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1 Tom Bridgeland - Stability conditions

The general idea is to start with a triangulated category D (e.g. the bounded
derived category of coherent sheaves on a variety). To this, we associate a
complex manifold Stab(D), the space of stablity conditions. Each point σ ∈
Stab(D) defines a subcategory of semi-stable objects P ⊆ D.

Motivations:

1. String theory (this is really where this stuff came from). The goal is to
understand the “stringy Kähler moduli space” MK(X). By mirror sym-
metry, this is supposed to beMC(X̌). This came from Mike Douglas’ work
on Π-stability for D-branes). We won’t talk about any string theory here.
There are no examples D(CY3) (though this may change very soon).

2. Stab(D) helps us to understand the structure of D (e.g. gives a space on
which Aut(D) acts).

3. To try to define classes of objects in D which have nice moduli spaces. It
would be really useful to find moduli spaces parameterizing complexes (not
just sheaves). There are some situations where we can do this (e.g. that’s
how you show equivalence of derived categories under 3-fold flops). There
has been some work by Abramovich and Polishchuk.

4. Try to understand wall-crossing for Donaldson-Thomas invariants. The
relevant names are Joyce, Toda, and Kontsevich-Soibelman.

These are fine motivations, but they haven’t really born fruit yet.
The plan of these talks is roughly as follows:

1. Stability conditions on abelian categories (this may be a bit boring)

2. Hall algebras

3. Triangulated case

4. Examples (in particular, the conifold)

5. Counting invariants (Seandroi’s product formula)

Abelian case

Let A be an abelian category (e.g. coherent sheaves, or modules over a ring).
K(A) is the Grothendieck group, the free abelian group on isomorphism classes
of objects of A, modulo the relation that [B] = [A] + [C] whenever there is a
short exact sequence

0→ A→ B → C → 0.

Definition 1.1. A stability function on A is a homomorphism of abelian groups
Z : K(A) → C such that for E 6= 0, Z(E) ∈ H = {reiπθ|r > 0, 0 < θ ≤ 1}
(notice that this is half-closed). ⋄

Example 1.2. Take A = Coh(X), where X is some smooth projective curve
over C, and take Z(E) = −deg(E)+ i rk(E) = i(rk(E)+ ideg(E)) (notice that
this lands in this sends non-zero things into the upper half plane because you
either have positive rank, or you are torision, so you have positive degree). ⋄

Example 1.3. Take A = R-mod, the category of finitely generated modules
over some finitely generated C-algebra R. In this case, K(A) = Z⊕N = Z[S1]⊕
· · · ⊕ Z[Sn] where Si are the simple modules up to isomophism. As long as we
make sure that the Si are mapped into the upper half plane, then everything
else will be. So the set of stability conditions is HN . We tend to think of
stability conditions in algebraic geometry as essentially unique, but in algebra,
there are lots of choices. ⋄

Example 1.4. Let X = P2 and A = Coh(X). The obvious thing to do is to set
Z(E) = −deg(E)+ i rk(E), but that doesn’t work, because a sky-scraper sheaf
has rank and degree zero. In fact, there are no stability functions on A. This
might make you think that this is a very bad definition. It turns out that the
derived category has some interesting stability conditions, but you have to use
some other t-structure. This also somehow agrees with what you would expect
from physics. So although this looks very bad, I claim it is actually correct.
There are generalizations of this definition which would allow from something
else, but if you use those, you don’t get a complex manifold. There are millions
of definitions you could use, but the interesting thing is that you get a complex
manifold with this definition. ⋄
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Let Z : K(A)→ C be a stability function. Then every non-zero object has a
phase φ(E) = 1

π arg(Z(E)) ∈ (0, 1]. A non-zero object E is called semi-stable
if for every non-zero sub-object A ⊆ E, φ(A) ≤ φ(E). Equivalently, for every
non-zero quotient E ։ Q, φ(E) ≤ φ(Q). This is sometimes called the “see-saw
property.” For φ ∈ (0, 1], define P(φ) to be the full subcategory of A consisting
of semi-stable objects E with φ(E) = φ (and the zero object).

Remark 1.5. In Example 1.2, this corresponds to Mumford stability. P(1) =
{torsion sheaves} and P(φ) = {µ-stable for µ = cotan(πφ)}. In Example 1.3, a
result of A. King implies that there exists a projective scheme which is a coarse
moduli space for semi-stable object of a fixed class α ∈ K(A). The functor send
S to isomorphism classes of bundles E → S with an action of the algebra R on
E. ⋄

Lemma 1.6. If φ1 > φ2 and Ei ∈ P(φi), then HomA(E1, E2) = 0.

Proof. If f : E1 → E2 is a non-zero map, then we get two short exact sequences

ker f → E1 → im f im f → E2 → coker f

This implies that φ1 = φ(E1) ≤ φ(im f) ≤ φ(E2) = φ2, a contradiction.

Definition 1.7. A Harder-Narasimhan filtration for an object E ∈ A is a fil-
tration

0 = E1 ⊂ E1 ⊂ · · · ⊂ En = E

such that Fi = Ei/Ei+1 is semi-stable and φ(F1) > · · · > φ(Fn). ⋄

Lemma 1.8. If such a filtration exists, it is unique.

Proof. Suppose you have two filtrations. Look at the last bits

En−1
� � //

��

E // // Fn

��

E′
n′−1

� � // E // // F ′
n′

Assume that φ(F ′
n′) is the smallest phase of any filtration factor. This implies

that Hom(En−1, F
′
n′) = 0. This means that you can fill in the vertical maps.

Thus, we know that φ(Fn) = φ(F ′
n′). Now we can do the argument the other

way and get some maps “up”. A standard arugment shows that the composi-
tions have to be the identity (because the map En−1 → E is an inclution and
E = E is the identity), so the vertical maps are isomorphisms.

Definition 1.9. A stability condition on A is a stability function Z : K(A)→ C

such that every object has a Harder-Narasimhan filtration. ⋄

This is not always easy to check. You often have to do some work to show
that the filtrations exist.

Suffient condition: (is it necessary?) for existence of a HN filtration. First
of all, there should be no infinite chains of quotients E1 ։ E2 ։ · · · with
descending phases φ(E1) > φ(E2) > · · · (weakly noetherian). Secondly, there
must be no infinite chains of subobjects · · · ⊂ E2 ⊂ E1 with · · · > φ(E2) >
φ(E1) (weakly artinian). You should try to prove this yourself (it is a bit tricky),
and if you get stuck, look at my paper, “Stability conditions on triangulated
categories” Prop. 2.4.

Examples 1.2 and 1.3 satisfy this. Example 1.2 (coherent sheaves on a curve
over C) is weakly noetherian for free because we get actual noetherian-ness.
To show weakly artinian, we note that eventually, rkEi = rkEi−1, so the
degrees must keep getting bigger (degree means first chern class). Then φ(Ei) >
φ(Ei−1), which implies d(Ei) > d(Ei−1), which implies Ei−1/Ei has rank 0 and
degree negative [[⋆⋆⋆ ]].

We’ve gotten some categorical stuff out of this. We start with a big category,
and broken it up into small categories so that each object in the original category
can be built up in a unique way from objects in the smaller categories.

The Harder-Narasimhan filtration is extremely important.
Suppose A = R-modfd, where R is a finite-dimensional algebra over a finite

field k = Fq (bear with me, we’ll eventually do it in characteristic zero with

coherent sheaves). Define Ĥ(A) = {f : (A/ ∼=) → C}, the set of functions on
isomorphism classes of A. And define H(A) ⊆ Ĥ(A) as the functions with finite
support. Define the convolution product

(f ∗ g)(M) =
∑

A⊂M
f(A)g(M/A)

(note that M has finitely many sub-objects, so it is a finite sum).

Theorem 1.10. Under the convolution product, H(A) and Ĥ(A) become asso-
ciative algebras with unit 1(0) = 1 and 1(M) = 0 for M 6∼= 0.
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1 Alessio Corti

Most of these lectures will be based on joint work with T(om?) Coates,
H(iroshi?) Iritari, and H. H. Tseng. There is a list of problems for this course.
References for today: two papers by Abramovich-Graber-Vistoli and the origi-
nal paper by CR.

Quantum cohomology of stacks

From tomorrow onwards, we will be working with toric stacks, but today we’ll
be more general. Let f : Γ → X be a stable representable morphism from an
orbi-curve to a stack.

An orbi-curve is a proper, projective, algebraic curve Γ with some marked
points xi. Each of the marked points has a chart of the form [∆/µri ] (where
∆ is a disk and µr is the group of r-th roots of unity). An orbi-curve has
a fundamental group πorb1 = π1(Γ r {xi})/〈γ

ri

i 〉, where the γi is a small loop
around xi.

Orbi-curves have line bundles on them, which are line bundles L, together
with an action of µri on Lxi , given by v 7→ ζkiv. Riemann-Roch tells you that

χ(Γ,L) = degL+ 1− g −
∑

ki/ri

I hope you’ll accept this stuff without worrying too much about the precise
definitions.

Exercise. Pr1,r2 . Then you can convince yourself that the Picard group is
Z⊕ Z/gcd(r1, r2).

That’s all I’ll say about orbi-curves. Now on to stacks.
A stack X is locally ∆n/G, where G is a finite group. Stacks have points,

and points have stabilizers. A point x has stabilizer Gx. A morphism of stacks
f : X → Y is representable if it induces injections Gx → Gf(x). If G is a
finite group, there is a very important stack called BG, which is the quotient
[∗/G]. That is, to give a morphism X → BG is the same as to give a principal
G-bundle on X . We need this in the case where X is an orbi-curve.

Example 1.1. If X = Γ is an orbi-curve, then a morphism X → BG is a
homomorphism f : πorb1 Γ→ G is representable if f(γi) has order ri. ⋄

Today I want to discuss orbifold cohomology and orbifold quantum co-
homology. For this, we have to introduce the inertia stack IX =⋃
r≥0 Homrep(Bµr ,X ) (where Homrep means representable morphisms). Such

a morphism is the same as giving a point x ∈ X and an injection χ : µr →֒ Gx.
Aside from doing some examples, I’m not really sure how to explain this, so

let’s do some examples.

Example 1.2. Let X = Pw0,...,wn (weighted projective space), which we will
think of as C(−w0)⊕ · · · ⊕C(−wn) (where C(−w) is the representation of C×

of weight −w, so λ : x 7→ λ−wx). In this case, BoxX = {k/wi|0 ≤ k < wi} and
IX =

⋃
b∈Box P(V b), where V b =

⊕
wib∈Z

C(−wi).
If we take X = P(1, 1, 3), IX = P(1, 1, 3) ⊔ P(3)1/3 ⊔ P(3)2/3 (subscripts are

Box levels). ⋄

Example 1.3. X = [M/G]. In this case, IX =
⊔
g∈C [Mg/Z(g)] (C is conju-

gacy classes) ⋄

In general, there is a graph of groups B = BoxX , whose elements are injective
group homomorphisms χ from µr into some stabilizers. The inertia stack is
IX =

⊔
χ : µr→Gη

Xχ.

Definition 1.4. H·orbX = H·−a(χ)(IX ), where the age of χ is a(χ) (defined
below). ⋄

χ : µr → Gη, and Gη acts on the tangent space TηX , so we get an induced
action given by ki/r for some 0 ≤ ki < r. Then we define a(χ) =

∑
ki/r. I

still have to tell you what the cup product is.
I have to talk about stable morphisms. For β ∈ H2(X ), let X0,n,β = {stable

(no automorphisms) representable morphisms f : (Γ, µri (xi))1≤i≤n → X of de-
gree β, where Γ is genus zero}. Let me remind you that Γ could be a nodal
curve; it doesn’t have to be a smooth orbi-curve. The marked points xi have
these little charts [∆/µri]. Only the marked points (and sometimes the nodes)
have these charts.

Some features:

1. There are evaluation maps evi : X0,n,β → IX , given by evi(f) = f(xi).
Rather, there aren’t, but we can pretend that there are. We have that
X0,n,β =

⊔
b1,...,bn∈Box X0,n,β(b1, . . . , bn), to be made sense of later.
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2. X0,n,β has a virtual dimension

vdimf = χ(Γ, f∗TX ) + n− 3

= −KX · β + dimX −
n∑

i=1

dimX∑

j=1

wi,j
ri

+ n− 3 (Riemann-Roch)

and a virtual class 1vir ∈ CHvdim.

Product on H·orb(X ). Consider X0,3,0
e1,2,3
−−−→ IX . Define a ∪ b = e3 ∗ (e∗1a ∪

e∗2b) ∩ 1vir. We have ι : IX → IX ; if χ : µr → Gx, then ιχ is χ composed with
conjugation.

This is a P1 with three marked points. Two of them are |a| and |b|, and the
third one is the intersection of |a| and |b|.

Example 1.5. X = P(1, 1, 3), so IX = P(1, 1, 3) ⊔ P(3)1/3 ⊔ P(3)2/3. Then

H·orb has a basis 1, η, x, η′, x2 (η and η′ come from the P(3)’s) of degrees
0, 2/3, 1, 4/3, 2, respectively (you have to get over the degrees being fractional).
These are Chow degrees; if something, then you should double these. We have
that η ∪ η = η′, η′ ∪ η = x2, and

∫
X x

2 = 1/3. Let’s explain η ∪ η′ = x2. Con-

sider X0,3,0(1/3, 2/3, 0). In P(1, 1, 3), we have the stacky point 1
3
(1, 1), which

is a P(3). There are three marked points; two of them are marked by 1/3 and
2/3. η ∪ η′ = e3 ∗ 1 = 1

3{pt}. ⋄

Quantum orbifold cohomology. The quantum product is defined (using
Poincaré duality) by (a ∗ b, c) =

∑
β〈a, b, c〉βQ

β, where 〈a, b, c〉β =
∫
X0,3,β

(e∗1a∪

e∗2b ∪ e
∗
3c) ∩ 1vir.

Example 1.6. Define X = X2
3 ⊂ P(1, 1, 2) be a surface of degree 3. Suppose

I blow up P2 at three colinear points. Then the line containing them is a −2
curve. If I contract that curve, I get this X .

Take A ⊂ H·orb(X ,Q) with basis 1, x, u, x2, in degrees 0, 1, 1, 2, respectively.
You can figure out that

∫
X x

2 = 3/2 and
∫
X u

2 = 1/2.

〈x, x, u〉1/2 =
1

4
〈u〉1/2 = 3/4

〈x, x, pt〉1 = 3

〈pt, pt, u〉3/2 = 1

Given this, you can write the matrix of quantum multiplication by x (in this
basis). It is 



0 3Q 0 0

1 0 1
2Q

1/2 3Q

0 3
2Q

1/2 0 0
0 1 0 0




Also, 〈u, u, u〉1/2 = 3/4. In this example, degQ = −5/3. ⋄

Dψ = ψM . ψ : C× → EndH·orb(X ,C), D = Qd/dQ, ψ = (ψ0, . . . , ψ3), and
ψ0 satisfies

2D3(2D− 1)− 3Q(3D+ 2)(3D + 1)

This is the differential equation you expect for something.
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1 Valery Alexeev

I will try to give an account of the complete moduli of higher dimensional
varieties. Let me begin by giving an overview of what we know about the
dimension 1 case. We have a moduli space Mg , introduced 150 years ago by
Riemann. There is this wonderful compactificationMg (the Deligne-Mumford
compactification, also due to Grothendieck, . . . ). The two are quite similar.
Then there is the spaceMg,n, which again looks bigger, but the differences are
quite minor. In particular, there isM0,n, which is really very easy. It is a very
explicit combinatoria object, some blowup of Pn−3. There is also the moduli
space Mg,n,β, where you add some weights between zero and 1. Again, we
have the special case M0,n,β. Then we have the Kontsevich maps; the moduli
space of stable mapsMg,n(V ). There are many papers about these first of all
because of the importance of applications (e.g. Gromov-Witten theory), and
secondly because you can compute things.

I will speak about the dimension n > 1 case. The analogue of Mg is the
moduli space of surfaces of general type Mc21,c2

. This space is already very
hard and very complicated. Mg is mysterious, but at least it is smooth as a
stack. Mc21,c2

is not even equi-dimensional, and even describing its irreducible

components is hard. As I said, the difference between Mg and Mg is very
minor, so maybe we can still go somewhere. Also, even if the general case is
hopeless, there may be some examples we can work with. In particular, there
are analogues of M0,n and M0,n,β that can be described in complete detail.
Another special case is the case of abelian varieties; stable abelian varieties are
quite nice and can be described quite explicitly.

The plan for the course is this course

1. Complete moduli and MMP

2. Stable toric varieties

3. Hyperplane arrangements

4. Abelian varieties

5. Surfaces

The first lecture is introductory. The first four lectures should be quite
explicit. The last lecture is the case of the moduli space of surfaces of general
type.

The plan for today:
The very first example: degrees of curves
Redo for surfaces (KSB (Kollar? Sheppard? Bard?) 1989).
Redo for n-dimensional pairs; for stable maps.
Sings of MMP: k, klt, dlt, slc (sklt?, sdlt?).
Ex: curves, hyy arrs, toric vars.
Polytopes and toric vars.
(X,B1 + εB2) lc ⇔ B2 6⊃ T -orbits
Mg,n,β after Hassett
Exs: surfaces

The very first example. Suppose you have a 1-dimensional familyX of curves
of genus g over some base S which is not complete. How do you complete it.
First you apply the stable reduction theorem, which says that after some base
change on S, th fiber can be made into a curve with simple normal crossings.
This may not be stable. How do we make it stable? If there are (−1)-curves, you
can contract them, leaving the surface smooth, so you contract them all. If there
is a (−2)-curve, you can contract it to a singular point, but the singularities
are rational double points of type An. After that, X0 is a stable curve which is
nodal with canonical class KX0 > 0 ample if and only if |Aut(X0)| < ∞. For
a curve E in the central fiber, KX0 ·E < 0 if and only if E ∼= P1 and E2 = −1
and KX0 · E = 0 if and only if E ∼= P1 and E2 = −2.

Theorem 1.1. For every X → S0, there is a finite base change S′ → S and a
completion such that X′ → S′ is a flat family of stable curves.

The condition that K was ample means that KX′/S′ +X′
0 is ample and X′

0

nodal if and only if (X′, X′
0) has log canonical (lc) singularities. The nice thing

about curves is that you still have a reduction theorem in mixed characteristic.
So what do we do in dimension n? You have to give a label to everything. We

started with X′ → S′ and you did some stuff, ending up with the log canonical
model X′

can → S′ of the pair (X′, X′
0). You know that there is a theory of

minimal models in all dimensions, so we can repeat the procedure in higher
dimensions.

Suppose we have a family of surfaces. Then after base change, we get a
surface with normal crossings. Instead of contracting this and that, you just go
straight to the canonical model. KX′/S′+X′

0 ample and (X′, X′
0) lc, then we say

that X′
0 is semi-log canonical (slc). X′ = ProjS′

⊕
d≥0 π∗OX′(d(KX′ + X′

0)).

Compare to Proj
⊕

d≥0H
0(OX(d(KX′ + X′

0))); there is very little difference.
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You have to prove existence and uniqueness of the model. uniqueness is easy,
and existence is a recent result. The outcome is that for any 1-parameter family
of varieties of general type, there is a unique limit with ample canonical class
and something slc.

Where do we go from here? You can try to construct this moduli space in
general, or you can look at the special cases. You can use the theorem to guess
the answer, and then construct your moduli space by various other methods
(in the cases of toric, hyperplane arrangements, abelian varieties).

You can redo this for n-dimensional pairs. So we have a family of surfaces
with divisors. The stable reduction theorem still works. The log canonical
model is not for (X′, X′

0) but for (X′, X′
0) +

∑
biBi.

When you do this stuff carefully, you run into hard technical problems for
surfaces. Q: does the formation of the log canonical ring commute with base
change. That depends on the moduli functor. If you do it carefully, you run into
problems (not in the special cases), and I will try to delay them until Saturday.

You can redo this for stable maps. Suppose you have a variety (say a curve)
X and a stable mapX → V (parts ofX collapse). We sayX is stable if KX > 0
and X nodal, and we say the map is stable if KX/V > 0 and X nodal. So you
just think of families X → S0 × V , and in the construction, you do everything
over S′×V . All the same general machinery works to give you the unique limit
of any family of stable maps. This higher dimensional moduli should exist in
this case as well.

Singularities of MMP: lc, klt, dlt, slc. You know the first three (from the
pre-reading). slc will be the generalization to the “nodal case.”

For a pair (X,B) to be lc, X should be a normal variety over k = k, and
B =

∑
biBi, where 0 < bi ≤ 1 and Bi are (not necessarily distinct) Weil

divisors. There should exist a log resolution f : Y → X (i.e. Y smooth and the
exceptional set of f union f−1

strict trans Supp(B) has simple normal crossings).
We need KX + B to be a Q-Cartier divisor, so N(KX +B) is Cartier. In this
case, we can write KY = f∗(KX +B)+

∑
Ej irr divs ajEj. Then lc means that

all aj ≥ −1 (which implies bi ≤ 1), klt means that all aj > −1 (which implies
bi < 1), and dlt means that there is a Y with Exc(f) is a union of divisors and
all aj > −1 for all exceptional divisors. Note that dlt depends on the resolution;
if you keep going, you might get some −1’s. Some finite generation result for
klt which can be pushed to dlt.

Example 1.2 (Curves). Let X be a curve, with some divisors Bi (may not be

distinct). What does it mean for the pair (X,B) to be lc? It means that X is
smooth and whenever Bi coincide for i ∈ I, then

∑
i∈I bi ≤ 1. It is klt if for

every such colletion,
∑
bi < 1 (in particular, this implies all bi < 1). In this

case, dlt is the same as lc. ⋄

Example 1.3 (Hyperplane arrangements). You have hyperplanes Bi inter-
secting in Pr−1. What does it mean for (Pr−1, B) to be lc? It means that
for every I ⊂ {1, . . . , n},

∑
i∈I bi ≤ codimBi (if the intersection is non-empty.

klt means that this inequality is strict. ⋄

Example 1.4 (Toric varieties). Suppose X is a toric variety with a torus T
acting on it. Let B1 = XrT . Then toric geometry tells us two standard facts:
(1) KX + B1 = 0 in a canonical way, and (2) (X,B1) is lc (this follows from
the first fact because a toric variety always has a toric resolution; pull back
KX + B1 = 0 to get 0 = KY + f−1B+exceptional divisors with aj = −1). If
you add another divisor B2, then (X,B1 + εB2) for 0 < ε≪ 1 is lc if and only
if B2 6⊃ T -orbits. The reason is that when you resolve, you add exceptional
divisors with aj = −1, so you are maxxed out. This already tells you that if
you work with coeffiecients 1 and ε, then you are in the toric situation. ⋄

I cannot teach you about polytopes and toric varieties in 5 minutes; I hope
you already know how to see a variety if I show you a polytope.
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I want to talk about log geometry in the sense of Fontaine, Illusie, and Kato.
The history of the subject makes it a little inaccessable sometimes. It came out
of trying to prove some conjectures of Fontaine. I want to start by explaining
an old example.

Let ∆ be a smooth curve over C and o ∈ ∆, with ∆× = ∆ r {o}. Let
t ∈ Γ(∆,O∆) a uniformizer at o. Choose f : X → ∆ proper and semi-stable
(i.e. étale locally O∆[x1, . . . , xn]/(x1, . . . , xn− t)).1 We then get a local system
V = (Rifan∗ C)/∆×. This is the same thing as a representation of π1(∆

×).
There is an algebraic construction which tells you more. Consider X× :=

f−1(∆×)
j
−→ X

i
←− X0. We have Ω1

X/∆(log), the subsheaf of j∗Ω1
X×/∆× which

in local coordinates is generated by Ω1
X/∆ and the dxi/xi. This is a locally free

sheaf. You get a complex

Ω·X/∆(log) : OX → Ω1
X/∆(log)→ Ω2

X/∆(log)→ · · ·

You can then define E = Rif∗Ω·X/∆(log). This is a locally free sheaf on ∆. It

has more structure, namely the Gauss-Manin connection ∇ : E → E⊗Ω1
∆(log).

This is all in the algebraic category, but I can think of it as an analytic vector
bundle, so we get the local system V = ker

(
∇an : Ean → Ean ⊗ Ω1

∆(log)
)
|∆× .

We have i∆ : Spec C
0
−֒→ ∆, and C ∼= i∗∆Ω1

∆(log), given by 1 7→ dt/t. You get
N : E(0)→ E(0). You have ∇(tE) ⊆ tE.

