
Anton’s Topology Notes

About these notes

I took Math 215A, Algebraic Topology, with Peter Teichner in Fall 2006. I took some
notes in class and then wrote them up after class. At first, I would do one lecture at a time
(so the earlier sections really are one lecture’s worth of material). Later in the course,
I would wait a bit before writing up a lecture because subsequent lectures often added
context. Thus, the later sections are not in bijection with lectures, but are partitioned by
topic. I often added proofs for statements that were not proven in class, or modified the
proofs from class.

These notes are not self-contained. There is often dependence on results from the
homework and occasionally some statements are not proven at all.

All spaces are Hausdorff and all maps are continuous.

2 A Theorem from Point-Set topology

Theorem 2.1. If X is compact (and Hausdorff) and Y is Hausdorff, then f : X → Y is
closed. In particular, if f is a bijection, then it is a homeomorphism.

Proof. If A ⊆ X be closed, then it is compact because closed subsets of compact sets
are compact. Since the continuous image of a compact set is compact, f(A) is compact.
Since compact subsets of Hausdorff spaces are closed, f(A) is closed.

3 homotopic maps

Definition 3.1. The n-dimensional ball is Dn = {x ∈ R
n|‖x‖2 ≤ 1}. The sphere is

Sn−1 = ∂Dn = Dn r
◦

Dn.

Theorem 3.2. If C ⊆ Rn is convex, compact, and
◦

C 6= ∅, then C ≈ Dn and ∂C ≈ Sn−1.

Proof. Assume 0 ∈
◦

C. Define f : ∂C → Sn−1 by f(x) = x
‖x‖2

. f is surjective because for

every v ∈ Sn−1, there is a maximal t ∈ R>0 so that tv ∈ ∂C. By convexity of C, this t

is unique (here you use that
◦

C contains a ball around 0), so f is injective. Since ∂C is
compact and Sn−1 is Hausdorff, f is a homeomorphism by Theorem 2.1. Similarly, extend
f to a homeomorphism f̃ : C → Dn.

Corollary 3.3. For any norm, the ball you get is homeomorphic to the ball with the
2-norm.

Definition 3.4. f0, f1 : X → Y are homotopic (written f0 ≃ f1) if there is a continuous
map F : X × I → Y such that F (x, i) = fi(x) for i = 0, 1.
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If F (x, t) is continuous in t, there is an associated map F ∗ : I → Y X := HomTop(X, Y ).
In this case, a homotopy of maps is just a path in the mapping space Y X .

We’ll show next time that for F to be continuous in t, you need X to be locally compact
(every point must have a compact neighborhood1). In this case, there is a topology on
Y X which makes F ∗ continuous.

Definition 3.5. The compact-open topology on Y X has a sub-basis given by sets of the
form M(K, U) = {g : X → Y |g(K) ⊆ U}, where K ⊆ X is compact and U ⊆ Y is open.

4 Compact-Open topology and Exponential laws

If X is compact and Y is a metric space, then the compact-open topology is given by the
metric d(f, g) = sup{d(f(x), g(x)}.

Lemma 4.1. If X is locally compact, then the evaluation map ev : Y X × X → Y , given
by (f, x) 7→ f(x), is continuous.

Proof. If U is a neighborhood of f(x), f−1(U) contains some compact open neighbor-

hood K of x. Then ev
(
M(K, U) × K

)
⊆ U by definition, so M(K, U) ×

◦

K is an open
neighborhood of (f, x) in ev−1(U).

Theorem 4.2. Let X be locally compact. Then f : X × T → Y is continuous if and only
if (1) each ft : X → Y is continuous, and (2) f̂ : T → Y X is continuous.

Proof. (⇐) f is the composition X × T

(
0 f̂

IdX 0

)

−−−−−→ Y X × X
ev
−→ Y . By (1), f̂(t) = ft is in

Y X ;
(

0 f̂
IdX 0

)
is continuous by (2) and ev is continuous by Lemma 4.1.

(⇒) ft is the composition of continuous functions X
x 7→(x,t)
−−−−→ X ×T

f
−→ Y , proving (1).

To prove (2), we need to prove that f̂−1
(
M(K, U)

)
=

{
t ∈ T |f(K × {t}) ⊆ U

}
⊆ T is

open. Fix some t ∈ T such that f(K × {t}) ⊆ U .

Claim. There are open sets W ⊆ T and V ⊆ X such that K × {t} ⊆ V × W ⊆ f−1(U)

By continuity of f , for each x ∈ K, there are open neighborhoods x ∈ Vx ⊆ X and
t ∈ Wx ⊆ T such that Vx × Wx ⊆ f−1(U). By compactness, K ⊆ Vx1 ∪ · · · ∪ Vxn

=: V .

1Since all our spaces are Hausdorff, this is equivalent to saying that every neighborhood of a point
contains a compact neighborhood.
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Set W = Wx1 ∩ · · · ∩ Wxn
. This V and W satisfy the claim.

Vx1

Wx1

Vx2

Wx2

K × {t}

f−1(U)

Now the given W is a neighborhood of t in f̂−1
(
M(K, U)

)
.

Theorem 4.3 (Exponential Law). If X is locally compact, then Y X×T ≈ (Y X)T , f 7→ f̂ .

Proof. By the previous theorem, this map is bijective. It is an exercise to show the
homeomorphism. Or look at page 531 of Hatcher.

Lemma 4.4. If X and T are locally compact, then

– Y X × W X ≈ (Y × W )X

– Y X
∐

T ≈ Y X × Y T

–
(
(Y, y0)

(X,x0), consty0

)(T,t0)
≈ (Y, y0)

(X×T,X∨T ) ≈ (Y, y0)
X∧T .

where X ∧ T := X × T/X ∨ T .

Definition 4.5. f : X → Y is a homotopy equivalence if there is a g : Y → X so that
g ◦ f ≃ IdY and f ◦ g ≃ IdX .

5 CW complexes

Definition 5.1. A space X is homogeneous if the group of homeomorphisms X → X
acts transitively on the points of X.

Theorem 5.2. Every connected manifold is homogeneous. Every topological group is
homogeneous.

For example, the Cantor set is homogeneous.
The push-out and pull-back are (respectively)

A
f1

//

f2

�� ·

B1

g1

��   
BB

BB
BB

BB

B2
g2

//
55PO

∃! //___ Y

Y
∃!

//___ ))

  
BB

BB
BB

BB
PB g1

//

g2

��

·
B1

f1

��

B2
f2

// A
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Pull-backs and push-outs exist in the category of topological spaces (the constructions
from Set work). PO = B1

∐
B2/f1(a) ∼ f2(a) and PB = {(x, y) ∈ B1 × B2|f1(x) =

f2(y)}.
A CW complex is where you attach cells in order of dimension. That is, define X(−1) =

∅, and define the n-skeleton X(n) by

∐
α∈In

Sn−1 � � //

∐
φα

�� ·

∐
Dn

Φα

��

X(n−1) // X(n)

for some indexing set In. The φα are called attaching maps and the Φα are called char-

acteristic maps. Define en
α = Φα(

◦

Dn). Define X as
⋃

X(n), with the direct limit topology
(a set is open if and only if the intersection with X(n) is open for each n).

6 πk and more CW stuff

Definition 6.1. πk(X, x0) :=
[
(Sk, s0), (X, x0)

]
= π0

(
(X, x0)

(Sk,x0)
)
.

Note that Sk ≈ Dk/∂Dk ≈ Ik/∂Ik. For k ≥ 1, πk(X, x0) has a group structure given
by

f · g : Ik = Ik−1 × I → Ik−1 × 2I = Ik ∪ Ik f∪g
−−→ X

f · g = I
f
g

Ik−1

Lemma 6.2. For a CW complex X,

1. Φα(Dn) = ēn
α (closure in X).

2. For A ⊆ X, Φ−1
α (A) is closed if and only if A ∩ ēn

α is closed.

3. X has the weak topology with respect to the maps Φα : Dn → X.

Proof. (1) Φα(Dn) is closed (since Dn is compact and X is Hausdorff (by homework 3))
and contains en

α. If A is closed, with en
α ⊆ A ⊆ Φα(Dn), then Φ−1

α (A) is a closed set in

Dn which contains
◦

Dn, so it is all of Dn. It follows that A = Φα(Dn).
(2) Is as easy as (1).
(3) If A ⊆ X has the property that Φ−1

α (A) ⊆ Dn is closed for all α, then we’d like to
show that A∩X(n) is closed for all n. Well, A∩X(−1) = ∅ is closed. Now induct; assume
A ∩ X(n−1) is closed. Then using the property of push-out, A ∩ X(n) is closed.
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7 Van Kampen’s Theorem

Chris lectures today because Peter is ill. Remember the group law on π1(X) and that
π1 is a functor, sending homotopy equivalences to isomorphisms. Say we have a cover
jα : Aα → X of X by open sets Aα, all of which contain the base point x0. Then it is
clear that we have commutative squares

Aα ∩ Aβ
� �

iαβ
//

� _

iβα

��

Aα� _

jα

��

Aβ
� �

jβ
// X

which induce
π1(Aα ∩ Aβ)

iαβ∗

//

iβα∗

��

π1(Aα)

jα∗

��

π1(Aβ)
jβ∗

// π1(X)

where each space has the base point x0. Thus, we have a map Φ : ∗απ1(Aα, x0) → π1(X),
and it is obvious the relations jα∗ ◦ iαβ∗(w) = jβ∗ ◦ iβα∗(w).

Theorem 7.1 (Van Kampen’s Theorem). Let X =
⋃

Aα, with X, Aα, and Aα ∩ Aβ

all path connected and containing the base point x0. Then the map Φ : ∗απ1(Aα, x0) →
π1(X, x0) is surjective. Furthermore, if all of the Aα ∩ Aβ ∩ Aγ are path connected, then
the kernel of Φ is generated by elements of the form iαβ∗(w) · iβα∗(w)−1, where w ∈
π1(Aα ∩ Aβ, x0).

Proof. First we prove surjectivity. Let f : I → X be a loop at x0. Choose 0 = s0 <
s1 < · · · < sn−1 < sn = 1 so that f([si, si+1]) ⊆ Aαi

=: Ai. Define fi to be the path

I
∼
−→ [si, si+1]

f |[si,si+1]

−−−−−→ X. Choose paths gi : I → Ai ∩ Ai+1 from f(si) to x0. Then
f ≃ (f0g1)(g

−1
1 f1g2) · · · (gn−2fn−2gn−1)(g

−1
n−1fn−1) ∈ im Φ.

