1)[5pts] Find all solutions to the differential equation $y^{\prime \prime}-4 y^{\prime}+7 y=0$.

The characteristic equation is $r^{2}-4 r+7=0$. The solutions to this are $r=\frac{1}{2}(4 \pm$ $\sqrt{16-28})=2 \pm i \sqrt{3}$. Therefore, any solution to the differential equation is of the form $c_{1} e^{2 t} \sin (t \sqrt{3})+c_{2} e^{2 t} \cos (t \sqrt{3})$.
2)[5pts] Find all solutions to $y^{\prime \prime \prime}+7 y^{\prime \prime}=0$, and find a particular solution such that $y(0)=0$ and $y^{\prime}(0)=1$. (Hint: there are infinitely many to choose from, but I just want one)

The characteristic equation is $r^{3}+7 r^{2}=r^{2}(r+7)=0$, so the general solution is of the form $c_{1} e^{-7 t}+c_{2} e^{0 t}+c_{3} t e^{0 t}=c_{1} e^{-7 t}+c_{2}+c_{3} t$. If we take $c_{1}=c_{2}=0$ and $c_{1}=1$, we have $y(t)=t$, which satisfies $y(0)=0$ and $y^{\prime}(0)=1$.

