Math 130B Set 2

due Jan. 13

Read Chapter 3 of Vakil (Dec. 20, 2011 version), do problems 3.2.F, 3.3.C, 3.3.I, 3.4.B, 3.5.G, and do the following problem.

- 1. ("the property \mathcal{P} argument") Suppose \mathcal{P} is a property of morphisms in a category so that
 - \mathcal{P} is stable under composition. That is, given morphisms $X \xrightarrow{f} Y \xrightarrow{g} Z$, if f and g have \mathcal{P} , then so does $g \circ f$.
 - \mathcal{P} is stable under base change. That is, if the diagram below is a cartesian square and f has \mathcal{P} , then f' has \mathcal{P} .

$$X' \xrightarrow{f'} Y'$$

$$\downarrow \qquad \qquad \downarrow$$

$$X \xrightarrow{f} Y$$

- (a) Suppose $f: X \to Y$ and $h: Z \to W$ have \mathcal{P} . Show that the product $f \times h: X \times Z \to Y \times W$ has \mathcal{P} .
- (b) Suppose we have morphisms $X \xrightarrow{f} Y \xrightarrow{g} Z$ so that $g \circ f$ has \mathcal{P} and the diagonal $\Delta_g \colon Y \to Y \times_Z Y$ has \mathcal{P} (Δ_g is given by $(\mathrm{id}_Y, \mathrm{id}_Y)$). Show that f has \mathcal{P} . (Hint: use the "magic diagram" with $X_2 = Y$.)