orbit T · [PV ⊆ Pr−1]. I claim that the stabilizer is trivial, so the
orbit is isomorphic to T . Take the preimage of the orbit π−1(U). I can take
the quotient π−1(U)/T , which will recover the pair I started with. ⋄

Example 3.6. Take r = 2 and n = 4, four points on P1. The easiest degenera-
tion is where you break the P1 to get points 1 and 2 on one piece and 3 and 4 on
the other piece. Start with ∆(2, 4), a hypersimplex (looks like an octahedron)
with vertices labelled by distinct pairs of numbers between 1 and 4. What is the
configuration where the first two points coincide. What is the metroid polytope
of this arrangement? You see that the Plüker coordinate p12 = 0 and pij 6= 0 for
(i, j) 6= (i, j). So we get the lower pyramid (the top vertex is 12). What is the
condition for this to be log canonical? it is that PV = {x1 + x2 ≤ 1}, which is
the lower pyramid. I am working with β = (1, 1, 1, 1). What is the locus where
the pairs are log canonical? They are the places where 1 and 2 do not coincide.
I’m looking at a certain open subset (given by GIT) π−1(U)ss

β where the pair
is log canonical. When I divide by the torus action, I get the line with points 3
and 4 and a point missing. I can now redo this for the configuration with 3 and
4 coincide. Then I redo it where 1 and 2 coincide and 3 and 4 coincide. Then
the torus action downstairs is not free, but the action upstairs is free. You end
up with a line with two points missing, which you have to divide by C×, which
gives you a point. When you stick these together, you get the two lines with 1
and 2 on one side and 3 and 4 on the other.

Somehow, the base is a stable toric variety, and I throw away its boundary
to get Y → G(r, n). The GIT quotient is X = π−1(Y )//T .

If you study GIT, you know there is a choice of line bundle and linearization
of it. In this case, we need an ample line bundle on U ⊂ Pr−1 × G(r, n) →֒
Pr−1×Plüker and a linearization. It turns out that this information is equivalent
to the weight β. If I have a weight, then the line bundle is p∗1O(

∑
bi − r) ⊗

p∗2O(1). If
∑

bi − r → 0, then the first factor will disappear. This shows that
Mβ will be the GIT quotient G(r, n)//βT for generic β. It is well-known that
this is also the GIT quotient Pr−1//βPGL(r). ⋄

When the weights are β = (1, . . . , 1, ε, . . . , ε), with K +B > 0 by K +B ≈ 0,
then this is the toric case.

Example 3.7. (P2 , B1, . . . , Bn) a configuration of lines, so I have
(1, 1, 1, ε, . . ., ε) (n − 3 ε’s). Then all X’s are stable toric varieties. If
n = 5 you get pictures of triangles where the three sides have coefficient 1 and
there are two more divisors. [[⋆⋆⋆ picture]] These are described by puzzles
like this, where the pieces are either triangles or rhombuses. Here are some
examples: [[⋆⋆⋆ pictures]] Your homework is to count these puzzles. I think
you can get the staircase with 6 ε’s, showing that that moduli space is not
irreducible. ⋄
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Nobody turned in the homework. The Quiz for today is for you to stare at
these two pictures [[⋆⋆⋆ pictures]] and see that they are basically the same.
They are both stairways to heaven, going up and up and up. The second one is
seven lines in P2, so r = 3 and n = 7, with β = (1, 1, 1, ε, ε, ε, ε). You complete
the puzzle by adding the divisors like this [[⋆⋆⋆ picture]]. The implies that
Mβ(3, 7) is not irreducible, which implies that M1(3, 7) is not irreducible either.
Last time I told you you need 9 lines, but you can do it with 7.

Abelian varieties

Abelian varieties are of the form A = Cg/Z2g = (C×)g/Zg (the later form is
the more general version).

Ideal Theorem: If you fix β = (b1, . . . , bn), a dimension, and some other stuff,
then there exists a projective M, the moduli space of stable pairs (X, B =∑

biBi) satisfying (1) (X, B) slc, and (2) KX + B > 0.
I will attempt to give a more complete picture for surfaces tomorrow, but for

now we look at special cases, taking inspiration from this thing we wish were a
theorem.