To prove that the kernel of Φ is what we want, it is enough to show that given an
element f1 · · · fn ∈ ∗απ1(Aα), with fi ∈ Aαi

, such that Φ(f1 · · · fn) = 0, we can turn
f1 · · · fn into the constant map using a series of the following moves:

1. Replace fi by an equivalent element of π1(Aα1) (i.e. homotope fi within Aαi
), or,

if αi = αi+1, replace fi · fi+1 by their product in π1(Aαi
). These operations don’t

change the element of ∗απ1(Aα).

2. If the image of fi lies in Aβ, then think of it as an element of π1(Aβ), rather than
an element of π1(Aαi

).

Let F : I × I → X be a homotopy from f1 · · ·fn to the constant map. Then cut up I × I
into little squares, so that the image of each square lies entirely within some Aα. We can
perturb the squares slightly so that each point touches at most three of the squares:

1 2 3 4

5 6 7 8

9 10 11 12
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For each vertex v, choose a path gv from F (v) to x0. We may choose the path gv to
lie entirely in the three open sets containing the images of the squares adjacent to v.
Number the little squares as shown, and let γi be the path which has little squares 1
through i below it, so γ0 is the bottom edge, with F (γ0) = f1 · · · fn. Notice that we get a
factorization of γi as an element of ∗απ1(Aα) by looking at the images of the horizontal
and vertical edges and concatenating with the gv. But it is better than that: the image
of each edge lies in two of the Aα! That is, we get two versions of each edge, related by
operation 2 above.

Start with γ0, written as some element of ∗π1(Aα). Apply a homotopy to the first
factor that is entirely in A1 (the open set containing the image of the square labeled 1).
Now think of the new edges as living in the adjacent Aα (the is move 2), and repeat until
you’ve reached the constant map.

Example 7.2. Let n > 1. In Sn, let U be a neighborhood of the closed northern

hemisphere (U ≈
◦

Dn), let V be a neighborhood of the closed southern hemisphere (V ≈
◦

Dn), and let the base point be on the equator. Then U ∩ V is path connected (not true

if n = 1), so by Van Kampen’s Theorem, π1(
◦

Dn) ∗ π1(
◦

Dn) ∼= {e} surjects onto π1(S
n), so

π1(S
n) is trivial. •

Example 7.3. If X =
∨

α Xα, where each Xα is path connected and for each α, xα ∈ Xα

is a deformation retract of a neighborhood. Then Van Kampen’s Theorem applies to tell
us that π1(X) ∼= ∗απ1(Xα). •

Example 7.4. Write the torus as the union of a popped torus and a patch:

= ∪

The first piece, call it U1, is homotopic to the wedge of two circle, so π1(U1) = Z ∗ Z,
generated by a and b. The second, call it U2, is contractible, so π1(U2) = 1. The
intersection is homotopic to a circle, π1(U1 ∩U2) = Z. The generator of this Z is sent to 1
is π1(U2) (of course), and to aba−1b−1 in π1(U1). Thus, π1(T

2) = Z ∗ Z/(aba−1b−1 = 1) ∼=
Z ⊕ Z. •

We will see later that given any finitely presented group G = 〈g1, . . . , gn|r1, . . . , rm〉, one
can come up with a topological space (in fact, a CW 2-complex) with the desired group
as a fundamental group.

8 Characterization of CW complexes

We mention the following lemma.

Lemma 8.1. If a finite group G acts freely on a manifold Mn, then Mn/G is a manifold
of dimension n.
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Lemma 8.2. If X is a CW complex and C ⊆ X is compact, then C lies in a finite
subcomplex.

Proof. For each cell intersecting C, choose a point in the intersection. Let S be the union
of these points. Since the points are in distinct cells, S is discrete, so closed. Since S ⊆ C
must be compact, S must be finite.

Now it remains to show that the closure of each cell lies in a finite subcomplex. The
image of the attaching map of an n-cell is a compact and contained in X(n−1), so by
induction on the dimension, it lies in a finite subcomplex. Clearly, any 0-cell is a finite
subcomplex.

Theorem 8.3 (Characterization of CW complexes). X is a CW complex if and only if

0. X is Hausdorff.

1. T
“C”

{
here are φα : Dn → X such that φα :

◦

Dn ≈
−→ φα(

◦

Dn) =: en
α, with X =

∐
n,α en

α.

2. φα(∂Dn) lies in a finite union of lower-dimensional cells. (“closure finite”)

3. X“W” { has the weak topology with respect to the φα.

Proof. (⇒) We’ve checked 0, 1, and 3 already. 2 follows from Lemma 8.2.
(⇐) In Hatcher.

Definition 8.4. A ⊆ X is a retract if there is a retraction r : X → A, a map so that
r|A = IdA.

Definition 8.5. A ⊆ X is a deformation retraction if there is a deformation retraction
r : X → A, a retraction such that iA→֒X ◦ r ≃ IdX . In particular, A ≃ X.

Definition 8.6. A ⊆ X is a strong deformation retraction if there is a strong deformation
retraction r : X → A, a deformation retraction so that i◦r ≃A IdX . In particular X ≃A A.

Example 8.7. A semi-circle in a circle is a retract, but not a deformation retract. •

9 The Homotopy Lemma

Lemma 9.1. Sn−1 × I ∪ Dn × {0} is a strong deformation retract of Dn × I.

Proof.

⊆

•

•φ(x)
•x

More generally,
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Lemma 9.2. If (Z, B) is a CW pair, then B×I ∪Z×{0} is a strong deformation retract
of Z × I.

Proof. Apply the previous lemma repeatedly. Induct on dimension. [[ ⋆⋆⋆ how about
if Z is not finite dimensional]]

Lemma 9.3 (Homotopy Lemma). If (Z, B) is a CW pair, and if f0, f1 : B → Y are
homotopic, then Y ∪f0 Z is homotopic to Y ∪f1 Z.

Proof. Let F : B × I → Y be a homotopy f0 ≃ f1. We wish to show that Y ∪f1 Z ⊆
Y ∪F (Z × I) is a strong deformation retract for i = 0, 1. By the previous lemma,
B×I∪Z×{i} is a strong deformation retract of Z×I. This induces a strong deformation
retract of Y ∪F (Z × I):

Y ∪F (Z × I) = −→

Y

= Y ∪fi
Z

Y
F (B × I)

In particular, if B is a space, and α ∈ πn−1(B, b0), then B ∪α Dn is well defined up to
homotopy equivalence.

Definition 9.4. A pair (X, A) has the homotopy extension property (HEP) if a homotopy
of A, defined at time zero on X, extends to all of X:

(X × {0}) ∪A×{0} (A × I) h // Y

X × I
��

_�

h̃

66

For example, any CW pair has HEP by Lemma 9.2.

Lemma 9.5. (X, A) has HEP if and only if X × {0} ∪ A × I is a retract of X × I.

Proof. (⇒) Let Y = X × {0} ∪ A × I with h = Id. Then h̃ is a retract.
(⇐) If r is a retract, set h̃ = h ◦ r.

Lemma 9.6. If (X, A) has HEP, then A ⊆ X is closed.

Some applications:

1. If (X, A) has HEP and the inclusion A →֒ X is a homotopy equivalence, then A is
a deformation retract of X.

2. If (X, A) has HEP and A is contractible, then the canonical map X → X/A is a
homotopy equivalence. To see this, let h : A × I → A be a contraction of A, so
h0 = IdA and h1(A) is a point, then extend h0 to IdX . By HEP, there is a homotopy
h̃ : X × I → X so that h0 = IdX and h1(A) is a point. Then h1 induces a map
φ : X/A → X, and h induces a homotopy between IdX/A and the composition

X/A
φ
−→ X → X/A. Also, h is itself a homotopy between IdX and the composition

X → X/A
φ
−→ X.
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Example 9.7. In a connected CW complex X, one can find a maximal spanning tree
T ⊆ X, a contractible subcomplex of X1. Then application 2 above says that T can be
crushed to a point without changing the homotopy type of X. Moreover, it is easy to
check that X/T is a CW complex with a single 0-cell.

Later we will see that for a CW complex X, if πk(X) = 0, k > 1, then X is homotopic
to a CW complex with no k-cells. [[ ⋆⋆⋆ is this right?]] •

10 Some Theorems

Chris lectures.
We will assume we know

– πi(D
n) = 0 for all i since Dn is contractible.

– π1(S
n) = 0 for n > 1.

– π1(S
1) = Z, generated by Id : S1 → S1.

– πi(S
n) = 0 for i < n.

– πn(Sn) = Z, generated by Id : Sn → Sn.

– If f : Sn → Sn satisfies f(−x) = −f(x), then [f ] 6= 0 ∈ πn(Sn); in fact, [f ] must
represent an odd integer.

Then we can prove some neat things.

Theorem 10.1 (Fundamental Theorem of Algebra). Every non-constant p ∈ C[x] has a
root in C.

Proof. Assume not. Say p is of degree n. Note that pR = p
(
{z|‖z‖ = R}

)
is a loop in

C r {0} ≃ S1, so it defines an element of π1(Z).2 For R large, it is easy to see that it
defines the same element as does zn, which is n ∈ Z. Slowly shrinking R to zero, we get
a homotopy of pR to p0, which is a constant map, corresponding to 0 ∈ Z. Thus, n = 0,
contradicting the assumption that p is non-constant.

Theorem 10.2 (Brauwer Fixed Point Theorem). Every h : Dn → Dn has a fixed point.

Proof. Assume not, then define f : Dn → Sn−1 by the picture

•x
•
h(x)

•
f(x)

{{{{{{{{{{

2Since we didn’t choose a base point, it only defines a conjugacy class, but Z is abelian, so we get an
element.
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It is easy to see that f is continuous and that f |Sn = IdSn. Then we get the following
commutative triangle, and its image under πn−1.

Sn−1 � � //

Id
Sn−1

44Dn
f

// Sn−1 Z //

IdZ

660
f∗

// Z

Which is impossible.

Theorem 10.3 (Invariance of Dimension). R
n ≈ R

m ⇐⇒ n = m.

Proof. (⇐) is obvious. Let’s prove (⇒). Assume f : Rn ∼
−→ Rm, then we get a homeomor-

phism f : Rnr{0}
∼
−→ Rmr{f(0)}. The first is homotopy equivalent to Sn and the second

to Sm, so it follows that Sn ≃ Sm. We may assume n ≤ m. Then Z = πn(Sn) ∼= πn(Sm),
which is zero if n < m. So n = m.