Let D ⊆ ∆an be a disk around 0 and s ∈ D× = Dr {0}. Then π1(D
×) = Z,

generated by a loop around zero. Then I have an action of Z on the vector space
Vs, with 1 acting by T : Vs → Vs. It is a theorem that this T is a unipotent
operator, so I can take it’s log to get a nilpotent matrix acting on this vector
space.

Theorem 1.1. The conjugacy class of logT is N .

That stuff is very old. The question it begs is the following. This E lives in
the closed fiber. Do you really need the whole family over the disk to get this
N . So the question is, “what extra structure do you need in addition to X0 to
recover E(0) and N?”

1I’ll assume you know about the étale topology, but if you aren’t too familiar with it, think
of it as the analytic topology.

Let me pose another question that is closer in spirit to this meeting. This
second problem concerns main components/deformation theory. This is an
experimental science; you go example by example. It is just a fact of life that
when you have a moduli space of higher dimensional things, you get lots of
irreducible components.

Example 1.2. Let (E, e) be an elliptic curve over k = k. It is an exercise to
check that you can find an embedding j : E →֒ P , where P is a rational surface,
with E ∈ | −KP | and j∗IE ≃ OE . Let X0 = P ∪E P . This is called a log K3.
If you wanted to study a moduli space of K3 surfaces, this is the kind of thing
you’d stick at the boundary. An old paper of Friedman showed that the versal
deformation space (we’re looking at the complete local ring at the point in the
moduli space corresponding to X0) looks like V1 ∪ V2 where

1. V1 and V2 are smooth,

2. dimV2 = 20 and V2 r (V2 ∩ V1) correspond to smoothings of X0, and

3. V1 classifies locally trivial deformations.

Let me say what this last thing means. You have two components, V1 (singular
deformations) and V2 (smooth deformations). The question is, “how do you
isolate V2?” This is perhaps the most important question for this series of
lectures. You can answer it with log geometry. ⋄

There is a third question, which is the connection with stacks (e.g. orbi-
curves). Q: what is a locally trivial deformation? MO: X0 locally looks like
C[x, y, z]/xy. Locally trivial means that the local ring after deforming still looks
like that. The smoothings look like C[t][x, y, z]/(xy− t).

Now I’ll start with foundations. You’ll have to bear with me for a lecture
and a half or so.

Monoids

You have to be very careful with monoids. You want them to be like groups,
but they are very subtle. We will usually write the composition additively.

Definition 1.3. A monoid is a commutative semi-group with unit. Morphisms
of monoids preserve the unit. ⋄
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Abelian groups are monoids, so Ab ⊆ Mon. This inclusion has a left adjoint
M 7→Mgp = {(a, b)|(a, b) ∼ (c, d) if there is an s such that s+a+d = s+b+c}.
In particular, any map from M to an abelian group factors uniquely through
M →Mgp.

Definition 1.4. M is integral if for all m ∈ M , +m : M → M is injective
(equivalently, if M → Mgp is injective). It is called saturated if it is integral
and if M = {m ∈Mgp|∃n > 0 such that nm ∈M} ⋄

If you know about toric varieties, when you dualize a cone, you always get a
saturated monoid.

Definition 1.5. M is fine if it is integral and finitely generated. It is fs if it is
fine and saturated. ⋄

Definition 1.6. A prelog structure on a scheme X is a sheaf of monoids M
and a map of sheaves of monoids α : M → (OX , ·).2 A prelog structure is a log
structure if α : α−1(O×

X)→ O×
X is an isomorphism. ⋄

Example 1.7. Let k be a field, let X be smooth over k, and let D ⊆ X be
a divisor with normal crossings (it could look like components étale locally; it
could be a nodal cubic, for example). Let M = {f ∈ OX |f |XrD ∈ O

×
XrD}.

Here, M is a subsheaf of OX , but it need not be in general.
If I have an étale morphism π : X → An such that D = π−1(V (x1 · · ·xr))

(the first r hyperplanes). Then M is the subsheaf of OX generated by O×
X and

x1, . . . , xr. ⋄

The next example looks stupid but is very important

Example 1.8. Let X = Spec k, and M = k× ⊕ N, with k× ⊕ N→ k given by
(u, n) 7→ u(0)n (where 00 = 1 and On = 0 for n 6= 0). This arises from 0 ∈ ∆.
Example 1.7 gives M∆ on ∆. i∗∆M∆ on Spec C is this example. ⋄

Lemma 1.9. The inclusion (log structures on X) →֒ (prelog structures on X)
has a left adjoint M 7→Ma.

2This is the only case were we’ll use multiplicative notation for a monoid.

Proof. Define Ma as the pushout in the category of sheaves of monoids

α−1(O×
X) //

��

M

��

α

%%JJJ
JJ

JJ

O×
X

//
v� 55Ma //___

·
OX

Example 1.10. Let X be a scheme, P a monoid, and β : P → Γ(X,OX) a
morphism of monoids (e.g. Example 1.7 with Nr → k[x1, . . . , xn] given by ei 7→
xi). β corresponds to P → OX . This leads to a log structure P a → OX . ⋄

Notation: Let P be a monoid, and R a ring. Write Spec(P → R[P ]) for
SpecR[P ] with the log structure associated to the natural map P → R[P ].

Definition 1.11. A log scheme is a pair (X,MX), where X is a scheme and
MX is a log structure (the α is omitted from the notation). ⋄

Considering these pairs gives you a good category with deformation theory.

Definition 1.12. Let f : Y → X be a morphism of schemes and let M be a
log structure on X. Then the composite f−1M → f−1OX → OY is a prelog
structure. We define the pullback f∗M to be the associated log structure. ⋄

I have to tell you what morphisms of log schemes are. If (X,MX) and (Y,MY )
are log schemes, then a morphism (Y,MY ) → (X,MX) is a pair (f, f♭) where
f : Y → X is a morphism of schemes and f♭ : f∗MX → MY is a morphism of
log structures (i.e. a morphism over OX).

Exercise. Say (X,MX) is a log scheme and P is a monoid. Then
HomlogSch((X,MX), Spec(P → Z[P ]) ≃ HomMon(P,Γ(X,MX)). This is an ex-
ercise in adjoints.

Exercise. f : Y → X and P a monoid, and β : P → Γ(X,OX). Then f∗(P a) =
(P → Γ(X,OX)→ Γ(Y,OY ))a.

Definition 1.13. A log structure M on X is called fine if étale locally there
is a fine monoid P and a map β : P → Γ(X,OX) such that M ≃ P a. ⋄
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Remark 1.14. In the Zariski topology, the plane with the nodal cubic divisor
is not right. You really want to use the étale topology. ⋄

A chart for a fine log structure M on X is a fine monoid P and a map P →
Γ(X,M) such that

(
P → Γ(X,M) → Γ(X,OX)

)a
→ M is an isomorphism.

This is the same thing as a map (f, f♭) : (X,M)→ Spec(P → Z[P ]) such that
f♭ is an isomorphism.

2 Tom Bridgeland - Hall Algebras

You’ll have to take my word for it that this is an interesting example to think
about. It looks funny, but that is to make it very explicit.

Let A = R-mod, where R is a finite dimensional algebra (if it is not finite
dimensional, you can take nilpotent modules) over Fq (this is to make only
finitely many isomorphism classes of module in each class of K-theory). Last
time, we introduced Ĥ(A), the set of all C-valued functions on isomorphism
classes, and H(A), the finitely supported ones.

We introduced the convolution product

(f ∗ g)(M) =
∑

A⊂M
f(A)g(M/A).

Lemma 2.1. Under this multiplication, Ĥ(A) is associative, with unit 1 = 10

(the zero module).

Proof. It is clear that 1∗f = f ∗1 = f because 0 only has itself as a submodule.
Next, associativity:

[(f ∗ g) ∗ h](M) =
∑

B⊂M
(f ∗ g)(B)h(M/B)

=
∑

A⊂B⊂M
f(A)g(B/A)h(M/B)

[f ∗ (g ∗ h)](M) =
∑

A⊂M
f(A)(g ∗ h)(M/A)

=
∑

A⊂M,C⊂M/A

f(A)g(C)h
(
(M/A)/C

)

These agree because submodule C ⊂ M/A are in bijection with modules B
such that A ⊂ B ⊂M , and (M/A)/C ∼= M/B.

Hence, we see that

(f1 ∗ · · · ∗ fn)(M) =
∑

0=M0⊂···⊂Mn=M

f1(M1/M0) · · · fn(Mn/Mn−1). (†)
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Now suppose we have a stability condition Z : K(A) → C. For 0 < φ ≤ 1, we
can define elements of the Hall algebra

1φss(M) =

{
1 M ∈ P(φ)

0 else
1A(M) = 1

Lemma 2.2 (Reneke). The Harder-Narasimhan property implies that 1A =∏→
φ 1φss.

Note that this is an infinite product, but it will be finite on any module.
The point is that 1φss will only give something non-zero if the filtration factor
is semi-stable with phase φ, so there is only one filtration that contributes to
the sum (†).
H(A) = ⊕α∈K≥0(A)Hα(A), and Ĥ(A) is the completion with respect to this

filtration. If you’re interested, look at a paper of Schiffman “Intro to Hall
algebras.”

Integration map

Write (f ∗ g)(M) =
∑

A,B⊂A/∼= n
M
ABf(A)g(B), where nMAB =

∣∣{A′ ⊂ M |A′ ∼=

A,M/A′ ∼= B}
∣∣.

Lemma 2.3. nMAB =
|Ext1(B,A)M |

Hom(B,A)
=

|AutM |

|AutA| · |AutB|
, where

Ext1(B,A)M ⊂ Ext1(B,A) is the set of extensions isomorphic to M .

Proof. Define VMAB the variety parameterizing

0→ A
f
−→M

g
−→ B → 0

Then (α, β, γ) ∈ Aut(A)×Aut(B)×Aut(M) acts on V MAB by (f, g) 7→ (γ◦f◦α, β◦
g◦γ−1). Then Aut(A)×Aut(B) acts freely and

∣∣V MAB/Aut(A)×Aut(B)
∣∣ = nMAB.

The action of Aut(M) is not free, and

Stab(f,g) = {1 + fηg|η ∈ Hom(B,A)}

and VMAB/Aut(M) ∼= Ext1(B,A)M .

Now I will make a big assumption. Assume that A has global dimension
1 (i.e. ExtpA(M,N) = 0 for p > 1). By Kontsevich and Soibelman, you get
existence of an integration map for Calabi-Yau 3-folds (where you don’t have
dimension 1). The examples we’re left with now are path algebras of quivers
with no loops. That will have global dimension 1.

Whenever we have finite global dimension for any category, we can define
χ(M,N) = dimHom(M,N) − dimExt1(M,N).

Define Cq[K≥0(A)] = 〈xα|α ∈ K≥0(A)〉/(xα∗xβ = q−χ(β,α)xα+β),1 where q is
the size of Fq (though perhaps secretly you want to think of q as indeterminate).

Lemma 2.4. I : H(A) → Cq[K≥0(A)], given by I(f) =
∑

M∈A/∼=
f(M)

|AutM |x
[M ],

is a ring homomorphism.

I can complete on both sides to get a map Ĥ(A)→ Cq [[K≥0(A)]]

Proof. Any function is a sum of things of characteristic functions, so let f and
g be characteristic functions on A and B, respectively. Then

I(f ∗ g) = I
( ∑

M∈A/∼=

|Ext1(B,A)M |

|Hom(B,A)|
·

x[M ]

|AutA||AutB|

)

=
|Ext1(B,A)|

|Hom(B,A)|

x[A⊕B]

|AutA||AutB|

= q−χ(B,A) x[A⊕B]

|AutA||AutB|

We also get I(f) = x[A]

|AutA| and I(g) = x[B]

|AutB| .

Example 2.5. Let A = R-mod, where R is the path algebra on the quiver
(• → •). A module is just an assignment of a vector space to each vertex and a
linear map for each arrow, so in this case, a module is a map of vector spaces.
The indecomposible modules are S = (C → 0), T = (0 → C) (these two are

simple), and E = (C
id
−→ C). There is a short exact sequence

0→ T → E → S → 0

So K(A) = Z⊕2.

1K≥0(A) means the cone spanned by actual isomorphism classes in A.
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The space Stab(A) is H2, and there is one wall. On one side of the wall,
φ(S) > φ(T ) and on the other side φ(T ) > φ(S), and the wall is where φ(S) =
φ(T ). On the side where φ(T ) > φ(S), E is unstable. On the other side, E is
stable. On the wall, E is semi-stable. Evaluating on the different sides of the

wall, we have 1
φ(T )
ss ∗ 1

φ(S)
ss = 1A = 1

φ′(S)
ss ∗ 1

φ′(E)
ss ∗ 1

φ′(T )
ss .

Assuming we are not on the wall (in which case everything would be semi-
stable), P(φ(T )) = {T⊕n|n ≥ 0}. Similarly for S. If we let α = [S] and β = [T ],
we get

Φ(xβ) + Φ(xα) = Φ(xα) + Φ(xα+β) + Φ(xβ) (‡)

where Φ(x) =
∑

n≥0
xn

|GLn(q)| =
∑

n≥0
xn

(qn−1)···(qn−qn−1) . This function is some-

times called the q-exponential or the quantum dilog. The identity (‡) is called
the 5-term relation for the quantum dilog. ⋄

Another identity: Suppose P is a projective module. Then define 1PA (M) :=
|Hom(P,M)| = qχ(P,M) (again, remember that q is the size of Fq) and

QuotPA (M) = |Hom։(P,M)| (number of surjections P ։ M).

Lemma 2.6. 1PA = QuotPA ∗1A.

Proof. |Hom(P,M)| =
∑

A⊂M |Hom։(P,A)|. This is just the statement that

every map has an image. 1A =
∏
φ 1φss. Both the outer things have product

decompositions and you’re interested in the guy in the middle.

Exercise. Apply this to A = Vect and P = C⊕N [[⋆⋆⋆ maybe Vect over a
finite field?]]. Use the integration map. What do you get?
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1 Kai Behrend - Foundations of Donaldson-

Thomas theory

These foundations on Donaldson-Thomas theory are undergoing some change,
so some of what I’ll say is work in progress with Mike Rose and I. Ciocon-
Fontanine, inspired by a paper by Kapranov and Ciocon-Fontanine RQuot.

Everything will happen over C. Y will be a Calabi-Yau 3-fold (i.e. a con-
nected, projective, smooth C-scheme of dimension 3 with a chosen isomorphism
ωY = ∧3ΩY ∼= OY ). For example, Y could be the generic quintic hypersurface
in P4. X will be a moduli space of coherent sheaves on Y (with trivialized
determinant), assumed to be compact (e.g. stable of Hilbert polynomial p(n)).
To X, we associate a number #virX, the virtual count of points in X. Goal of
Donaldson-Thomas theory: (1) define #virX, and (2) compute #virX.

Example 1.1. X = Hilbn Y , the moduli scheme of ideal sheaves I ⊆ OY such
that OY /I is a skyscraper sheaf (could be supported at many points) of length
n. Then

∞∑

n=0

#vir(Hilbn Y )tn =

( ∞∏

n=1

1

(1− (−t)n)n

)χ(Y )

was conjectured by Maulik-Nekrasov-Okounkov-Panthenpole in 2003. ⋄

Outline of the lectures. Roughly, I hope to get through two subjects per
lecture.

1. moduli space

2. deformation theory

3. virtual fundamental class (which gives rise to the definition of #virX from
deformation theory, when X is compact)

4. symmetric obstruction theory (this is where the assumption of Calabi-Yau
3-fold comes in

5. obstruction cone is Lagrangian

6. the microlocal function ν : X → Z. Define χ(X, ν), the weighted Euler
characteristic (breaking up X into strata where ν is constant; for this, you
don’t need X compact).

7. The main theorem: #virX = χ(X, ν) in the compact case

8. equivariant case if there is a C× action on Y

9. Hilbert scheme

10. conics on the quintic.

The moduli space

All sheaves I’m going to be interested in on Y are torsion-free. For a sheaf E,
p(n) = χ(Y, E(n)) is the Hilbert polynomial of E (it is a polynomial of degree
3).

Definition 1.2. E is stable if for every proper subsheaf 0 ( E′ ( E,
pE′(n)/ rkE′ < pE(n)/ rkE for n≫ 0. ⋄

We assume p(n) is chosen so that there exist no semi-stable sheaves which are
not stable of the Hilbert polynomial p(n). For example, we can assume rank is 1.
If you want to learn more about stability of sheaves, look at Huybrechts-Lehn.

Determinant: If you have a torsion-free sheaf E, you can resolve it by locally
free sheaves

· · · → E−1 → E0 → E → 0

and you can make it finite by the syzygy theorem (the third guy is automat-

ically locally free). Then detE = ∧rkE0

E0 ⊗ (∧rkE−1

E−1)−1 ⊗ · · · . Trivial
determinant means detE ∼= OY .

Remark 1.3. If E is rank 1, then detE = E∨∨. This is an exercise. If you
know a proof or know one, let me know. Somebody: there is a proof in the
book by Okenek.

There is always a canonical map E → E∨∨ = OY ideal sheaf. ⋄

Theorem 1.4 (See a paper by Simpson or Huybrechts-Lehn). There exists a
fine moduli scheme of ideal sheaves (I use “ideal sheaf” to mean torsion-free
rank 1 sheaves with trivialized determinant). For higher rank, it is a Deligne-
Mumford stack (always assuming the degree and rank are coprime so that I
don’t have to worry about the strictly semi-stable thing).
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Remark 1.5 (the construction). For a given p(n), choose q ≫ p ≫ 0. V =
V[p,q] is a graded vector space with dimVn = p(n) for all p ≤ n ≤ q. Let A =⊕

n≥0 Γ(Y,O(n)) and A′ =
⊕

n>0 Γ(Y,O(n)), G = GL(V )gr =
∏q
n=pGL(Vn).

Take Li = HomC(A′⊗i,EndC V )gr for i ≥ 0, and L =
⊕

i≥0L
i (this is finite

dimensional). Make L into a differential graded Lie algebra by defining a dif-
ferential. If µ ∈ Lr and ν ∈ Ls are elements, then

dµ(a1, . . . , ar+1) :=

n−1∑

i=1

(−1)iµ(a1, . . . , aiai+1, . . . , ar+1)

[µ, ν ](a1, . . . , ar+s := µ(a1, . . . , ar) ◦ ν(ar+1, . . . , ar+s)

− (−1)rsν(a1, . . . , as) ◦ µ(as+1, . . . , ar+s)

G acts on L by conjugation. Then g = L0. The derivative of G → GL(Ln) is
g = L0 → gl(Ln), given by x 7→ [x,−].

Now define F : L1 → L2 by µ 7→ dµ + 1
2 [µ, µ] = dµ + µ ◦ µ. This is a

quadratic function. The zero scheme of F (the subscheme of L1 cut out by

F ) is Z(F ) = {µ ∈ L1|dµ + 1
2
[µ, µ] = 0} = MC(L)

closed
−֒−−→ L1. The equation

dµ+ 1
2 [µ, µ] = 0 is called the Mourer-Cartan equation.

Exercise. Prove that µ : A⊗V → V satisfies the MC equation if and only if it
is an action (if and only if it makes V into a graded A-module).

Thus, X = [Z(F )/G] is the quotient stack, the stack of graded A-modules such
that the underlying C vector space is isomorphic to V , modulo isomorphisms
as graded A-modules.

Stability: You want to count the stable points under the G action. You
modify slightly. Consider the torus T = (C×)q·p acting by rescaling on each
Vn for p ≤ n ≤ q. Then P(L1) = L1/T . The group G̃ is

∏q
n=p PGL(Vn) and

[Z(F )/G] ⊃
[(
Z(F ) ⊂ P(L1)

)
/G̃

]
is an open substack. GIT stability of G̃ on

P(L1) gives you a notion of stable points Z(F )Stab. Then X = [Z(F )Stab/G] is
a projective scheme (if there are semi-stable points, it is quasi-projective). ⋄

Exercise. Note that we have {stable sheavs with Hilbert polynomial

p(n)}/ ∼=
Γ∗−→ {A-modules V with HP p(n)}

truncate
−−−−−→ X. Check that Giesecker

stability corresponds to GIT stability.

Deformation Theory

If µ ∈ Z(F ), then TZ(F )(µ) = {ν ∈ L1, d(µ+ εν) + 1
2
[µ+ εν, µ+ εν ] = 0}.

Exercise. TZ(F )(µ) = {ν ∈ L1|dν + [µ, ν ] = 0} = {µ ∈ L1|dµν = 0} where
dµ = d+ [µ,−].

Exercise. Because µ satisfies the MC equation, (dµ)2 = 0.

Over Z(F ), we have the trivial graded vector bundle L, with differential dµ.
Let’s denote this by E , a “perfect complex” on Z(F ). This E descends to X. On
the quotient X, TX(µ) = ker(dµ : L1 → L2)/ im(dµ : L0 → L1) = H1(L, dµ).

Definition 1.6. The higher tangent spaces are T iX(µ) = Hi+1(E|µ) =
Hi+1(L, dµ). ⋄

If µ ∈ Z(F ) (this means that µ makes V into a graded A-module), it makes
EndC V into an A-bimodule by (a, µb)(x) = aµ(bx). Then (L, dµ) is a well-
known thing; it is the Hochschild complex of A′ with values in EndV .

Fact: If E and F are stable sheaves, then ExtiOY
(E, F ) =

ExtiA(Γ∗E≥p,Γ∗F≥p)gr . This is basically Serre’s theorem.
Another fact: ExtiA(Γ∗E≥p,Γ∗F≥p)gr = ExtiA(Γ∗E[p,q],Γ∗F[p,q])

gr.

Another fact: The Hochschild cohomology Hi
(
HC·(A,EndC V )gr

)
=

ExtiA(V, V )gr .
Putting these facts together, we get

Corollary 1.7. T iX(µ) = Exti+1
OY

(E,E) if E is the stable sheaf corresponding
to µ.

Remark 1.8. l≥1[1] with G-action is a dg scheme, and E is the tangent com-
plex of the dg scheme. It is not the tangent complex of X. E∨ has a canonical
map to the cotangent complex LX by obstruction theory. I will not talk much
about this dg scheme structure. ⋄

There was a question. I think F = df is not true.



2 Alessio Corti - Toric stacks 14

2 Alessio Corti - Toric stacks

Today I want to do an introduction to toric stacks. The references: a paper of
BCS and a paper by Fantechi et. al. Unfortunately, if you don’t already know
something about toric varieties, it will be hard to get much out of this. Toric
stacks are a good way to write down examples of stacks, so this is a good way
to learn about stacks.

Definition 2.1. A simplicial stacky fan is a triple (N,Σ, ρ), where N is a
finitely generated abelian group (allowed to have torsion), Σ is a rational sim-
plicial fan in NR, and ρ : Zm → N is a homomorphism with finite cokernel such
that R+ρi are the the 1-dimensional rays of the fan (where ρi are the images
of the coordinate axes of Rm in NR). ⋄

There is an equivalence of categories between stacky fans and toric stacks.
How do you make a stack out of a stacky fan? Let L = ker(ρ : Zm → N). There
is a “Gale dual” sequence

0→ L→ Zm
ρ
−→ N (fan sequence)

L∨ D
←− Z×m ←M ← 0 (Gale dual)

where M = Hom(N,Z), and D has finite cokernel. What is L∨? It is not too

easy; here is the construction. Let Zm
ρ
−→ N· → L· +1

−−→ be a mapping cone ,
so L = L−1. Dualize and take cohomology gives you

0→M → Zm· → H1(L·) =: L∨

So L∨ is a finitely generated abelian group, and it could have torsion.
Fact: L∨ is the Picard group of the corresponding toric stack X .
Think of L∨ as the group of characters on an abelian algebraic group G,

Hom(G,C×). Similarly, Zm is the group of characters of (C×)m. Then X =
[CM//T].

That requires a stability condition. If σ ∈ Σ is a maximal cone (assume
maximal cones are of maximal dimension), then

⊕
i∈σ Zei → N . This leads

to Xσ ⊂ X and open substack. Q: all these things are simplicial . . . one could
contemplate non-simplicial toric stacks, right? AC: sure.

Assumptions: I always assume that the natural map X → SpecH0(X ,OX )
is projective (this is made sense of purely in terms of the coarse moduli space).

In particular, the support |Σ| ⊆ NR is convex. Q: is that convexity condition
equivalent to saying that the map is proper? AC: yes. I also assume that
X is weak Fano, meaning that −KX is nef. Equivalently, ∆(−KX ) is weakly
convex. Q: why do you want to make these assumptions? AC: there are various
issues. The projectivity is needed for the equivariant cohomology is sensible.
It is also needed to make sense of Gromov-Witten theory. The weak Fano
assumption. . . you’ll see.