What is a polarization on an abelian variety A? A polarization λ is an ample
divisor Θ, modulo algebraic equivalence. If a polarization is principal, then Θ
is unique up to translation. Of course, KA = 0, so KA + εΘ will be ample. If
we pick ε very small, then singularities of the pair (A, εΘ) will be essentially
the same as those of A.

When the weights are 1 or ε, and K + B ≈ 0 (but positive), then we are in
the toric situation (i.e. X has to be something like a stable toric variety). The
ideal theorem says that there has to be a compact moduli space here, of toroidal
nature. If the polarization is principal, then the divisor is essentially unique,
so it is the same as the moduli space of polarized varieties: (A, εΘ) ↔ (A, λ).
You have to be careful about the divisors matching up; in the ideal theorem,
B has to be an actual divisor, not a divisor up to linear equivalence.

So one has to switch somehow to another variety (A, λ) ↔ (X, Θ). In doing
so, we give up the notion of 0 ∈ A. So X is a torsor under A, but Θ is an actual
divisor. One instance of this is very familiar. (P ic0C, λ) ↔ (P icg−1, Θg−1).
If you work with one thing, you hardly see the difference, but in families,
these things behave differently. Theorem: there is an equivalence of categories

between principally polarized abelian varieties and torsors with divisor. The
bad news is that this only works for principal polarizations. For the non-
principal case, Martin Olsson suggested a solution with log structures. It is not
in the spirit of the ideal theorem. I believe it can be done without log structures
as well.

Consider [[⋆⋆⋆ broken interval, labelled (0, 1, 1)]]. I have a family Xt,
where for t 6= 0, (Xt, εBt) = (P1, ε(2pts). In the limit, where t = 0, I have
(X0, B0) a stable toric pair, a couple of P1’s joined at a point, where B0 is one
point on each P1.

If I have a toric variety X and an ample divisor B, let L = OX(B). Then
H0(X, L) =

⊕
Cei, where the ei are the lattice points in the polytope. We have

θ ∈ H0(X, L), with (θ) = B, θ =
∑

ciei. In a family, C[[t]][1/t] or meromorphic
functions on {0 < |z| < ε}. Then ci(t) = c′it

hi , where c′i are invertible and hi

are the heights of the lattice points. The projection of the lower convex hull of
the height function gives the paving of the polytope that gives you the limit.

In tropical geometry, you look at some tropical polynomials like “h0x
0 +

h1x
1 +h2x

2”= max(0 ·x+h0, 1 ·x+h1, 2 ·x+h2). This gives a piecewise linear
thing. Looking at the points where it breaks, you get the associated tropical
variety.[[⋆⋆⋆ picture]] This is related to the toric picture by the Laplace
transform. The tropical picture is like N space and the toric picture is like M
space. At every point on the piecewise linear function gives you a slope in the
dual space. You take some difference to get the values. The transform of the
picture is the function with heights (h1, h2, h3).

Let’s do this with a slightly more complicated 2-dimensional picture [[⋆⋆⋆

picture triangle with two ears]], then the tropical picture is [[⋆⋆⋆ same, with
dualish lines on it]].

