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Most of these lectures will be based on joint work with T(om?) Coates,
H(iroshi?) Iritari, and H. H. Tseng. There is a list of problems for this course.
References for today: two papers by Abramovich-Graber-Vistoli and the origi-
nal paper by CR.

Quantum cohomology of stacks

From tomorrow onwards, we will be working with toric stacks, but today we’ll
be more general. Let f : Γ → X be a stable representable morphism from an
orbi-curve to a stack.

An orbi-curve is a proper, projective, algebraic curve Γ with some marked
points xi. Each of the marked points has a chart of the form [∆/µri

] (where
∆ is a disk and µr is the group of r-th roots of unity). An orbi-curve has
a fundamental group πorb1 = π1(Γ r {xi})/〈γ

ri

i 〉, where the γi is a small loop
around xi.

Orbi-curves have line bundles on them, which are line bundles L, together
with an action of µri

on Lxi
, given by v 7→ ζkiv. Riemann-Roch tells you that

χ(Γ,L) = degL+ 1− g −
∑

ki/ri

I hope you’ll accept this stuff without worrying too much about the precise
definitions.

Exercise. Pr1,r2 . Then you can convince yourself that the Picard group is
Z⊕ Z/gcd(r1, r2).

That’s all I’ll say about orbi-curves. Now on to stacks.
A stack X is locally ∆n/G, where G is a finite group. Stacks have points,

and points have stabilizers. A point x has stabilizer Gx. A morphism of stacks
f : X → Y is representable if it induces injections Gx → Gf(x). If G is a
finite group, there is a very important stack called BG, which is the quotient
[∗/G]. That is, to give a morphism X → BG is the same as to give a principal
G-bundle on X . We need this in the case where X is an orbi-curve.

Example 1.1. If X = Γ is an orbi-curve, then a morphism X → BG is a
homomorphism f : πorb1 Γ→ G is representable if f(γi) has order ri. ⋄

Today I want to discuss orbifold cohomology and orbifold quantum co-
homology. For this, we have to introduce the inertia stack IX =⋃
r≥0 Homrep(Bµr ,X ) (where Homrep means representable morphisms). Such

a morphism is the same as giving a point x ∈ X and an injection χ : µr →֒ Gx.
Aside from doing some examples, I’m not really sure how to explain this, so

let’s do some examples.

Example 1.2. Let X = Pw0,...,wn (weighted projective space), which we will
think of as C(−w0)⊕ · · · ⊕C(−wn) (where C(−w) is the representation of C×

of weight −w, so λ : x 7→ λ−wx). In this case, BoxX = {k/wi|0 ≤ k < wi} and
IX =

⋃
b∈Box P(V b), where V b =

⊕
wib∈Z

C(−wi).
If we take X = P(1, 1, 3), IX = P(1, 1, 3) ⊔ P(3)1/3 ⊔ P(3)2/3 (subscripts are

Box levels). ⋄

Example 1.3. X = [M/G]. In this case, IX =
⊔
g∈C [Mg/Z(g)] (C is conju-

gacy classes) ⋄

In general, there is a graph of groups B = BoxX , whose elements are injective
group homomorphisms χ from µr into some stabilizers. The inertia stack is
IX =

⊔
χ : µr→Gη

Xχ.

Definition 1.4. H·orbX = H·−a(χ)(IX ), where the age of χ is a(χ) (defined
below). ⋄

χ : µr → Gη, and Gη acts on the tangent space TηX , so we get an induced
action given by ki/r for some 0 ≤ ki < r. Then we define a(χ) =

∑
ki/r. I

still have to tell you what the cup product is.
I have to talk about stable morphisms. For β ∈ H2(X ), let X0,n,β = {stable

(no automorphisms) representable morphisms f : (Γ, µri
(xi))1≤i≤n → X of de-

gree β, where Γ is genus zero}. Let me remind you that Γ could be a nodal
curve; it doesn’t have to be a smooth orbi-curve. The marked points xi have
these little charts [∆/µri

]. Only the marked points (and sometimes the nodes)
have these charts.