Example 2.2. X = Pw1,w2 . Then we have

0→ Z
(w1

w2
)

−−−→ Z2 ρ
−→ Z

L∨ = Z
(w1 w2
←−−−− Z2 ←M ← 0

So we have the quotient of (C×)2 by the action. C× → (C×)2, λ 7→ (λw1 , λw2).
⋄

Example 2.3. X = Pw1,w2 . Then

0→ Z
(

w′
1

w′
2
)

−−−→ Z2 (−w2,w1)
−−−−−−→ Z

L′ = Z⊕ Z/gcd(w1, w2), P2,2 = P/µ2 ⋄

Example 2.4. X = 1
3
(1, 1). Then ρ : Z2 → Z2 + 1

3
(1, 1)Z, Z/3Z ← Z2 given

by a+ b← (a, b). X = C2/µ3 where µ3 → (C×)2 is given by ω 7→ (ω, ω) ⋄

Example 2.5. X = P(1, 1, 3), N = Z2 + 1
3
(1, 1)Z. ρ : Z3 → N . Here ρ1 =

(1, 0), ρ2 = (0, 1), and ρ3 = −1
3 (1, 1). Ther are two lattice points of N in the

convex hull of these three. They will play an important role later. ⋄

Some facts:

– Ntors is the generic stabilizer

– the rays determine some divisors; write Ni = {v ∈ N |v ∈ Q+ρi} [[⋆⋆⋆

what is v]]. Then Ni/〈ρi〉 is the stabilizer of Di.
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Enhanced Picard group. Let X be a stack. Define the enhanced Picard group

P̂ ic(X ) of X by the following exact sequence.

0→ P̂ ic(X )→ P ic(X )⊕ ZBox →
⊕

b∈Box

Z/rbZ

So P̂ ic(X ) = {(L,m)|L ∈ P ic(X ), m : Box → Z such that for χ : Bµ → X ,
χ∗L = m(χ)}.

Remark 2.6. If f : X → Y is a representable morphism of stacks, then you
get f∗ : P̂ ic(Y)→ P̂ ic(X ). ⋄

If I have a representable morphism from an orbi-curve f : (Γ, xi(ri)) → X ,

then f has an enhance degree d̂egf : P̂ ic(X) → Z, given by taking (L,m) to
deg(f∗L)−

∑ mi

ri
. Q: have you said what the degree of f∗L is? AC: the degree

is the thing that makes the Riemann-Roch formula work.
Next I have to tell you how to calculate this for toric stacks. If X is a toric

stack, then Box =
⋃
σ∈Σ Box(σ) where Box(σ) = {v ∈ N |v =

∑
i∈σ viρi, 0 ≤

vi < 1}. This is the justification for the name “Box.” We have ρ : Zm → N ; we
augment this go get

0→ L̂→ Zm ⊕
⊕

v∈Box

Z→ N

where the second map takes elements of the box to themselves (in N). It

turns out that P̂ ic(X ) = L̂∗ (dual). So you don’t have to do the complicated
homological algebra from before.

If I have Pr1,r2 , I have a µr1 at zero and a µr2 at infinity, so I have sheaves
like O(k1/r1) and O(k2/r2). I can pull back a line bundle from the coarse
moduli space (P1), you get [[⋆⋆⋆ something something]] with just integers.
Q: what about P1,1? AC: there is no stackiness; there is no box, so I can’t
play the game. Q: what is the enhanced Picard group of this Pr1,r2? AC: we

can do it. We had Z2
(r1

r2
)

−−−→ Z. We have to augment this by the box. In this
case, Box = {−k/r1|0 ≤ k < r1} ∪ {k/r2|0 ≤ k < r2} (I guess for P1,1 you can
choose a random integer, so the augmented Picard group is a line bundle plus
an integer). So the enhanced picard group is the kernel of Z2⊕Zr1 ⊕Zr2 → Z.

MO: is there always a map P̂ ic(X )→ P ic(X ) with kernel ZBox? AC: yes.

Stanley-Reisner rings

Given a stacky fan (Σ, N, ρ), we define SR·R(X ,Q) = Q[Σ]. Explicitly, there are
generators ue, where e ∈ N and e ∈ Σ. The product rule is that ue1ue2 = ue1+e2

whenever e1 and e2 belong to the same cone, and ue1ue2 = 0 otherwise. This
is a graded ring, with grading given by age. So deg ue = a(e). Recall that for
e =

∑
i∈σ aiρi, a(e) =

∑
ai.

Example 2.7. If X = P2, then SRT(P2) = R[u1, u2, u3]/(u0u1u2). You can
think of the ring SR as the ring of polynomial functions on the polytope. ⋄

Take R = Sym·M as the “base ring”. Then SR is an R-algebra. An element
m ∈M maps to

∑
〈ρi, m〉ρi ∈ SR1.

Facts:

1. SR·
T

= H·orb,TX is the T-equivariant orbifold cohomology of X .

2. SRT ⊗
Sym·M Q = H·orbX .
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2 Valery Alexeev

Fix a weight β = (b1, . . . , bn) (rational numbers 0 < bi ≤ 1).

Definition 2.1. A stable pair is (X,B =
∑
biB) where X is projective con-

nected reduced, and Bi are Weil divisors such that

1. (on singularities) slc

2. (numberical) KX +B ample

A stable map is f : (X,B) → Z satisfying two conditions; the first are the same,
and the second is changed to saying that KX + B is ample over Z (e.g. if the
map is finite, this is a non-condition). ⋄

Ideal theorem: Fix a dimension, β, and some other invariants, then there
exists a projective moduli space M of stable maps.

Example 2.2. The weighted moduli spaces Mg,β due to Hassett. This is
indeed a projective smooth stack. If g = 0, it is a fine moduli space (i.e. it is a
smooth projective variety). ⋄

The goal is to generalize to higher dimensions. We’ll sometimes use this
dream theorem for inspiration.

When you talk about moduli spaces, you need a functor. The minimal condi-
tion is that you look at flat families. Here you have to be more careful because
the Bi are only Weil divisors, not Cartier divisiors. We’ll be more careful about
this later.

Let’s review the dimension 1 case again. What does the mysterious condition
slc mean for curves? (X,B) is a curve with points, then

1. (slc) when {Bi|i ∈ I} coincide,
∑

i∈I bi ≤ 1.

2. (numerical) for all irreducible components E ⊆ X, deg(KX + B)|E > 0.
This degree is 2p0(E) − 2

∑
Bi⊆E 1 +E(X − E).

What is the definition of slc in higher dimensions? () You should require that in
codimenison 1, it is at worst nodal. This already implies that it is Gorenstein
in codimension 1, so you have the notion of ωX . () You also require that
the Bi do not contain the components of the double locus. () We ask that
[ω⊗N
X (N

∑
biBi)]

∨∨ be invertible. This allows us to talk about KX +B; it will

be a Q-Cartier divisor. Next, you can take a normalization, in which you will
have the divisors Bi and the double locus. () We would like to require that
(Xν , Bν + (double locus)) is lc. We’re almost done. (4) We ask that X is (S2)
(Serre condition 2, which is normal minus R1).

The other condition is dlt, which is better than lc because it implies Cohen-
Macaulay, and lc only implies normal. Similarly we may want sdlt, which would
imply Cohen-Macaulay, whereas slc only implies S2. I will not give a definition
of sdlt, but there is a reasonable candidate.

Stable toric varieties

I use the word stable by analogy with stable curves; some people use the word
“broken” toric varieties, which kind of gives you an idea of what they are.

(TV) the segment is the polytope for P1. (STV) two intervals glued at ends
should be two P1’s meeting at a point. (TV) square is P1 × P1, triangle is
P2. Triangle with corner cut is BlptP

2. With two corners cut is is the blow-up
at two points; one curve can be blown down to get P1 × P1. (STV) [[⋆⋆⋆

picture]] If we glue two triangles to two adjacent edges of a square, that is two
P2’s glued to a P1×P1 along a couple of P1’s, and all three of these intersect at
a point. There is a 1-parameter family where this guy is a limit of P2’s . . . you
“break” two corners of the triangle and leave them hinged.

(TV) In toric geometry, there is a correspondence. Fix a lattice Λ ∼= Zr and
a torus T = (C×)r (you don’t have to work over C, but I will for simplicity).
Then there is a correspondence between {integral polytopes with vertices in
Λ} and {(X,L) polarized linearized toric variety} (X normal projective toric
variety and L is an ample line bundle with T action). Q: does toric variety
mean normal. VA: yes, I do require normal.

(STV) To ∆ =
⋃
Pα ∈ {coplex of integral polytopes} we associate an element

of {family of (X,L) polarized STV}. Stanley-Riesner varieties are the ones that
come from breaking a polytope, but you can have two triangles joined at a vertex
or multiple edges between two vertices. H0(∆,Aut) = Aut(X). Something is

parameterized by H1(∆,Aut). We have C0 → C1 ∂
−→ C2. In our example,

C1 = C× ⊕C×, C0 = (C×)2 ⊕ (C×)2 ⊕ (C×)2, C2 = 0, and the first homology
is zero.

Example 2.3. [[⋆⋆⋆ picture: triangle in a triangle; corresponding vertices
joined]] Here, we will get H1 = C×. ⋄
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In a huge class of examples, the varieties I get are slc.
Our first example [[⋆⋆⋆ two triangles on a square]] the topological space

|∆| is a manifold with boundary. This implies that X is Cohen-Macaulay.

Example 2.4. [[⋆⋆⋆ picture: two triangles glued at a vertex]] is not S2 and
not CM. ⋄

Consider the variety [[⋆⋆⋆ first example; two triangles on a square]], with
the three boundary edges are B1, B2, and B3.

Lemma 2.5. (X,
∑
Bi) is slc and KX +

∑
Bi = 0.

Proof. It is S2 because it is CM. The next condition is to look at the normal-
ization which is [[⋆⋆⋆ picture: break off the hinged parts]] and check that
you get lc.

Now condier adding an additional divisor [[⋆⋆⋆ picture]]. This is a tropical
picture

Lemma 2.6. (X,
∑
Bi + εBn+1) is slc if and only if Bn+1 does not contain

any T -orbits.

The proof is the same. When you break off the hinged parts, the extra divisor
is a line that intersects each of the other lines (on the boundary) at one point
each.

We either work with all weights 1, or with a bunch of 1’s and an ε. The 1’s
correspond to the boundary and the ε corresponds to an ample Cartier divisor.

Definition 2.7. A stable toric variety over Z is as follows. We have a torus
T = (C×)r acting on PN (r < N), and in PN , we have a closed T -invariant
subvariety Z. We define a stable toric variety over Z to be a finite morphism
f : X → Z from a stable toric variety X. ⋄

Theorem 2.8 (main theorem). Fix ∆. Then there exists a projective moduli
space (which is a scheme) of stable toric varieties over Z, MT (Z,∆).

The theorem is much more general; this corresponds to the multiplicity-free
case. Doesn’t have to be a torus; you can do it for spherical varieties. The
proof is in one of my papers with . . . . I won’t try to give the proof.

How is this different from the toric Hilbert scheme? In that case, you’d look
at subschemes of Z. These would normally be non-reduced and non-normal. I
insist that we work with nice normal S2 toric varieties. Why can’t I just restrict
to the reduced case?

Example 2.9. {tx0x2 − x2
1 = 0} is a family (the parameter is t). As t → 0,

in Hilb, we get x2
1 = 0, a double line. In MT , you break the P1 segment by

removing a point. This somehow says that the map to P2 is a 2-to-1 map, not
an embedding. ⋄

1-parameter degenerations

I have the curves Xt from the previous example, with mapsXt → P2, and I have
f∗O(1) = Lt, and a morphism

⊕
H0(P2,O(d))→

⊕
H0(Xt, L

d
t ). H

0(OP2(1))
has a basis x0, x1, x2 (corresponding to the two endpoints of the segement and
the one in the middle). Fix isomorphisms (Xt, Lt) ∼= (P1,O(2)). Then the map
H0(OP2(1))→ H0(Xt, Lt) is given by xi 7→ tδi,1ei. To compute the limit (how
to break the picture), you take the lower convex hull of the height function and
project the linear parts down. This is how you prove that every family has a
unique limit point.

You have this height function h. You can take the discrete Laplace dual.
Every face will correspond to a point in the dual space. Dimension 1 is too
small, so let’s do a 2-dimensional picture.

[[⋆⋆⋆ picture big triangle breaking into our first example]] This should be
the projection of some height function. The height function is defined on the six
lattice points. If you take the discrete Laplace dual, you get [[⋆⋆⋆ tropical
picture: trivalent tree to depth 2]]. This is trop(ft : (X,L)t → Z). If you take
a different family, you may still get the same limit, but the tropical thing will
change.

So far, I have stable toric varieties over Z. The MMP interpretation is that
(X,

∑
Bi)→ Z is stable map. I proved that this is slc and the other condition.

Here, we have all weights are 1. Stable toric pairs (X,D) will have weights all
1’s and an ε. This is a special case of the previous on. If we have L = OX(D),
we get φ|H0(X,L)|∗ : X → PN = Z ⊃ H = {x0 + · · ·+ xn = 0}, then D = f∗H .

Conclusion for today: there is a moduli space of stable toric varieties. I used
MMP here for motivation, but then independently on constructs this moduli
space. I will use this in the later lectures in two ways. Tomorrow I’ll describe
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higher dimensional generalizations of one of the guys. On Friday, I’ll consider
the compactification of the moduli space of abelian varieties, and this will cor-
respond to stable toric pairs.

When you look at 1-parameter degenerations, they are described by height
functions. How many height functions do you have (if you allow real heights)?
It looks like Rm. You can say that two heights are equivalent if they give
you the same subdivision. This gives a fan on Rm. This defines a secondary
toric variety. the main component of MT (Pn, D) is a possibly non-normal toric
variety and its normalization is this guy.
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2 Martin Olsson

Recall that we have the category of log schemes, logSch, whose objects are
pairs (X,MX), where X is a scheme and MX is a sheaf of monoids with a
map of sheaves of monoids α : MX → OX such that α−1(O×

X) → O×
X is an

isomorphism. A morphism (X,MX) → (Y,MY ) is a morphism of schemes
f : X → Y and a map f♭ : f∗MY →MX .

The goal for today is to say something about differentials. I want to explain
how to do algebraic differential geometry in this category.

Definition 2.1. A morphism (f, f♭) : (X,MX) → (Y,MY ) is strict if
f♭ : f∗MY →MX is an isomorphism. ⋄

You should think of strictness as the anology of being a closed immersion.
Consider the diagram (with all log structures integral, to be careful)

(T0,MT0)� _

jJ

��

a // (X,MX)

��

(T,MT )
b

//

g
88q

q
q

q
q

(Y,MY )

(∗)

If T0 →֒ T is a closed immersion defined by ideal J , with J2 = 0 and j is strict
(sometimes called a log closed immersion with J2 = 0), we’re interested in filler
arrows.

First let’s fix two filler arrows g1 and g2. The difference should correspond
to a derivation. Let me remind you how that goes. T0 and T have the same
“étale topological space” (by which I mean that they have equivalent categories
of étale sheaves). I have the diagram of sheaves of algebras

a−1OX

g1
##H

H
H

H
H

g2

##H
H

H
H

H
// OT0

b−1OY

OO

// OT

OO

⊃ J

Then g1−g2 : a−1OX → J is a derivation ∂g1−g2 : a−1OX → J . In our situation,

we also have the log structures

a−1MX

g1
$$H

H
H

H
H

g2

$$H
H

H
H

H
// MT0

b−1MY

OO

// MT

OO

⊃ 1 + J

with (1 + a)(1 − a) = 1.

Lemma 2.2. MT |1+J
∼
−→MT0

Proof.

1 + J ⊂ O×
T

��

� � // MT

!!CC
CC

CC
CC

C

��

O×
T0

// MT0

·
// OT0

I get a map Dg1−g2 : a−1MX → J such that for every section m ∈ a−1MX , we
have g1(m) = (1+Dg1−g2(m))+g2(m). You have to check that this is actually
additive. Passing to the associated groups, we getDg1−g2 : a−1Mgp

X → J . There
is a map of diagrams going from the log structures to the sheaves of rings. (1)
That means that for every local section m ∈ a−1MX ,

a#(m)Dg1−g2 (m) = ∂g1−g2 (α(m))

where a# : a−1MX
α
−→ a−1OX → OT0 . That is, we want to say

Dg1−g2(m) =“d log(αm)”. (2) Dg1−g2 |b−1MY
= 0.

Remark 2.3. Dg1−g2 determines ∂g1−g2 . ⋄

Define Ω1
(X,MX )/(Y,MY ) :=

Ω1
X/Y ⊕(OX⊗ZM

gp
X )

I
where I is the OX -submodule

generated by

(i) (dα(m), 0)− (0, α(m)⊗m)

(ii) (0, 1⊗m) where m ∈ im(f−1MY →MX).
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Summary: if a dotted arrow filling in (∗) exists, then the set of such g is a
torsor under Hom(a∗Ω1

(X,MX )/(Y,MY ), J). I explained one direction (that any

two maps differ by an element of this Hom). You have to check that if you add
an element of the Hom to a given filler, then you get another filler.

There are two approaches you could take. I wanted to be very explicit and
write down the formula for this Ω1, but it is completely characterized by this
property (you do the construction to prove existence, but then you never care
about the formula again). The point is that you have a nice sheaf with this
nice property.

Example 2.4. Say P is a fine monoid, k is a field. Let’s compute
Ω1

Spec(P→k[P ])/k , where k means Spec k with the trivial log structure (mean-

ing the monoid O× with the inclusion; this is the initial object in the category
of log structures). we have

(T0,MT0)
a //

j

��

Spec(P → k[P ])

��

(T,MT )
b

//

g
77n

n
n

n
n

n

(Spec k, k×)

From last time, a corresponds to a map γ0 : P → Γ(T0,MT0). A g would
correspond to γ : P → Γ(T,MT ). If we fix one such γ, another map g′ would
correspond to a map γ′ of the form γ + ρ, where ρ : P → Γ(T, 1 + J), which is
exactly the same as a map ρ : P gp → Γ(T0, J). The universal property implies
that Ω1

Spec(P→k[P ])/k
∼= OSpec k[P ]⊗ZP

gp (using the universal property of tensor

product). ⋄

In general, there is a derivation d : OX → Ω1
(X,MX )/(Y,MY ). One way to see

that is that there is a map OX → Ω1
X/Y → Ω1

(X,MX )/(Y,MY ). [[⋆⋆⋆ I missed

the other explanation]]

Example 2.5. P = Nr , so Spec k[P ] is Ark. We have that Ω1
Spec(P→k[P ])/k =

OAr ⊗Z Zr. Maybe that’s not so interesting, but let’s think about what is
d. You have the standard generators for Nr; call the corresponding variables
x1, . . . , xr. Then

d : k[x1, . . . , xr]→ k[x](1⊗ e1)⊕ · · · ⊕ k[x](1⊗ er)

⋄

Exercise. d(xi) = xi(1⊗ ei). That is, we can think of 1⊗ ei as dxi/xi.

Fact 1: if (X,MX)→ (Y,MY ) is strict, then Ω1
(X,MX)/(Y,MY ) = Ω1

X/Y . Fact 2:

if (X,MX) and (Y,MY ) are fine (which means that étale locally, they are the
associated log structure to the prelog structure coming from some fine monoid),
then Ω1

(X,MX )/(Y,MY ) is quasi-coherent and is coherent if locally noetherian and
f is of finite type.

Depending on how you learned algebraic geometry, the whole theory of differ-
entials either goes through, or it seems very mysterious. Hopefully, you learned
by following SGA1 or EGA. The point is that this lifting property is what you
need to develop most of the theory of differentials.

Definition 2.6. A morphism f : (X,MX)→ (Y,MY ) is log smooth (or smooth,
if there is no confusion about what category we’re in) if X → Y is locally of
finite presentation and for every diagram (∗) (reproduced below) of solid arrows

(T0,MT0)� _

jJ

��

a // (X,MX)

��

(T,MT )
b

//

g
88q

q
q

q
q

(Y,MY )

(∗)

there exists étale locally on T a dashed arrow. ⋄

Remark 2.7. The definition of log étale can be obtained by requiring that the
dashed arrow is unique. This is equivalent to log smooth plus Ω1

(X,MX )/(Y,MY ) =
0. ⋄

Example 2.8. (Y,MY ) = (Spec k, k×) and (X,MX) = Spec(P → k[P ]),
where P is fine.

MT0
// P

g}}z
z

z

MT

OO

I have

0 // 1 + J // M
gp
T

// M
gp
T0

// 0

P

OO

g

bbF
F

F
F

F
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pull back to get an exact sequence

0→ 1 + J → E → P gp → 0

If P gp is a free group, then I can split this. If the torsion of P is invertible in
k, then something. The upshot is that Spec(P → k[P ]) → (Spec k, k×) is log
smooth if and only if the order of (P gp)tors is invertible in k. ⋄

Example 2.9. Take X = Spec k[x1, . . . , xn]/(x1 . . . xr) =
Spec k[Nr][xr+1, . . . , xn] ⊗∆,k[N],β k, where ∆: N → Nr is the diagonal
map and β : N → k is given by n 7→ 0n. MX is the log structure associated to
Nr → OX and Mk = k× ⊕N → k given by (u, n) 7→ u · β(n).

The claim is that (X,MX)→ (Spec k,Mk) is log smooth. This is good news
from the point of view of moduli because it means that we will get log smooth
things on the boundary.

Why is the claim true? Consider the case n = r to not be too confusing

(T0,MT0)� _

j

��

a // (X,MX)

��

(T,MT )
b

//

g
88q

q
q

q
q

(Y,MY )

↔ MT0 Nroo

}}z
z

z
z

MT

OOOO

N

∆

OO

oo

you pick any lift on the right, then the diagram doesn’t commute, but it com-
mutes up to a unit, so you change something a little bit.

The same argument show that Ω1
(X,MX )/(Y,MY ) is a free module on generators

dxi/xi modulo the relations
∑r

i=1 dxi/xi = 0. ⋄



3 Tom Bridgland 22

3 Tom Bridgland

I want to start by correcting a mistake in a calculation from yesterday. Re-

member I wanted to compute I(1φss) =
∑

n≥0
x[S⊕n ]

|GLn(q)| , but it is not true that

x[S⊕n] = q
1
2n(n−1)(x[S])n because xα ∗ xβ = q−χ(β,α)xα+β. So we actually get

I(1φss) = Φ(x[S]), where Φ(x) =
∑

n≥0
qn(n−1)/2

|GLn(q)| x
n =

∑
n≥0

xn

(q−1)···(qn−1)

Triangulated categories

Let D be a triangulated category (e.g. D = DbCoh(X)).

Definition 3.1. A heart (of a bounded t-structure) is a full subcategory A ⊂ D

such that

(a) HomD(A1, A2[k]) = 0 for all Ai ∈ A and k > 0, and

(b) for all E ∈ D, there exists integers k1 > · · · > kn and triangles Ei →
Ei+1 → Fi → Ei[1] with E0 = 0 and En = E with Fi ∈ A[ki].[[⋆⋆⋆ add
diagram?]] ⋄

Remark 3.2. Condition (a) implies that the “filtration” in (b) is unique. The
argument is the same as the argument for uniqueness of the HN filtration. ⋄

Remark 3.3. If we define D≤0 = {E ∈ D|ki ≥ 0 for all i} (this is an unavoid-
able clash in notation) and D≥1 = {E ∈ D|all ki ≤ −1}. Then (D≤0,D≥1) a
bounded t-structure. Conversely, given a bounded (non-degenerate) t-structure
(D≤0,D≥1), we can define A = D≤0 ∩ D≥1[1]. ⋄

Example 3.4. The inclusion of an abelian category in it’s derived category,
A ⊆ Db(A), is a heart. Part (a) comes from the fact that there are no negative

Ext’s, and part (b) comes from truncations. Define τ≤i(· · ·Ei
di

−→ Ei+1 · · · ) =
(· · ·Ei → ker di → 0 · · · ). Then you get triangles τ≤i−1(E) → τ≤i(E) →
Hi(E)[−i]→, and because we have a bounded derived category, we finish. ⋄

So a triangulated category is a floppy thing (it could be the derived category
of many different things, for example), and a t-structure rigidifies it.