Now I’m going to do something like this for families of abelian varieties.
I’ll start with the simplest picture. Start with λ = Zg (the pictures are for
g = 1). In the dual space Λ∗ ⊗ R = Rg , you’ll get something tropical. For the
height function, I’ll take a non-homogeneous quadratic form, h = q + linear,
and I’ll require that the quadratic form q is positive definite. If I take the lower
convex envelope and project down, I’ll get some sub-division. From this, I can
construct some graded algebra R, and Proj R → Spec C[[t]][1/t] is a family (or
use the meromorphic functions on {0 < |z| < ε} as a base). When you do
the construction, you get that for t 6= 0, Xt = C∗g/Zg, and for t = 0, X0 is
the stable toric variety for the periodic decomposition, quotiented by Zg. Each
of the intervals is a P1, and the periodic decomposition is an infinite chain of
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P1’s. When you quotient by Zg, you get (X0, D0) [[⋆⋆⋆ picture like nodal
cubic, with D0 a point on it]]. What is different from the previous case is that
C∗g/Zg is half way to algebraic, but it is not algebraic; you can’t make sense
of this quotient algebraically. You have to do something; there are three ways
to solve the problem. One way is to work in the complex analytic topology, so
you have a family of complex analytic varieties. The nice thing is that once you
quotient by the action, you get an algebraic variety. Then there is the approach
of Tate and Mumford. Mumford’s approach is purely algebraic. You look at
the central fiber first, where you get this infinte chain of P1’s. Though this is
not a variety, it is a scheme, and it is locally of finite type. On such a thing, you
can still define an ample line bundle and an ample divisor. Then this action
by Z is properly discontinuous in the Zariski topology (it makes perfect sense
in the algebraic category). Then after you quotient, you can descend the line
bundle. That’s only for the central fiber. You can replace the central point by
some artinian ring to thicken it up; you can then get a thickening of the central
fiber. After you do it for all such artinian rings, you can use Grothendieck’s
algebraization theorem to extend to a family. Mumford got his Fields medal
for this stuff. There is a third solution, which is to use rigid algebraic geometry.

Now let’s understand the tropical side of things. The Laplace transform of
this picture is again a piecewise linear quadratic function, which you can project
down. The corner locus will be some tropical variety, which will be periodic
(you’ll still have an action of Zg). If you vary the heights, the sub-division will
change abruptly. One picture lives in Λ and the other lives in Λ∗, but we can
identify them using the quadratic function q. There is an associated bilinear
form q : Λ × Λ → R, which gives us an isomorphism Λ

∼
−→ Λ∗

R
.

A higher-dimensional picture is [[⋆⋆⋆ picture of two interlaced square lat-
tices]]. [[⋆⋆⋆ In the tropical side?]] the 4-gons will become hexagons and
the other 4-gons will become triangles, giving [[⋆⋆⋆ picture with hexagons
dual to triangles]]. These decompositions have names. The square one (white)
is called the Delanay decomposision (1920s), and the other one is called the
[[⋆⋆⋆ ]] decomposition (1908). In 2007, something called the tropical theta
divisor (“Tropical Jacobians”). It tells you that a tropical variety is something
which describes a 1-parameter degeneration. Let’s see what the result of the
degeneration is in this case (the triangle tiling). Each triangle is a P2, and
modulo the period, there are only two of them. When you divide, you’ll get
the two P2’s glued to eachother along three P1’s, and this is a degeneration of
abelian surfaces. There is a divisor on it; algebraically, you have a line in each

plane, and they intersect at three points (one on each of the three shared lines).
Some people draw the divisor like this $ and call it a dollar sign.

The picture with the squares. Each square is a P1 × P1, and modulo the
period, there is only one copy. So when you quotient, you get a P1 × P1 glued
to itself along two lines (you can introduce a twist (shift) in the gluing). The
degenerations are described by H1(P , Aut). There is a C× of abelian varieties
here.

Start with an abelian variety C×/Z. On this, there is a divisor Θ. Then
we go to a Z-cover, which is C×, on which we have a periodic divisor, given
by function θ =

∑
i∈Z

ciz
i, where the ci are quadratic non-homogeneous (in i).

Now we repeat it in a family. Then θ =
∑

i∈Z
ci(t)z

i, where ci = c′it
hi , where

hi : Z → Z is quadratic non-homogeneous: hi = q + linear, with q ≥ 0.

Theorem 4.1. There exists a space AP g, the moduli space of stabil semiabelic
(↔ toric) pairs, with an open (but possibly not dense) subspace APg = Ag, the
moduli space of principally polarized abelian varieties. The normalization of the
main irreducible component of this space is A

vor

g , a toroidal compactification of
Ag for the second Voronai fan.

Back to the first picture, where you have a polytope (broken interval) and a
height function. If you look at all possible height function, it is a vector space,
and it is broken into cones depending on the decomposition of the polytope that
they give you. This gives you a fan, called the secondary fan, which gives the
secondary toric variety. Now consider the height functions q : Zg → R which are
quadratic. Projecting the lower convex hull, you get a periodic decomposition.
Breaking up the vector space of such q by the decomposition they give, you get
the second Voronai fan.
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5 Valery Alexeev - Moduli of surfaces

Today I’m going to talk about surfaces, and I’ll try not to skip technical details.
The reason is that for the previous lectures, there are papers with proofs. For
surfaces, there is no definite source. There is supposed to be a book, but it has
four authors, so it is delayed.