Some features:

1. There are evaluation maps evi : X0,n,β → IX , given by evi(f) = f(xi).
Rather, there aren’t, but we can pretend that there are. We have that
X0,n,β =

⊔
b1,...,bn∈Box X0,n,β(b1, . . . , bn), to be made sense of later.
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2. X0,n,β has a virtual dimension

vdimf = χ(Γ, f∗TX ) + n− 3

= −KX · β + dimX −

n∑

i=1

dimX∑

j=1

wi,j
ri

+ n− 3 (Riemann-Roch)

and a virtual class 1vir ∈ CHvdim.

Product on H·orb(X ). Consider X0,3,0
e1,2,3

−−−→ IX . Define a ∪ b = e3 ∗ (e∗1a ∪
e∗2b) ∩ 1vir. We have ι : IX → IX ; if χ : µr → Gx, then ιχ is χ composed with
conjugation.

This is a P1 with three marked points. Two of them are |a| and |b|, and the
third one is the intersection of |a| and |b|.

Example 1.5. X = P(1, 1, 3), so IX = P(1, 1, 3) ⊔ P(3)1/3 ⊔ P(3)2/3. Then

H·orb has a basis 1, η, x, η′, x2 (η and η′ come from the P(3)’s) of degrees
0, 2/3, 1, 4/3, 2, respectively (you have to get over the degrees being fractional).
These are Chow degrees; if something, then you should double these. We have
that η ∪ η = η′, η′ ∪ η = x2, and

∫
X x

2 = 1/3. Let’s explain η ∪ η′ = x2. Con-

sider X0,3,0(1/3, 2/3, 0). In P(1, 1, 3), we have the stacky point 1
3
(1, 1), which

is a P(3). There are three marked points; two of them are marked by 1/3 and
2/3. η ∪ η′ = e3 ∗ 1 = 1

3{pt}. ⋄

Quantum orbifold cohomology. The quantum product is defined (using
Poincaré duality) by (a ∗ b, c) =

∑
β〈a, b, c〉βQ

β, where 〈a, b, c〉β =
∫
X0,3,β

(e∗1a∪

e∗2b ∪ e
∗
3c) ∩ 1vir.

Example 1.6. Define X = X2
3 ⊂ P(1, 1, 2) be a surface of degree 3. Suppose

I blow up P2 at three colinear points. Then the line containing them is a −2
curve. If I contract that curve, I get this X .

Take A ⊂ H·orb(X ,Q) with basis 1, x, u, x2, in degrees 0, 1, 1, 2, respectively.
You can figure out that

∫
X x

2 = 3/2 and
∫
X u

2 = 1/2.

〈x, x, u〉1/2 =
1

4
〈u〉1/2 = 3/4

〈x, x, pt〉1 = 3

〈pt, pt, u〉3/2 = 1

Given this, you can write the matrix of quantum multiplication by x (in this
basis). It is 



0 3Q 0 0

1 0 1
2Q

1/2 3Q

0 3
2Q

1/2 0 0
0 1 0 0




Also, 〈u, u, u〉1/2 = 3/4. In this example, degQ = −5/3. ⋄

Dψ = ψM . ψ : C× → EndH·orb(X ,C), D = Qd/dQ, ψ = (ψ0, . . . , ψ3), and
ψ0 satisfies

2D3(2D− 1)− 3Q(3D+ 2)(3D + 1)

This is the differential equation you expect for something.
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Today I want to do an introduction to toric stacks. The references: a paper of
BCS and a paper by Fantechi et. al. Unfortunately, if you don’t already know
something about toric varieties, it will be hard to get much out of this. Toric
stacks are a good way to write down examples of stacks, so this is a good way
to learn about stacks.

Definition 2.1. A simplicial stacky fan is a triple (N,Σ, ρ), where N is a
finitely generated abelian group (allowed to have torsion), Σ is a rational sim-
plicial fan in NR, and ρ : Zm → N is a homomorphism with finite cokernel such
that R+ρi are the the 1-dimensional rays of the fan (where ρi are the images
of the coordinate axes of Rm in NR). ⋄

There is an equivalence of categories between stacky fans and toric stacks.
How do you make a stack out of a stacky fan? Let L = ker(ρ : Zm → N). There
is a “Gale dual” sequence

0→ L→ Zm
ρ
−→ N (fan sequence)

L∨ D
←− Z×m ←M ← 0 (Gale dual)

where M = Hom(N,Z), and D has finite cokernel. What is L∨? It is not too

easy; here is the construction. Let Zm
ρ
−→ N· → L· +1

−−→ be a mapping cone ,
so L = L−1. Dualize and take cohomology gives you

0→M → Zm· → H1(L·) =: L∨

So L∨ is a finitely generated abelian group, and it could have torsion.
Fact: L∨ is the Picard group of the corresponding toric stack X .
Think of L∨ as the group of characters on an abelian algebraic group G,

Hom(G,C×). Similarly, Zm is the group of characters of (C×)m. Then X =
[CM//T].