Remark 3.5. If A is an abelian category which is a heart, then D 6∼= Db(A) in
general. In fact, you don’t even have a map in general. This has to do with the
fact that Extn is generated by Ext1 for an abelian category. ⋄

What does Db(P1) look like? The sheave on P1 look like

· · · O(3) O(1)

||||xxxxx
xxx

· · ·

}}}}{{
{{

{{
{{

{

· · · O(2)

OOOO

O

OOOO

But then you get all the shifts of this picture (think of this as a frame in a
film strip). But you can take all the O(−n) and O(n)[1] as another heart.
This category A is equivalent to the category of representations of the quiver
(• ⇉ •). In general, your derived category doesn’t natually sit in a filmstrip
like this and you have to pick a direction to slice it.

Definition 3.6. A stability condition on D is a heart A ⊆ D together with a
stability condition Z : K(A)→ C on A. ⋄

I’ve just combined two things that don’t look like they have anything to
do with eachother. They both involve filtrations. I’ll give you an alternative
definition which is more symmetric.

Remark 3.7. A triangulated category also has a Grothendieck group K(D),
the free abelian group on isomorphism classes, modulo the relation [B] = [A] +
[C] when there is a triangle A→ B → C →.

Note that rotating the triangle, we can compute that [E] = −[E[1]]. Also
note that if A is a heart, then K(A)

∼
−→ K(D). ⋄

Definition 3.8 (Alternative). A stability condition on D consists of a group
homomorphism Z : K(D)→ C (usually called central charge) and full subcate-
gories P(φ) ⊆ D for all φ ∈ R satisfying

(a) Z(P(φ)) ⊆ R>0e
iπφ

(b) P(φ)[1] = P(φ+ 1)

(c) φ1 > φ2 and Ai ∈ P(φi) implies HomD(A1, A2) = 0, and
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(d) for all E ∈ D, there exist φ1 > · · · > φn and triangles Ei−1 → Ei → Fi →
such that E0 = 0 and En = E with Fi ∈ P(φi). ⋄

If you’re familiar with t-structures, a t-structure is where you have filtrations
like this with φi integers. This is some kind of more refined thing.

Proof (equivalence of definitions). Given the heart A ∈ D and Z : K(A) → C,
we get P(φ) ⊂ A for 0 < φ ≤ 1. Axiom (b) gives P(φ) for all φ ∈ R. (c) is
easy because we know it when φi ∈ (0, 1] and because of the axioms of a heart.
Finally, the filtrations in (d) will come from combining the filtrations from the
t-structure with Harder-Narasimhan filtrations. If you want to understand this,
you should check it carefully.

To go the other way, how do we define a heart from these data. As usual,
(c) tells us that the filtrations in (d) are unique up to isomorphism. For any
interval I ⊂ R, define P(I) = {E ∈ D|φi ∈ I for all i}. Now set A = P((0, 1]).
(c) and (d) imply that this is a heart. If you think about it, you see that Z is
a stability condition on A by (a).

The later definition is actually much more symmetric. Choosing a heart is
a choice of P((0, 1]). But there is no reason to choose 0. Every P((α, α + 1])
defines a heart. Q: in this particular case, is the triangulated category always
the derived category of any heart? TB: I don’t think so; let’s discuss this after
lecture.

Technical point: If I ⊆ R is an interval of length less than 1, then P(I) is
not abelian, but there is still a notion of short exact sequences. A short exact
sequence is just a triangle A → B → C → with A,B, C ∈ P(I). If you’re
categorically inclined, you might not like that this is not intrinsic. There is an
intrisic version. P(I) is a quasi-abelian category.

Definition 3.9. A stability condition is locally finite if there is an ε > 0 such
that for all φ ∈ R, P(φ+ ε, φ− ε) is finite length (i.e. noetherian and artinian).
Here a subobject is something that fits into an exact sequence, not just a
categorical subobject. We write StabD for the set of locally finite stability
conditions on D. ⋄

Theorem 3.10. There is a natural topology on StabD such that every con-
nected component Stab∗ D ⊆ StabD, there exists a linear subspace V ⊆
HomZ(K(D),C) with a linear topology such that Stab∗ D → HomZ(K(D),C),

given by (Z,P) 7→ Z, is a local homeomorphism onto an open subset of V . In
particular, StabD is a (possibly infinite dimensional) complex manifold.

This tells you that deformations of Z lift uniquely to deformations of the
whole stability condition. Note that as Z changes, the t structure changes.

Remark 3.11. In practice, we insist that Z : K(D) → C factors via a fi-
nite dimensional quotient. For example, if D = DbCoh(X) for X smooth
and projective over C, we insist that Z factors through the chern character
ch : K(D)→ H∗(X,Q). If we make this constraint, then StabD is finite dimen-
sional. ⋄
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Remember last time I constructed the moduli space X of stable sheaves on a
Calabi-Yau 3-fold. It was MC(L)st/G. I want to give some justfications for
going through that construction:

1. It is a direct construction, avoiding the Quot scheme.

2. It gives X as a differential graded scheme. Let W = L≥1[1], and let
A = SymW ∗ (this is the graded symmetric algebra). Define a derivation
Q : A → A by defining it on generators: Q : W ∗ → SymW ∗. Make it by
summing two parts, Q1 : W ∗ →W ∗, the dual of d : L→ L, and Q2 : W ∗ →
Sym2W ∗, the dual of the Lie bracket.

Exercise. d2 = 0, d is a derivation on the Lie bracket, and Jacobi identity
are equivalent to the single condition that Q2 = 0.

(A, Q) is a differential graded algebra, and G acts on this. A0 = SymL1∗

and A is an A0-module, with Q A0-linear. Then A is a sheaf of differential
graded algebras on L1. G acts on it, so it descends to a sheaf on M =

L1 Stab/G. You have (· · ·
Q
−→ A−1 Q

−→ A0), and you get that h0(A, Q) =
A0/QA−1. You can check that Spec(A0/QA−1) = MCStab(L) = Z(F ).
Then X = Spec h0(A)/G.

We will need this differential graded stuff for “categorification”, which has
not yet been worked out.

It is not easy to write down a category of dg schemes, for which you need
some heavy duty homotopy theory. The underlying classical scheme has
a universal property and it has a tangent complex that gives the right
deformation theory.

3. Indoctrination. These days, differential graded Lie algebras show up a lot
in deformation theory in characteristic zero (Manetti). I’m convinced that
eventually, differential graded Lie algebras will take over moduli theory. If
you find a finite dimensional dg algebra, you get a global moduli space.
You really should always construct moduli spaces as MC(L)/G for some
dg Lie algebra L. One very popular differential graded Lie algebra is the
Dolbeout Lie algebra. Take Ω0,∗(Y,EndOY (E)), so L1 are ∂ operators,

MC is integrability, and G is the guage group. To construct stuff this way,
you have to do infinite dimensional stuff which is not very algebraic.

4. Replace V by a graded vector space (different from the grading it already
has) V = V −1⊕V 0. Ln =

⊕
i+j=nHom(A⊗i,EndjC(V )). You get a doubly

graded dg Lie algebra.

Maybe you get a moduli of complexes over derived category objects. I have
no idea if this works, but if you’re looking for a research problem, I think
this might be promising. If you do, let me know about it so that we avoid
duplication of research.

3. The virtual fundamental class

The basic setup that is called the toy model is as follows. M is smooth variety
over C. E/M is a vector bundle, s ∈ Γ(M,E), and X = Z(s) (we hope that
this is our moduli space). We can draw this as a cartesian square

X //

��

·
M

s

��

M
0 // E

In this case, [X]vir is what Fulton calls the localized top chern class of E,
0!
E|X [CX/M ] ∈ AdimM−rkE(X), defined as follows. If I is the ideal sheaf of X

in M , cX/M = Spec
⊕
In/In+1. CX/M →֒ E|X →֒ E is a scheme of cones over

X. Something C×-action flow to ∞. You can multiply a section by an element
of C× and you can let it go to ∞ to get a cone on X [[⋆⋆⋆ picture getting
vertical lines on the zeros of the section s]]. All of this is explained in Fulton’s
book on intersection theory. CX/M is pure dimension of the same dimension as
M .

E∨ s∨
−→ OM , and by definition, the image is the ideal sheaf I of X in M .

Restricting to X, we have the diagram of sheaves on X

E∨|X
s∨ ��

// ΩM |X = F ∈ D(OX)

I/I2 “d” // ΩM |X = τ≥1LX ∈ D(OX)
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ΩM |X in the derived category is perfect of amplitude in [−1, 0]. The bottom
row in the derived category is completely intrinsic to X, τ≥1LX . Let F be the
top row., φ : F → τ≥1LX in D(OX) has properties: (1) h0(φ) is an isomorphism
(2) h−1(φ) is an epimorphism. This is called a “perfect obstruction theory” on
X.

Theorem 2.1. (1) [X]vir depends only on the perfect obstruction theory F →
τ≥1LX . (2) F → τ≥1LX defines [X]vir.

Now I’ll try to explain how this fits into our example. Remember we have
MCst(L) →֒ (L1)st and G acts. I’m going to define G′ = G/C×. The C× acts
trvially, so the quotient will be a stack even if I pass to the stable locus, so I
get rid of it to get a scheme by taking the quotient by G′. So we have

MCst(L)/G′ � � // (L1)st/G′

X
� � // M

Graded trivial vector bundle on L1: L0 → L1 dµ

−→ L2 → L3, where dµ =
d+ [µ,−] for µ ∈ L1. It is easy to check that (dµ)2 = 0 if and only if µ ∈MC.
This descends to M to give a vector bundle on M and dµ. At µ ∈ X, we get
a complex, the Hochschild chain complex HC·(A,Endµ

C
(V )), which computes

ExtiOY
(Eµ, Eµ).

Now use Serre duality and CY3 condition (for the first time) to get a perfect
pairing

ExtiY (E,E)⊗ Ext3−i(E,E)→ C.

You also use stability to conclude that Ext0Y (E,E) = C. This implies that
Ext3Y (E,E) = C. It also says that Ext2Y (E,E) = Ext1Y (E,E)∨ and everything
else vanishes.

Now assume also that H1(Y,O) = H2(Y,O) = 0. Many people put this in
the definition of a Calabi-Yau manifold. Under this assumption, H1(Y,O) = 0
means that there are no deformations of line bundles, so if you have the correct
Hilbert polynomial, your determinant is automatically trivial. Of course, there
is still a choice of isomorphism, given by C×, which we’ve already made up
for. So in this case, our X is the moduli of sheaves with trivial determinant.
Basically, by changing the group slightly, we killed Ext0. To preserve symmetry,
we will kill Ext3. Replace (L·, dµ) on X by τ[1,2](L·, dµ). Before truncation,

(L·, dµ) = RHom(E,E). Once I truncate, I get τ[1,2](L·, dµ) = RHom(E,E)0,

the so-called “traceless ext”. We’ve replaced (L, dµ) by
(
L1/dL0 → ker(L2 →

L3)
)
.

Lemma 2.2. W 0 = L1/dL0 and W 1 = ker(L2 → L3) are vector bundles on
X.

So my perfect object is F = (W 0 dµ

−→ W 1). It is actually not difficult to see
that W 0 ∼= TM |X .

W 0
dµ

// W 1

TM |X

≀

OO

// NX/M

OO W 1∗ //

��

W 0∗

=

��

I/I2 // ΩA/X

The map NX/M → W 1 is induced by F . f section of L2 over L1 is a section
of W 1. The diagram is dual to the one on the right, which is the map F down
to τ≥1LX . CX/M →֒ NX/M →֒W 1. Check that [X]vir = 0!

W1 [CX/M ] ∈ A0(X).
So #virX is the proper pushforward to ∗.



3 Martin Olsson 26

3 Martin Olsson

Last time, I introduced the notion of log smoothness. A morphism (X,MX)→
(Y,MY ) is log smooth if it is locally of finite presentation and for every T0 ⊆ T
defined by a square zero ideal with j strict, there is a filler arrow g.

(T0,MT0)� _

jJ

��

a // (X,MX)

��

(T,MT )
b

//

g
88q

q
q

q
q

(Y,MY )

Classically, to be smooth, it is the same as saying that the morphism is étale
locally affine space over the base.

Theorem 3.1 (Kato’s structure theorem). Let f : (X,MX) → (Y,MY ) is a
morphism of fine log structures and assume β : Q→ Γ(Y,MY ) is a chart. Then
the following are equivalent:

1. f is log smooth.

2. étale locally on X, there is a chart P → Γ(X,MX) and a map of monoids
θ : Q→ P so that

P // MX

Q

θ

OO

// MY

OO

such that (i) ker θgp and the torsion part of coker(θgp) have order invertible
on X, and (ii) the natural map X → Y ×Spec Z[Q] Spec Z[P ] is étale.

Exercise. (2)⇒(1). The other direction is harder.

Loosly speaking, being log smooth means you’re toric.

Corollary 3.2. Suppose (B0,MB0) →֒ (B,MB) is a strict closed immersion (of
fine log schemes) defined by a nilpotent ideal, and (X0,MX0 )→ (B0 ,MB0) is log
smooth. Then étale locally on X0, there exists a log smooth lifting (X,MX)→
(B,MB) (i.e. this morphism is log smooth) such that

(X0 ,MX0

� � strict //

��

·
(X,MX)

��

(B0,MB0)
� � // (B,MB)

If you know about deformation theory of smooth schemes, this is very promis-
ing.

Remark 3.3. In general, when you do deformation theory, you really want the
underlying morphisms of schemes to be flat. The underlying morphisms of log
smooth morphisms need not be flat. This can be problematic. ⋄

Definition 3.4. A map of fine monoids θ : Q→ P is called integral if the map
on monoid algebras Z[Q]→ Z[P ] is flat. ⋄

If you write out the equational condition for flatness of a map of rings, this
is the following condition. For every p1, p2 ∈ P and q1, q2 ∈ Q such that
p1+θ(q1) = p2+θ(q2), there exists p ∈ P and q3, q4 ∈ Q such that p1 = p+θ(q3),
p2 = p+ θ(q4), and q1 + q3 = q2 + q4.

A map of fine log schemes f : (X,MX) → (Y,MY ) is integral if for every
geometric point x → X, the map on monoids MY,f(x)/O

× =: MY,f(x) →

MX,x := MX,x/O×.
Being integral has nothing to do with being an integral scheme. It means it

is universally integral in the category of monoids (i.e. any pushout remains an
integral monoid).

Fact: If (X,MX)→ (Y,MY ) is log smooth and integral, then X → Y is flat,
and in (2), you can take Q→ P to be an integral morphism.

Remark 3.5. In the corollary, if (X0,MX0)→ (B0,MB0) is integral, then any
lifing (X,MX) → (B,MB) is also integral. MX0 = MX/1 + J , so when you
quotient out by O×, they are the same. So if you have a log smooth integral
morphism, then its log smooth deformations are automatically integral. ⋄

Q:The property of being integral is stbale under pullback? MO: yes.
Setup: Start with a strict closed immersion defined by square zero ideal J

and (X0,MX0)→ (B0,MB0) log smooth integral.

(X0,MX0)
� � //___

f0

��

·
(X,MX)

��
�

�

�

(B0,MB0 )
� � // (B,MB)

We will call an extension a log smooth deformation.
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1. étale locally on X0, there is a log smooth deforamtion,

2. Given an (X,MX), the automorphism group is given by
Hom(Ω1

(X0,MX0)/(B0,MB0), J ⊗ OX) = TX0/B0
(log) ⊗ J . The point is

that any dashed arrow

(X0,MX0) //

��

(X,MX)

��

(X,MX)

88q
q

q
q

q
� � // (B,MB)

Then 0→ J ⊗OX0 → OX → OX0 → 0. Any morphism is an isomorphism
and . . .

3. Any two log smooth liftings are étale locally isomorphic

(X0,MX0 ) //

��

(X′,MX′)

��

(X,MX)

88p
p

p
p

p
p

// (B,MB)

So the stack of log smooth deformations is a gerbe.

Theorem 3.6. (1) there is a canonical obstruction η ∈ H2(X0, TX0/B0
(log)⊗J)

such that η = 0 if and only if there exists a log smooth deformation. (2)
if η = 0, then the set of log smooth deformations form a torsor under
H1(X0 , TX0/B0

(log) ⊗ J). (3) the automorphism group of any deformation is
isomorphic to H0(X0, TX0/B0

(log) ⊗ J).

Part (3) is the universal property of differentials. Q: is this false if the map is
not flat? MO: I think you run into trouble; the kernel won’t be J ⊗OX . You
can make some statement if you’re over the dual numbers.

Let me tell you what the obstruction is. It’s exactly how it is if you read about
ordinary smooth deformations in SGA1. For simplicity, let’s assume that X0 is
separated. First, choose an (étale) covering U = {Ui} of X0 and choose liftings
(Ũi,MŨi

) → (B,MB) of (Ui,MUi). Now we try to patch them together. We

have (Uij ,MUij) →֒ (Ũi|Uij ,MŨi
|Uij) and (Uij ,MUij) →֒ (Ũj|Uij ,MŨj

|Uij). By
the comment and cohomology of a quasi-coherent sheaf vanishes, we know that

there is an isomorphism θij : (Ũi|Uij ,MŨi
|Uij) → (Ũj |Uij ,MŨj

|Uij) . But now

we we need to satisfy a cocycle condition ∂ijk = θij+θjk−θik ∈ TX0/B0
(log)⊗J

(everything restricted to Uijk).

Exercise. {∂ijk} is a Cech 2-cocycle.

η is the corresponding cohomology class. You can check that η is a boundary
if and only if we could have chosen our θ’s better so that ∂ijk = 0.

Now let’s apply this to some examples. Probably, you really just care
about schemes, so let’s just start with a scheme. Suppose k is a field, and
X0 → Spec k is some scheme we’re interested in. Suppose that étale locally,
X0 = Spec k[x1, . . . , xn]/x1 · · ·xr. Let Mk be the log structure on k given by
k× ⊕ N → k given by (u, n) 7→ u · 0n. Question: When does there exist a
log structure MX0 and a morphism (X,MX0 ) → (Spec k,Mk) which locally is
“the standard one” (one of the examples from before)? You view your X0 as
(k⊗k[N]k[N

r])[xr+1, . . . , xn] and you get a natural log structure which we call the

standard one. Answer: d-semistability: when the line bundle Ext1(Ω1
X0/k

,OX0)

on D = Xsing
0 is trivial. In fact, there is more you can say; the log structure is

unique up to something.

Example 3.7. (1) nodal curve. (2) Exercise where you blow up the 3-torsion
points on E →֒ P2 and take X0 to be the gluing of two copies. H2(X0 , TX0 ⊗
J) = 0. The Hodge diamond Hi(X0,Ω

j
X0/k

(log)) is as on the exercises:

1 0 1
0 20 0
1 0 1

Ω2(log) = OX0 is the dualizing sheaf implies X0 is smoothable. ⋄
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Last time we were talking about the space of stability conditions. When you
combine t-structures and stability conditions on an abelian category, you get
this quite interesting thing. Basically, we get that StabD → HomZ(K(D),C),
given by (Z,P) 7→ Z, is a local homeomorphism.

Today I want to talk about the example of the conifold. If you really want
to know about it, it is in the paper: Tom Bridgeland, “Stability conditions on
triangulated categories”. Consider X = {x1x2 − x3x4} ⊆ C4. We have two
resolutions Y ±, which contain curves C± as fibers over the singularity. The
common resolution is f± : Z → Y ±. You can look at Toda’s paper “stability
conditions and crepand small resolutions”.

Theorem 4.1 (Bondal, Orlav, . . . ). There exist equivalences Ψ = Rf+
∗ ◦

L(f−)∗ : DbCoh(Y −)→ DbCoh(Y +) (meaning that there is an equivalence com-
muting with the pushdown to X), and Φ± : DbCoh(Y ±) → DbR-mod with

Φ− = Φ+ ◦Ψ, where R is the algebra of the quiver ( •
a1,a2

(( ((
•

b1,b2

hhhh ) with relations

of superpotential W = a1b1a2b2 − a1b2a2b2 (Klebanov-Witten).

You can do this for any flop; things become a bit more difficult. The black
magic rule to interpret the word superpotential is that you think dW = 0,
which is four relations, one of them being ∂a2W = b2a1b1 − b1a1b2 = 0.

Consider representations of CQ (the quiver without the relations) of given
dimension (d1, d2). It is

(
Hom(Cd1 ,Cd2)⊗2 ⊗ Hom(Cd2 ,Cd1)⊗2

)
/GL(d1) ×

GL(d2). Let Ai and Bi be the images of ai and bi. Then we get Φ =
tr(W (A1, A2, B1, B2)) : Q-mod → C. The moduli stack of representations of
R = C[Q]/I = {dΦ = 0} sits inside the representations of Q. [[⋆⋆⋆ some-
how]] the black magic rule I gave before comes from this.

If I write a quiver with some relations, and the algebra you get is CY sym-
metric, it has to be given by a superpotential (Segal, Bocklandt).

How do you get R in this situation? You get it geometrically by considering
Y + = Tot(O(−1,−1))

π
−→ C+ = P1. The tilting object is E+ = π∗(OP1 ⊕

OP1(1)). Then R = EndY +(E+) and Φ+ = RHom(E+,−). Similarly, for Φ−,
you take E− = π∗(OP1 ⊕OP1(−1)) and Φ− = RHomY−(E−,−).

Under these equivalences, OC−(−1) and OC−(−2)[1] go to the simple mod-
ules S and T , respectively, where dimS = (1, 0) and dimT = (0, 1). Similarly,

S and T correspond to OC+(−1)[1] and OC+ , respectively. This should be
pretty clear from applying these functors. You get the impression that people
spend their time shuffling around adjunctions, but you eventually have to think
about specific objects and where they go.

The above equivalences restrict to {objects (topologically) supported on
C−} ↔ {objects supported on C−} and {objects supported on C±} ↔ {objects
with nilpotent cohomology modules}. R =

⊕
n≥0Rn is a graded algebra.

RnM = 0 for all n≫ 0 if and only if M is finite length and all simple factors
are S and T (the vertex simples); we say such an M is nilpotent. I think you
can get a lot by just considering these subcategories. They are all equivalent,
so call them D. Then K(D) = Z⊕2 = Z[S] ⊕ Z[T ]. Note that the class of a
point is [Ox] = [S] + [T ].

Consider “normalized” stability stability conditions, where we assume Z([S]+
[T ]) = −1. I didn’t tell you this, but there is always an action of C on the
stability condition, where C× rotates Z. Consider the map π : Stabn(D)→ C,
given by (Z,P) 7→ Z([T ]). This will be a local homeomorphism.

Theorem 4.2 (Toda). There is a connected combonent Stab∗(D) such that
π : Stab∗(D)→ C r Z is the universal covering.

Physicists would say the OC [−n] are the branes and their mass is not allowed
to vanish.

I’ll define a point in Stab∗ that lies in the upper half plane, and we’ll go on
a little journey down (between −1 and 0) and see what happens.

We have the heart CohC+(Y +), the category of coherent sheaves on Y +

supported on C+. Note that I’m not claiming that the bounded derived
category of this is equal to D; I suspect it’s not. The stability function is
Z(E) = ch2(E) · (β+ iω)− ch3(E), where β, ω ∈ H2(Y +,R) ∼= R, and ω > 0 is
ample, and β + iω is in the complexified Kähler cone, which in this case is just
the upper half plane H. You have to check the HN property.

Now let’s suppose ω → 0 with β · C ∈ (−1, 0). We have that Z(OC) is in
the upper half plane and Z(Ox) is on the real line. So as Z(OC ) goes to the
real line, it just decides which things end up on which side of the real line.
The stuff that ends up on R+ is no longer in the heart. P((0, 1]) changed so
that we lose OC+(−k) for k ≥ 1, but we gain OC+(−k)[1] for k ≥ 1. This is
like one of those filmstrip pictures from before (in some sense, this is the P1

diagram I drew before). Call our new heart A. A = R-modnil ⊂ D. So you
can continuously get across the flop if you’ve complexified the Kähler class, but
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in between, you’re naturally talking about this non-commutative guy. As an
abelian category, it is equivalent, but it is sitting inside the derived category
differently.

If we continue our journey a little bit more, we need to tilt again. We lose
OC+(k) for k ≥ 0 and we gain OC+(k)[−1]. I’ll leave it to you to check that
the new heart is naturally CohC−(Y −) ⊂ D. Now you can think about going
back along another path (looping around the integer point k ∈ Z). You get the
action of the Seidel-Thomas twist functor ΦOC(k).

Next time I’ll come back to Hall algebras and tell you how to do it in char-
acteristic zero. I also want to explain [[⋆⋆⋆ some other stuff]].
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Microlocal geometry

If you want to learn more about microlocal geometry, there are some notes by
MacPherson from Park City. There is also a book that contains all the results
and all the details: Kashiwara-Shapira, Sheaves over manifolds.