Let π : X → S be a flat family of slc surfaces, and let N ∈ N such that
Nbi ∈ Z. So each fiber Xs is slc, in particular is S2. Let Z ⊆ X be a subset
so that for all s ∈ S, codim(Zs, Xs) ≥ 2. On X r Z, ωX/S and OX(N

∑
biBi)

are invertible. So the bad set, where these sheaves are possibly not invertible,
is contained in Z. Let j : X r Z →֒ X.

Definition 5.1. LN
X→S := j∗

(
ω⊗N

X/S ⊗OX(N
∑

biBi)|XrZ

)
=“N(K +B)”. ⋄

Remark 5.2. Note that formation of LN
X→S does not commute with base

change. In particular, for the (key) base change s → S, the construction does
not commute. In particular, the value of K2 jumps. ⋄

Definition 5.3. Fix β = (b1, . . . , bn), V ⊆ P (some projective scheme; for

stable pairs, V = pt), and coefficients c1, c2, and c3. Define MN(S) =
{

flat

projective families f : (X,
∑

biBi) → S×V such that (1) X, Bi are flat over S,
(2) (Xs,

∑
biBi)s → V is a stable map, (3) LN

X→S is invertible, ample over S×V ,
and (LN

X→S)s = LN
Xs→s, and (4) (KXs

+Bs)
2 = c1, (KXs

+Bs)Hs = c2, H
2
s = c3

for Hs = f∗
s OV (1)

}
. ⋄

MN definitely depends on N . In characteristic p, the moduli space definitly
depends on N . In charactaristic zero, I think it may not.

Definition 5.4. MK(S) is the same as MN , but the K stands for “Kollár”
and condition (3) is replaced by (3′) for all m such that mβ ∈ Zn, Lm

X→S is flat
over S, and (Lm

X→S)s = Lm
Xs→s, and some LN

X→S is invertible. ⋄

Remark 5.5. Under assumptions (3,3′), formation of the sheaf LN
X→S does

commute with base change S′ → S. ⋄

Note that LN
X→S does not depend on the “nice” Z ⊂ X. It should be

called “the caturation in codimension 2 relative over S”; it can be defined

as lim jZ,∗(. . . ). Under conditions (3) or (3’), LN
X→S is called the hull of

ω⊗N
X/S ⊗OX(N

∑
biBi). The reference is Kollár, Hulls and husks.

Problem 1: embedded components of B.

Example 5.6 (Hacking, Hassett). Consider the surface F0 = P1 × P1 as the
fiber. Take the base S = A1. In the central fiber, take the divisor s0 + 2f in
|FF2, and blow it up. We get s4 in F4. So you have two glued surfaces in the
central fiber. Take 2s0 on the F0 and 4f +4(s4 +4f) on the F4, which intersect
the curve along which the two surfaces are glued four times. [[⋆⋆⋆ picture]]
The key thing is that on the F4, you have a nodal curve, which we will smooth
in the generic fiber (explicitly, it is something with genus 35; you can find this
in my paper on stable limits of surfaces). Now, contract the F0 component
to a point. So in the central fiber, we’ll have F4, with the exceptional fiber
contracted. It will be a cone on a quartic. The genus of the curve in the central
fiber is one higher than the (arithmetic) genus of the curve in the generic fiber.
You can see this; when you contract all four intersection points to a point, the
genus jumps up by one. pa(C0,red) = g + 1. But in flat families, arithmetic
genus is constant. We can conclude that B0 ⊆ X0 is not reduced. But you
can compute that KS + 1

2
B is Q-Cartier (2KX + B is Cartier) and ample over

S = A1, so this is the log canonical model for . . . . So I have a divisor on the
3-fold, but when I restrict to the central fiber, it is not a divisor, it is only a
closed subscheme.