That requires a stability condition. If σ ∈ Σ is a maximal cone (assume
maximal cones are of maximal dimension), then

⊕
i∈σ Zei → N . This leads

to Xσ ⊂ X and open substack. Q: all these things are simplicial . . . one could
contemplate non-simplicial toric stacks, right? AC: sure.

Assumptions: I always assume that the natural map X → SpecH0(X ,OX )
is projective (this is made sense of purely in terms of the coarse moduli space).

In particular, the support |Σ| ⊆ NR is convex. Q: is that convexity condition
equivalent to saying that the map is proper? AC: yes. I also assume that
X is weak Fano, meaning that −KX is nef. Equivalently, ∆(−KX ) is weakly
convex. Q: why do you want to make these assumptions? AC: there are various
issues. The projectivity is needed for the equivariant cohomology is sensible.
It is also needed to make sense of Gromov-Witten theory. The weak Fano
assumption. . . you’ll see.

Example 2.2. X = Pw1,w2 . Then we have

0→ Z
(w1

w2
)

−−−→ Z2 ρ
−→ Z

L∨ = Z
(w1 w2

←−−−− Z2 ←M ← 0

So we have the quotient of (C×)2 by the action. C× → (C×)2, λ 7→ (λw1 , λw2).
⋄

Example 2.3. X = Pw1,w2
. Then

0→ Z
(

w′

1

w′

2
)

−−−→ Z2 (−w2,w1)
−−−−−−→ Z

L′ = Z⊕ Z/gcd(w1, w2), P2,2 = P/µ2 ⋄

Example 2.4. X = 1
3
(1, 1). Then ρ : Z2 → Z2 + 1

3
(1, 1)Z, Z/3Z ← Z2 given

by a+ b← (a, b). X = C2/µ3 where µ3 → (C×)2 is given by ω 7→ (ω, ω) ⋄

Example 2.5. X = P(1, 1, 3), N = Z2 + 1
3
(1, 1)Z. ρ : Z3 → N . Here ρ1 =

(1, 0), ρ2 = (0, 1), and ρ3 = −1
3 (1, 1). Ther are two lattice points of N in the

convex hull of these three. They will play an important role later. ⋄

Some facts:

– Ntors is the generic stabilizer

– the rays determine some divisors; write Ni = {v ∈ N |v ∈ Q+ρi} [[⋆⋆⋆

what is v]]. Then Ni/〈ρi〉 is the stabilizer of Di.
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Enhanced Picard group. Let X be a stack. Define the enhanced Picard group

P̂ ic(X ) of X by the following exact sequence.

0→ P̂ ic(X )→ P ic(X )⊕ ZBox →
⊕

b∈Box

Z/rbZ

So P̂ ic(X ) = {(L,m)|L ∈ P ic(X ), m : Box → Z such that for χ : Bµ → X ,
χ∗L = m(χ)}.

Remark 2.6. If f : X → Y is a representable morphism of stacks, then you
get f∗ : P̂ ic(Y)→ P̂ ic(X ). ⋄

If I have a representable morphism from an orbi-curve f : (Γ, xi(ri)) → X ,

then f has an enhance degree d̂egf : P̂ ic(X) → Z, given by taking (L,m) to
deg(f∗L)−

∑ mi

ri
. Q: have you said what the degree of f∗L is? AC: the degree

is the thing that makes the Riemann-Roch formula work.
Next I have to tell you how to calculate this for toric stacks. If X is a toric

stack, then Box =
⋃
σ∈Σ Box(σ) where Box(σ) = {v ∈ N |v =

∑
i∈σ viρi, 0 ≤

vi < 1}. This is the justification for the name “Box.” We have ρ : Zm → N ; we
augment this go get

0→ L̂→ Zm ⊕
⊕

v∈Box

Z→ N

where the second map takes elements of the box to themselves (in N). It

turns out that P̂ ic(X ) = L̂∗ (dual). So you don’t have to do the complicated
homological algebra from before.