Theorem 10.4 (Borsuk-Ulam). For any f : Sn → R
n, there is some x ∈ Sn so that

f(x) = −f(−x).

Proof. If not, define g : Sn → Sn−1 by g(x) = f(x)−f(−x)
‖f(x)−f(−x)‖

. Note that g(−x) = −g(x), so

composing with the inclusion i : Sn−1 →֒ Sn, we get a non-trivial element of πn(Sn) = Z.
But if [i ◦ g] 6= 0, then the image i ◦ g(Sn) is not contractible in Sn, so the image i(Sn−1)
is not contractible in Sn. Contradiction.

Note that we don’t really use much about what π1 is in these proofs, we just use
some functorial properties. So anything else that behaves kind of like π1 would work just
as well. Later we will define homology and cohomology groups, which serve exactly this
purpose.

11 Boring class

Peter was sick, but still in class, and asked people to volunteer information about

– categories and functors

– exact squences

– cofibrations and Puppe sequences

– covering spaces, fiber bundles, and fibrations

We only talked about the first two.
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12 More Category stuff, Cofibrations, Fibrations

Definition 12.1. An sequence of pointed sets

(A, a)
f
−→ (B, b)

g
−→ (C, c)

is said to be exact at B if im f = g−1(c).

Note that if we take these to be groups (with the identity element), we get the usual
notion of exactness of a sequence of groups.

Definition 12.2. A natural transformation η : F → G between two functors F, G : C →
D is a morphism η(X) for each object X in C so that for every f : X → Y , we have

F (X)
η(X)

//

Ff

��

	

G(X)

Gf

��

F (Y )
η(Y )

// G(Y )

Example 12.3. For any object X in a category C, we get a functor hX : Cop → Set
given by hX(Y ) = Hom(Y, X). Similarly, we get a functor hX : C → Set given by
hX(Y ) = Hom(X, Y ). We call a functor representable if it is isomorphic to hX or hX for
some X. •

Theorem 12.4 (Yoneda’s Lemma). For any functor F : Cop → Set, there is a natural
bijection Nat(hX , F ) ∼= F (X). In particular, taking F = hY , we see that the functor
h− : C → Fun(Cop,Set) is a fully faithful embedding of categories.

Similarly, we get a fully faithful embedding h− : Cop → Fun(C,Set). This is the Yoneda
embedding of Cop.

Proof. Given η ∈ Nat(hX , F ), we have η(X) : Hom(X, X) → F (X), so we get an element
a = η(X)(IdX) ∈ F (X). Conversely, given a ∈ F (X), we construct a natural transfor-
mation η which takes f ∈ hX(Y ) = Hom(Y, X) to η(Y )(f) = (Ff)(a). Check that these
are inverses, and that the bijection is natural in F and X. The following diagram should
help:

IdX_

��

Hom(X, X)

−◦f
��

F (X)

Ff
��

Hom(Y, X)
η(Y )

// F (Y )

a_

��

f � // (Ff)(a)

Note that representable functors sometimes factor through some other category on
their way to Set, i.e. there is a natural group structure on hX(Y ) in such a way that the
maps hX(Z) → hX(Y ) induced by Y → X are group homomorphisms.
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Definition 12.5. If C has products, then an object K is a group object in C if there is a
maps m : K × K → K such that there exist i : K → K and 1 : ∗ → K, where ∗ is the
final object of C (the empty product) satisfying the following diagrams.

∗ × K

1×Id
��

∼= K ∼=

Id
��

K × ∗

Id×1
��

K × K
m // K K × K

moo

K × K

m

��

K

∃!

��

Id×i
//

i×Id
oo K × K

m

��

K ∗ 1 //1oo K

K × K × K
m×Id

//

Id×m
��

K × K

m

��

K × K
m // K

If we change all the products to coproducts (in particular, change the final object to the
initial object) and reverse the arrows, we have the definition of a cogroup object.

Observe that once i and 1 exist, they are unique. Note that if K is a group (resp.
cogroup) object, then hK (resp. hK) factors trough Gp.3 If the multiplication map m is
invariant under the “switch factors” map, then we says that K is an abelian (co)group
object. In this case, the representable functors factor through Ab.

Definition 12.6. An H-group is a group object in hTop. Note that the identity element,
inverses, and associativity of the product only work up to homotopy!

Example 12.7. (Sn, ∗) is an H-cogroup for n ≥ 1, with comultiplication given by the
“crush the equator” map Sn → Sn∨Sn and inverse given by “reflect through the equator”
map Sn → Sn. If n ≥ 2, then it is an abelian H-cogroup.

The representable functor h(Sn,∗) is πn : hToppt → C is , where C = Set, Gp, or Ab
when n = 0, 1, or n ≥ 2, respectively. •

Example 12.8. Later we’ll se that for an abelian group A, there are abelian H-groups
K(A, n), called Eilenberg-Maclane spaces, defined by πm

(
K(A, n)

)
= δm,nA. We will de-

fine cohomology functors Hn(X, A) which will turn out to be equal to hK(A,n) : hToppt →
Ab. •

Definition 12.9. A map i : A → X is a cofibration if it has the homotopy extension
property, i.e. the diagram on the left for all Y , h, and h̃0. This means that any homotopy
of maps from A can be extended to a homotopy of maps from X, given a starting point.

A

i
��

h // Y I

0 endpoint

��

X
h̃0

//

∃h̃
>>|

|
|

|
Y

Y
h̃0 //

Id×{0}
��

E

p

��

Y × I
h

//

∃h̃

;;x
x

x
x

x
B

A map p : E → B is a fibration if it satisfies the homotopy lifting property (HLP), i.e.
the diagram on the right for all Y , h, and h̃0. This means that any homotopy of maps

3In fact, hK factors through Gp exactly when it is a group object in Fun(C,Set), so by Yoneda’s
Lemma, hK factors through Gp if and only if K is a group object. Similarly, hK factors through Gp if
and only if K is a cogroup object.

12



to B can be lifted to a homotopy of maps to E, given a starting point. We say that
p : E → B is a Serre fibration if it satisfies HLP when Y = Dn (or, equivalently, when Y
is a CW-complex).

If B is a pointed space with base point b, and E
p
−→ B is a fibration, then we define the

fiber F := p−1(b). It turns out that a cofibration is always an inclusion of a closed subset.

Lemma 12.10. If i : A → X is a cofibration, then for each pointed space (Y, y) we get
an exact sequence of sets

[X/A, Y ] → [X, Y ] → [A, Y ].

Proof. It is clear that the composition of maps always lands in the base point of [A, Y ].
If f : X → Y is a map such that f |A homotopic to the constant map A → y. Then we
have a homotopy of maps f |A ≃ consty from A. Since i is a cofibration, we can extend to
a homotopy f ≃ g, where g : X → Y and g|A = consty, so g induces a map X/A → Y .
This proves exactness.

Lemma 12.11. If p : E → B is a fibration with fiber F , then for each Y , we get an exact
sequence of sets

[Y, F ] → [Y, E] → [Y, B].

Proof. It is clear that the composition of maps always lands in the base point of [Y, B].
If f : Y → E is a map such that p ◦ f ≃ constb, then we can lift to a homotopy
f ≃ g : Y → E, where p ◦ g = constb. That is, the image of g is in F . This proves
exactness.

Lemma 12.12. A pushout of a cofibration is a cofibration. A pull back of a (Serre)
fibration is a (Serre) fibration.

Proof. The curved dashed arrows exist because A → X is a cofibration and E → B is a
(Serre) fibration (with Y CW, in the Serre fibration case).

A //

�� ·

A′

��

// Y I

��

X //
v

s
p

33
k i g

X ′ //

==|
|

|
|

Y

Y

��

// E ′

��

·
// E

��

Y × I //
h j

::

o
q

t;;w
w

w
w

w
B′ // B

The straight dashed arrows exist by the universal properties of pull-back and push-out.

13 Fiber bundles and Covering spaces

Definition 13.1. A fiber bundle is a surjective map p : E → B such that every b ∈ B
has an open neighborhood U and a homeomorphism f : U × p−1(b) → p−1(U) with p ◦ f
equal to the projection onto the first coordinate. U × p−1(b)

f

≈ //

p1
��

??
??

??

U

p−1(U)

p
����

��
��
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Note that E ′

p′
��

???
f

//______

B

E
p����
�

commutes if and only if f
(
(p′)−1(b)

)
⊆ p−1(b).

Lemma 13.2. If B is connected, then all the fibers (inverse images of points) are home-
omorphic.

Proof. Let b0 ∈ B, then {b ∈ B|Fb ≈ Fb0} and {b ∈ B|Fb 6≈ Fb0} are disjoint open sets
covering B, and the first is non-empty, so it must be all of B.

Definition 13.3. A fiber bundle is called a covering if the fibers are discrete.

Definition 13.4. A vector bundle is a fiber bundle where each fiber comes with a vector
space structure, and the local trivialization maps f : U × p−1(b)

≈
−→ p−1(U) are required

to be linear on fibers.

For example, if M is a smooth manifold, then the tangent bundle TM is a vector
bundle.

Definition 13.5. If G is a topological group, then a principal G-bundle is a fiber bundle
where each fiber comes with a G-action, and we have local trivialization maps f : U×G

≈
−→

p−1(U) which are G-equivariant on fibers.

Example 13.6. Z → R → S1 is a principal Z-bundle and a covering. Z/nZ →֒ S1 → S1

is principal Z/nZ-bundle and a covering. •

14 Fiber bundles are Serre fibrations

Lemma 14.1.
(
In × I, In × {0}

)
≈

(
In × I, In × {0} ∪ ∂In × I

)
. That is, there is a

homeomorphism In × I → In × I sending In × {0} to In × {0} ∪ ∂In × I. ≈

Theorem 14.2. If p : E → B is a fiber bundle and (X, A) is a relative CW-complex,4

Then
X × {0} ∪ A × I

∩

// E

p

��

X × I //

∃

77ppppppp
B

In particular, any fiber bundle is a Serre fibration. Moreover, if p : E → B is a covering,
then the dashed arrow is unique.

4This means that A is an arbitrary topological space, and X is obtained from A by attaching cells of
increasing dimensions.
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Proof. First we do the non-relative case (i.e. the case A = ∅).

