\qquad

Consider the system of differential equations

$$
\begin{aligned}
x_{1}^{\prime} & =4 x_{1}-2 x_{2} \\
x_{2}^{\prime} & =6 x_{1}-3 x_{2}
\end{aligned}
$$

1) [6pts] Find the general solution to the system.

The associated matrix is $A=\left[\begin{array}{ll}4 & -2 \\ 6 & -3\end{array}\right]$. We find the eigenvalues and eigenvectors: $\operatorname{det}(A-$ $\lambda I)=\operatorname{det}\left[\begin{array}{cc}4-\lambda & -2 \\ 6 & -3-\lambda\end{array}\right]=\lambda^{2}-\lambda=\lambda(\lambda-1)$, so the eigenvalues are 0 and $1 . A-O I=$ $\left[\begin{array}{ll}4 & -2 \\ 6 & -3\end{array}\right] \sim\left[\begin{array}{cc}2 & -1 \\ 0 & 0\end{array}\right]$, so $\left[\begin{array}{l}1 \\ 2\end{array}\right]$ is a 0-eigenvector. $A-1 I=\left[\begin{array}{cc}3 & -2 \\ 6 & -4\end{array}\right] \sim\left[\begin{array}{cc}3 & -2 \\ 0 & 0\end{array}\right]$, so $\left[\begin{array}{l}2 \\ 3\end{array}\right]$ is a 1 -eigenvector. So the general solution is

$$
\mathbf{x}(t)=c_{1}\left[\begin{array}{l}
1 \\
2
\end{array}\right]+c_{2} e^{t}\left[\begin{array}{l}
2 \\
3
\end{array}\right]
$$

2)[4pts] Find two specific solutions which are linearly independent and prove they are linearly independent.

Taking $c_{1}=1$ and $c_{2}=0$, we get the solution $\mathbf{x}(t)=\left[\begin{array}{l}1 \\ 2\end{array}\right]$. Taking $c_{1}=0$ and $c_{2}=1$, we get $\mathbf{x}(t)=\left[\begin{array}{l}2 e^{t} \\ 3 e^{t}\end{array}\right]$. To show these are linearly independent, we compute the Wronskian

$$
\operatorname{det}\left[\begin{array}{ll}
1 & 2 e^{t} \\
2 & 3 e^{t}
\end{array}\right]=-e^{t}
$$

Since the Wronskian is not zero, the two solutions are linearly independent. (It's also enough to simply check that the Wronskian is not zero for one value of t.)