If I have Pr1,r2 , I have a µr1 at zero and a µr2 at infinity, so I have sheaves
like O(k1/r1) and O(k2/r2). I can pull back a line bundle from the coarse
moduli space (P1), you get [[⋆⋆⋆ something something]] with just integers.
Q: what about P1,1? AC: there is no stackiness; there is no box, so I can’t
play the game. Q: what is the enhanced Picard group of this Pr1,r2? AC: we

can do it. We had Z2
(r1

r2
)

−−−→ Z. We have to augment this by the box. In this
case, Box = {−k/r1|0 ≤ k < r1} ∪ {k/r2|0 ≤ k < r2} (I guess for P1,1 you can
choose a random integer, so the augmented Picard group is a line bundle plus
an integer). So the enhanced picard group is the kernel of Z2⊕Zr1 ⊕Zr2 → Z.

MO: is there always a map P̂ ic(X )→ P ic(X ) with kernel ZBox? AC: yes.

Stanley-Reisner rings

Given a stacky fan (Σ, N, ρ), we define SR·R(X ,Q) = Q[Σ]. Explicitly, there are
generators ue, where e ∈ N and e ∈ Σ. The product rule is that ue1ue2 = ue1+e2

whenever e1 and e2 belong to the same cone, and ue1ue2 = 0 otherwise. This
is a graded ring, with grading given by age. So deg ue = a(e). Recall that for
e =

∑
i∈σ aiρi, a(e) =

∑
ai.

Example 2.7. If X = P2, then SRT(P2) = R[u1, u2, u3]/(u0u1u2). You can
think of the ring SR as the ring of polynomial functions on the polytope. ⋄

Take R = Sym·M as the “base ring”. Then SR is an R-algebra. An element
m ∈M maps to

∑
〈ρi, m〉ρi ∈ SR

1.
Facts:

1. SR·
T

= H·orb,TX is the T-equivariant orbifold cohomology of X .

2. SRT ⊗
Sym·M Q = H·orbX .
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References for today: CCIT, in preparation; CCLT, weighted projective spaces.
Plan: the J-function, S-extended stuff, I-function, mirror theorem, and a

simple example (P2,2). Tomorrow, I’ll try to write down some presentations for
quantum cohomology for toric stacks (with some assumptions)

The J-function

J(τ, z) = z + τ +
∑

ℓ,n
Qℓ

n!
evx+i∗

(
ev∗1τ · · · ev

∗
nτ ·

1
z−ψn+1

)
∈ H·π,orb(X ,C), where

the things in the sum are happening on X0,n+1,ℓ and evi : X0,n+1,ℓ → IX . Li
are line bundles, and Li,f = T∨

C,xi
, and ψi = c1(Li).

Goal: if X is a toric stack, write down J explicitly. Why, Alessio? For
one thing, J contains all information about quantum cohomology. How does
one come to consider this power series? J is the fundamental class in some

cohomology theory, H
∞/2
S1 (L0X ,C). In some sense, when interpreted correctly,

J has degree 1.

S-extended stuff

Let X be a toric stack with stacky fan (N,Σ, ρ). To this, we attached the fan
sequence and the divisor sequence

0→ L→ Zm
ρ
−→ N

0→M → Z∗m D
−→ L∨

where L∨ = P ic(X ) and L = N1(X ,Z). Let S ⊂ N be a (finite, for today at
least) subset which containes the rays ρi. The key examples of S will be just
the set of rays, or S = B = Box(X ) (which will lead to the enhanced stuff).
Recall that Box(X ) =

⋃
σ∈Σ{v ∈ N |v ∈

∑
i∈σ aiρi, 0 ≤ ai < 1} (remember that

the bar just means image in N modulo torsion). Perhaps the most important

example is where S = B
≤1

= {v ∈ B|
∑
ai ≤ 1}, the closed box. I think of

B
≤1

as a basis for H≤2
T,orb(X ,C). This will be the space of parameters for small

quantum cohomology.
We have ρS : ZS 7→ N , given by es 7→ s, and let LS be the kernel of this map.

The get the Gale dual

LS∨
Ds

←−− Z∗S ←M ← 0.

I think of these as being some kind of glorified Picard group and topological
classes of stable morphisms.