Everything will be over C. Let X be a singular scheme, embedded in a
smooth scheme M . The content of microlocal geometry is that you can study
X by means of the symplectic geometry of the cotangent bundle ΩM of M .

Remark 3.1. If V ⊂ M is a closed subvariety and V 0 is the smooth locus of
V . Then define ℓ(V ) = N∨

V 0/M ⊆ ΩM to be the closure conormal bundle in
the cotangent bundle of M . This is a Lagrangian cone. ⋄

A conic Lagrangian subvariety of ΩM is a closed subvariety of dimension of
dimM such that the restriction of the symplectic form σ = dα =

∑
dpi ∧ dxi

(where α =
∑
pidxi) vanishes and invariant with respect to the C× action on

ΩM (given by scaling the fibers). The property of being Lagrangian is a generic
property, so we can just require that α vanishes at the generic point. We have
coordinates (xi, pi). We may as well assume V 0 = {xi = 0|i ≤ k}. Then
N∨
V 0/M = {xi = 0, pj = 0|i ≤ k < j}.

Exercise. All conic Lagrangian prime cycles (i.e. irreducible) on ΩM are ob-
tained in this way. That is, every such cycle is the closure of the conormal
bundle of a variety on the base.

So L : Z∗(M) → L(ΩM ), where Z∗(M) are the algebraic cycles on M and
L(ΩM ) are the conic Lagrangian cycles, given by V 7→ (−1)dim V ℓ(V ), is an
isomorphism of groups. We can restrict this to an isomorphism L : Z∗(X)

∼
−→

LX(ΩM ) (everything supported on X).

Example 3.2 (“distinguished cycle”). cX =
∑

c′(−1)dim π(c′)mult(c′)π(c′),
where the sum is over all c′ irreducible components of cX/M and π : cX/M → X.
It turns out that this cycle is independent of the choice of embedding of X in
M . L(cX) could be called the “distinguished Lagrangian cycle of X in ΩM”.
Of course, this does depend on the embedding of X in M . ⋄

Q: are there any assumptions onX; can it be reducible of various dimensions?
KB: X can be any scheme which is embeddable into something of finite type;
it can be any closed subscheme of M .

We get the commutative diagram

Z∗(X)
L //

cM
0 %%KKKKKKKKK
LX(ΩM )

0!
ΩM |X

��

A0(X)

where cM0 is the degree zero part of the Chern-Mather class.

The isomorphism L factors as Z∗(X)
Eu
−−→ Con(X)

Char
−−−→ LX(ΩM ), where

Con(X) is the constructible functions X → Z. Eu is MacPherson’s local
Euler obstruction (you can find this in Fulton’s book on intersection the-
ory), and Char is the characteristic cycle. both of these are isomorphisms.
The easiest thing to define is Char−1, and this was first done by Ginzburg.
Char−1 : LX(ΩM )→ Con(X) is given by [c] 7→

(
P 7→ IP ([c], [∆])

)
, where ∆ is

the graph dρ of the square of a Euclidean distance function ρ : M → R from
P (basically, ρ(x) =

∑
x2
i , dρ =

∑
2xidxi). Ginzburg proves that P is an

isolated point of the intersection, so the intersection multiplicity IP ([c], [∆])
makes sense. [[⋆⋆⋆ picture: symplectic manifold ΩM with zero section M .
Lagrangian cone looks like a collection of vertical lines.]] At every point in M ,
you compute the intersection number of the graph with the cone.

Really, we’re intersecting the cone [c] (vertical lines) with [0]. The dimensions
are complementary, so I should be getting a cycle of degree zero. Every point
of M has a well-defined contribution, which is that intersection number. This
kind of vague statement is justified by this theorem.

Theorem 3.3 (MacPherson/Kashiwara, 1970s). If X is compact, then for
every cycle c ∈ Z∗(X), χ(X,Eu(c)) (this means chop X into pieces where the
function is constant; compute their Euler characteristics, and add them up with
weight given by the function) is equal to

∫
X c

M
0 . Kashiwara’s formulation is

χ(X,Char−1(c)) =
∫
X

0!c.

I think of this theorem as a generalization of the Gauß-Bonnet theorem to
singular schemes. If X is smooth, (−1)dimXχ(X) =

∫
X e(ΩX).
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Example 3.4 (distinguished cycle). Let νX := Eu(cX) be the “distinguished
constructible function on X”. This is intrinsic to X. It is the microlocal
function in the story. If you read some recent paper, some joker started calling
it χB, but I won’t use that notation.

In this case, the theorem says
∫
X

0!L(cX) = χ(X, νX). ⋄

Symmetric obstruction theories

An obstruction theory for the scheme X is an arrow in D(OX), F → τ≥−1LX ,
with certain properties which I won’t repeat. The obstruction theory is sym-
metric if it is endowed with β : F ⊗ F → O[1] (this is of course derived ten-
sor product and this is a morphism in D(OX)) such that the induced map
α : F → F∨[1] is (1) an isomorphism in D(OX), and (2) symmetric in the sense
that α∨[1] = α in D(OX). Of course, there are signs involved, but I thought
about it for months and determined that that was the right sign . . . but that
was years ago.

In our case, we’re interested in X, the moduli space of sheaves on the Calabi-
Yau Y . We have π : X × Y → X, with F∨ = Rπ∗RHom(E,E)0, and β comes
from Serre duality.

Remark 3.5. You can write F much more explicitly in my construction of the
moduli space: F = [W 0 → W 1] was the trunction of the obstruction complex
I constructed on X. I explained that X came with an embedding into some
M , and W 0 = TM |X . What would have been nice, but I cannot prove, is
for W 1 = ΩM |X . It is a vector bundle of the right dimension, but it is not
straightforward to prove. So I really wanted that F = [TM |X → ΩM |X ], and
the map is self-dual. If you manage to prove this, let me know. In the absence
of that, I have to throw all this homological algebra at you. ⋄

On X itself (not on M), I do have the exact sequence

0→ TX →W 0 →W 1 → ob→ 0.

The kernel is the tangent bundle and the cokernel is defined to be the obstruc-
tion sheaf. If you take the dual of this obstruction theory, you’re supposed to
get the same thing back. There is an isomorphism (in the derived category) to
[W 1∗ →W 0∗ → ob→ 0]. So TX = ob∨.

Last time I did construct cX/M →֒W 1, and [X]vir = 0![cX/M ].

W 1 // ob ΩM |Xoooo

cX/M
?�

OO

// cv?
�

OO

Coo

OO

·

Where cv is the subsheaf of cones (big sheaves on some big site; you can also do
it with stacks, but you don’t have to), it stands for “curvilinear obstructions”.

The big thing is that ob = ΩX and TX = ob∨. Forming the pullback C gives

a scheme of cones in ΩM |X . Q: what is the property of X that allows you to
understand the dual of TX? KB: it is the other way around TX = ob∨, but
ob 6= T∨

X .

Proposition 3.6. [X]vir = 0!
ΩM |X [C].

Now I’m in the situation where I can apply microlocal geometry.

Toy models for symmetric obstruction theories

ω is a 1-form on M and X = Z(ω) ⊂ M . Then (repeating what I said last
time) how do you get the obstruction theory?

F = [TM |X //

��

ΩM |X ]

[I/I2 // ΩM |X ]

[TM |X // ΩM |X ]

��

[TM |X // NX/M ]

(the diagram on the right is the dual) If ω is closed, then the obstruction theory
is symmetric. Γω ⊂ ΩM is Lagrangian, and ω : M →֒ ΩM with ω∗(

∑
dpi ∧

dxi) =
∑
dfi ∧ dxi = dω = 0. Here Γω is the graph of ω. In the limit

(rescaling), cX/M →֒ ΩM is the Lagrangian cone.

Theorem 3.7. You need only ∂fi

∂xj
≡ ∂fj

∂xi
(f1, . . . , fn) to get the result that

cX/M →֒ ΩM is Lagrangian and that the obstruction theory is symmetric. In
this case we say that ω is almost closed.

Proposition 3.8. If X has a symmetric obstruction theory and X →֒M em-
bedded, then étale locally in M there exists a closed 1-form cutting out X and
giving rise to the given symmetric obstruction theory.
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Q: what if X is smooth of the wrong dimension? KB: If X is smooth and
M = X, with ω = 0. Then the obstruction theory is

[TM |X
0 //

��

ΩM |X ]

[0 // ΩX ]

You check locally that C →֒ ΩM is Lagrangian. Because C is locally isomorphic
to the normal cone, we get the corollary.

Corollary 3.9. The underlying cycle [C] is the distinguished Lagrangian cycle,
so #virX =

∫
X 0!L[cX ] = χ(X, νX).
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References for today: CCIT, in preparation; CCLT, weighted projective spaces.
Plan: the J-function, S-extended stuff, I-function, mirror theorem, and a

simple example (P2,2). Tomorrow, I’ll try to write down some presentations for
quantum cohomology for toric stacks (with some assumptions)

The J-function

J(τ, z) = z + τ +
∑

ℓ,n
Qℓ

n!
evx+i∗

(
ev∗1τ · · · ev

∗
nτ ·

1
z−ψn+1

)
∈ H·π,orb(X ,C), where

the things in the sum are happening on X0,n+1,ℓ and evi : X0,n+1,ℓ → IX . Li
are line bundles, and Li,f = T∨

C,xi
, and ψi = c1(Li).

Goal: if X is a toric stack, write down J explicitly. Why, Alessio? For
one thing, J contains all information about quantum cohomology. How does
one come to consider this power series? J is the fundamental class in some

cohomology theory, H
∞/2
S1 (L0X ,C). In some sense, when interpreted correctly,

J has degree 1.

S-extended stuff

Let X be a toric stack with stacky fan (N,Σ, ρ). To this, we attached the fan
sequence and the divisor sequence

0→ L→ Zm
ρ
−→ N

0→M → Z∗m D
−→ L∨

where L∨ = P ic(X ) and L = N1(X ,Z). Let S ⊂ N be a (finite, for today at
least) subset which containes the rays ρi. The key examples of S will be just
the set of rays, or S = B = Box(X ) (which will lead to the enhanced stuff).
Recall that Box(X ) =

⋃
σ∈Σ{v ∈ N |v ∈

∑
i∈σ aiρi, 0 ≤ ai < 1} (remember that

the bar just means image in N modulo torsion). Perhaps the most important

example is where S = B
≤1

= {v ∈ B|
∑
ai ≤ 1}, the closed box. I think of

B
≤1

as a basis for H≤2
T,orb(X ,C). This will be the space of parameters for small

quantum cohomology.
We have ρS : ZS 7→ N , given by es 7→ s, and let LS be the kernel of this map.

The get the Gale dual

LS∨
Ds

←−− Z∗S ←M ← 0.

I think of these as being some kind of glorified Picard group and topological
classes of stable morphisms.

If σ ∈ Σ, we write CSσ = {
∑

i∈Srσ riD
S
i |ri ≥ 0} ⊆ LS∨R is a cone. We define

NESσ = CS∨σ ⊆ LSR and NES =
∑
σ∈Σ NE

S
σ . Define ΛSσ = {λ =

∑
i∈S fiei ∈

LSR|j 6∈ σ⇒ fj ∈ Z}, and ΛS =
⋃
σ∈Σ ΛSσ . The goal is to tell you exactly, inside

X , what are all the possible degrees of stable maps from an orbi-curve. There is
a map v : ΛS → B, given by v(λ) =

∑
i∈S⌈fi⌉ρi ∈ B. ΛES = ΛS∩NES . These

S’s allow you to keep track of which torus invariant loci the various marked
points are in.

The I-function

IS(Q̃, z) = z
∑

v∈B

∑

λ∈ΛES

v(λ)=v

Q̃λ1v�λ(z)

where

�λ(z) =

∏
i∈S

∏
〈b〉=〈λi〉,b≤0(ui + bz)

∏
i∈S

∏
〈b〉=〈λi〉,b≤λi

(ui+ bz)
∈ SR·T[z, z−1]]

The box corresponds to irreducible components of IX , 1v ∈ H·orb(X ) corre-

sponding fundamental class, ui = uρi ∈ SR·T(X ) if i is one of the rays (and
ui = 0 for i ∈ S r {ρi}), and λi = λ ·DS

i .
One place where you can find this in a slightly less general context is in a

paper of Bousov and Horja, Mellin-Baues, etc. Givental wrote it down in an
article on dark manifolds. Q: was this inspired by mirror symmetry? AC: yes.

Mirror theorem

Theorem 3.1 (CCIT). Assume X is weak Fano and S ⊂ B
≤1

. Then (t is

more or less Q) IS(t; z) = F (t)z + G(t) +O(z−1). JS(τ (t), z) = IS(t,z)
F (t)

, where

τ (t) = G(t)/F (t).

J : H·
T,orb →?. By Stanley-Riesner, S ⊂ H·

T,orb(X ,C), with 〈S〉 the subspace

generated by S, then JS = J |〈S〉.
Special cases:
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1. If X is Fano (−KX is ample, not just nef) and has canonical singularities
and S = {ρi}, then IS = JS . In the case where X is a manifold, this
recovers Givental’s theorem.

2. If X = Pw0,...,wn is a weighted projective space and S = {ρi}, then IS = JS .
This was proven in CCLT.

Example 3.2 (P2,2). The fan diagram for P2,2 is

0→ Z
(2
2)
−−→ Z2 ρ

−−−−−→(
−1 1
0 1

) N = Z⊕ Z/2

Box = {0, 1}. The fan looks like [[⋆⋆⋆ ρ1, ρ3, ρ6 at “height” 0 and ρ5, ρ4, ρ2

at height ε]] Take S = B
≤1

.

0→ Z5 ∼= 1S → Z6 ρS

−−−−−−−−−−−→(
−1 1 0 0 −1 1
0 1 0 1 1 0

) N

IS(Q; , s, t, z) = ze
s1u1−s2u2

z

∑

ℓ,k0,...,k3∈N

Qℓeℓ(s1+s2)t
k0
0 ·tk3

3

z
P

kik0!k1!k2!k3!
1〈 ℓ+ k0 + k1 + k2 + k3

2

〉

·

∏
b≤0(u1 + bz)

∏
b≤0(u2 + bz)∏

b≤ℓ−k2
(u1 + bz)

∏
b≤ℓ−k3

(u2 − bz)

and the mirror map is

τ (t) = u1s1 + u2s2 + t01+ t111/2 −
u1

2
log(1 − t22) +

u11v2
2

log(??) · · ·

[[⋆⋆⋆ somebody fill in the rest of the mirror map]] ⋄
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Quiz for today: Suppose you have a family of [[⋆⋆⋆ triangle]] Xt ∼= P2 → Z
degenerating to [[⋆⋆⋆ that breaking of the triangle you always draw for proper
non-projective]] X0 = limt→0 → Z. Can this happen? If you recall, you have
to have some height function that the broken picture is a projection of. This
should remind you of that famous picture of Escher. If you didn’t know, that
picture is not really possible; it is an optical trick. However, there is a point
in the moduli space for this stable toric variety. The result is that the moduli
space of stable toric varieties has multiple components; not everything can be
written as a limit of things in the main component.

I will state three main theorems and try to give as many examples as possible.
Fix positive integers r, n ∈ N (n divisors in Pr−1), and a weight β = (b1, . . . , bn),
with bi rational 0 < bi ≤ 1.

Theorem 3.1. There exists a family (X , B1, . . . , Bn) → Mβ(r, n) such that
every fiber (X,

∑
biBi) is a stable curve. Moreover, there is an open subset

Mβ(r, n) ⊆ M β(r, n) such that the restriction of the family is a family of lc
pairs (Pr−1 , Bi). Furthermore, all fibers are non-isomorphic.

The weight domain (the possible values of β) is D = {β = (bi)|0 < bi ≤
1,

∑
bi > r}. It looks like a cube, with a corner cut off by the inequality.

We take a chamber decomposition, where the walls are
∑

i∈I bi = k for all
I ⊆ {1, . . . , n} and for all 1 ≤ k ≤ n − 1. For example, something on the
boundary lies on a different chamber from something in the interior. [[⋆⋆⋆

picture]]

Theorem 3.2. (1) If Ch(β) = Ch(β′), then Mβ = Mβ′ and (X , Bi)β =

(X , Bi)β′ . (2) if β′ ∈ Ch(β), then we get a commutative (not cartesian) dia-
gram

Xβ //

��

Xβ′

��

Mβ
// Mβ′

Moreover, if β′ > β (in every coordinate), then Mβ
∼
−→ M β′ and Xβ → Xβ′

is birational (when you go down, it doesn’t have to be birational). (3) For all

β > β′, we have morphisms (dashed is rational map)

Xβ //__

��

Xβ′

��

Mβ
// Mβ′

and on fibers, X′ is the log canonical model for (X,
∑
b′iBi) (in particular, the

model exists).1

Theorem 3.3. (1) Every X is Cohen-MaCaulay, and Xr
⋃
Bi is Gorenstein.

(2) for β in the maximal chambers, then X is Gorenstien and Bi are Cartier.

Example 3.4. Suppose we have (P2 + 5 lines)t in general position, and as
t → 0, the lines converge to two triple points [[⋆⋆⋆ picture, with numbered
lines]]. Let’s take β = (1, 1, 1, 1, 1). If the sum of the weights is less than one,
the lines can all coincide. If the sum of weights is less than 2, then three lines
can go through the same point. Here the sum is 5, so we get general position.
What happens in the limit? In the central fiber, you’d blow up the two points.
You get the blowup of P2 at two points. You’ve blown up a 3-fold, so you get
two extra P2’s. The lines will break up [[⋆⋆⋆ picture with ears + picture
with triangle ears (tropical?)]]. You would think that this is the limit, but it’s
not. If you try this with weights (1, 1, 1, 1, 1− ε), then this is indeed a stable
pair (K + B is ample). If you compute (K +B) · C, where C is a piece of line
number 5, you get ε. So so long as ε > 0, you’re stable, but for ε = 0, that curve
has to be contracted, so the actual picture is [[⋆⋆⋆ picture + picture with
triangles]]. Let’s call the weight β′ = (1, 1, . . . , 1); this is in the closure. There
is another way to go to the closure; consider the weights (1+ε

2
, 1+ε

2
, 1, 1, 1− ε).

Now there was no reason to blow up the first point; you only had to blow up the
second point, so the picture is [[⋆⋆⋆ picture]]. We have morphisms [[⋆⋆⋆

triangle picture]]; one is birational, but the other is not; we lost a whole P2. ⋄

In addition to producing progressively cooler pictures, I’d like to tell you
about how to construct these things.

I will start with the Grassmanian of r-dimensional subspaces of Cn with the
Plüker embedding G(r, n) →֒ P(

∧r
Cn). We have the torus T̃ = (C×)n acts

1The map to the log canonical model is only rational. For surfaces, it is usually an acutal
map if you work with normal surfaces.
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on the Grassmanian, T = Ĩ the diagonal copy of C×. there are
(
n
r

)
Plüker

coordinates pi1,...,ir with i1 < · · · < ir , which have characters in Zn (each
entry is zero or 1). There is a hypersimplex ∆(r, n), which is (1) the convex
hull of these (2) {(xi) ∈ Rn|0 ≤ xi ≤ 1,

∑
xi = r}. [V ⊂ Cn] ∈ G(r, n) has

an embedded toric variety T [V ] (over G(r, n)). There is a moment polytope
PV (called the metroid polytope). PV is the convex hull of the V (pI) such
that pI(V ) 6= 0. It is also {(xi) ∈ Rn|KPr−1 +

∑
xiBi = 0, (Pr−1,

∑
xiBi lc}.

V r →֒ Cn fixed, so we get Pr−1 ∼= PV →֒ Pn−1, with Bi = PV ∩ Hi where
Hi = {zi = 0}. Note that the definition still works if something is contained in
something.

Example 3.5. Begin with a hyperplane arrangement (Pr−1,
∑
biBi) =

(PV,
∑
biBi) which is lc. Over G(r, n), I have the universal family U ⊆

Pn−1 × G(r, n), π : U → G(r, n). I have the point [PV ⊆ Pr−1] ∈ G(r, n).
I take the orbit T · [PV ⊆ Pr−1]. I claim that the stabilizer is trivial, so the
orbit is isomorphic to T . Take the preimage of the orbit π−1(U). I can take
the quotient π−1(U)/T , which will recover the pair I started with. ⋄

Example 3.6. Take r = 2 and n = 4, four points on P1. The easiest degenera-
tion is where you break the P1 to get points 1 and 2 on one piece and 3 and 4 on
the other piece. Start with ∆(2, 4), a hypersimplex (looks like an octahedron)
with vertices labelled by distinct pairs of numbers between 1 and 4. What is the
configuration where the first two points coincide. What is the metroid polytope
of this arrangement? You see that the Plüker coordinate p12 = 0 and pij 6= 0 for
(i, j) 6= (i, j). So we get the lower pyramid (the top vertex is 12). What is the
condition for this to be log canonical? it is that PV = {x1 + x2 ≤ 1}, which is
the lower pyramid. I am working with β = (1, 1, 1, 1). What is the locus where
the pairs are log canonical? They are the places where 1 and 2 do not coincide.
I’m looking at a certain open subset (given by GIT) π−1(U)ssβ where the pair
is log canonical. When I divide by the torus action, I get the line with points 3
and 4 and a point missing. I can now redo this for the configuration with 3 and
4 coincide. Then I redo it where 1 and 2 coincide and 3 and 4 coincide. Then
the torus action downstairs is not free, but the action upstairs is free. You end
up with a line with two points missing, which you have to divide by C×, which
gives you a point. When you stick these together, you get the two lines with 1
and 2 on one side and 3 and 4 on the other.

Somehow, the base is a stable toric variety, and I throw away its boundary
to get Y → G(r, n). The GIT quotient is X = π−1(Y )//T .

If you study GIT, you know there is a choice of line bundle and linearization
of it. In this case, we need an ample line bundle on U ⊂ Pr−1 × G(r, n) →֒
Pr−1×Plüker and a linearization. It turns out that this information is equivalent
to the weight β. If I have a weight, then the line bundle is p∗1O(

∑
bi − r) ⊗

p∗2O(1). If
∑
bi − r → 0, then the first factor will disappear. This shows that

Mβ will be the GIT quotient G(r, n)//βT for generic β. It is well-known that
this is also the GIT quotient Pr−1//βPGL(r). ⋄

When the weights are β = (1, . . . , 1, ε, . . . , ε), with K+B > 0 by K+B ≈ 0,
then this is the toric case.

Example 3.7. (P2 , B1, . . . , Bn) a configuration of lines, so I have
(1, 1, 1, ε, . . ., ε) (n − 3 ε’s). Then all X’s are stable toric varieties. If
n = 5 you get pictures of triangles where the three sides have coefficient 1 and
there are two more divisors. [[⋆⋆⋆ picture]] These are described by puzzles
like this, where the pieces are either triangles or rhombuses. Here are some
examples: [[⋆⋆⋆ pictures]] Your homework is to count these puzzles. I think
you can get the staircase with 6 ε’s, showing that that moduli space is not
irreducible. ⋄
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Today I want to discuss Alexeev’s moduli stack of broken toric varieties from
the point of view of log geometry.
X will be a free abelian group of finite rank. Q ⊆ XR will be an integral

polytope. T = HomGp(X,Gm) will be the torus.

Example 4.1. X = Z, Q = [−1, 1] ⊆ R. The quiz is: what is the moduli space
of polarized toric varieties for this polytope: [[⋆⋆⋆ picture interval broken at
0]] ⋄

We have the associated toric variet. Take M to be the integral points of the
Cone(1, Q) ⊆ R × XR, which form a graded monoid, and take Proj Z[M ]. I
can write this as

(
Spec Z[M ] r {0}

)
/Gm. Consider the log scheme

(
Spec(M →

Z[M ]) r {0}
)
/Gm, which is the same scheme, but with a log structure.

Now we want to degenerate this guy, so we should be thinking of functions
on integral points. Say Z ⊆ Q are the integral points. Let ψ : Z → R be a
function. Then we are supposed to consider the set Gψ = {(h, x) ∈ R×XR|x ∈
Z, h ≥ ψ(x)}. The lower boundary of Gψ is a piece-wise linear function on Q,
which gives me a paving of Q (which is what you think it is; you break your
polytope into sub-polytopes with some expected properties). Associated to this
we’re supposed to get a degeneration. I want to actually degenerate it as a log
scheme.

Example 4.2. On the polytope [−1, 1] I could consider the function (7, 9, 2),
which gives me the interval, or (3, 2, 4), which gives the broken interval. ⋄

Definition 4.3. A paving S of Q is a collection of integral sub-polytopes of
Q such that (1) if ω, η ∈ S, ω ∩ η ∈ S, (2) any face of ω ∈ S is in S, and (3)
Q =

⋃
ω∈S ω and the ω have disjoint interior. ⋄

Define an associated monoid HS in as follows. For all ω, define Nω to be the
integral points of Cone(1, ω) ⊆ R ×XR. Let Ngp

S := colimω∈S Ngp
ω .