The problem here is that B is not Q-Cartier, but (B0)red is Q-Cartier. In this
situation, you necessarily aquire an embedded component. If B0 were Cartier,
we would just lift that divisor in the family. You should expect this. K + B is
Cartier in the log canonical model, but K and B need not be Cartier. ⋄

What are we supposed to do now? Work with a subscheme instead of a
divisor? What are the definitions of lc and slc in that case? This seems like a
very serious problem, but there are several solutions:

1A. This problem does not happen if bi = 1. This is proven in my paper on
limits of stable pairs. This is not so good; 1

2 is a perfectly good coefficient.

1B. Work with subschemes Bi ⊆ X which are closed and flat over S. That is,
require (X,

∑
bi(Bi)

div) to be a stable pair. I don’t like this solution. Once
you allow these embedded points to be there, then you have a surface, with
a divisor, and these embedded points can crawl everywhere, and that is
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just unnatural. Maybe you could allow them in the bad fiber, but it seems
like you have to allow them everywhere.

1C. Replace divisors by finite maps Bi → X, where the Bi are reduced and
codimension 1. I call these branch divisors. So when you form the divisor,
you just take the divisor given by the image. How does this cure the
example? It will look like this [[⋆⋆⋆ picture with two nodes]]; this is
really a branch divisor, because at one point it is 2-to-1.

1D. (Kollár) “B = (K+B)−K = L−K” where L is an ample Q-Cartier divisor.
On a smooth surface, you can interpret NB as a morphism φ : ω⊗N

X/S →

LX→S
N .

1E. Only work with coefficients (bi + εi) and 1. This means that in the defini-
tion, you insist that these divisors are Q-Cartier. This is a cheap way out,
because 1

2 is a perfectly good coefficient.

I like solutions 1C and 1D.
Problem 2: The properness criterion of MMP for a non-normal generic fiber.

We started with a normal 3-fold in the picture I described before. What if you
start with some family of surfaces where the generic fiber is not normal? Do
we have a MMP for such things?

Example 5.7 (Kollár). Start with the surface Fn and you attach to it an Fm.
You attach a divisor, which is the simplest thing you could have: sn with sm

and sn + nf . [[⋆⋆⋆ picture]] K + B is slc and big, but
⊕

d≥0 H0(d(K + B)
is not finitely generated. Kollár has a more sophisticated example where the
surface is irreducible. ⋄

This example is really not a problem. You take the normalization and run
MMP for all the pieces. [[⋆⋆⋆ picture]] Then you want to say that this glues
uniquely together. The solution is to require (KX +B)|E matches on the “left”
and “right”. This should be treated in the étale topology (the normalization
could be connected, so you take a cover where it breaks into pieces). With this
condition, everything glues nicely and the triple points are not a problem. In
higher dimensions, there would be more trouble because you’d have things of
higher codimension. So the surface in the example does not appear as a limit
if you impose this condition.

Construction of moduli

The construction is standard once you have good properties of the stack M.
The properties are

1. properness, which is ok by MMP and above

2. boundedness, which is ok (V.A. 1994)

3. local closedness, which is Problem 3.

I could have (X,
∑

biBi, L), where L is relatively ample invertible. If you make
a base change, to get (XT , BT , LT ), would this be in M(T ) (i.e. would it be
an admissible family)? Local closedness means that for Su =

⊔
Si with the Si

closed, then T → Su.
Fix some N . By boundedness, you can fix it so that LN is very ample. Then

L gives you an embedding into some projective space of fixed dimension. So
you are in some Hilbert scheme. You cut out . . . . The problem begins with
the fact that LX→S

N does not commute with base change (if I don’t start with
a good family). If you know local closedness, then you know that you can form
an admissible family. The only thing that is different from what we want is
the embedding. You quotient out by the embedding and you get a quotient
stack M = U/PGL. The properness implies that this is algebraic with finite
stabilizers.

Problem 3 has been solved. The statement is true, but one has to prove it.
HK did it in dimension 2 with B = ∅. Kollár Husks and hulls gives a com-
prehensive treatment. According to me, this moduli space exists in complete
generality (at least with contastant coefficients).
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