If σ ∈ Σ, we write CSσ = {
∑

i∈Srσ riD
S
i |ri ≥ 0} ⊆ LS∨R is a cone. We define

NESσ = CS∨σ ⊆ LSR and NES =
∑
σ∈Σ NE

S
σ . Define ΛSσ = {λ =

∑
i∈S fiei ∈

LSR|j 6∈ σ⇒ fj ∈ Z}, and ΛS =
⋃
σ∈Σ ΛSσ . The goal is to tell you exactly, inside

X , what are all the possible degrees of stable maps from an orbi-curve. There is
a map v : ΛS → B, given by v(λ) =

∑
i∈S⌈fi⌉ρi

∈ B. ΛES = ΛS∩NES . These
S’s allow you to keep track of which torus invariant loci the various marked
points are in.

The I-function

IS(Q̃, z) = z
∑

v∈B

∑

λ∈ΛES

v(λ)=v

Q̃λ1v�λ(z)

where

�λ(z) =

∏
i∈S

∏
〈b〉=〈λi〉,b≤0(ui + bz)

∏
i∈S

∏
〈b〉=〈λi〉,b≤λi

(ui+ bz)
∈ SR·T[z, z−1]]

The box corresponds to irreducible components of IX , 1v ∈ H·orb(X ) corre-

sponding fundamental class, ui = uρi ∈ SR·T(X ) if i is one of the rays (and
ui = 0 for i ∈ S r {ρi}), and λi = λ ·DS

i .
One place where you can find this in a slightly less general context is in a

paper of Bousov and Horja, Mellin-Baues, etc. Givental wrote it down in an
article on dark manifolds. Q: was this inspired by mirror symmetry? AC: yes.

Mirror theorem

Theorem 3.1 (CCIT). Assume X is weak Fano and S ⊂ B
≤1

. Then (t is

more or less Q) IS(t; z) = F (t)z + G(t) +O(z−1). JS(τ (t), z) = IS(t,z)
F (t)

, where

τ (t) = G(t)/F (t).

J : H·
T,orb →?. By Stanley-Riesner, S ⊂ H·

T,orb(X ,C), with 〈S〉 the subspace

generated by S, then JS = J |〈S〉.
Special cases:



3 Alessio Corti 6

1. If X is Fano (−KX is ample, not just nef) and has canonical singularities
and S = {ρi}, then IS = JS . In the case where X is a manifold, this
recovers Givental’s theorem.

2. If X = Pw0,...,wn is a weighted projective space and S = {ρi}, then IS = JS .
This was proven in CCLT.

Example 3.2 (P2,2). The fan diagram for P2,2 is

0→ Z
(2

2)
−−→ Z2 ρ

−−−−−→(
−1 1
0 1

) N = Z⊕ Z/2

Box = {0, 1}. The fan looks like [[⋆⋆⋆ ρ1, ρ3, ρ6 at “height” 0 and ρ5, ρ4, ρ2

at height ε]] Take S = B
≤1

.

0→ Z5 ∼= 1S → Z6 ρS

−−−−−−−−−−−→(
−1 1 0 0 −1 1
0 1 0 1 1 0

) N

IS(Q; , s, t, z) = ze
s1u1−s2u2

z

∑

ℓ,k0,...,k3∈N

Qℓeℓ(s1+s2)t
k0
0

·tk3
3

z
P

kik0!k1!k2!k3!
1〈 ℓ+ k0 + k1 + k2 + k3

2

〉

·

∏
b≤0(u1 + bz)

∏
b≤0(u2 + bz)∏

b≤ℓ−k2
(u1 + bz)

∏
b≤ℓ−k3

(u2 − bz)

and the mirror map is

τ (t) = u1s1 + u2s2 + t01+ t111/2 −
u1

2
log(1 − t22) +

u11v2
2

log(??) · · ·

[[⋆⋆⋆ somebody fill in the rest of the mirror map]] ⋄
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Quantum cohomology

Today I want to discuss quantum cohomology and wall crossings. Let X be

a toric stack with stacky fan (Σ, N, ρ). We have the ring SR·T(X ,Q) = Q[Σ],
where the elements are of the form ue where e ∈ N so that e ∈ |Σ|, and
ue1ue2 = ue1+e2 if e1 and e2 are in the same cone and ue1ue2 = 0 otherwise.
Let R = S·M , an algebra, and M ∋ χ 7→ div(χ) =