Example 4.4. Consider the broken interval (with points x, z, y), then I get
the diagram of groups

Zx
� {

--[[[[[
Zx⊕ Zz

Zz {� --ZZZZZ
#
� 11ccccc

Zz ⊕ Zy
Zy

#
� 22ddddd

Thus, Ngp
S = Zx⊕ Zy⊕ Zz. ⋄

There is a set map ρ : M → Ngp
S . Because of how we did the limit, ρ is

well-defined. This is not a monoid map. Define HS to be the submonoid of
Ngp
S generated by things of the form p ∗ q = ρ(p) + ρ(q) − ρ(p + q). In our

example, HS
∼= N is generated by x+ y − 2z.

Facts: (1) HS is finitely generated; (2) H×
S = {0} if and only if the paving

comes from a height function as Valery explained.
Define M ⋊ HS to have elements pairs (m, h), where m ∈ M and h ∈ HS,

where (m, h) + (m′, h′) := (m + m′, h + h′ + m ∗ m′). In our example, M =
〈x, y, z〉/(x+ y = 2z). Then M ⋊HS = 〈x, y, z, t〉/(x+ y = t+ 2z). There is a
map of monoid algebras Z[HS]→ Z[M ⋊HS].

In our example, this map is Z[t] → Z[t][x, y, z]/(xy = tz2). If I take Proj, I
get a family over the affine line: Proj Z[t][x, y, z]/(xy = tz2) → A1

t . This is a
degeneration of P1 corresponding to O(2) (the interval had length 2) with the
paving we had. This has a natural log structure because it arose as a monoid
algebra.

In general, Proj(M ⋊ HS → Z[M ⋊ HS]) → Spec(HS → Z[HS]). This is a
degeneration of the toric variety Proj(M → Z[M ]) as a log scheme. Note that
the log structure on the base could be quite complicated.

Definition 4.5 (“sort of a cop out”). A standard object over k = k is the data(
Mk, f : (X,MX) → (Spec k,Mk), T -action, line bundle L with T -action

)
,

where Mk is a log structure on k, f is a log smooth proper map, and (X,MX)
isomorphic to the closed fiber of a family coming from a convex paving S (of
Q) as above. ⋄

KQ is a stack over Z which to any scheme B associates the groupoid data(
MB , f : (X,MX) → (B,MB), L, θ, ρ

)
, where MB is a log structure on B, f is

log smooth with X → B proper, L is a relatively ample line bundle on X, ρ is
an action of T on (X,MX , L) over (B,MB), and θ ∈ f∗L such that

– for every geometric point s→ B, the zero locus of θs inXs does not contain
any T -orbit, and

–
(
Ms, (Xs,MXs)→ (s,Ms), Ls

)
is a standard object.

Theorem 4.6. KQ is an algebraic stack with finite diagonal and toric singu-
larities (i.e. is log smooth), and is equal to the main component in Alexeev’s
moduli space.
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We have a natural log structure (KQ,MKQ) and toric singularities means log
smooth over Z with trivial log structure (this was Kato’s theorem).

Exercise. X = Z and Q = [−1, 1]. I think KQ ∼= P2,1. The coordinate is t;
there is a µ2 at 0 and the log structure MKQ is defined by the divisor at ∞.

Let’s try to verify that this guy is log smooth. What does it mean to say
that (KQ,MKQ) is log smooth (I can verify this even if I don’t yet know it is
algebraic).

(T0,MT0)
a //

� _

J

��

(KQ,MKQ)

(T,MT )

?

88p
p

p
p

p
p

Lemma 4.7. To check that something is smooth, it is enough to consider the
case where a is strict.

So I need to fine a lifting

(X0,MX0 , L0, θ0, ρ0)

KQ∋
��

//___ (X,MX , L, θ, ρ)

��
�

�

�

(T0,MT0)
� � // (T,MT )

Exercise. Ω1
(X0,MX0)/(T0,MT0 )

∼= Lie(torus)⊗OX0 , so to prove log smoothness,

it is enough to show that H2(X0,OX0) = 0 because the obstruction to lifting the
log scheme is . . . . In fact, by standard reduction, it is enough to consider the
case where T0 is a field k.

how do you compute it? You go back to your picture of the paving. You get
an exact sequence (where m = dimQ)

OX0 →
∏

dim ω=m

OX0,ω →
∏

dim η=m−1

OX0,η → · · ·

This implies that the cohomology of OX0 is computed by

∏

dim ω=m

k→
∏

η

k → · · ·

which just computes H∗(|Q|, k) = k. This proves that you can always lift the
scheme. The line bundle and the section are not so bad. Lifting the torus action
is a little more complicated, so I won’t talk about it.

Example 4.8. Recall the embedding E →֒ P obtained from blowing up the 3-
torsion, and X0 the gluing of two of them along E. We have (X0,MX0) →
(Spec k,Mk), where Mk is given by k× ⊕ N → k. Consider the function
F : (artinian local k-algebras) → Set given by A 7→ {log smooth deformations
of (X0,MX0) to SpecA with log structure associated to N → A given by 1 7→
image of t}.

We know that F is unobstructed (because H2(X0, TX0(log)) = 0). We also
know that the tangent space is 20-dimensional because h1(X0, TX0(log)) = 20.
That means that F is (pro)represented by k[[t]][[s1, . . . , s20]], which is 21-
dimensional. We were expecting 20-dimensional, so what is the extra dimen-
sion?

The extra dimension comes from Aut(Mk) = k×. Part of the data of
(X0,MX0 )→ (k,Mk) is f♭ : Mk →MX0 . ⋄

Q: could you say something about how you compute that 20? MO: first you
show that the dualizing sheaf is trivial. Then by Serre duality, it is easy to fill
in all the other parts of the Hogde diamond. Then there is some argument that
the Euler characteristic should be 24.

If I fix the log structure on the base, I get the wrong tangent space. You
really have to allow different log structures on the base, and allow isomorphisms
of those as part of the structure.
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5 Tom Bridgeland

It’s the last lecture, so I’m allowed to talk about things I don’t entirely under-
stand.

Recall the picture from before (it was kind of a baby case with finite fields).
You have an abelian category A, to which you associate a Hall algebra H(A).
You associate a stability condition to A so that 1A =

∏→
φ 1φss (this is basically

the Harder-Narasimhan property). In the case of global dimension 1, we had an
integration map I : H(A)→ Cq[K(A)], where the formal identity 1A =

∏→
φ 1φss

becomes something interesting. A reference is a paper of Kontsevich and Soibel-
man, which hopefully is coming soon. They say something highly non-trivial,
and it works in incredibly general context (they deal with the triangulated
case, but I won’t). The referecne for this stacky Hall algebra is Joyce’s paper
“Configurations in abelian categories I, II,. . . ”.

Stacky Hall algebras

Let A be an abelian category, equal to R-modfg , where R is a finitely gen-
erated algebra over C (for concreteness). You could take Coh(X), for X a
projective variety over C. There is an Artin stack of objectsM =

⊔
d≥0Md =⊔

d≥0[Vd/GL(d)], where Vd is some space of matrices (it’s an affine variety),
and I get rid of the framing by modding out by GL(d). M(S) is the groupoid
of vector bundles E over S with R→ End OS (E).

For n ≥ 1, M(n) is the stack of n-flags in A, so M(n)(S) is the groupoid of
flags of vector bundles 0 = E1 ⊂ · · · ⊂ En, with R→ End OS (En) preserving the
flag, with Fi = Ei/Ei−1 a vector bundle for all i. Note thatM(1) =M.

We have morphisms ai : M(n) → M, given by (E1 ⊂ · · · ⊂ En) 7→ Fi =
Ei/Ei−1, and b :M(n) →M, given by (E1 ⊂ · · · ⊂ En) 7→ En.

Lemma 5.1. There is a cartesean square

M(n+1)
g

//

f

��

M(2)

a1

��

M(n)
b

// M

Proof. Take f(E1 ⊂ · · · ⊂ En+1) = (E1 ⊂ · · · ⊂ En) and g(E1 ⊂ · · · ⊂ En+1) =
(En ⊂ En+1).

Suppose I have a “cohomology theory” for stacks. That is, I have a vector
space for each stack X 7→ H(X ) such that for every (representable, proper)
f : X → Y, I get f∗ : H(X ) → H(Y), and for every (finite type) f : X → Y,
I get f∗ : H(Y) → H(X ), and these should be functorial (in the correct 2-
categorical way). These should have properties:

1. Künneth formula. I want H(X × Y) ∼= H(X ) ⊗ H(Y). MO: so here H
is cohomology with compact support. TB: yeah. I’ll give an example of
something satisfying these axioms. There may be more interesting exam-
ples.

2. Base change. For a cartesean square

X
f

//

g
��

Y
h

��

Z
j

//W

We have f∗ ◦ g∗ ∼= h∗ ◦ j∗.

Example 5.2. H(X ) is the vector space with basis given by representable
maps of finite type T → X , moduli isomorphism over X . If I have f : X → Y,
and g : T → X, I have f∗(g) = f ◦g and if h : T → Y, I have f∗(h) = (X ×Y T →
X ). It is easy to verify the two axioms. ⋄

Example 5.3. You could also quotient by relations [T → X ] = [U → X ] +
[(T rU) → X ] when U ⊂ T is open. Then I think of H(X ) as K0(St/X ). This
is something more motivic. ⋄

So if you have a “cohomology theory” with these properties, then you’ll get an
associative algebra. Consider

M(2)
b //

(a1,a2)

��

M

M×M

Then define m = b∗ ◦ (a1, a2)
∗ : H(M) ⊗ H(M) → H(M). b is representable

because this is the Quot scheme. Q: for this, it doesn’t look like you need an
isomorphism for Künneth, you just need a map. TB: good point, I just need a
map.
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Lemma 5.4. m is associative and unital.

The unit is i : Spec C→M given by pt 7→ 0, then the unit is i∗(1) ∈ H(M).
Q: the Künneth isomorphisms need to have some properties; fro example, they
should be associative. [[⋆⋆⋆ some other stuff]] TB: oh, so maybe you want H
to always be a ring. Q: I think the Künneth formula is more or less equivalent.
Take something with the diagonal map. TB: I’ll have to think about that some
more.

Proof. (associativity) fill in the cartesean square

M(3)

(a1,a2,a3)

&&

b

((g
//

(f,a2◦g)
��

M(2)
b //

(a1,a2)

��

M

M(2) ×M
(b,id)

//

(a1,a2,id)

��

M×M

(M×M)×M

Integration map

These ideas are from Kontsevich-Soibelman (if I haven’t messed anything up).
Assume R has finite global dimension (so the Ext’s don’t go on forever). Hall
algebra: [f : X → M] where X is finite type and f is representable; take
µ : K0(varieties)

[
[GL(n)]−1|n ≥ 1

]
→ Λ = Q(s) to be the ring homomorphism

given by the Poincaré polynomial. Define Cs[K≥0(A)] = Λ⊗C C[K≥0(A)] with
multiplication xα ∗ xβ = sχ(α,β)xα+β .1

Define an integration map. Given a constructible function ω :M→ Λ, define
[f : X →Mα] 7→

[∫
X f

∗(ω)dµ
]
xα. So f∗(ω) is a constructable function; I break

up X according to the values of the function and and add up the pieces with
weights. This gives an integration map I : H(A)→ Cs[K≥0(A)].

1Next we’ll assume A is CY3 . then χ is skew symmetric, so we get the same answer as
somewhere else.

Lemma 5.5. I is a ring homomorphism if and only if for A,B ∈ A,∫
Ext1(B,A)/Hom(B,A)W (E)dµ = sχ(A,B)W (A)W (B).

∫
Ext1(B,A)/Hom(B,A)

W (E)dµ = s−2 dim Hom(B,A)
∫
Ext1(B,A)

W (E)dµ.

Claim (conjectural). Suppose A is CY3 (I’ll in fact assume R = C[Q]/I for
some quiver Q and I given by cyclic derivatives of a polynomial superpotential.
This implies that framed modules, Vα, sits inside CN , framed representations of
Q with no relations). Then ω(E) = s[E,E]MFW (E), where MFW is the reduced
Poincaré polynomial of the Milnor fiber of W at E ∈ CN .

Here [E,E] is the Euler form on the quiver without relations; it is
dimHom(E,E) − N . In Kontsevich-Soibelman, they have dimHom(E,E) −
dimExt1(E,E), which is something on the quiver with relations. This is not
an Euler form because of something.

The claim boils down to the following. If I have a polynomial map of vector
spaces W : Cn1 ⊕ Cn2 ⊕ Cn3 → C, invariant under the C× action with weight
(1,−1, 0), then 1

s2n1

∫
X∈Cn MFW (x) dµ = MFW |Cn3

(0). I don’t know how to
prove this or if it is true.
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Let me start today by going over the argument from the end of last lecture.
(1) Recall that X →֒ M is an arbitrary scheme embedded into a smooth

scheme. There is no canonicalway that the normal cone CX/M is embedded
into the cotangent bundle ΩM . If X were smooth, the conormal bundle would
be embedded in ΩM , not the normal bundle. But CX/M defines cX ∈ Z∗X.
For every cycle, I pass to it’s smooth locus and then I get an embedding into
ΩM . And hence I get L(cX) ∈ LX(ΩM ). The mirolocal index theorem (reviewd
last time) says that if X is compact, then

∫
X

0!L(cX) = χ(X, νX), where νX =

Char−1(L(cX)) = Eu(cX). In the case where X is smooth, we get
∫
X 0![N∨

X/M ],
but because I have a short exact sequence of vector bundles on X

0→ N∨
X/M → ΩM |X → ΩX → 0

this is
∫
X
e(ΩX) = χ(X,Eu[X]) = χ(X, (−1)dimX) = (−1)dimXχ(X). This is

the Gauss-Bonnet theorem.
(2) If ω ∈ Γ(M,ΩM ) such that X = Z(ω), then we get ω∨ : TM → I, where I

is the ideal sheaf of X. I can restrict this to X, TM |X → I/I2, and take duals
to get

CX/M →֒ NX/M →֒ ΩM |X →֒ ΩM

so I get the cone CX/M as a closed subscheme of ΩM . If ω is almost closed,
then ω : CX/M → ΩM is Lagrangian. Then it follows that ω∗[CX/M ] = L(cX).

(3) If X has an obstruction theory F → τ≥−1LX , then taking duals we get
(τ≥−1LX)∨ → F∨, which induces a subsheaf of cones cv →֒ ob = h1(F∨) as
we saw last time. If F ։ ob is an epimorphism from a vector bundle F , then
the pullback C = cv ×ob F is a cone scheme C →֒ F such that [X]vir = 0![C].
If the obstruction theory is symmetric, then ob = ΩX canonically and the
embedding X →֒ M defines ΩM |X ։ ΩX . So we get C →֒ ΩM |X →֒ ΩM , and
[X]vir = 0![C]. Then [C] = L(cX). This can be checked locally, where you can
put yourself in the situation explained in (2) where you have an almost closed
1-form, so locally (C →֒ ΩM ) = (ω : CX/M →֒ ΩM ). Q: when did you prove
that last equality? KB: I didn’t go into details about why that is true. If the
obstruction theory is given by an almost closed 1-form, then I can take [[⋆⋆⋆

something something]]. Then [X]vir = 0!L(cX), so #virX =
∫
X 0!L(cX) =

χ(X, νX).

Remark 4.1 (A few remarks on derived geometry). We have W = L≥1[1],
where L is a dg Lie algebra. We have the guage group G acting (this is the
Lie group with Lie algebra given by L0, which we threw away in L≥1). W is
a graded linear manifold. A = SymW ∗, the graded commutative algebra of
functions on W , had this derivation of degree 1 Q : Ai → Ai+1. This is a vector
field of degree 1 on W . You should think of the moduli space X as the zero
locus Z(Q). ⋄

Remark 4.2 (Speculation). Using CY3, we get Serre duality, which gives rise
to an inner product (analogue of the Killing form) κ : L ⊗ L → C[−3]. I have
Ext1(E,E) ⊗ Ext2(E,E) → C because we are on a Calabi-Yau 3-fold. This κ
is a product of degree −3, by we pass to W and then we have κ : L[1]⊗L[1]→
C[−1], so κ is really of degree −1 on W : we have κ : W ⊗ W → C[−1], or
κ : W →W ∗[−1]. Think of κ as a differential 1-form on W . Then σ := dκ is a
symplectic form of degree −1 onW . “Cyclicity”1 translates into the fact that Q
is a Hamiltonian vector field for σ. I get a function f = 〈Q, κ〉 of degree 0 (since
degQ = 1 and deg κ = −1), so it is in A0 = SymL1∗ = OL1 . Contracting, I
get Qyσ = df , where f is the Hamiltonian. To make this precise, you have to
allow that κ is non-constant of Q has higher degree terms.

The main point I want to make is that the extra geometry that comes from
CY 3-fold is that your moduli space is a symplectic manifold with symplectic
form of degree -1. X = Z(Q), so it looks like X = Z(df), but this is only
true if σ is really non-degenerate. X = Z(Q) ( Z(df) because σ is only non-
degenerate on cohomology, not on W . Anyway, eventually I think some good
will come out of all this. The (symmetric) obstruction theory (L, d+ [µ,−], β)
on X is just the shadow of the degree −1 symplectic structure on the classical
scheme X. ⋄

By the way, M = Hom(A ⊗ V, V )Stab/G is space of the tensor algebra TA-
module structure (TA is non-commutative) on V . So you can think of M as
a moduli space of sheaves on a non-commutative scheme Y . I think this is an
important principle.

Take infinite dimensional model such as Ω0∗(Y,EndO E)0 = L (Delbeout
something). Here cyclicity holds κ([x, y], z) = κ(x, [y, z]). This more or less

1The two main properties of cyclicity are (1) κ(dx, y)± κ(x, dy) = 0 and (2) κ([x, y], z) =
κ(x, [y, z]).
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directly follows from the usual linear algebra that the trace satisfies that equa-
tion.

There is the Transfer Theorem for cyclic L∞-algebras, which says that
as complexes of vector spaces with inner product, L ∼= Ext1(E,E)0 ⊕
Ext2(E,E)0 = W 0 ⊕ W 1. Of course, this is very non-canonical. So if I
have a dg Lie algebra structure on L, it transfers to an L∞ structure on
W = W 0 ⊕W 1, which is a derivation Q (which can have terms of arbitrarly
high order, not just linear and quadratic) on A = SymW ∗ such that Q2 = 0.
If you really think about what this means, you get infinitely many operations
µn : Ext1Y (E,E)⊗n0 → Ext2Y (E,E). If the L∞-algebra only has components in
degree 1 and 2, then this only amounts to operations in degrees 1 and 2. Then

you write down f(X) =
∑∞

n=−2
(−1)n(n−1)/2

(n+1)!
κ(µn(x, . . . , x), x) : Ext1(E,E) →

C, which is a formal function such that Z(df) ⊂ Ext1(E,E) is isomorphic to
the completion of X at E. One of the big questions is to understand the radius
of convergence (it is bigger than 0?).
X ⊆M is locally Z(ω), where ω is almost closed. We’d like to have ω closed,

or even exact, so X = Z(df). I can’t prove that, but this works in a formal
neighborhood at every point.

In the end, I also want to explain how to do some computations. I’ll start by
explaining some properties of the microlocal function νX . Some properties:

1. If X is smooth of dimension n, then νX = (−1)n. This follows directly
from the definition.

2. νX×Y = ν ⊡ νY .

3. If f : X → Y smooth of relative dimension n, then νX = (−1)nf∗νY .

4. In particular, if f : X → Y is étale, then νX = f∗νY .

5. If X = Z(df) for f : M → C, and P ∈ X, then νX(P ) = (−1)dimM (1 −
χ(FP )) = “Milnor number”, where FP is the Milnor fibre of f at P .More
generally, νX is the fiberwise Euler characteristic (Φf), where Φf ∈
Perv(X) is the perverse sheaf of vanishing cycles of f . A fact from mi-
crolocal geometry is that “the characteristic variety of Φf” is equal to

CX/M
df
−֒→ ΩM (due to Lê and Mebkhout)

Perv(X)

fiberwise χ

��

oo Riemann-Hilbert

correspondence
// reg. holonomic D-mods

Char

��

Con(X) // LX(ΩX)

going down is decategorification and going up is categorification.

In the case X = Z(df), χ(X, νX) =
∑

i(−1)i dimC Hi(X,Φf ). “categorified
Donaldson-Thomas invariants”.

6. νX(P ) depends only on analytic neighborhood of X at P .

7. Conjecture: νX(P ) depends only on formal neighborhood of X at P .
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Quantum cohomology

Today I want to discuss quantum cohomology and wall crossings. Let X be

a toric stack with stacky fan (Σ, N, ρ). We have the ring SR·T(X ,Q) = Q[Σ],
where the elements are of the form ue where e ∈ N so that e ∈ |Σ|, and
ue1ue2 = ue1+e2 if e1 and e2 are in the same cone and ue1ue2 = 0 otherwise.
Let R = S·M , an algebra, and M ∋ χ 7→ div(χ) =

∑m
i=1〈χ, ρi〉u

ρi , so we have

0→ L→ Zm
ρ
−→ N

ΛE ⊂ L⊗ L.
For QSR·(X ,Q), we modify the relations. If e1 ∈ σ1, e1 =

∑
i∈σ aiρi and

e2 ∈ σ2, e2 =
∑

i∈σ biρi with σ1 6= σ2, let e = e1 + e2 ∈ σ, with e =
∑

i∈σ ciρi.
Then we impose the relation ℓ(e1 , e2) =

∑m
i=1(ai + bi − ci)ei ∈ LQ. If i 6∈ σ,

then the coefficient (ai + bi − ci) ≥ 0, ∈ NEσ ⊆ NEX .

Theorem 4.1. If X is weak Fano and I{ρi} = J (i.e. I(t, z) = 1+t+O(z−1)),

then QH·
T,orb(X ) = Q[ΛE][N ]/(ue1ue2 = Qℓ(e1,e2)ue).

Remark 4.2. (1) Baryrev was the first to say what the quantum cohomology
of a toric Fano manifold was. BCS told us what the orbifold cohomology of a
stack was. The natural pushout of these two statements is the theorem above,
so it was not difficult to guess the right answer.

(2) We should be able to do this for any S ⊆ B
≤1

. ⋄

Example 4.3 (P1,2). The fan sequence is

0→ L = Z
(2
1)
−−→ Z2 (−1 2)

−−−−→
ρ

Z = N → 0

There are two cones σ1 and σ2 (and zero), with generators u1 = ρ1, u2 = ρ2,
and w, with w2 = u2. Then ρ1 + 1

2ρ2 = 0, so ℓ = 0 (taking e1 = ρ1 and e2 = 1).

uw = Q1/21.

QH·T,orb(P1,2) = Q[q, u, w]/(uw = Q1/21), which contains (?) the R-algebra

R = Q[χ], χ = −u1 + 2w2. There is the non-equivariant limit, where you take

χ = 0, so you obtain QH·orb(P1,2) = Q[q, u, w]/(uw−Q1/21,−u1 +2w2). There

is the classical limit, where Q = 0, in which you get the Stanley-Riesner ring

H·
T,orb = Q[u, w]/uw. Then there is the case where you do both, to get H·orb(X )

where you take χ = Q = 0 ⋄

Proof. All of this comes from the GKZ differential system. If ℓ ∈ Z(?),

Wall crossing

[C,I,T]

Example 4.4. P(1, 1, 2) over F2. then I have [[⋆⋆⋆ picture]]. The fan se-
quence is

0→ L + Z2 → Z4

(
1 −1 0 0
0 2 −1 1

)
−−−−−−−−−→ Z2 = N → 0

and the Gale dual is

0← P ic(X ) = L∨ = Z2
D=

(
1 1 0 −2
0 0 1 1

)
←−−−−−−−−−− Z4 ← Z2 = M ← 0.

