Quiz 9 - Math 54 November 3, 2010

Name \qquad
1)[5pts] Find the general solution to $y^{\prime \prime}-y=5 e^{t}$.

The auxiliary equation is $r^{2}-1=(r+1)(r-1)=0$, so the solution to the homogeneous equation is $c_{1} e^{t}+c_{2} e^{-t}$. Since e^{t} is a solution to the homogeneous equation, we try $y=A t e^{t}$. Then $y^{\prime}=A t e^{t}+A e^{t}$ and $y^{\prime \prime}=A t e^{t}+2 A e^{t}$, so we have

$$
y^{\prime \prime}-y=2 A e^{t}=5 e^{t}
$$

so $A=5 / 2$. So the general solution is $c_{1} e^{t}+c_{2} e^{-t}+\frac{5}{2} t e^{t}$.
2)[5pts] The functions 1 and t^{2} are solutions to the differential equation $y^{\prime \prime}-\frac{1}{t} y^{\prime}=0$. Find the general solution to $y^{\prime \prime}-\frac{1}{t} y^{\prime}=2 \sqrt{t}$.

We apply variation of parameters, guessing a solution of the form $v_{1}+t^{2} v_{2}$. We get

$$
\begin{aligned}
& 1 \cdot v_{1}^{\prime}+t^{2} v_{2}^{\prime}=0 \\
& 0 \cdot v_{1}^{\prime}+2 t v_{2}^{\prime}=2 t^{1 / 2}
\end{aligned}
$$

So $v_{2}^{\prime}=t^{-1 / 2}$ and $v_{1}^{\prime}=-t^{3 / 2}$, so take $v_{2}=2 t^{1 / 2}$ and $v_{1}=-\frac{2}{5} t^{5 / 2}$. Thus $-\frac{2}{5} t^{5 / 2}+2 t^{5 / 2}=\frac{8}{5} t^{5 / 2}$ is a particular solution, so $\frac{8}{5} t^{5 / 2}+c_{1}+c_{2} t^{2}$ is the general solution.