∑m
i=1〈χ, ρi〉u

ρi , so we have

0→ L→ Zm
ρ
−→ N

ΛE ⊂ L⊗ L.
For QSR·(X ,Q), we modify the relations. If e1 ∈ σ1, e1 =

∑
i∈σ aiρi and

e2 ∈ σ2, e2 =
∑

i∈σ biρi with σ1 6= σ2, let e = e1 + e2 ∈ σ, with e =
∑

i∈σ ciρi.
Then we impose the relation ℓ(e1 , e2) =

∑m
i=1(ai + bi − ci)ei ∈ LQ. If i 6∈ σ,

then the coefficient (ai + bi − ci) ≥ 0, ∈ NEσ ⊆ NEX .

Theorem 4.1. If X is weak Fano and I{ρi} = J (i.e. I(t, z) = 1+t+O(z−1)),

then QH·
T,orb(X ) = Q[ΛE][N ]/(ue1ue2 = Qℓ(e1,e2)ue).

Remark 4.2. (1) Baryrev was the first to say what the quantum cohomology
of a toric Fano manifold was. BCS told us what the orbifold cohomology of a
stack was. The natural pushout of these two statements is the theorem above,
so it was not difficult to guess the right answer.

(2) We should be able to do this for any S ⊆ B
≤1

. ⋄

Example 4.3 (P1,2). The fan sequence is

0→ L = Z
(2

1)
−−→ Z2 (−1 2)

−−−−→
ρ

Z = N → 0

There are two cones σ1 and σ2 (and zero), with generators u1 = ρ1, u2 = ρ2,
and w, with w2 = u2. Then ρ1 + 1

2ρ2 = 0, so ℓ = 0 (taking e1 = ρ1 and e2 = 1).

uw = Q1/21.

QH·T,orb(P1,2) = Q[q, u, w]/(uw = Q1/21), which contains (?) the R-algebra

R = Q[χ], χ = −u1 + 2w2. There is the non-equivariant limit, where you take

χ = 0, so you obtain QH·orb(P1,2) = Q[q, u, w]/(uw−Q1/21,−u1 +2w2). There

is the classical limit, where Q = 0, in which you get the Stanley-Riesner ring

H·
T,orb = Q[u, w]/uw. Then there is the case where you do both, to get H·orb(X )

where you take χ = Q = 0 ⋄

Proof. All of this comes from the GKZ differential system. If ℓ ∈ Z(?),

Wall crossing

[C,I,T]

Example 4.4. P(1, 1, 2) over F2. then I have [[⋆⋆⋆ picture]]. The fan se-
quence is

0→ L + Z2 → Z4

(
1 −1 0 0
0 2 −1 1

)
−−−−−−−−−→ Z2 = N → 0

and the Gale dual is

0← P ic(X ) = L∨ = Z2
D=

(
1 1 0 −2
0 0 1 1

)
←−−−−−−−−−− Z4 ← Z2 = M ← 0.

(C×)2 → (C×)4 acts on C4 with weights (1, 1, 0,−2) and (0, 0, 1, 1). In L∨,
I have the picture [[⋆⋆⋆ picture: D1 = D2 = P1, D3 = P2, and D4 =
−2P1 + P2, K1 first quadrant, K2 the part of the second quadrant above D4]]

I’ll think of an element ψ ∈ L∨ = HomGp((C
×)2,C×) as a (C×)2-linearized

line bundle on C4. The stable points of that linearization will be Us = {s ∈
C4|∃P (~x) ∈ C[x1, . . . , x4], P (g~x) = ψ(g)P (~x) such that P (~a) 6= 0}. You can
check that if ψ ∈ K1, then Us = C2r{0}×C2r{0} and Us/(C×)2 = F2. I hope
you’re familiarwith this as the standard way to construct the surface F2. On the
other hand, if ψ ∈ K2, then Us = C3 r{0}×C× and Us/(C×)2 = P(1, 1, 2). ⋄

I didn’t fully explain to you how to get a toric stack from a stacky fan. I
explained how to get an open cover. This wall crossing, when you cross from
K1 to K2, is somehow responsible for the birational transformation between F2

and P(1, 1, 2).
If you look at the picture D with K1 and K2, it looks like the fan of a toric

stack, so let’s consider the toric stack with that fan,M, which has two charts.
F2 corresponds to the chart C2 with coordinates q1 and q2, dual to P1 and P2.

