Definition. Let C and I be categories. For an object $X \in C$ we define $k_X : I \to C$ to be the constant functor, which sends all objects of I to X and all morphisms of I to the identity morphism of X. Let $D : I \to C$ be a functor (a "diagram" in C). Then we define the *limit (projective limit) of* D to be the object $\varprojlim D$ which represents the functor $X \mapsto \operatorname{Nat}(k_X, F)$, if such an object exists. The *colimit (injective limit or direct limit) of* F is the object $\varinjlim D$ which represents the functor $X \mapsto \operatorname{Nat}(D, k_X)$, if it exists.

Theorem. Right (resp. left) adjoint functors commute with limits (resp. colimits).

Proof. Let \mathcal{C} and \mathcal{D} be categories, let $F : \mathcal{C} \to \mathcal{D}$ and $G : \mathcal{D} \to \mathcal{C}$ be adjoint functors, with F the right adjoint, and let $D : I \to \mathcal{C}$ be a diagram in \mathcal{C} . Then for any object $X \in \mathcal{D}$, we have that

(adjunction)	$\operatorname{Hom}_{\mathcal{D}}(X, F(\varprojlim D)) \cong \operatorname{Hom}_{\mathcal{C}}(GX, \varprojlim D)$
$(\text{definition of } \varprojlim)$	$= \operatorname{Nat}(k_{GX}, D)$
(adjunction)	$\cong \operatorname{Nat}(k_X, FD)$
$(\text{definition of } \varprojlim)$	$= \operatorname{Hom}(X, \varprojlim(FD))$

By Yoneda's lemma, it follows that $F(\varprojlim D) \cong \varprojlim(FD)$. The proof that left adjoint functors commute with colimits is basically the same, switching left and right (in particular, using the covariant Yoneda lemma rather than the contravariant one). \Box