Step 1: Trivial bundles: If E = B × F , then use X × {0}
(f,g)

//

∩

B × F

p1

��

X × I
h //

(h,g◦p1)mmm

66mmm

B

where

p1 always means “project to the first coordinate”. Note that if F is discrete, then F X×I ≈
(F I)X = F X , so g ◦ p1 is the unique map X × I → F compatible with g : X × {0} → F . ∅ //

��

E

p

��

∅ //

??~
~

~
~

B

Step 2: X = In ≈ Dn: We do this by induction on n. If n = −1, then In = ∅, so the
statement is vacuous (see margin). Now assume we can lift In−1 × I, given the lift on
In−1×{0} (and the lift is unique if F is discrete). Let {Ui} be a trivializing open cover of
B, and let ε be the Lebesgue number of the pull-back cover under the map In × I → B,
so that the image of any little cube of side length ε lies entirely in one of the Ui. Now cut
In × I into cubes of side length ε and look at the following picture; the black and dark
gray indicates part of the domain where we have lifted In × I → B.

I

In

Induct

on n

Lemma

+Step 1

Induct

By induction on n, we can lift on a grid of In−1 × I, cutting In × I into narrow columns
of width ε. By Lemma 14.1, lifting the ε-size In × I given the lift on In ×{0}∪ ∂In × I is
the same as lifting In × I given the lift on In × {0}, which we know how to do by Step 1
because the bundle is trivial over each Ui. If F is discrete, then all the intermediate lifts
are unique, so the lift is unique.

Step 3: X a CW complex: If X is an arbitrary CW complex, assume by induction

that we’ve lifted h : X × I → B to h̃ : X(n−1) × I → E.

∐
Sn × I ∪ Dn × {0} //

��

E

��∐
Dn × I

77nnnnnnn
// B

∐
Sn × I //

�� ·

X(n−1) × I

��

already
have

��∐
Dn × I //

given by Step 2

44X(n) × I
∃! //___ E

We use Step 2 and Lemma 14.1 (keeping in mind that Dn ≈ In) to get the dashed arrow in
the left diagram, which is the bottom curved arrow in the right diagram. By the universal
property of push-out, we get a lift X(n)×I → E. Now we use the usual limiting argument
for CW complexes to get a lift X × I → E. As usual, it is clear that uniqueness holds if
F is discrete.

Note that in Step 3, we didn’t use anything about X(n−1); it could have been completely
general, so the proof applies to the relative case.
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Corollary 14.3. Fiber bundles have the long exact sequence of homotopy groups described
in Theorem 15.6.

Corollary 14.4 (to the Corollary). If F is discrete, then p∗ : πn(E, e)
∼
−→ πn(B, b) for

n > 1. Moreover, if E is connected, then π1(E) →֒ π1(B) has index |F |.

Note that if F is discrete and E is connected, then the connecting map δ : π1(B, b) →
π0(F, e) = F is surjective, yielding a transitive action of π1(B, b) on F .

15 Long cofibration and fibration sequences

We denote the suspension of X by ΣX = X × I/ ∼, with (x, 1) ∼ (x′, 1) and (x, 0) ∼
(x′, 0). We denote the reduced suspension by SX = S1 ∧ X; this is the suspension, with
the additional identification (x0, s) ∼ (x0, t) for some base point x0 ∈ X. Note that
ΣX ≃ SX.

Lemma 15.1. If X and Y are compact, then X ∧ Y is the one point compactification of
(X r {x}) × (Y r {y}).

In particular Sn ∧ Sm ≈ Sn+m because Rn × Rm ≈ Rn+m.

Lemma 15.2. If i : A → X is a cofibration, then there is a long cofibration sequence
(with maps defined up to homotopy)

A
i
−→ X → X/A → ΣA

Σi
−→ ΣX → Σ(X/A) → Σ2A

Σ2i
−−→ · · · .

That is, any three consecutive terms are homotopic to a cofibration triple.

Proof. We know that A → X → X/A is a cofibration. We have X/A ≃ X∪A C(A), where
C(A) is the cone on A. Then it is clear that X → X ∪A C(A) → ΣA is a cofibration.
Similarly, ΣA ≃

(
X∪AC(A)

)
∪XC(X), and

(
X∪AC(A)

)
→

(
X∪AC(A)

)
∪XC(X) → ΣX

is a cofibration. Finally, Σ is a functor which preserves cofibrations, so we’re done.

A

‖

X

‖

X/A

|≀

ΣA
|≀

ΣX

‖

// // // //
b

Corollary 15.3. For any pointed space Y , by Lemma 12.10, we have a long exact sequence

· · · → [S(X/A), Y ]pt → [SX, Y ]pt → [SA, Y ]pt → [X/A, Y ]pt → [X, Y ]pt → [A, Y ]pt

Remark 15.4. This sequence is called a Puppe sequence. If we take Y = K(A, n), then
we get the long exact sequence in cohomology for the pair (X, A). To see this, note that
πi+1(X) = [Si+1, X] = [Si, ΩX] = πi(ΩX). In particular, ΩK(A, n) = K(A, n − 1), so
[SkX, K(A, n)] = [X, ΩkK(A, n)] = [X, K(A, n − k)] = Hn−k(X, A).[[ ⋆⋆⋆ clean]]
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“Dually”, we get

Lemma 15.5. If F → E → B is a fibration, then there is a long fibration sequence

· · · → Ω3B → Ω2F → Ω2E → Ω2B → ΩF → ΩE → ΩB → F → E → B

That is, any three consecutive terms are homotopic to a fibration triple.

Proof. [[ ⋆⋆⋆ do]]

Corollary 15.6. For any pointed space Y , by Lemma 12.11, we get the long exact sequence

· · · → [Y, Ω2E] → [Y, Ω2B] → [Y, ΩF ] → [Y, ΩE] → [Y, ΩB] → [Y, F → E] → [Y, B]

In particular, taking Y = S0, and noting that [S0, ΩnX] = [Sn, X], we get the long
exact sequence in homotopy groups.[[ ⋆⋆⋆ clean?]]

16 Some equivalences of categories

We’ll prove the following theorem later. hCW(n) is the category of homotopy classes of
CW complexes X with πk(X) = 0 for k 6= n.

Theorem 16.1. πn is an equivalence of categories hCW(n) → Ab, with inverse K(−, n).

In particular, K(A, n) is well-defined up to homotopy is always an H-group.

Definition 16.2. A functor F : C → D is an equivalence of categories if there is a functor
G : D → C so that F ◦ G (resp. G ◦ F ) is naturally isomorphic to IdD (resp. IdC).

Lemma 16.3. A functor F : C → D is an equivalence of categories if and only if it
is essentially surjective (the image contains an element from each isomorphism class in
D) and for every pair of objects c0 and c1 of C, F induces a bijection HomC(c0, c1)

∼
−→

HomD(Fc0, F c1).

Proof. [[ ⋆⋆⋆ ]]

Note that this lemma constructs the inverse functor.

Lemma 16.4. If F → E → B is a covering, then π1(B) acts on F .

Proof. [[ ⋆⋆⋆ follows from the LES]]

Lemma 16.5. If B is path connected, locally path connected, and semi-locally simply
connected,5 then B has a universal covering space.

5For every point x ∈ B and every neighborhood V of x, there is a neighborhood U ⊆ V of x so that
any loop in U is homotopic to a constant loop in B (the homotopy may go outside of U). A connected
CW complex will have all these connectivity conditions.
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Not a Proof. Define Ẽ to be the set of paths in B starting at b modulo homotopy rel
endpoints. Then we have a map Ẽ → B, sending a path to its other endpoint.

Even if B satisfies the conditions of the Lemma, this is not always a covering. Some-
times you have to change the topology on Ẽ to make it the universal cover. If B is
metrizable, then Ẽ does the trick as is.

Let Cov(B) be the category of covering spaces of B, and let G-Set be the category
of sets with a G action (and morphisms are equivariant set maps).

Theorem 16.6. If B is path connected, locally path connected, and semi-locally simply
connected, then there is an equivalence of categories Cov(B) → π1(B)-Set, given by
E 7→ F .

“Proof”. The inverse functor is given by F 7→ Ẽ ×π1(B) F .

Remark 16.7. Any bundle E → B with fiber F is isomorphic to P ×G F for some group
G ⊆ Homeo(F ) and some principal G bundle P → B. Thus, if you understand principal
bundles, you understand all bundles.

Corollary 16.8. If B is as above, then E is connected if and only if the π1(B) action on
F is transitive.

Proof. The connected coverings of B are exactly the ones which cannot be written as co-
products (disjoint unions) of others. The π1(B)-sets that cannot be written as coproducts
(disjoint unions) of others are exactly those for which the action is transitive.

Note that if E is connected, then the action of π1(B) on F is transitive, so F ∼=
π1(B)/U , where U is the subgroup of π1(B) that stabilizes e0 ∈ F .

ρ : G → GL(V ) a representation, and P → B a principal G-bundle, then P ×G V → B
is a vector bundle! [[ ⋆⋆⋆ ]]

Corollary 16.9. E → B has a section if and only if F has a π1(B)-fixed point. In fact,
there is a bijection between sections and fixed points.

Proof. A section is a bundle map from the trivial bundle B
Id
−→ B to E → B. Under the

equivalence of categories, this is a π1(B)-equivariant map from the one point π1(B)-set
to F , i.e. a fixed point.

Corollary 16.10. If π1(B) is trivial, then all covers of B are trivial.

Corollary 16.11. Isomorphism classes of connected covers of B are in bijection with
subgroups of π1(B) up to conjugation.

Proof. The first is π0

(
Covconn(B)

)
, and the second is π0

(
π1(B)-Settrans

)
. These sets are

in bijection by the equivalence of categories.

Corollary 16.12. Isomorphism classes of connected covers of B (with base point) are in
bijection with subgroups of π1(B).

The subgroup corresponding to E → B is the stabilizer of the base point. This is
sometimes called “Galois theory for coverings”.
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17 Finally Homology

We’ll define simplicial homology on ∆-sets, then singular homology, which will work for
all topological spaces, but will be monstrous. Then we’ll define cellular homology, which
is the awesomest homology theory for calculating (but only for CW complexes). We won’t
cover Čech cohomology or its generalization, sheaf cohomology.

A homology theory is usually defined by using a topological space to produce a chain
complex, a sequence of abelian groups

· · ·
dn+2
−−−→ Cn+1

dn+1
−−−→ Cn

dn−→ Cn−1
dn−1
−−−→ · · ·

such that dn ◦ dn+1 = 0 for all n. We call the dn boundary operators. We define the n-th
homology of the chain complex to be ker dn/ im dn+1, and call this the n-th homology of
the topological space we started with.