(C×)2 → (C×)4 acts on C4 with weights (1, 1, 0,−2) and (0, 0, 1, 1). In L∨,
I have the picture [[⋆⋆⋆ picture: D1 = D2 = P1, D3 = P2, and D4 =
−2P1 + P2, K1 first quadrant, K2 the part of the second quadrant above D4]]

I’ll think of an element ψ ∈ L∨ = HomGp((C
×)2,C×) as a (C×)2-linearized

line bundle on C4. The stable points of that linearization will be Us = {s ∈
C4|∃P (~x) ∈ C[x1, . . . , x4], P (g~x) = ψ(g)P (~x) such that P (~a) 6= 0}. You can
check that if ψ ∈ K1, then Us = C2r{0}×C2r{0} and Us/(C×)2 = F2. I hope
you’re familiarwith this as the standard way to construct the surface F2. On the
other hand, if ψ ∈ K2, then Us = C3 r{0}×C× and Us/(C×)2 = P(1, 1, 2). ⋄

I didn’t fully explain to you how to get a toric stack from a stacky fan. I
explained how to get an open cover. This wall crossing, when you cross from
K1 to K2, is somehow responsible for the birational transformation between F2

and P(1, 1, 2).
If you look at the picture D with K1 and K2, it looks like the fan of a toric

stack, so let’s consider the toric stack with that fan,M, which has two charts.
F2 corresponds to the chart C2 with coordinates q1 and q2, dual to P1 and P2.

And P(1, 1, 2) corresponds to a stacky chart C2/µ2 with coordinates q̃1 = q
−1/2
1

and q̃2 = q
1/2
1 q2, dual to −2P1 + P2 and P2.
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The I-function of F2 is a function of q1 and q2, for q1 and q2 small. I
won’t write it down; you can write it down IF2(q1, q2) ∈ H·(F2,C)[z, z−1]] =
C[P1, P2][z, z

−1]]/(P 2
1 , P

2
2 − 2P1P2). Imagine now that you use yesterday’s pro-

cedure to write down the I-function with basis 1, P1, P2, and P1P2.

We have that IP(1,1,2)(q) ∈ H·orb(P(1, 1, 2),C)[z, z−1]] = C[P,11/2]/(P
3 =

P · 11/2 = 0, . . . ). The right basis for the I-function, for some reason, is 1,
P − i1, 2P , 2P 2. People know why this is the right basis, but I can’t say why.

I analytically continue to the other chart to get IF2(q̃1, q̃2)|q̃1=0,q̃2=
√
q =

U(z)IP(1,1,2)(q), where

U(z) =




1 0 0 0
−iπ/2 0 0 i
iπ/2z 1/2 0 −i/2
π2/4z2 0 1/2 0




This has no positive powers of z, which gives you some crepant resolution. If
you do this with the next hardest case [[⋆⋆⋆ P(1, 1, 1, 3) or something]], you
get a positive power of z, which screws things up.
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4 Valery Alexeev

Nobody turned in the homework. The Quiz for today is for you to stare at
these two pictures [[⋆⋆⋆ pictures]] and see that they are basically the same.
They are both stairways to heaven, going up and up and up. The second one is
seven lines in P2, so r = 3 and n = 7, with β = (1, 1, 1, ε, ε, ε, ε). You complete
the puzzle by adding the divisors like this [[⋆⋆⋆ picture]]. The implies that
Mβ(3, 7) is not irreducible, which implies thatM1(3, 7) is not irreducible either.
Last time I told you you need 9 lines, but you can do it with 7.

Abelian varieties

Abelian varieties are of the form A = Cg/Z2g = (C×)g/Zg (the later form is
the more general version).

Ideal Theorem: If you fix β = (b1, . . . , bn), a dimension, and some other stuff,
then there exists a projective M, the moduli space of stable pairs (X,B =∑
biBi) satisfying (1) (X,B) slc, and (2) KX + B > 0.
I will attempt to give a more complete picture for surfaces tomorrow, but for

now we look at special cases, taking inspiration from this thing we wish were a
theorem.

What is a polarization on an abelian variety A? A polarization λ is an ample
divisor Θ, modulo algebraic equivalence. If a polarization is principal, then Θ
is unique up to translation. Of course, KA = 0, so KA + εΘ will be ample. If
we pick ε very small, then singularities of the pair (A, εΘ) will be essentially
the same as those of A.

When the weights are 1 or ε, and K + B ≈ 0 (but positive), then we are in
the toric situation (i.e. X has to be something like a stable toric variety). The
ideal theorem says that there has to be a compact moduli space here, of toroidal
nature. If the polarization is principal, then the divisor is essentially unique,
so it is the same as the moduli space of polarized varieties: (A, εΘ) ↔ (A, λ).
You have to be careful about the divisors matching up; in the ideal theorem,
B has to be an actual divisor, not a divisor up to linear equivalence.

So one has to switch somehow to another variety (A, λ) ↔ (X,Θ). In doing
so, we give up the notion of 0 ∈ A. So X is a torsor under A, but Θ is an actual
divisor. One instance of this is very familiar. (P ic0C, λ) ↔ (P icg−1,Θg−1).
If you work with one thing, you hardly see the difference, but in families,
these things behave differently. Theorem: there is an equivalence of categories

between principally polarized abelian varieties and torsors with divisor. The
bad news is that this only works for principal polarizations. For the non-
principal case, Martin Olsson suggested a solution with log structures. It is not
in the spirit of the ideal theorem. I believe it can be done without log structures
as well.

Consider [[⋆⋆⋆ broken interval, labelled (0, 1, 1)]]. I have a family Xt,
where for t 6= 0, (Xt, εBt) = (P1, ε(2pts). In the limit, where t = 0, I have
(X0, B0) a stable toric pair, a couple of P1’s joined at a point, where B0 is one
point on each P1.

If I have a toric variety X and an ample divisor B, let L = OX(B). Then
H0(X,L) =

⊕
Cei, where the ei are the lattice points in the polytope. We have

θ ∈ H0(X,L), with (θ) = B, θ =
∑
ciei. In a family, C[[t]][1/t] or meromorphic

functions on {0 < |z| < ε}. Then ci(t) = c′it
hi , where c′i are invertible and hi

are the heights of the lattice points. The projection of the lower convex hull of
the height function gives the paving of the polytope that gives you the limit.

In tropical geometry, you look at some tropical polynomials like “h0x
0 +

h1x
1 +h2x

2”= max(0 ·x+h0, 1 ·x+h1, 2 ·x+h2). This gives a piecewise linear
thing. Looking at the points where it breaks, you get the associated tropical
variety.[[⋆⋆⋆ picture]] This is related to the toric picture by the Laplace
transform. The tropical picture is like N space and the toric picture is like M
space. At every point on the piecewise linear function gives you a slope in the
dual space. You take some difference to get the values. The transform of the
picture is the function with heights (h1, h2, h3).

Let’s do this with a slightly more complicated 2-dimensional picture [[⋆⋆⋆

picture triangle with two ears]], then the tropical picture is [[⋆⋆⋆ same, with
dualish lines on it]].

Now I’m going to do something like this for families of abelian varieties.
I’ll start with the simplest picture. Start with λ = Zg (the pictures are for
g = 1). In the dual space Λ∗ ⊗ R = Rg , you’ll get something tropical. For the
height function, I’ll take a non-homogeneous quadratic form, h = q + linear,
and I’ll require that the quadratic form q is positive definite. If I take the lower
convex envelope and project down, I’ll get some sub-division. From this, I can
construct some graded algebra R, and ProjR → Spec C[[t]][1/t] is a family (or
use the meromorphic functions on {0 < |z| < ε} as a base). When you do
the construction, you get that for t 6= 0, Xt = C∗g/Zg, and for t = 0, X0 is
the stable toric variety for the periodic decomposition, quotiented by Zg. Each
of the intervals is a P1, and the periodic decomposition is an infinite chain of
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P1’s. When you quotient by Zg, you get (X0, D0) [[⋆⋆⋆ picture like nodal
cubic, with D0 a point on it]]. What is different from the previous case is that
C∗g/Zg is half way to algebraic, but it is not algebraic; you can’t make sense
of this quotient algebraically. You have to do something; there are three ways
to solve the problem. One way is to work in the complex analytic topology, so
you have a family of complex analytic varieties. The nice thing is that once you
quotient by the action, you get an algebraic variety. Then there is the approach
of Tate and Mumford. Mumford’s approach is purely algebraic. You look at
the central fiber first, where you get this infinte chain of P1’s. Though this is
not a variety, it is a scheme, and it is locally of finite type. On such a thing, you
can still define an ample line bundle and an ample divisor. Then this action
by Z is properly discontinuous in the Zariski topology (it makes perfect sense
in the algebraic category). Then after you quotient, you can descend the line
bundle. That’s only for the central fiber. You can replace the central point by
some artinian ring to thicken it up; you can then get a thickening of the central
fiber. After you do it for all such artinian rings, you can use Grothendieck’s
algebraization theorem to extend to a family. Mumford got his Fields medal
for this stuff. There is a third solution, which is to use rigid algebraic geometry.

Now let’s understand the tropical side of things. The Laplace transform of
this picture is again a piecewise linear quadratic function, which you can project
down. The corner locus will be some tropical variety, which will be periodic
(you’ll still have an action of Zg). If you vary the heights, the sub-division will
change abruptly. One picture lives in Λ and the other lives in Λ∗, but we can
identify them using the quadratic function q. There is an associated bilinear
form q : Λ× Λ→ R, which gives us an isomorphism Λ

∼
−→ Λ∗

R.
A higher-dimensional picture is [[⋆⋆⋆ picture of two interlaced square lat-

tices]]. [[⋆⋆⋆ In the tropical side?]] the 4-gons will become hexagons and
the other 4-gons will become triangles, giving [[⋆⋆⋆ picture with hexagons
dual to triangles]]. These decompositions have names. The square one (white)
is called the Delanay decomposision (1920s), and the other one is called the
[[⋆⋆⋆ ]] decomposition (1908). In 2007, something called the tropical theta
divisor (“Tropical Jacobians”). It tells you that a tropical variety is something
which describes a 1-parameter degeneration. Let’s see what the result of the
degeneration is in this case (the triangle tiling). Each triangle is a P2, and
modulo the period, there are only two of them. When you divide, you’ll get
the two P2’s glued to eachother along three P1’s, and this is a degeneration of
abelian surfaces. There is a divisor on it; algebraically, you have a line in each

plane, and they intersect at three points (one on each of the three shared lines).
Some people draw the divisor like this $ and call it a dollar sign.

The picture with the squares. Each square is a P1 × P1, and modulo the
period, there is only one copy. So when you quotient, you get a P1 × P1 glued
to itself along two lines (you can introduce a twist (shift) in the gluing). The
degenerations are described by H1(P ,Aut). There is a C× of abelian varieties
here.

Start with an abelian variety C×/Z. On this, there is a divisor Θ. Then
we go to a Z-cover, which is C×, on which we have a periodic divisor, given
by function θ =

∑
i∈Z

ciz
i, where the ci are quadratic non-homogeneous (in i).

Now we repeat it in a family. Then θ =
∑

i∈Z
ci(t)z

i, where ci = c′it
hi , where

hi : Z→ Z is quadratic non-homogeneous: hi = q + linear, with q ≥ 0.

Theorem 4.1. There exists a space AP g, the moduli space of stabil semiabelic
(↔ toric) pairs, with an open (but possibly not dense) subspace APg = Ag, the
moduli space of principally polarized abelian varieties. The normalization of the
main irreducible component of this space is A

vor

g , a toroidal compactification of
Ag for the second Voronai fan.

Back to the first picture, where you have a polytope (broken interval) and a
height function. If you look at all possible height function, it is a vector space,
and it is broken into cones depending on the decomposition of the polytope that
they give you. This gives you a fan, called the secondary fan, which gives the
secondary toric variety. Now consider the height functions q : Zg → R which are
quadratic. Projecting the lower convex hull, you get a periodic decomposition.
Breaking up the vector space of such q by the decomposition they give, you get
the second Voronai fan.
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This is the last lecture about log geometry. I want to switch gears a bit and
talk about the connection between log geometry and algebraic stacks, and do
a bunch of examples.

Warm-up. Let X be a scheme and let r ≥ 1 be a integer. Consider the
category C whose objects are pairs (M, β), where M is a fine log structure on
X and β : Nr → M = M/O× such that β locally on X lifts to a chart for
M .1 The morphisms (M, β) → (M ′, β′) are isomorphisms of log structures
σ : M →M ′ such that β′ = σ ◦ β.

Claim. C is equivalent to the category D, defined as follows. The objects are
collections (γ1 : L1 → OX , . . . , γr : Lr → OX), where the Li are line bundles
and the γi are OX -module morphisms (need not be isomorphisms; could all be
zero). The morphisms are isomosphisms of such data (i.e. isomorphisms of the
Li over OX).

Proof. I’ll sketch one direction. Given (M, β), construct the (Li, γi) as follows.
We have

Nr

β
��

ei_

��

M
π // M/O×

X M β(ei)

Take Li to be the line bundle associated to the O×
X -torsor π−1(β(ei)). There is

a map of sheaves π−1(β(ei))→ OX induced by the given map M → OX .
I’ll leave it to you to go the other way.

On the other hand, the groupoid D is equivalent to the groupoid of maps
X → [Ar/Gr

m] = [A1/Gm]r, maps from X to the stack quotient. The stack
[A1/Gm] parameterizes line bundles with maps to OX .

More generally, if P is a fine monoid, let SP =
[
Spec Z[P ]/D(P gp) =

Hom(P gp,Gm) = Spec Z[P gp]
]
. This classifies pairs (M, β) where M is a fine

log structure and β : P →M which locally lifts to a chart.

1
M

��

Nr

locally ::

//
M

Example 5.1. A1
t → [A1/Gm], in this dictionary, is a line bundle with a map

(L → OA1). It is given by L = (t) with the map (t) →֒ OA1 . Ω1
A1/[A1/Gm] is

computed as the ideal of the diagonal mod its square.

(x, 1) x�oo

A1

��

A1 ×Gm

pr1oo

ρ

��

A1∆oo

[A1/Gm] A1oo

So Ω1
A1/[A1/Gm] = k[t]∆∗(u − 1). You should think of d : k[t] → k[t]∆∗(u − 1)

given by t 7→ ut− t. That is, “dt/t”= ∆∗(u− 1). ⋄

Example 5.2. Let X be a toric variety over a field k (so it is normal, with an
action of the torus T , which is dense in X). Then you can consider the stack
quotient Ω1

X/[X/T ], which will be a subsheaf of j∗Ω1
T . It is exactly the subsheaf

Ω1
X(log along ∂X). If you write X = Spec k[P ], then this is our old friend

Ω1
X(log).
Q: if you take [P1/Gm], what is it? MO: it is two guys glued together, so two

log structures marked by a color. Whenever you have an algebraic stack, you
can make a space out of if (for A1/Gm, there is a closed point and a generic
point), which will be the fan of the toric variety.

X
g

//

��

·
Spec k

��

T

��

oo Spec k? _oo

[X/T ] // [Spec k/T ] Spec koo

So Ω1
X/[X/T ] = g∗Ω1

Spec k/[Speck/T ] = Lie(T )∨ ⊗k OX . ⋄

Example 5.3. Say X is a scheme, D ⊂ X is a Cartier divisor, and r ≥ 1 is an
integer. Let’s construct the universal rth root of D. Let L be the ideal of D,
which has a map γ : L → OX . We want to classify line bundles K with maps
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δ : K → O and ι : K⊗r ∼
−→ L such that the diagram below commutes

K⊗r

δ⊗r ""EE
EE

E

∼ // L

γ����
��

O

XD,r //

��

·
[A1/Gm]

t 7→tr

��

X
(L,γ)

// [A1/Gm]

This XD,r defines (K, δ, ι). If D = (f) ⊂ OX , then XD,r =
[
(SpecOX [z]/zr =

f)/µr
]
. So this gives you a global construction, which you understand how it

looks like locally. ⋄

Example 5.4. Let X be a nodal curve over a field k. In the other talks, we’ve
seen something about putting stacky structure at various points, but how do
you actually do that? How would I put a µ3 at the node for example? Here
is one way to do it. First, consider the case of a single node. You can’t write
a Zariski local neighborhood where the node looks like two axes. You have to
do it étale locally, and then you have to descend a stack in the étale topology,
which it’s not so clear how to do.

Give it the canonical log structure, (X,MX)→ (Spec k, k×⊕N→ k), where
the N is a local parameter at the node. You want k[t][x, y]/(xy − t3). You

have
[
k[t,z,w]
(zw−t) /µ3

]
→ k[t][x, y]/(xy − t3), where ζ ∈ µ3 acts by z 7→ ζz and

w 7→ ζ−1w, x 7→ z3 and y 7→ w3. We have

MX

k× ⊕ N

OO

// k× ⊕ N

(u, n)
� // (u, 3n)

MX
// N

k× ⊕ N

OO

// k× ⊕ N

OO

(u, n)
� // (u, 3n)

Let X → X be the stack over X classifying diagrams of fine log structures on
the right, such that for every geometric point x → X, the diagram on the left
is isomorphic to the middle one if x hits the node and the one on the right
otherwise

MX,x
// N x

N

OO

·3 // N

OO
N // N

N

≀

OO

·3 // N

≀

OO N2
·3 // N2

N

∆

OO

·3 // N

∆

OO

⋄

Proposition 5.5. If X = Spec(k[x, y]/xy), then X = [Spec(k[z, w]/zw)/µ3].

Remark 5.6. This construction between “twisted curves” and nodal curves
with extra log data. ⋄

The general story is this. Consider a finite category (i.e. a directed graph) D,
for example (• → • → •). For any scheme X, define LogD(X) to be the category

of functors from D to log structures on X. For example, Log (•→•→•)(X) is
the set of diagrams of log structures M1 → M2 → M3 on X. Morphisms in
LogD(X) are isomorphisms of functors.

Theorem 5.7. LogD is an algebraic stack.

Back to deformation theory. We started with some diagram on the left

(X0,MX0 )

log smooth

��

//___ (X,MX)

��
�

�

�

(T0,MT0)
� � J // (T,MT )

Log (•→•)

��

(M1 →M2)
_

��

Y
MY // Log• M1

For any log scheme (Y,MY ), define Log
(Y,MY )

to be the fiber product of the

diagram on the right. So Log
(Y,MY )

(f : X → Y ) is the set of pairs (M, f♭) M a

log structure on X and f♭ : f∗MY → M , so we’re upgrading a morphism to a
morphism of log structures.

This is equivalent to

X0

Log(f0)
��

//______ X

smooth
��
�

�

Log
(T0,MT0)

��

� � J̃ //

��

Log
(T,MT)

��

T0
� � J // T

log smoothness is equivalent to the map X0 → Log
(T0,MT0)

being smooth.

Deformation theory should be governed by Hi(X0, TX0/Log(T0 ,MT0
)
⊗ J̃).
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(X0,MX0) → (T0,MT0) is integral if and only if Log(f0) has image in flat
locus of Log

(T0,MT0)
→ T0. This implies the theorem from before.

Example 5.8. Proj
(
M ⋊ HS → Z[M ⋊ HS]

)
→ Spec(HS → Z[HS]), and we

have an action of the torus on Z[M ⋊HS ]. This is equivalent to

Proj(Z[M ⋊HS])

��

( [SpecZ[M ]/Gm]

��

//

·
BGm

��

Log
Spec(HS→Z[HS ])

étale // [Spec Z[M ⋊HS]/D(Mgp)] // BD(Mgp)

it can be shown that the bottom map is étale. [[⋆⋆⋆ some stuff]] ⋄
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5 Valery Alexeev - Moduli of surfaces

Today I’m going to talk about surfaces, and I’ll try not to skip technical details.
The reason is that for the previous lectures, there are papers with proofs. For
surfaces, there is no definite source. There is supposed to be a book, but it has
four authors, so it is delayed.

Let π : X → S be a flat family of slc surfaces, and let N ∈ N such that
Nbi ∈ Z. So each fiber Xs is slc, in particular is S2. Let Z ⊆ X be a subset
so that for all s ∈ S, codim(Zs, Xs) ≥ 2. On X r Z, ωX/S and OX(N

∑
biBi)

are invertible. So the bad set, where these sheaves are possibly not invertible,
is contained in Z. Let j : X r Z →֒ X.

Definition 5.1. LNX→S := j∗
(
ω⊗N
X/S⊗OX(N

∑
biBi)|XrZ

)
=“N(K +B)”. ⋄

Remark 5.2. Note that formation of LNX→S does not commute with base
change. In particular, for the (key) base change s → S, the construction does
not commute. In particular, the value of K2 jumps. ⋄

Definition 5.3. Fix β = (b1, . . . , bn), V ⊆ P (some projective scheme; for

stable pairs, V = pt), and coefficients c1, c2, and c3. Define MN(S) =
{

flat

projective families f : (X,
∑
biBi)→ S×V such that (1) X, Bi are flat over S,

(2) (Xs,
∑
biBi)s → V is a stable map, (3) LNX→S is invertible, ample over S×V ,

and (LNX→S)s = LNXs→s, and (4) (KXs +Bs)
2 = c1, (KXs +Bs)Hs = c2, H

2
s = c3

for Hs = f∗sOV (1)
}

. ⋄

MN definitely depends on N . In characteristic p, the moduli space definitly
depends on N . In charactaristic zero, I think it may not.

Definition 5.4. MK(S) is the same as MN , but the K stands for “Kollár”
and condition (3) is replaced by (3′) for all m such that mβ ∈ Zn, LmX→S is flat
over S, and (LmX→S)s = LmXs→s, and some LNX→S is invertible. ⋄

Remark 5.5. Under assumptions (3,3′), formation of the sheaf LNX→S does
commute with base change S′ → S. ⋄

Note that LNX→S does not depend on the “nice” Z ⊂ X. It should be
called “the caturation in codimension 2 relative over S”; it can be defined

as lim jZ,∗(. . . ). Under conditions (3) or (3’), LNX→S is called the hull of
ω⊗N
X/S ⊗OX(N

∑
biBi). The reference is Kollár, Hulls and husks.

Problem 1: embedded components of B.

Example 5.6 (Hacking, Hassett). Consider the surface F0 = P1 × P1 as the
fiber. Take the base S = A1. In the central fiber, take the divisor s0 + 2f in
|FF2, and blow it up. We get s4 in F4. So you have two glued surfaces in the
central fiber. Take 2s0 on the F0 and 4f+4(s4 +4f) on the F4, which intersect
the curve along which the two surfaces are glued four times. [[⋆⋆⋆ picture]]
The key thing is that on the F4, you have a nodal curve, which we will smooth
in the generic fiber (explicitly, it is something with genus 35; you can find this
in my paper on stable limits of surfaces). Now, contract the F0 component
to a point. So in the central fiber, we’ll have F4, with the exceptional fiber
contracted. It will be a cone on a quartic. The genus of the curve in the central
fiber is one higher than the (arithmetic) genus of the curve in the generic fiber.
You can see this; when you contract all four intersection points to a point, the
genus jumps up by one. pa(C0,red) = g + 1. But in flat families, arithmetic
genus is constant. We can conclude that B0 ⊆ X0 is not reduced. But you
can compute that KS + 1

2
B is Q-Cartier (2KX +B is Cartier) and ample over

S = A1, so this is the log canonical model for . . . . So I have a divisor on the
3-fold, but when I restrict to the central fiber, it is not a divisor, it is only a
closed subscheme.

The problem here is that B is not Q-Cartier, but (B0)red is Q-Cartier. In this
situation, you necessarily aquire an embedded component. If B0 were Cartier,
we would just lift that divisor in the family. You should expect this. K + B is
Cartier in the log canonical model, but K and B need not be Cartier. ⋄

What are we supposed to do now? Work with a subscheme instead of a
divisor? What are the definitions of lc and slc in that case? This seems like a
very serious problem, but there are several solutions:

1A. This problem does not happen if bi = 1. This is proven in my paper on
limits of stable pairs. This is not so good; 1

2 is a perfectly good coefficient.

1B. Work with subschemes Bi ⊆ X which are closed and flat over S. That is,
require (X,

∑
bi(Bi)

div) to be a stable pair. I don’t like this solution. Once
you allow these embedded points to be there, then you have a surface, with
a divisor, and these embedded points can crawl everywhere, and that is
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just unnatural. Maybe you could allow them in the bad fiber, but it seems
like you have to allow them everywhere.

1C. Replace divisors by finite maps Bi → X, where the Bi are reduced and
codimension 1. I call these branch divisors. So when you form the divisor,
you just take the divisor given by the image. How does this cure the
example? It will look like this [[⋆⋆⋆ picture with two nodes]]; this is
really a branch divisor, because at one point it is 2-to-1.

1D. (Kollár) “B = (K+B)−K = L−K” where L is an ample Q-Cartier divisor.
On a smooth surface, you can interpret NB as a morphism φ : ω⊗N

X/S →

LX→S
N .

1E. Only work with coefficients (bi + εi) and 1. This means that in the defini-
tion, you insist that these divisors are Q-Cartier. This is a cheap way out,
because 1

2 is a perfectly good coefficient.