And P(1, 1, 2) corresponds to a stacky chart C2/µ2 with coordinates q̃1 = q
−1/2
1

and q̃2 = q
1/2
1 q2, dual to −2P1 + P2 and P2.
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The I-function of F2 is a function of q1 and q2, for q1 and q2 small. I
won’t write it down; you can write it down IF2

(q1, q2) ∈ H·(F2,C)[z, z−1]] =
C[P1, P2][z, z

−1]]/(P 2
1 , P

2
2 − 2P1P2). Imagine now that you use yesterday’s pro-

cedure to write down the I-function with basis 1, P1, P2, and P1P2.

We have that IP(1,1,2)(q) ∈ H·orb(P(1, 1, 2),C)[z, z−1]] = C[P,11/2]/(P
3 =

P · 11/2 = 0, . . . ). The right basis for the I-function, for some reason, is 1,
P − i1, 2P , 2P 2. People know why this is the right basis, but I can’t say why.

I analytically continue to the other chart to get IF2
(q̃1, q̃2)|q̃1=0,q̃2=

√
q =

U(z)IP(1,1,2)(q), where

U(z) =




1 0 0 0
−iπ/2 0 0 i
iπ/2z 1/2 0 −i/2
π2/4z2 0 1/2 0




This has no positive powers of z, which gives you some crepant resolution. If
you do this with the next hardest case [[⋆⋆⋆ P(1, 1, 1, 3) or something]], you
get a positive power of z, which screws things up.
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5 Alessio Corti

Today I want to do two (or perhaps three) things. The main theorem I stated
was the mirror theorem with the I-function and J-function. I want to zoom in
on one part of the proof.

Let X be a proper 1-dimensional toric stack. Question: classify all repre-
sentable toric morphisms f : Pr1,r2 → X . You have to calculate some Gromov-
Witten numbers.

Remark 5.1. If X is a manifold (not a stack), then X = P1. In this case, the
only representable morphisms are from P1 = P1,1. Toric morphisms are then
classified by degree; every such morphism is given by (x0, x1) = (zd0 , z

d
1). ⋄

The slogan: all such morphisms are classified by the enhanced degree d̂eg ∈
Hom(P̂ ic(X ),Z). This is the main motivation for introducing P̂ ic.

Notation: X has a fan diagram

0→ Z

(
w2
w1

)
−−−−→ Z2 ρ

−→ N

where N is a rank 1 abelian group (so Z plus a torsion bit). [[⋆⋆⋆ picture
fan for P1; ρ1 negative, ρ2 positive, σ1 negative cone, σ2 positive gone]]. Let
B = Box(X ). Then B(σ1) = {v ∈ N |v = aρ1, 0 ≤ a < 1} = N/〈ρ1〉. So
Ntors ⊂ B(σi) =: Bi and Box = B(σ1) ∪B(σ2).

Recall that Pr1,r2 is a P1 with a µr1 at zero and µr2 at infinity. f : Pr1,r2 → X ,
f(0 and f(∞) give me Bµri

→ X , which give me vi ∈ Bi. ρ = {ρ1, ρ2, v1, v2}.

vi = fi(ρi) where 0 ≤ f1, f2 < 1 are rational. Then d̂egf ∈ LS ⊂ L̂ =

Hom(P̂ ic,Z).
More explicitly, we enhance the fan map to get

0→ LS → ZS = Z4 ρS

−−−−−−−−→
(ρ1,ρ2,v1,v2)

N

So d̂egf = (q1, q2, 1, 1) ∈ ker ρS (column vector), where q1 and q2 are positive
integers. A general enhanced degree would have integers k1 and k2 in place of
the two 1’s.

Remark 5.2 (Exercise). There is a positive rational number ℓ ∈ Q+ such that
wiℓ− fi = qi, where w1 and w2 are from the fan sequence. This ℓ is the “good
old” deg f .

IfN has torsion, then there is more information in the enhanced degree. From
ℓ, I would not be able to recover the box elements (only modulo torsion). ⋄

Proposition 5.3. The following sets of data are equivalent:

1. non-constant representable morphisms f : Pr1,r2 → X for some r1, r2 (un-
specified),

2. Box elements v1 ∈ B1, v2 ∈ B2 and integers q1, q2 > 0 such that q1ρ1 +
q2ρ2 + v1 + v2 = 0 in N .

Proof. We’ve done one direction; you can convince yourself that it works. Let’s
do the other direction. We have to construct a morphism of fans.

