\qquad December 1, 2010

The differential equation $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}$ for $x \in[0,2]$ and $t>0$ with fixed end values $u(0, t)=$ $U_{1}, u(1, t)=U_{2}$ has the general formal solution

$$
u(x, t)=U_{1}+\frac{U_{2}-U_{1}}{2} x+\sum_{n=1}^{\infty} c_{n} e^{-(n \pi / 2)^{2} t} \sin (n \pi x / 2) .
$$

Find the formal solution given the initial values $u(0, t)=0, u(1, t)=2$, and $u(x, 0)=$ $\sin (\pi x)$. Write out the first five non-zero terms in the series explicitly.

From the general solution, I know that the formal solution must be of the form

$$
u(x, t)=x+\sum_{n=1}^{\infty} c_{n} e^{-(n \pi / 2)^{2} t} \sin (n \pi x / 2)
$$

to find the c_{n}, I plug in $t=0$ and rearrange, giving

$$
\sin (\pi x)-x=\sum_{n=1}^{\infty} c_{n} e^{-(n \pi / 2)^{2} t} \sin (n \pi x / 2)
$$

Now I find the c_{n} as usual:

$$
\begin{aligned}
c_{n} & =\frac{2}{2} \int_{0}^{2}(\sin (\pi x)-x) \sin (n \pi x / 2) d x \\
& =\int_{0}^{2} \sin (\pi x) \sin (n \pi x / 2) d x-\int_{0}^{2} x \sin (n \pi x / 2) d x
\end{aligned}
$$

The first integral is 0 unless $n=2$, and 1 for $n=2$. Using integration by parts, I compute the second integral to be $\frac{4 \cdot(-1)^{n}}{n \pi}$, so I have that

$$
\begin{aligned}
u(x, t)=x & +\frac{-4}{\pi} e^{-(\pi / 2)^{2} t} \sin (\pi x / 2)+\left(1+\frac{4}{2 \pi}\right) e^{-(2 \pi / 2)^{2} t} \sin (2 \pi x / 2) \\
& +\frac{-4}{3 \pi} e^{-(3 \pi / 2)^{2} t} \sin (3 \pi x / 2)+\frac{4}{4 \pi} e^{-(4 \pi / 2)^{2} t} \sin (4 \pi x / 2) \\
& +\frac{-4}{5 \pi} e^{-(5 \pi / 2)^{2} t} \sin (5 \pi x / 2)+\cdots
\end{aligned}
$$

