\qquad
November 17, 2010
Let $A=\left[\begin{array}{cc}6 & 1 \\ -4 & 2\end{array}\right]$.
1)[6pts] Compute $e^{A t}$. Use this to find the general solution to $\mathbf{x}^{\prime}=A \mathbf{x}$. (Hint: find an r so that $(A-r I)^{2}=0$.)

We compute $\operatorname{det}(A-r I)=r^{2}-8 r+16=(r-4)^{2}$, so $r=4$ is the only eigenvalue of A. We check that $(A-4 I)=\left[\begin{array}{cc}2 & 1 \\ -4 & -2\end{array}\right]$ squares to zero, so we can compute $e^{(A-4 I) t}=I+(A-4 I) t=\left[\begin{array}{cc}1+2 t & t \\ -4 t & 1-2 t\end{array}\right] \quad e^{A t}=e^{4 t} e^{(A-4 I) t}=\left[\begin{array}{cc}(1+2 t) e^{4 t} & t e^{4 t} \\ -4 t e^{4 t} & (1-2 t) e^{4 t}\end{array}\right]$ Since $e^{A t}$ is a fundamental matrix, the general solution to the differential equation is $c_{1} e^{4 t}\left[\begin{array}{c}1+2 t \\ -4 t\end{array}\right]+$ $c_{2} e^{4 t}\left[\begin{array}{c}t \\ 1-2 t\end{array}\right]$.
2) $[4 \mathrm{pts}]$ Find a particular solution to $\mathbf{x}^{\prime}=A \mathbf{x}+\left[\begin{array}{c}e^{3 t} \\ 0\end{array}\right]$.

We try a solution of the form $e^{3 t} \mathbf{b}$, where \mathbf{b} is a constant vector. Then \mathbf{b} must satisfy the equation $3 e^{3 t} \mathbf{b}=e^{3 t} A \mathbf{b}+e^{3 t}\left[\begin{array}{l}1 \\ 0\end{array}\right]$, so we must have $(3 I-A) \mathbf{b}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$. We solve for \mathbf{b} by forming the augmented matrix and row reducing:

$$
\left[\begin{array}{ccc}
-3 & -1 & 1 \\
4 & 1 & 0
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 0 & 1 \\
-3 & -1 & 1
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & -1 & 4
\end{array}\right]
$$

So $\mathbf{b}=\left[\begin{array}{c}1 \\ -4\end{array}\right]$, so $\left[\begin{array}{c}e^{3 t} \\ -4 e^{3 t}\end{array}\right]$ is a particular solution.