Relation to homotopy

We seek to define functors Hn : hTop → Ab which satisfy some nice properties (the
Eilenberg-Steenrod axioms). From these properties, one can prove that Hn(Sn) ∼= Z.
This allows us to define the Hurewicz map φ : πn(X) → Hn(X). Given some f : Sn → X,
we get an induced map f∗ : Hn(Sn) ∼= Z → Hn(X). We define φ([f ]) to be f∗(1) ∈ Hn(X).

Theorem 17.1 (Hurewicz). H0(X) is the free abelian group on π0(X). If X is 0-
connected, H1(X) is the abelianization of π1(X). If X is (n − 1)-connected with n ≥ 2,
then the Hurewicz map πn(X) → Hn(X) is an isomorphism.

In fact, there is a (stronger) relative version.

Theorem 17.2 (Hurewicz). If f : X → Y induces isomorphisms on πi for i ≤ n, then it
induces isomorphisms on Hi for i ≤ n. If X and Y are 1-connected, then the converse is
true.

18 Simplicial Homology

A simplicial complex is a set obtained by gluing together simplices along their faces. An
n-dimensional simplex has n + 1 faces which are subsimplices. We can encode the gluing
information in a ∆-set.

Definition 18.1. A ∆-set is a sequence of sets Sn, with maps dn
i : Sn → Sn−1 for

0 ≤ i ≤ n that satisfy the relation dj ◦ di = di−1 ◦ dj for j < i.

From a ∆-set, we can produce a geometric realization |S•| as in the homework.
Some facts:
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– Whitehead’s Theorem: If X and Y are CW complexes and f : X → Y is a weak
equivalence (f induces isomorphisms πn(X) → πn(Y ) for all n), then f is a homotopy
equivalence.

– Any CW complex is homotopy equivalent to some |S•|.

– Given any topological space X, there is a canonical CW complex X ′ and a weak
homotopy equivalence X ′ → X.

Given a ∆-set S•, we define a chain complex by setting Cn = Z · Sn, the free abelian
group on the “n-simplices”, with dn =

∑n
i=0(−1)idn

i , where the maps dn
i have been ex-

tended linearly. It is a standard exercise to check that dn ◦ dn−1 = 0. We define the
simplicial homology of S• (or |S•|) to be the homology of this chain complex.

It is true but not at all obvious that if |S•| ≈ |T•|, then S• and T• produce the same
homology groups. One can show that if T• is a refinement of S•, then this holds. For
a long time, people conjectured that any two simplicial decompositions of a space, there
exists a common refinement. This conjecture, called the Hauptvermutung, would prove
the result. However, the Hauptvermutung is false! This was demonstrated by Milnor
around 1960.

19 Singular Homology

The standard n-simplex is ∆n = {x ∈ Rn+1|xi ≥ 0 for all i and
∑

xi = 1}.

Definition 19.1. The singular ∆-set ∆•(X) of a topological space X has ∆n(X) =
{continuous maps σ : ∆n → X} with the obvious boundary maps.

Definition 19.2. The singular homology of a topological space X is the simplicial ho-
mology of ∆•(X).

Thus, Hn is the composition of functors

Hn : Top
∆•−→ ∆-Set

“free”
−−−→ Chain

n-th homology
−−−−−−−−→ Ab.

We will denote by S∗(X) the singular chain complex C∗(∆•(X)) of X.

Lemma 19.3. H0(X) = Z · π0(X).

Proof. H0(X) = coker
(
Z[σ : I → X]

d
−→ Z[pt → X]

)
, where d(σ) = σ(1) − σ(0). Define

a map H0(X) = S0(X)/ im d → Z · π0(X) by sending x ∈ X (viewed as a map pt → X)
to the connected component of x. The map is clearly surjective. If there is some linear
combination in the kernel, then each path component has as many pluses as minuses, so
you can match them up with paths, so that combination is in the image of d. Thus, the
map is an isomorphism.
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Example 19.4. If X is a point, then Si(X) = Z for each i ≥ 0 because there is only one
map from ∆i to a point. dn is an alternating sum of n + 1 identity maps, so the singular
chain complex is

· · ·
0
−→

S4

Z
1
−→

S3

Z
0
−→

S2

Z
1
−→

S1

Z
0
−→

S0

Z

so Hn(X) =

{
Z n = 0

0 n 6= 0
•

Definition 19.5. An n-dimensional manifold M is orientable6 if Hn(M) ∼= Z. In this
case, an orientation of M is a choice of generator for Hn(M).

Theorem 19.6. There is a natural adjunction

HomhTop(|S•|, X) ∼= Hom∆-Set

(
S•, ∆•(X)

)
.

The natural map S• → ∆•(|S•|) induces isomorphisms on homology, and the natural map
|∆•(X)| → X is a weak equivalence.

It follows that the simplicial homology of S• is equal to the singular homology of |S•|, a
handy fact for calculation. Also, for any space X, we get a CW complex X ′ := |∆•(X)|
and a weak equivalence X ′ → X.

20 Eilenberg-Steenrod Axioms

It turns out that any sequence of functors satisfying the following axioms are naturally
isomorphic to singular homology. In practice, one can use these axioms to compute
homology. We will have to prove that singular homology satisfies these axioms to verify
that such functors exist.

1. (Homotopy axiom) The functors Hn : Top → Ab factor through hTop.
U ∩ V

jU
����

��
jV

��
??

??

V
iV
����

��
U

iU
��

??
??

U ∪ V

2. (Mayer-Vietoris axiom) If U, V ⊆ X are open sets, then there is a natural long exact
sequence

· · · → Hn(U ∩V )
(jU ,jV )
−−−−→ Hn(U)⊕Hn(V )

iU−iV−−−→ Hn(U ∪V )
δ

−→ Hn−1(U ∩V ) → · · ·

3. (Dimension axiom) H0(pt) = Z and Hn(pt) = 0 for n > 0.

4. (Additivity axiom) The inclusions Xα →֒
∐

Xα induce an isomorphism
⊕

Hn(Xα)
∼
−→

Hn

(∐
Xα

)
.

5. (Weak homotopy axiom) A weak equivalence induces an isomorphism on homology.

6This is really the definition of Z-orientable. See Definition 25.7 for a more general definition.
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For any homology Hn, we can define reduced homology H̃n(X) := ker
(
Hn(X) →

Hn(pt)
)
. It will satisfy the following axioms:

1. (Homotopy axiom) H̃n : Top → Ab factor through hTop.

2. (Mayer-Vietoris axiom) If U, V ⊆ X are open sets, then there is a natural long exact sequence

· · · → H̃n(U ∩ V )
(jU ,jV )
−−−−−→ H̃n(U) ⊕ H̃n(V )

iU−iV−−−−→ H̃n(U ∪ V )
δ

−−→ H̃n−1(U ∩ V ) → · · ·

3. (Dimension axiom) H̃n(pt) = 0 for all n.

4. (Additivity axiom) The inclusions Xα →֒
∨

Xα induce an isomorphism
⊕

H̃n(Xα)
∼
−→ H̃n

(∨
Xα

)
.

5. (Weak homotopy axiom) A weak equivalence induces an isomorphism on reduced homology.

Lemma 20.1. H̃n(Sn) = Z and H̃k(S
n) = 0 for k 6= n.

Proof. Induct on n. It is true for n = 0 by the dimension and additivity axioms (for Hn).
For n ≥ 1, write Sn = U ∩V , with U ≃ V ≃ ∗ and U ∩V ≃ Sn−1. By the Mayer-Vietoris
property, we get

· · · →

0︷ ︸︸ ︷
H̃k(U) ⊕ H̃k(V ) → H̃k(S

n)
∼
−→ H̃k−1(

≃Sn−1

︷ ︸︸ ︷
U ∩ V ) →

0︷ ︸︸ ︷
H̃k−1(U) ⊕ H̃k−1(V ) → · · ·

which proves the result.

Proposition 20.2. Singular homology satisfies the weak homotopy axiom.

Proof. If X → Y is a weak equivalence, it induces isomorphisms on all homotopy groups,
so by the relative Hurewicz theorem, it induces isomorphisms on all homology groups.

Proposition 20.3. Singular homology satisfies the additivity axiom.

Proof. This follows from the fact that the functors ∆•, C∗, and n-the homology of a chain
all preserve coproducts.

∆n(
∐

Xα) = {σ : ∆n →
∐

Xα} =
∐
{σ : ∆n → Xα} =

∐
∆n(Xα)

Cn(
∐

S•,α) = Z ·
∐

Sn,α =
⊕

Z · Sn,α =
⊕

Cn(S•,α)

Hn

(⊕
C∗,α

)
=

⊕
Hn(C∗,α)

We’ve already verified the dimension axiom in Example 19.4.

Lemma 20.4. Given a short exact sequence of chain complexes 0 → A∗
f
−→ B∗

g
−→ C∗ → 0,

there is a long exact sequence of homology groups

· · · → Hn(A∗)
f∗
−→ Hn(B∗)

g∗
−→ Hn(C∗)

δ
−→ Hn−1(A∗) → · · ·
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Proof. A diagram chase.

Proposition 20.5 (Mayer-Vietoris for ∆-sets). If S• is a ∆-set with sub-∆-sets U• and
V•, then

0 → C∗(U• ∩ V•)
(jU ,jV )
−−−−→ C∗(U•) ⊕ C∗(V•)

iU−iV−−−→ C∗(U• ∪ V•) → 0

is a short exact sequence. In particular, since homology preserves direct sums, you get a
long exact sequence in homology by the lemma.

Proposition 20.6. Singular homology satisfies the Mayer-Vietoris axiom.

Proof. It is clear that we get the exact sequence

0 → S∗(U ∩ V ) → S∗(U) ⊕ S∗(V ) → S∗(U ∪ V )

The result follows from the following claim.

Claim. The inclusion S∗(U) + S∗(V ) →֒ S∗(U ∪ V ) is a homotopy equivalence.

To see the claim, consider the chain map b : S∗(U ∪ V ) → S∗(U ∪ V ) given by
barycentric subdivision. We get that b ≃ Id [[ ⋆⋆⋆ is there an easy way to see it?]], and
for any simplex σ, bN (σ) ∈ S∗(U) + S∗(V ) for large enough N . [[ ⋆⋆⋆ this somehow
works out]]

The hardest axiom to verify is the homotopy axiom. We will do it after we develop
cellular homology.

In the process, we will show that the Eilenberg-Steenrod axioms completely determine
homology. We will define cellular homology in terms of a homology homology and then
show that the cellular homology is isomorphic to the original homology. Then we will
show that cellular homology is independent of the homology theory you started with.

