Midterm 1 solutions.

1: Take $x = 34 + (83 - 34) \cdot 36 \cdot 255$ and $y = 3 \cdot 255$.

2a: By hypothesis, every exponent in the prime factorization of n is at least 2. To show that n is a product of a square and a cube, it is enough to show that every exponent is a positive integer combination of 2 and 3. If a given exponent is even, then it is $2k + 3 \cdot 0$ for some positive k. If it is odd, then it is at least three, so when you subtract three, you get a non-negative even number, so the exponent is 2k + 3 for some non-negative k.

2b: We want an answer of the form $n = 2^a \cdot 3^b \cdot 7^c$. Since n/2 should be a square, we have that a should be 1 mod 2 and b and c should be 0 mod 2. Since n/3 is a cube, $b \equiv 1 \mod 3$ and $a \equiv c \equiv 0 \mod 3$. Since n/7 is a seventh power, $c \equiv 1 \mod 7$ and $a \equiv b \equiv 0 \mod 7$. Either using the CRT algorithm or by just eyeballing, we find that a = 21, b = 28, and c = 36 work. So take $n = 2^{21} \cdot 3^{28} \cdot 7^{36}$.

3a: If $x^2 \equiv 127 \mod 127^2$, then $x^2 \equiv 127 \equiv 0 \mod 127$, so x must be divisible by 127, say x = 127k. But then $x^2 \equiv 127^2k^2 \equiv 0 \mod 127^2$. Thus, there are no solutions to $x^2 \equiv 127 \mod 127^2$.

3b: We have that $n^4 + n^2 + 1 = (n^2 + 1)^2 - n^2 = (n^2 + n + 1)(n^2 - n + 1)$. Since n > 1, we have that $n^2 + n + 1 > n^2 - n + 1 = n(n-1) + 1 > 1$, so this is a proper factorization of $n^4 + n^2 + 1$.

4a: Note that gcd(x, 255) = 1 if and only if gcd(x, 3) = gcd(x, 5) = gcd(x, 17) = 1. By CRT, $x^{16} \equiv 1 \mod 255$ if and only if x^{16} is 1 modulo 3, 5, and 17. Applying Euler's theorem three times, we have that $x^{16} \equiv (x^2)^8 \equiv 1^8 \equiv 1 \mod 3$, $x^{16} \equiv (x^4)^4 \equiv 1^4 \equiv 1 \mod 5$, and $x^{16} \equiv 1 \mod 17$.

4b: By Fermat's theorem, every residue modulo 11 is a solution to $f(x) = x^{11} - x \equiv 0 \mod 11$. We have that $f'(x) = 11x^{10} - 1 \equiv -1 \mod 11$ is always non-zero modulo 11, so these 11 root are "non-singular." By Hensel's lemma, each non-singular root lifts to a unique root modulo 11^{1234} , so there are 11 solutions total.