I like solutions 1C and 1D.
Problem 2: The properness criterion of MMP for a non-normal generic fiber.

We started with a normal 3-fold in the picture I described before. What if you
start with some family of surfaces where the generic fiber is not normal? Do
we have a MMP for such things?

Example 5.7 (Kollár). Start with the surface Fn and you attach to it an Fm.
You attach a divisor, which is the simplest thing you could have: sn with sm
and sn + nf . [[⋆⋆⋆ picture]] K + B is slc and big, but

⊕
d≥0H

0(d(K + B)
is not finitely generated. Kollár has a more sophisticated example where the
surface is irreducible. ⋄

This example is really not a problem. You take the normalization and run
MMP for all the pieces. [[⋆⋆⋆ picture]] Then you want to say that this glues
uniquely together. The solution is to require (KX +B)|E matches on the “left”
and “right”. This should be treated in the étale topology (the normalization
could be connected, so you take a cover where it breaks into pieces). With this
condition, everything glues nicely and the triple points are not a problem. In
higher dimensions, there would be more trouble because you’d have things of
higher codimension. So the surface in the example does not appear as a limit
if you impose this condition.

Construction of moduli

The construction is standard once you have good properties of the stack M.
The properties are

1. properness, which is ok by MMP and above

2. boundedness, which is ok (V.A. 1994)

3. local closedness, which is Problem 3.

I could have (X,
∑
biBi, L), where L is relatively ample invertible. If you make

a base change, to get (XT , BT , LT ), would this be in M(T ) (i.e. would it be
an admissible family)? Local closedness means that for Su =

⊔
Si with the Si

closed, then T → Su.
Fix some N . By boundedness, you can fix it so that LN is very ample. Then

L gives you an embedding into some projective space of fixed dimension. So
you are in some Hilbert scheme. You cut out . . . . The problem begins with
the fact that LX→S

N does not commute with base change (if I don’t start with
a good family). If you know local closedness, then you know that you can form
an admissible family. The only thing that is different from what we want is
the embedding. You quotient out by the embedding and you get a quotient
stack M = U/PGL. The properness implies that this is algebraic with finite
stabilizers.

Problem 3 has been solved. The statement is true, but one has to prove it.
HK did it in dimension 2 with B = ∅. Kollár Husks and hulls gives a com-
prehensive treatment. According to me, this moduli space exists in complete
generality (at least with contastant coefficients).
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5 Kai Behrend

Remark 5.1 (Heuristics: why vanishing cycles). Suppose f : X → C is a 1-
parameter family of projective varieties. Suppose that the generic fibers are
non-singular, and the singularities are all in the special fiber: Z(df) = Z(f).
Xη the generic fiber is smooth. I explained that

#virXη =

∫

X

e(ΩX) = (−1)dimXηχ(Xη) =
∑

(−1)dimXη−i dimHi(Xη).

#vir should be invariant. There is a spectral sequence Hp(X0,Ψ
q
f) ⇒

Hp+q(Xη ,C). This is a Leray spectral sequence of the embedding Xη ⊂ X
[[⋆⋆⋆ should be special fiber X0 ⊂ X?]]. µ′

f : fiberwise Euler characteristic
of Ψf : constructible function on X0. χ(X0, µf) = χ(Xη). This function is
supported at singularities. Q: if X projective, it can have a lot of cohomology,
but the vanishing cycle around a singular point is a tiny little thing. A: it’s all
the cycles including the vanishing cycles. KB: this is copied from SGA7 Exp. I.
I should probably call this “nearby cycles”; there is always this confusion be-
tween vanishing cycles and nearby cycles. µ′

f = 1± µf . I keep saying that the
moduli space should be the singular locus in the special fiber, but if I deform
. . . . I don’t remember what the relavence was supposed to be. ⋄

Now X is back to what it was the whole time (a scheme with a symmetric
obstruction theory). One more property of the microlocal function νX . Suppose
C× acts on X with an isolated fixed point P . This corresponds to a sheaf E on
the Calabi-Yau Y . Suppose the C× action preserves the obstruction theory:

F
∼ // g∗F //

��

F

��

X
g

// X

and the isomorphism should satisfy a cocycle condition. Then C× acts on the
Zariski tangent space TX(P ) = Ext1(E,E)0. Suppose all the weights of this
action are non-zero (this is what I mean by “P is an isolated fixed point”).

Theorem 5.2 (Behrend-Fantechi). νX(P ) = (−1)dim TX (P) = n1···nd

(−n1)···(−nd)
if

n1, . . . , nd re the weights of C× on Ext 1 and −ni are the weights of C× on
Ext∨ = Ext2.

“Proof”. Let me do this in the case X = Z(df), where f : M → C is holomor-
phic and M is smooth. Suppose C× acts and f is homogeneous of degree 0.
Say M = Cn. Then C× acts on the induced obstruction theory in the required
way. Then the nodal fiber FP = {x ∈ M |f(x) = δ, ‖x‖ < ε}. Then S1 ⊂ C×.
acts on the Milnor Fiber Fp. Since all the weights are non-zero, you can prove
that there are fixed points so χ(FP ) = 0. So νX(P ) = (−1)dimM (1 − 0). The
proof in the general case is similar, but you have to change [[⋆⋆⋆ something]]
and find a replacement for the Milnor fiber.

Mac Mahon function: M(q) =
∏
n≥1

1
(1−qn)n =

∑
n≥0 p(n)qn, where p(n)

is the number of 3-dimensional partitions of length n. Hilbn Y , where Y is
Calabi-Yau 3-fol (compact or not), then

1. (Y compact)
∑

n≥0 #virHilbn Y qn = M(−q)
R

Y
e(TY ⊗ωY ). (Li Levine-

Pandhaupale)

2. (Y arbitrary)
∑
n≥0 χ(Hilbn Y, ν)qn = M(−q)χ(Y ). (Behrend-Fantechi)

These formulas are identical if Y is compact and Calabi-Yau.
Let C ⊂ Y be a super rigid rational curve (i.e. C ∼= P1 and NC/Y = O(−1)⊕

O(−1)) with Y a compact Calabi-Yau 3-fold. It is known that in degrees 1
and 2 these are the only kind of curves on the generic . . . . Let Xn(C, Y ) be
the moduli of ideal sheaves I ⊂ OY such that OY /I defines a subscheme of Y
whose associated 1-cycle is C and χ(OY /I) = n. So it is really Y with C and
n − 1 points floating around (which can be on or off of C). This an open and
closed subscheme of the moduli with the same Hilbert polynomial (because of
the super rigidity). [[Q: It’s not of finite type, is it? KB: it is; n is fixed and
I’m fixing the Hilbert polynomial, and the associated 1-cycle is one copy of C
(no multiplicities).]] Let Nn(C, Y ) be the virtual count, contribution of C to
the Donaldson-Thomas invariant with this Hilbert polynomial. The generating
function for this thing turns out to be

∑

n≥0

Nn(C, Y )qn = M(−q)χ(Y ) q

(1 + q)2
.

Now we can stratify the moduli space Xn(C, Y ). Zn,0(C, Y ) ⊂ Xn(C, Y )
closed. Zn−i,i(C, Y ) is where exactly i points (with multiplicity) are off
C. Z1,n−1(C, Y ) = Hilbn−1(Y r C) is the open stratum. Xn(C, Y ) =⊔n−1
i=0 Zn−i,i(C, Y ).
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Hilbi(Y rC)×Zn−i,0(C, Y ) = Zn−i,i(C, Y ) is contained as a closed subscheme
of U , the open subset of Hilbi(Y rC)×Xn−i(C, Y ) defined as the open subset
where the two subschemes have disjoint support.

Hilbi(Y r C)× Zn−i,0(C, Y ) =

closed

��

Zn−i,i

incl. of stratum

��

U

open

��

étale // Xn(C, Y )

Hilbi(Y rC)×Xn−i(C, Y )

Notation: if f : X → Y is a morphism of schemes, then χ̃(X, Y ) = χ(X, f∗νY ),
and χ̃(X) = χ̃(X,X) = χ(X, νX).

I want to compute χ̃
(
Xn(C, Y )

)
=

∑n−1
i=0 χ̃

(
Zn−i,i(C, Y ), Xn(C, Y )

)
.

χ̃
(
Zn−i,i(C, Y ), Xn(C, Y )

)
=

= χ̃
(
Hilbi(Y rC)× Zn−1,0(C, Y ),Hilbi(Y r C)×Xn−i(C, Y )

)

= χ̃(Hilbi(Y rC)) · χ̃
(
Zn−i,0(C, Y ), Xn−i(C, Y )

)

= known

νXn(C,Y ) = νU = νHilbi(YrC)×Xn−i(C,Y ). Closed stratum

χ̃
(
Zn−i,0(C, Y ), Xn−i(C, Y )

)
= χ̃

(
Zn−i,0(P

1, N), Xn−i(P
1, N)

)

N = O(−1) ⊕ O(−1). [[Q: [[⋆⋆⋆ something]] is very lucky. KB: I could
stratify further; I don’t think the full power of this method has been exploited.]]
Now we are on N = O(−1)⊕O(−1). We have C× action. We get a C× action
preserving the CY, with isolated fixed points. We know νX(P ) if P is fixed; it
is (−1)n−1 (MNOP1), and we can count the fixed points, which means you’re
piling boxes in two corners of the room, not just one corner. In this case, the
two corners are connected by an (infinite) row of boxes, so the two piles never
meet.

I don’t have to worry about the value of the function at any other point
because the C× action is something so their stuff cancels out. So I get the
formula from earlier.
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5 Alessio Corti

Today I want to do two (or perhaps three) things. The main theorem I stated
was the mirror theorem with the I-function and J-function. I want to zoom in
on one part of the proof.

Let X be a proper 1-dimensional toric stack. Question: classify all repre-
sentable toric morphisms f : Pr1,r2 → X . You have to calculate some Gromov-
Witten numbers.

Remark 5.1. If X is a manifold (not a stack), then X = P1. In this case, the
only representable morphisms are from P1 = P1,1. Toric morphisms are then
classified by degree; every such morphism is given by (x0, x1) = (zd0 , z

d
1). ⋄

The slogan: all such morphisms are classified by the enhanced degree d̂eg ∈
Hom(P̂ ic(X ),Z). This is the main motivation for introducing P̂ ic.

Notation: X has a fan diagram

0→ Z

(
w2
w1

)
−−−−→ Z2 ρ

−→ N

where N is a rank 1 abelian group (so Z plus a torsion bit). [[⋆⋆⋆ picture
fan for P1; ρ1 negative, ρ2 positive, σ1 negative cone, σ2 positive gone]]. Let
B = Box(X ). Then B(σ1) = {v ∈ N |v = aρ1, 0 ≤ a < 1} = N/〈ρ1〉. So
Ntors ⊂ B(σi) =: Bi and Box = B(σ1) ∪B(σ2).

Recall that Pr1,r2 is a P1 with a µr1 at zero and µr2 at infinity. f : Pr1,r2 → X ,
f(0 and f(∞) give me Bµri → X , which give me vi ∈ Bi. ρ = {ρ1, ρ2, v1, v2}.

vi = fi(ρi) where 0 ≤ f1, f2 < 1 are rational. Then d̂egf ∈ LS ⊂ L̂ =

Hom(P̂ ic,Z).
More explicitly, we enhance the fan map to get

0→ LS → ZS = Z4 ρS

−−−−−−−−→
(ρ1,ρ2,v1,v2)

N

So d̂egf = (q1, q2, 1, 1) ∈ ker ρS (column vector), where q1 and q2 are positive
integers. A general enhanced degree would have integers k1 and k2 in place of
the two 1’s.

Remark 5.2 (Exercise). There is a positive rational number ℓ ∈ Q+ such that
wiℓ− fi = qi, where w1 and w2 are from the fan sequence. This ℓ is the “good
old” deg f .

IfN has torsion, then there is more information in the enhanced degree. From
ℓ, I would not be able to recover the box elements (only modulo torsion). ⋄

Proposition 5.3. The following sets of data are equivalent:

1. non-constant representable morphisms f : Pr1,r2 → X for some r1, r2 (un-
specified),

2. Box elements v1 ∈ B1, v2 ∈ B2 and integers q1, q2 > 0 such that q1ρ1 +
q2ρ2 + v1 + v2 = 0 in N .

Proof. We’ve done one direction; you can convince yourself that it works. Let’s
do the other direction. We have to construct a morphism of fans.

0 // Z

m

��

(
r′2
r′1

)
// Z2

(−r1,r2)
//

(
m1 0
0 m2

)
��

Z

η

��

(Pr1,r2)

0 // Z (
w2
w1

)// Z2
ρ

// N (X )

First we construct η by η(1) = −v1 − q1ρ1 = v2 + q2ρ2. Let ri be the order of
vi as a group element of Bi = N/〈ρi〉. Then rivi = kiρi for some non-negative
integers ki ≥ 0. It is easy to check that ki/ri = fi. This tells us what r1 and
r2 are.

Next set mi = riqi+ki. We’ll define the middle map to be given by
(
m1 0
0 m2

)
.

Let’s check that the square commutes. We calculate that m1ρ1 = (r1q1 +
k1)ρ1 = r1(−v1 + η(−1)) + r1v1 = −r1η(1).

Finally, we want to construct the last map, but that is easy because they
are kernels; the image of the top Z in the bottom Z2 is sent to zero because of
commutativity of the square we checked.

This is not difficult, but it took some time to sort it out because we had to
find the correct way to package the combinatorics. In the end, this P̂ ic is what
did it.

General words on the proof of the mirror theorem. You want to calculate
some Gromov-Witten invariants at the end of the day. We want to calculate
the J-function

J =
∑

β

Qβ
∫

X0,1,β

ev∗1
z − φ
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T acts on X and on X0,1,β. Inside of X , there is the 1-dimensional stratum.
For a map to be T-invariant, your orbi-curve is likely to be extremely reducible.
Basically, the J-function breaks up into contributions. A fixed point will be in
an affine chart Xσ (σ maximal cone), then there is a point mapping there with
some box element ν ∈ Bσ . It is more or less a combinatorial problem. You
break it up into pieces where you somehow rip off that component of the source
curve. You know the contribution from that component, and the rest has lower
degree, so you set up some induction procedure.

Oil Update

Not all of you have heard me lecture about this, so let me give you some
basics. Oil is measured in barrels. One barrel is about 140 liters, or 40 gallons
(unrefines). Today, a barrel costs about 135 USD, which is more than twice
what it cost exactly a year ago. You might think 135 USD is a lot of money,
so let me tell you what you buy when you buy a barrel of oil. One barrel equal
25,000 man hours of mechanical energy (never mind how that calculation is
done)! You may be asking yourself, why is it that in the last twelve months,
oil doubled it’s price. Maybe it is speculators in Wall street, who want to make
sure you pay because they messed up some prime mortgage thing. So they keep
making money why you pay. Actually, the answer is rather different. There
are very few studies of the world supply of oil. Given such a serious problem,
why is it that nobody trys to study the future supply of oil. Today, world
production is estimated to be approximately 85 MB/day (actually 75 MB/day,
when it comes to crued oil; they get 85 by tricks called refinery gains and some
other stuff, natural gas tricks), which is about the same that was produced in
2005! It is amazing how economists get Nobel prizes by saying that when there
is enough demand, the shit will turn up. There are studies by the EUIA (or
something), which still tell us that in 2030, the world will produce about 120
MB/day. Why do they say that? They plot the curve and extrapolate! There
are very few studies on the supply side, and let me put my favorites

– F Rebelius, March 2007. This is a graduate student doing this! It’s on the
web; you can look it up.

– C. Skrebowski, Megaproject Update, on Petrolium review; this one is not
on the web. Instead of guessing how much oil is in the ground, he knows
about the big projects. Journalists say “the high prices are not stimulating

investment in oil production”. What are they talking about? It takes 8
years after you find an oil field to production. He sees a lot of oil coming
in until 2012, and then we’re walking into empty space; there is nothing
there to fill that hole. Q: is that what the other one predicts? AC: yes, but
the other one estimates the oil in the ground, so it is a completely different
methodology.

– Energy Watch group, October 2007. These are scientists who were given
serious money to buy data from the oil industry (by bribe). Oil data from
Saudi Arabia and Russia are classified, so you have to bribe to get the data.
Google gave me less than one page on this study. None of the press quoted
this study! What these guys say is that world oil production reached its
peak in 2006 and that it will be down 50% by 2020 (?).
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Open Problem Session

For the next hour, we’ll be doing something semi-experimental. The purpose of
this hour is to ask ourselves collectively what we feel are important questions.
They can be speculative and long-term (“show something like this conjecture”),
as well as very specific (“understand this particular special case”). Very briefly,
I (Ravi) will be all-powerful. Only I can hold the chalk. If I don’t understand
you, it’s your fault. Anton will take notes. Somebody should start by asking
some question you want to know the answer to. Then we’ll look for related
questions before moving to a new topic.

These notes are very rough, but if you have more to add, including better
attributions and references, please e-mail Anton.

Question: what is a good example of a zero Gromov-Witten invariant on
M(X, β) that is zero for a non-trivial reason? Arend Bayer: There are ex-
amples on blow-ups. Blow up a point on a surface. β multiple of E. This is
in a paper of Gathmann. Tom Graber: these examples are not good enough
from the point of view of the motivation. Motivating question: find an
equivalence between rational connectedness and the non-vanishing of certain
global invariants. The big conjecture: rational connectedness is equivalent
to symplectic rational connectedness. This is believed to be very hard. Dan
Abramovich: one direction is known. There is a paper of Voison that deals with
dimension 3. Her argument for 3-folds except when those that have projections
to surfaces that involve blow-ups. Possible hope: If we knew this conjecture,
does this help with the problem of finding a variety that is rationally connected
but not unirational. Further motivation: if this were true, then rational con-
nectedness would be preserved by symplectic equivalence. So here is a related

question: Are all rationally connected varieties unirational? Refences include:
Kollár, Ruan, Li et. al. for above. A student at Brandeis (who?). Does this
question have a name? It is implied by some conjecture of Mumford (the −∞
conjecture).

Question related to Jim Bryan’s talk: the Donald-Thomas/Crepant-
Resolution-Conjecture story involved a derived equivalence. Is there some way
of geometrically interpreting the image of a Fourier-Mukai as a moduli prob-
lem? Question: Find a single Bridgeland stability condition on a compact
Calabi-Yau 3-fold. Back to DT/CRC: Question: Find an analogue of the
Givental formalism in Donaldson-Thomas theory.

Question. Given a family over a base X → Y , find a relation between the

moduli map Y →M and the Campana core map. Another formulation: if Y is
special, must the family be isotrivial. What hypotheses are implicit here? For
example, you must need some assumption like a smooth family of canonically
polarized varieties. Response: this is part of the question: find any set of
hypotheses that work. make that part of the question. Possibilities: Family
= canonically polarized varieties, semi-ample K, existence of a good minimal
model? Do we want smooth? Do we need a polarization in the semi-ample
case?

Question: If Y is smooth and has a nice compactification Y with S = ∂Y
and the moduli map is generically finite, does this imply that Ω1

Y
(logS) is in

some sense weakly positive (boundary of big). The answer is “yes” if there
exists local Torelli. Question: There is a sheaf of differentials that Viehweg
and Zuo construct. What (if any) are its universal properties and where does it
live, really? By construction it lives on Y , but maybe from universal properties
it should follow that it lives in some weak way to the moduli space. Is this
thing known to be unique? Response: To be unique, of course one should
ask for some universal property, so we’re led back to this question. Related

question: characterize rigid (with respect to the morphism i) subvarieties
i : Y →֒ M moduli space (under one of these 3 assumptions listed earlier).

Question: Try to axiomitize (relative) “curve counting” theories and try
to prove that such a theory is characterized by its values on some class of
varieties. For exaple, perhaps they should just cut and paste well, and then be
determined by its values on toric varieties. Cf. J. Li, Levine-Pandharipande,
Maulik-Pandharipande.

Question: Find a good definition of the virtual fundamental class when
amplitude of tangent obstruction theory is finite but bigger than two. This
makes sense in the context of derived or dg algebraic geometry. Questions

prior to this: Where should the virtual class live? Are there Chow groups in
derived geometry? Should they just be the usual Chow groups on the under-
lying scheme/stack? Intersection theory in on higher stacks would be helpful.
Question: Develop it. Question: Can someone write readable finite length
foundations for higher stacks? But back to the virtual fundamental class: some-
one (H.-L. Chang?) said that on the arXiv, there is some paper that approaches
this question in the Donaldson-Thomas case using some modified hermitian
Yang-Mills equation. Question: For Artin stacks in general, is there some
theory of virtual fundamental class? Cf. thesis of Noseda at SISSA.

Questions: What stacks are quotient stacks? (Quotient stack means quo-
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tient by affine group schemes.) Are there good conditions on a stack that
ensures that it is a quotient stack? If you have a coherent sheaf on a stack, is
it a quotient of a vector bundle? This is called the resolution property. The
resolution property implies that the stack is a quotient stack (cf. Totaro). It is
not even known if all smooth proper algebraic spaces over C have the resolution
property. Question: Find conditions for the resolution property to hold in this
algebraic space case? There are results in this direction. Totaro proved that
the resolution property is equivalent to being a quotient of an affine scheme by
an affine group under some hypotheses. Question: What about conditions for
when a stack is a quotient stack? More precisely: for a closed point of an Artin
stack with a linearly reductive stabilizer, when is the stack étale locally a quo-
tient by that stabilizer (the expected group). Motivating problem: construct
good moduli spaces (in the sense of Alper) without GIT. Often constructions
using GIT involves tough proofs that your notion of stability agrees with GIT
stability.

Question. Remove global resolution and global embedding into a smooth
stack hypotheses from Graber-Pand virtual localization and from Ciocan-
Fontanine-Kapranov dg schemes. Jim Bryan doesn’t care about this question.

Question related to Lucia Caporaso’s talk, where she compactified the space
of line bundles on a curve. What about a higher dimensional base? Question:

Extend Caporoso’s work on line bundles on nodal curves to surfaces. Follow-

up: Try to get moduli spaces of sheaves where you have an understandable
deformation-obstruction theory At the very least, we would want it to be finite
amplitude/length. Perhaps the objects, instead of being sheaves, might best be
objects in the derived category, as in Lieblich’s work. Vector bundles on curves
reference: Schmidt.

Kai Behrend says: take a holomorphic fuction f : Cn → C. Consider the
Milnor fiber at the origin. I’m interested in the Euler characteristic of that.

Now consider the Kähler differentials Ω·
Cn on Cn. You have two things you can

do: you can wedge with df and you have d. I take homology first with respect to
∧df and then d. The conjecture is that that is equal to that Euler characteristic.
This is some kind of generalization of the holomorphic Poincaré lemma. There
is a reference of this in a paper of Kapranov. (Kapranov, M. M., On DG-
modules over the de Rham complex and the vanishing cycles functor, Algebraic
geometry (Chicago, IL, 1989), 57–86, Lecture Notes in Math., 1479, Springer,
Berlin, 1991. The relevant statements are very well hidden in this article, so I
should point out that Kapranov proves the finite-dimensionality just before the

end of Section 2 (at the bottom of Page 72), and he describes the Conjecture
in Remark 2.12(b).) Question: Find a proof. Kapranov proves that you get
something finite dimensional and well defined. This is also a generalization of
the fact that the length of Jacobian ideal is equal to the Milnor number in the
isolated singularity case. There is motivation from Donaldson-Thomas theory,
in which there is some derived scheme. There is a De Rham model with the
two differentials and the perverse sheaf of vanishing cycles and something about
them being the same. The De Rham thing natually comes out of the derived
stack of DT theory.

Question: Is the moduli space of genus g ≥ 3 curves maximal in the sense
that it does not admit a non-trivial finite étale map to a smooth orbifold? This
is minimality for the moduli space and maximality for the Teichmuller space.
Question: Is there some kind of extension of the Teichmuller group?

Let’s move to higher-dimensional moduli. Question: Is there a tautological
ring for moduli spaces of higher dimensional objects? Possible examples: po-
larized K3s, mated P2’s. Question: Perhaps Noether-Lefschetz loci in the first
case are good? Perhaps no “natural” classes lying outside this ring?

Question: Work out complete nontrivial examples of compactifications of
moduli of surfaces of general type. There are some examples where you have
a product of curves so you can use the moduli space of curves (van Opstall);
a single additional example would be interesting. How about cubic surfaces in
P3, are those understood? Those aren’t general type, so never mind. Valery
Alexeev proved that there is a compactification of the moduli space of surfaces of
general type. It would be good to have an example we understand, cf. Hacking
for example in the marked case.
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