21 Cellular Homology and Uniqueness of Homology

Definition 21.1. If A ⊆ X, the relative singular homology Hn(X, A) is the n-th homology
of the chain complex S∗(X)/S∗(A).

Lemma 21.2. If A ⊆ X is a cofibration, then Hn(X, A) ∼= H̃n(X/A).

Proof. Note that S∗(X)/S∗(A) ∼= S̃∗(X)/S̃∗(A). By Lemma 20.4, we get the long exact
sequence shown as the top row in the diagram.

H̃n(A) //

Id
��

H̃n(X) //

Id
��

Hn(X, A) //

φ
��

H̃n−1(A)

Id
��

// H̃n−1(X)

Id
��

H̃n(A) // H̃n(X) // H̃n(X/A) // H̃n−1(A) // H̃n−1(X)
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To get the bottom exact sequence, observe that X/A ≃ X ∪A CA, so we may choose
open sets U, V ⊆ X ∪A CA so that U ≃ X and V ≃ ∗. Then the bottom row is just the
Mayer-Vietoris sequence in reduced homology.

The map φ is induced by the obvious map S̃∗(X)/S̃∗(A) → S̃∗(X/A) and makes the
above diagram commute. By the 5-lemma, we get the desired result.

Definition 21.3. For a CW complex X, we define the group of cellular n-chains to
be Cn(X) = Hn(X(n), X(n−1)). The boundary map is defined as the composition dCW :

Hn(X(n), X(n−1)) → Hn−1(X
(n−1)) → H̃n(X(n−1), X(n−2)). The cellular homology HCW

n (X)
is the n-th homology of this chain complex.

Note that the lemma shows that Cn(X) = Hn(X(n)/X(n−1)) = H̃n(
∨

In
Sn) ∼= Z · In,

where In indexes the n-cells of X.
To prove that cellular homology agrees with singular homology, we’ll need a few lem-

mas.

Lemma 21.4. Hk(X
(n)) = 0 for k > n.

Proof. Induct on n. For n = 0, it is true by additivity because X(0) is a collection of
points. In general, we get an exact sequence

Hk(X
(n−1))︸ ︷︷ ︸

0 by induction

→ Hk(X
(n)) → Hk(X

(n), X(n−1))︸ ︷︷ ︸
∼=H̃k(X(n)/X(n−1))=H̃n(

∨
Sn)=0

so the middle term is zero.

Lemma 21.5. The inclusion i : X(k) → X induces isomorphisms Hn(X(k)) → Hn(X)
for n < k.

Proof. We have the sequence

Hn+1(X
(n+ℓ+1), X(n+ℓ))︸ ︷︷ ︸

0

→ Hn(X
(n+ℓ))

i
−→ Hn(X

(n+ℓ+1)) → Hn(X(n+ℓ+1), X(n+ℓ))︸ ︷︷ ︸
0

.

It follows that for ℓ > 0, inclusion induces isomorphisms Hn(X(n+ℓ)) ∼= Hn(X(n+ℓ+1)).
To show that the inclusion X(k) → X induces isomorphisms, we can take two ap-

proaches:

(Bad) We know that singular homology is represented by maps σ : ∆n → X. Since ∆n is
compact, the image of σ lies in a finite skeleton. This shows that Hn(X

(k)) → Hn(X)
is surjective (given the isomorphisms already constructed). Similarly, if some σ is
a boundary of σ̃ in X, then the image of σ̃ is in some finite skeleton, showing that
the map is injective. This approach is bad because it explicitly uses the definition
of singular homology.

(Good) From the Eilenberg-Steenrod axioms, one can prove that homology respects filtered
colimits. This is the good version because it proves the lemma for arbitrary homol-
ogy theories.
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Theorem 21.6. Cellular homology is naturally isomorphic to singular homology.

Proof. In the following diagram, all the horizontal and vertical sequences are exact. By
the way, this makes it clear that (dCW )2 = 0.

0
21.4
= Hn(X(n−1))

��

Hn(X)

‖≀ 21.5

H̃n(
∨

Sn+1) = 0

‖≀

Hn+1(X
(n+1)) // Hn+1(X

(n+1),X(n))

dCW
))RRRRRRRRRRRRR

δ // Hn(X(n))

jn

��

// Hn(X(n+1)) // Hn(X(n+1),X(n))

Cn+1(X)

‖

Hn(X(n),X(n−1))

δ
��

=

dCW

''OOOOOOOOOOOOO
Cn(X)

0
21.4
= Hn−1(X

(n−2)) // Hn−1(X
(n−1))

jn−1

// Hn−1(X
(n−1),X(n−2))

Now we compute the Hn(X) which is boxed.

Hn(X) ∼= Hn(X(n))/ im δ
(
Hn(X(n+1), X(n)) = 0

)

= im jn/ im dCW (jn injective)

= ker δ/ im dCW (vertical sequence exact)

= ker dCW/ im dCW (jn−1 injective)

Example 21.7. Now it is easy to compute the homology of Sn for n ≥ 2 because
the cellular chain complex has zeros everywhere except in dimensions n and 0. Thus,
Hn(Sn) ∼= Z ∼= H0(S

n) and Hk(S
n) = 0 for k 6= 0, n. •

In general, we can compute cellular homology using the following result.

Proposition 21.8. If X is a CW complex, let φi be the attaching map of the i-th n-
cell, and let pj be the projection X(n) → X(n)/

(
X(n) r en

j

)
. Then the boundary map

dCW : Cn(X) = Z · In → Z · In−1 = Cn−1(X) is a matrix with (i, j)-th entry deg(pj ◦ φi).

Proof. Note that we have the diagram

Hn(X(n), X(n−1))
δ //

‖
∑

(Φi)∗ ≀

H̃n−1(X
(n−1))

H̃n(D
n) = 0 //

⊕
In

Hn(D
n, Sn−1) ∼

δ
//
⊕

In
H̃n−1(S

n−1) //

∑
(φi)∗

OO

0 = H̃n−1(D
n)
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which fits (one and a half times) into the diagram

Hn(X(n), X(n−1))

‖
∑

(Φi)∗ ≀

// H̃n−1(X
(n−1))

∑
(pj)∗

''

// Hn−1(X
(n−1), X(n−2))

‖≀
∑

(Φi)∗

Z · In

dCW //

δ

∼ //
⊕

H̃n(S
n)

∑
(φi)∗

OO

⊕
Hn−1(D

n−1, Sn−2)
∼

δ
//

‖

⊕
H̃n−1(S

n−1)

Z · In−1

from which we see that dCW =
(∑

(φi)∗
)
◦

(∑
(pj)∗

)
. This proves the result.

Corollary 21.9. Any homology theory on CW complexes which is homotopy invariant,
additive, and satisfies the dimension and Mayer-Vietoris axioms is isomorphic to singular
homology.

Proof. The results in this section show that any homology theory with these properties
is isomorphic to its own version of CW homology. That is, the matrix coefficients are the
degrees of φi ◦ pj, computed in the given homology theory. We will show that degree can
be defined independent of homology theory.

We have a Hurewicz map πn(Sn) → hn(Sn) ∼= Z, which is a group homomorphism
(using the distributivity trick that was on one of the homeworks) and onto because the
identity map on Sn gets sent to a generator of Z. Assuming the Hurewicz theorem, we get
that πn(Sn) ∼= Z. Notice that a map f : Sn → Sn induces a map f∗ : πn(Sn) → πn(Sn), so
we can define degree via πn. Thus, degree is independent of the homology theory h.

An issue you have to deal with: If X and Y are CW complexes and f : X → Y is a

map, then you don’t get any natural map HCW
n (X) → HCW

n (Y ). To get functoriality of
HCW , you need to prove the cellular approximation theorem (Theorem 4.8 of Hatcher).

Theorem 21.10. Every map f : X → Y is homotopic to a cellular map, a map that
sends X(n) to Y (n) for each n.

Morse (Floer) homology on finite-dimensional smooth manifolds

Choose a sufficiently nice function f on a smooth manifold M . At a critical point of f ,
define the index of f to be the number of negative eigenvalues of the Hessian (that is, the
number of downward curving directions). Define CMorse

n = Z · In, where In is the set of
index n critical points of f . The boundary map counts the number of flow lines from one
point to another. Now one can check that d2 = 0, so we get a homology theory.

One can check that the result is independent of the choice of f . In fact, f dictates a
CW structure on M , with one n-cell for each index n critical point.

In Floer homology, where M is allowed to be infinite-dimensional, the function f is
somehow given to you by the geometry of the situation. You no longer get independence
of f .
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22 Homotopy invariance

If f0, f1 : X → Y are homotopic maps, then we have the picture X
i0,i1
−−→ X×I

F
−→ Y , with

fj = F ◦ ij for j = 0, 1. We would like to show that f0 and f1 induce the same map in
homology. To prove that, we will actually show that they induce homotopic chain maps,
and we will use F to construct the homotopy. However, to do this, we must understand
what the chain complex associated to a product looks like. This is the content of the
Eilenberg-Zilber Theorem 22.6.

Definition 22.1. If C∗ and D∗ are two chain complexes, then their tensor product is
defined by (C∗⊗D∗)n =

⊕
p+q=n Cp ⊗Z Dq, with boundary map dC⊗D

n =
⊕

p+q=n dC
p ⊗1+

(−1)p ⊗ dD
q . The sign ensures that the result is a chain complex; it is a standard exercise

to check this.

Cp ⊗ Dq
dC⊕1

//

(−1)p⊗dD

��

Cp+1 ⊗ Dq

(−1)p+1⊗dD

��

Cp ⊗ Dq+1
dC⊗1

//

anti-

commutes

Cp+1 ⊗ Dq+1

Lemma 22.2. If X and X ′ are CW complexes, then C∗(X × X ′) = C(X) ⊗ C(X ′)

Proof. This follows from the fact that ∂(Dp × Dq) = ∂Dp × Dq ∪ Dp × ∂Dq.

Definition 22.3. If S• is a ∆-set, the cone on S• is the ∆-set defined by (CS)0 = S0∪∞,

(CS)n = Sn ∪ Sn−1 for n > 0. The boundary maps are defined by di :
Sn

di // Sn−1

Sn−1 di

// Sn−2

for i ≤ n and dn+1 :
Sn

dn+1
// Sn−1

Sn−1
Id

44iiiiii
Sn−2

, where S−1 = {∞}.

[[ ⋆⋆⋆ picture here]]

Lemma 22.4. Cones are acyclic: H∗

(
C∗(CS)

)
= 0.