0 // Z

m

��

(
r′
2

r′1

)
// Z2

(−r1,r2)
//

(
m1 0
0 m2

)
��

Z

η

��

(Pr1,r2)

0 // Z (
w2
w1

)// Z2
ρ

// N (X )

First we construct η by η(1) = −v1 − q1ρ1 = v2 + q2ρ2. Let ri be the order of
vi as a group element of Bi = N/〈ρi〉. Then rivi = kiρi for some non-negative
integers ki ≥ 0. It is easy to check that ki/ri = fi. This tells us what r1 and
r2 are.

Next set mi = riqi+ki. We’ll define the middle map to be given by
(
m1 0
0 m2

)
.

Let’s check that the square commutes. We calculate that m1ρ1 = (r1q1 +
k1)ρ1 = r1(−v1 + η(−1)) + r1v1 = −r1η(1).

Finally, we want to construct the last map, but that is easy because they
are kernels; the image of the top Z in the bottom Z2 is sent to zero because of
commutativity of the square we checked.

This is not difficult, but it took some time to sort it out because we had to
find the correct way to package the combinatorics. In the end, this P̂ ic is what
did it.

General words on the proof of the mirror theorem. You want to calculate
some Gromov-Witten invariants at the end of the day. We want to calculate
the J-function

J =
∑

β

Qβ
∫

X0,1,β

ev∗1
z − φ
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T acts on X and on X0,1,β. Inside of X , there is the 1-dimensional stratum.
For a map to be T-invariant, your orbi-curve is likely to be extremely reducible.
Basically, the J-function breaks up into contributions. A fixed point will be in
an affine chart Xσ (σ maximal cone), then there is a point mapping there with
some box element ν ∈ Bσ . It is more or less a combinatorial problem. You
break it up into pieces where you somehow rip off that component of the source
curve. You know the contribution from that component, and the rest has lower
degree, so you set up some induction procedure.

Oil Update

Not all of you have heard me lecture about this, so let me give you some
basics. Oil is measured in barrels. One barrel is about 140 liters, or 40 gallons
(unrefines). Today, a barrel costs about 135 USD, which is more than twice
what it cost exactly a year ago. You might think 135 USD is a lot of money,
so let me tell you what you buy when you buy a barrel of oil. One barrel equal
25,000 man hours of mechanical energy (never mind how that calculation is
done)! You may be asking yourself, why is it that in the last twelve months,
oil doubled it’s price. Maybe it is speculators in Wall street, who want to make
sure you pay because they messed up some prime mortgage thing. So they keep
making money why you pay. Actually, the answer is rather different. There
are very few studies of the world supply of oil. Given such a serious problem,
why is it that nobody trys to study the future supply of oil. Today, world
production is estimated to be approximately 85 MB/day (actually 75 MB/day,
when it comes to crued oil; they get 85 by tricks called refinery gains and some
other stuff, natural gas tricks), which is about the same that was produced in
2005! It is amazing how economists get Nobel prizes by saying that when there
is enough demand, the shit will turn up. There are studies by the EUIA (or
something), which still tell us that in 2030, the world will produce about 120
MB/day. Why do they say that? They plot the curve and extrapolate! There
are very few studies on the supply side, and let me put my favorites

– F Rebelius, March 2007. This is a graduate student doing this! It’s on the
web; you can look it up.

– C. Skrebowski, Megaproject Update, on Petrolium review; this one is not
on the web. Instead of guessing how much oil is in the ground, he knows
about the big projects. Journalists say “the high prices are not stimulating

investment in oil production”. What are they talking about? It takes 8
years after you find an oil field to production. He sees a lot of oil coming
in until 2012, and then we’re walking into empty space; there is nothing
there to fill that hole. Q: is that what the other one predicts? AC: yes, but
the other one estimates the oil in the ground, so it is a completely different
methodology.

– Energy Watch group, October 2007. These are scientists who were given
serious money to buy data from the oil industry (by bribe). Oil data from
Saudi Arabia and Russia are classified, so you have to bribe to get the data.
Google gave me less than one page on this study. None of the press quoted
this study! What these guys say is that world oil production reached its
peak in 2006 and that it will be down 50% by 2020 (?).
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