Proof. If (a, b) ∈ ZCSn = ZSn⊕ZSn−1 maps to zero, then it is the image of
(
0, (−1)n+1a

)
.

ZSn+1
d //

⊕

ZSn

⊕

d // ZSn−1

⊕

ZSn

(−1)n+1

ttt

::ttt

d // ZSn−1

(−1)n

ttt

::ttt

d // ZSn−1

0

⊕

a

⊕

� // da − (−1)nb = 0

⊕

(−1)n+1a � //

7

;;wwwwwwwwww

b
� //
1

88qqqqqqqqqqqqq
db = 0

Corollary 22.5 (∆p × ∆q is “acyclic”). H̃∗(∆
p × ∆q) = 0.

Proof. Singular homology agrees with simplicial homology by Theorem 19.6, so we use
simplicial homology. We can break the product of in to simplices. Then by repeated
application of Mayer-Vietoris for ∆-sets, it is enough to show that H̃∗(∆

k) = 0, which is
true by the lemma.
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Theorem 22.6 (Eilenberg-Zilber). For topological spaces X and Y , there is a natural

chain homotopy equivalence hXY : S∗X ⊗ S∗Y
≃
−→ S∗(X × Y ) such that (hXY )0 : S0(X) ⊗

S0(Y ) → S0(X × Y ) is the map σ ⊗ σ′ 7→ σ × σ′.7 Moreover, hXY is unique up to chain
homotopy.

This may be rephrased as “S∗ : (Top,×) → (Chain,⊗) is a monoidal functor.” We
saw already that “S∗ : (Top,⊔) → (Chain,⊕) is a monoidal functor.”

Proof (via “acyclic models”). Induct on degree. The start of the induction is part of the
hypothesis. Assume we have hXY defined in degree < p + q for all spaces X and Y . We
would like to define hXY : SpX ⊗ SqY → Sp+q(X × Y ). Let a ∈ SpX and b ∈ SqY ,
so a : ∆p → X and b : ∆q → Y . If naturality is to hold, the following diagram must
commute.

SpX ⊗ SqY hXY ? // Sp+q(X × Y )

Sp∆
p ⊗ Sq∆

q h∆p∆q? //

S∗a⊗S∗b

OO

d
��

Sp+q(∆
p × ∆q)

S∗(a×b)

OO

d
��

(Sp−1∆
p ⊗ Sq∆

q) ⊕ (Sp∆
p ⊗ Sq−1∆

q)
h∆p∆q

induction!
// Sp+q−1(∆

p × ∆q)

a ⊗ b
� // hXY (a ⊗ b)

Id∆p ⊗ Id∆q

_
S∗a⊗S∗b

OO

_

d
��

� // y?
_

S∗(a×b)

OO

_

d

��
((∑p

i=0(−1)iδi

)
⊗ Id, Id ⊗

(∑q
j=0(−1)jδj

)) � h∆p∆q
// x

Now we see that a wonderful thing has happened. So long as we can find a y ∈
Sp+q(∆

p×∆q) so that dy = x, we can define hXY (a⊗b) to be S∗(a×b)(y), and this will au-
tomatically be natural! We know that dx = 0 because dx = d◦(h∆p∆q)p+q−1◦d(Id⊗Id) =
(h∆p∆q)p+q−2 ◦d◦d(Id⊗ Id) = 0 (note that we only used the degrees for which h is already
defined). Since ∆p × ∆q is acyclic Hp+q−1(∆

p × ∆q) = 0, so such a y exists.
It remains to show that the hXY only depends on the choice of y up to homotopy. If

we use y′ instead of y, we have d(y − y′) = 0. Since Hp+q(∆
p × ∆q) = 0, there is some

z ∈ Sp+q+1(∆
p × ∆q) so that dz = y − y′. This z induces a homotopy between the two

choices of hXY .

Now we are ready to prove the desired result.

7Note that this makes sense only because ∆0 × ∆0 ≈ ∆0.
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Theorem 22.7 (Homotopy invariance of Homology). If f0 and f1 are homotopic maps
from X to Y , then they induce chain homotopic maps S∗X → S∗Y . In particular, they
induce the same map on homology.

Proof. Let F : X × I → Y be a homotopy from f0 to f1. We have a canonical inclusion
C∗I → S∗I. Thus, we get the chain map

S∗X ⊗ C∗I // S∗X ⊗ S∗I
≃

hXI

// S∗(X × I)
S∗F

// S∗(Y )

(Sn+1X ⊗ C0I) ⊕ (SnX ⊗ C1)I // Sn+1Y

(a0 ⊗ v0 + a1 ⊗ v1, b ⊗ e) � //
_

dS∗X⊗C∗I

��

S∗f0(a0) + S∗f1(a1) + hn+1(b)_

dY

��

(dXa0 ⊗ v0 + dXa1 ⊗ v1 + (−1)nb ⊗ (v0 − v1), d
Xb ⊗ e)

�

--ZZZZZZZZZZZZZZZZZZZZZZZZZZ
dY S∗f0(a0) + dY S∗f1(a1) + dY hn+1(b)

‖

S∗f0(d
Xa0) + S∗f1(d

Xa1) + (−1)n(S∗f0 − S∗f1)(b) + hn(dXb)

From the fact that it is a chain map, we get the equalities

dY S∗f0(a0) + dY S∗f1(a1) + dY hn+1(b) = S∗f0(d
Xa0) + S∗f1(d

Xa1) + (−1)n(S∗f0 − S∗f1)(b) + hn(dXb)

dY hn+1 = (−1)n(S∗f0 − S∗f1) + hndX (dY ◦ S∗fi = S∗fi ◦ dY )

dY ◦ (−1)nhn+1 + (−1)n−1hn ◦ dX = S∗f0 − S∗f1

Thus, if we twist h by some minus signs as above, we get a homotopy from S∗f0 to S∗f1,
as desired.

23 The Generalized Jordan Curve Theorem

The following theorem looks obvious until you think about it.

Theorem 23.1 (Jordan Curve Theorem). If S1 →֒ R2 is an embedding (continuous
injection), the the complement of the image has two path components.

We will prove a more general version.

Theorem 23.2. If i : Sr →֒ Sn with r < n, then H̃k

(
Sn r i(Sr)

)
=

{
Z k = n − r − 1

0 else
.

That is, homology is independent of the embedding. This is kind of sad because it
tells us that we cannot use homology to understand knots.

You can guess the answer by considering linear embeddings, where we think of Sn as
Rn ∪∞. Then we have

Sn
r Sr = R

n
r R

r

= (Rn−r × R
r) r (0 × R

r)

= (Rn−r
r 0) × R

r ≃ Sn−r−1.
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However, you have to be careful. It is not true that for any embedding i, Sn r i(Sr) ≃
Sn−r−1. For example, we have the Alexander horned sphere in S3, whose complement is
not homotopic to S0.

For the proof of Theorem 23.2, we’ll need the following lemma.

Lemma 23.3. Let Y be compact and assume it has the property that for every i : Y →֒ Sn,
H̃

(
Sn r i(Y )

)
= 0. Then Y × I has the same property.

Proof. Let f : Y × I →֒ Sn be an embedding. Let U0 = Sn r f(Y × [0, 1/2]) and let
U1 = Sn

r f(Y × [1/2, 1]). Then U0 ∪U1 = Sn
r f(Y ×{1/2}), so it has trivial homology

by assumption, and U0∪U1 = Sn rf(Y ×I). By Mayer-Vietoris, we get the isomorphism

H̃k

(
Sn

r f(Y × I)
) ∼
−−→ H̃k(U0) ⊕ H̃k(U1).

Any non-zero homology class would have to give a non-zero homology class in one of the
Ui. Then we can induct to get non-zero homology classes in Sn r f(Y × [p− ε, p + ε]) for
some p ∈ I and arbitrarily small ε. Since homology commutes with filtered colimits, we
get a non-zero homology class in Sn r f(Y × {p}), a contradiction.

In particular, D0 = pt has the property in the lemma because Sn r pt ∼= Rn ≃ pt. By
the lemma, Dr ∼= Dr−1 × I has the property for all r. This seems obvious, but you have
to watch out, it is not true that Sn r i(Dr) ≃ pt for all embeddings i. For example, we
have the Fox-Artin wild arc in S3.

Proof of Theorem 23.2. Induct on r. For r = 0, our näıve calculation works; Sn r i(S0) ≃
Sn−1 for all i. Now assume the result for r − 1, and let i : Sr →֒ Sn. Then we can write
Sr = Dr

+ ∪Sr−1 Dr
−, and we have open sets U = Sn r i(Dr

+) and V = Sn r i(Dr
−) in Sn,

with

Sn
r i(Sr−1) = U ∪ V

Sn
r i(Sr) = U ∩ V.

By the Lemma, U and V have trivial homology. Mayer-Vietoris and the induction step
immediately give the desired result.

There are some related results.

Theorem 23.4 (Schoenfließ Conjecture, proven by Mazur and Brown). If i : Sn−1 ×
(−ε, ε) →֒ Sn, then Sn r i

(
Sn−1 × (−ε, ε)

)
≈ Dn ⊔ Dn. For n = 2, you don’t even need

the collar neighborhood.

Theorem 23.5 (Annulus Conjecture, proven by Kirby for n ≥ 5, Quinn for n = 4, and
somebody for n ≤ 3). If i :

(
Sn−1×(−ε, ε)

)
⊔(Sn−1×(−ε, ε)

)
→֒ Sn, then the (appropriate

component of) the complement of im i is homeomorphic to Sn−1 × I.
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24 Lefshetz, Alexander, and Poincaré Dualities

Definition 24.1. Let H∗ be a homology theory obtained from a chain complex, Hn :

hTop → Chain
n-th homology
−−−−−−−−→ Ab. Then we define the corresponding cohomology the-

ory by dualizing the chain complex in the middle, Hn : hTop → Chain
Hom(−,Z)
−−−−−→

Chain
n-th homology
−−−−−−−−→ Ab.

In homework 13, we showed uniqueness of cohomology.

Theorem 24.2 (Lefschetz Duality). If M is an n-dimensional compact orientable man-
ifold, then Hk(M, ∂M) ∼= Hn−k(M) and Hk(M) ∼= Hn−k(M, ∂M).

Theorem 24.3 (Alexander Duality). If K is a finite CW complex and i : K →֒ Rn is an

embedding, then H̃k

(
Rn r i(K)

)
∼= Hn−k−1(K).

Remark 24.4 (Excision axiom). Originally, the axioms of homology were stated for pairs of

spaces, and one of the axioms was excision: if B ⊆
◦

A, then Hn(X, A) ∼= Hn(XrB, ArB).
It is easy to check that this holds in our formulation of homology. We define Hn(X, A) as

H̃n(X/A) [[ ⋆⋆⋆ at least when A ⊆ X is a cofibration ... what if it isn’t?]]

Proof. There is a regular ε-neighborhood N(K) of i(K). That is, there is a compact n-
manifold N(K) which retracts to i(K). N(K) is oriented because it is an n-submanifold
in the oriented n-manifold Rn. Let N ′(K) be an ε/2-neighborhood of i(K). Now we can
compute

Hn−k−1(K) ∼= Hn−k−1
(
N(K)

)

∼= Hk+1

(
N(K), ∂N(K)

)
(Lefschetz)

∼= Hk+1

(
R

n, Rn
r

◦

N ′(K)
)

(excision)

∼= Hk+1

(
R

n, Rn
r i(K)

)

∼= H̃k

(
R

n
r i(K)

)

where the last isomorphism follows from the long exact reduced pair sequence and the
fact that H̃∗(R

n) = 0.

Note that we can now compute Hk

(
Sn r i(K)

)
. In particular, the Generalized Jordan

Curve Theorem is a corollary of Alexander Duality. Use Mayer-Vietoris, with U an
neighborhood of infinity that doesn’t intersect i(K), and V a big ball containing the
(missing) image of K. Then we have that U ≃ ∗, V ≃ Rn r i(K), and U ∩ V ≃ Sn−1.

Hk(S
n−1) → Hk

(
R

n
r i(K)

)
→ Hk

(
Sn

r i(K)
)
→ Hk−1(S

n−1)

If k 6= n, n − 1, then we get Hk

(
Rn r i(K)

)
∼= Hk

(
Sn r i(K)

)
. For the remaining cases,

we use naturality of Mayer-Vietoris. We have inclusions R
n

r i(K) →֒ R
n

r pt and
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Sn r i(K) →֒ Sn r pt. The corresponding map on Sn−1 is the identity. Thus, we get

0 // H̃n

(
R

n
r i(K)

)
//

��

H̃n

(
Sn

r i(K)
) b //

��

H̃n−1(S
n−1)

a //

≀

��

H̃n−1

(
R

n
r i(K)

)
//

j

��

H̃n−1

(
Sn

r i(K)
)

//

��

0

0 // H̃n(Rn
r pt) // H̃n(Sn

r pt) // H̃n−1(S
n−1)

∼ // H̃n−1(R
n

r pt) // H̃n−1(S
n

r pt) // 0

We can deduce that a must be an injection (since j ◦ a is an isomorphism), so b must be
the zero map. In fact, one can show that a splits. Thus,

H̃k

(
R

n
r i(K)

)
∼=

{
H̃k

(
Sn r i(K)

)
k 6= n − 1

H̃k

(
Sn r i(K)

)
⊕ Z k = n − 1

and the extra factor of Z is represented by a big sphere near infinity.
Another corollary of Lefshetz duality is Poincaré duality. The proof is immediate.

Theorem 24.5 (Poincaré Duality). If M is a closed orientable n-manifold, then Hk(M) ∼=
Hn−k(M).

Note that Poincaré duality implies that Hr(M) = 0 = Hr(M) for r larger than the
dimension of M .

The idea of Poincaré duality is this. Assume M = |S•| for some S• (in fact, not every
manifold is triangulatable, so this is a non-trivial assumption). Then H∗(M) = H∗(S•).
We get a cellular chain C∗(S•), and we can construct M as the dual CW complex, in which
every k-cell is replaced by an (n − k)-cell.8 It is easy to see that Ck

∼= Hom(Cdual
n−k , Z).

Thus, taking homologies, we get Hk(M) ∼= Hn−k(M).

25 Coefficients and the Künneth Theorem

Definition 25.1. Homology (resp. cohomology) with coefficients in some abelian group
A is defined by the Eilenberg-Steenrod axioms, with the dimension axiom replaced by
Hn(pt; A) = δn0A (resp. Hn(pt; A) = δn0A).

The proofs of uniqueness work just fine. For singular homology, we define Hn(X; A) as
the n-th homology of S∗(X)⊗ZA and Hn(X; A) as the n-th homology of HomZ

(
S∗(X), A

)
.

The replacement of the Hurewicz map is a map πn(X) ⊗Z A → Hn(X; A).
Note that we cannot define Hn(X; A) as Hn(X) ⊗Z A because ⊗ZA is not exact, so

the Mayer-Vietoris axiom would not hold. However, the Universal Coefficients Theorem
says we wouldn’t be wrong by too much.

8In the case where M is a surface, so the CW structure is a graph on M , the dual decomposition is
the usual dual graph.
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Definition 25.2. Given two complexes C∗ and D∗, we have the inclusion Cp ⊗ Dq →
(C∗ ⊗ D∗)p+q. Because of how the boundary maps in a tensor product are defined, this

induces a map Hp(C∗) ⊗ Hq(D∗)
×

−−→ Hp+q(C∗ ⊗ D∗).

The cross product in homology is the map Hp(X) ⊗ Hq(Y )
×

−−→ Hp+q(X × Y ). The

cross product in cohomology is the map Hp(X) ⊗ Hq(Y )
×

−−→ Hp+q(X × Y ).

Theorem 25.3 (Algebraic Künneth Theorem). If C∗ and D∗ are free chain complexes
over a PID R, then for each n there is a natural short exact sequence

0 →
⊕

p+q=n

(
Hp(C∗)⊗RHq(D∗)

)
×

−−→ Hn(C∗⊗RD∗) →
⊕

p+q=n−1

TorR

(
Hp(C∗), Hq(D∗)

)
→ 0.

This sequence splits, but not naturally.

This is Theorem 3B.5 of Hatcher. [[ ⋆⋆⋆ If R is not a PID, then there are higher
Tor groups]] Properties of TorR:

1. TorR(M, N) = TorR(N, M)

2. TorR(
⊕

i Mi, N) ∼=
⊕

i TorR(Mi, N)

3. TorR(M, N) = TorR

(
T (M), N

)
, where T (M) is the torsion part of M

4. TorR(R/I, N) = ker(I ⊗R N → R ⊗R N)

Corollary 25.4 (Universal Coefficients for Homology). There is a natural exact sequence
(which splits un-naturally)

0 → Hn(X) ⊗ A → Hn(X; A) → TorZ

(
Hn−1(X), A

)
→ 0.

Just take A to be a chain complex concentrated in degree 0 and apply the Künneth
Theorem.

Corollary 25.5 (Topological Künneth Theorem). There is a natural short exact sequence
which splits un-naturally

0 →
⊕

p+q=n

(
Hp(X) ⊗ Hq(Y )

) ×
−−→ Hn(X × Y ) →

⊕

p+q=n−1

Tor
(
Hp(X), Hq(Y )

)
→ 0.

Theorem 25.6 (Universal Coefficients for Cohomology). There is a natural short exact
sequence which splits un-naturally

0 → ExtZ

(
Hn−1(X), A

)
→ Hn(X; A) → HomZ

(
Hn(X), A

)
→ 0.

[[ ⋆⋆⋆ maybe there should be something about the algebraic Dual Künneth theorem
here]] Properties of Ext:

1. Ext(
⊕

i Ai, B) ∼=
∏

i Ext(Ai, C)
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2. Ext(A,
∏

i Bi) ∼=
∏

i Ext(A, Bi)

3. Ext(A, B) = 0 if A is free

4. Ext(Z/n, Z) ∼= Z/n

5. Ext(Z/n, Z/m) ∼= Z/gcd(m, n)

[[ ⋆⋆⋆ the rest of this section needs to be organized]]

Definition 25.7. [[ ⋆⋆⋆ What is the definition of A-orientable for an abelian group
A?]]

Definition 25.8. An orientation of a real finite-dimensional vector space V is an ordered
basis up to positive determinant change. This is the same as a generator for Hn(V, V r0) ∼=

H̃n−1(V r 0) ∼= Z.

Definition 25.9. An orientation of a manifold Mn is a compatible choice of generators
µx ∈ Hn(M, M r x) ∼= Z for all points x ∈ M . Compatible means that there is an open
cover so that µU ∈ Hn(M, M r U) restricts to µx for all x ∈ U .

Remark 25.10. Any manifold is Z/2Z-oriented, so we can apply all the duality theorems
to get information, so long as we use Z/2Z coefficients.

26 Cup product in Cohomology

Definition 26.1. The cup product in cohomology is defined as ⌣: Hp(X)⊗Hq(X)
×

−−→

Hp+q(X × X)
∆∗

−→ Hp+q(X), where ∆ : X → X × X is the diagonal map.

Theorem 26.2. H∗(X) =
⊕

Hp(X) is naturally a graded commutative ring under cup
product. Recall that commutativity for a graded ring means a ⌣ b = (−1)|a|·|b|b ⌣ a.

Remark 26.3. If the Tor terms in the Künneth formula are zero, then × is an isomorphism,
so we get coring structure on H∗(X).

Remark 26.4. If a ∈ Hp(X) and b ∈ Hq(Y ), then a× b = p∗1a ⌣ p∗2b, where × is the cross
product, and p1 and p2 are the projections from X × Y to X and Y , respectively. This is
a handy way to compute cup products.

If some Tor terms are zero [[ ⋆⋆⋆ which?]], then H∗(X × Y ) ∼= H∗(X) ⊗ H∗(Y ) as
a graded commutative ring, where we define (a ⊗ b) · (c ⊗ d) = (−1)|b|·|c|ac ⊗ bd.

Remark 26.5. The 1 in the ring H∗(X) is given by the natural map Z ∼= H∗(pt) → H∗(X).
In particular, since H∗(pt) is concentrated in degree 0, the 1 in H∗(X) is in degree zero.

Example 26.6. H∗(S1) ∼= Z ⊕ xZ ∼= Z[x]/(x2), where x ∈ H1(S1) is a generator. Note
that x ⌣ x = 0 because it must lie in degree 2.

More generally, H∗(Sn) ∼= Z[x]/(x2), where |x| = n. •
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Example 26.7. H∗(Sn × Sm) ∼= Z[x, y]/(x2, y2), with |x| = n and |y| = m. This follows
from Remark 26.3. •

Example 26.8. What is the ring H∗(CP2)? We claim it is Z[z]/(z3), with z ∈ H2(CP2) ∼=
Z. [[ ⋆⋆⋆ how does one prove this?]] •
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