Quiz 7 - Math 54
October 13, 2010
Let $A=\left[\begin{array}{ccc}1 & -1 & 0 \\ 2 & 1 & 3 \\ 2 & 4 & 6\end{array}\right]$.
1)[5pts] Find an orthonormal basis for $\operatorname{Col}(A)$. (Hint 1: the last column is the sum of the first two, so how can you get some basis for $\operatorname{Col}(A)$? How many vectors does it contain? Hint 2: Don't forget to normalize your vectors so that they have length 1. The numbers should work out so that you don't have any square roots.)

Let \mathbf{x}_{1} and \mathbf{x}_{2} be the first two columns. These form a basis for $\operatorname{Col}(A)$. We get an orthogonal basis with the Gram-Schmit process:

$$
\mathbf{v}_{1}=\mathbf{x}_{1}=\left[\begin{array}{l}
1 \\
2 \\
2
\end{array}\right] \quad \mathbf{v}_{2}=\mathbf{x}_{2}-\frac{\mathbf{v}_{1} \cdot \mathbf{x}_{2}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}=\left[\begin{array}{c}
-1 \\
1 \\
4
\end{array}\right]-\frac{9}{9}\left[\begin{array}{l}
1 \\
2 \\
2
\end{array}\right]=\left[\begin{array}{c}
-2 \\
-1 \\
2
\end{array}\right]
$$

Both of these have length 3 , so an orthonormal basis for $\operatorname{Col}(A)$ is $\left\{\left[\begin{array}{l}1 / 3 \\ 2 / 3 \\ 2 / 3\end{array}\right],\left[\begin{array}{c}-2 / 3 \\ -1 / 3 \\ 2 / 3\end{array}\right]\right\}$.
2)[5pts] Find a 3×3 matrix B so that $B \mathbf{x}=\operatorname{proj}_{\operatorname{Col}(A)} \mathbf{x}$ for any vector $\mathbf{x} \in \mathbb{R}^{3}$. (Hint: start by making a matrix U whose columns are the orthonormal basis you found in problem 1.)

Let $U=\left[\begin{array}{cc}1 / 3 & -2 / 3 \\ 2 / 3 & -1 / 3 \\ 2 / 3 & 2 / 3\end{array}\right]$. Since the columns of U are an orthonormal basis for $\operatorname{Col}(A)$, the orthogonal projection onto $\operatorname{Col}(A)$ is given by the matrix

$$
U U^{T}=\left[\begin{array}{cc}
1 / 3 & -2 / 3 \\
2 / 3 & -1 / 3 \\
2 / 3 & 2 / 3
\end{array}\right]\left[\begin{array}{ccc}
1 / 3 & 2 / 3 & 2 / 3 \\
-2 / 3 & -1 / 3 & 2 / 3
\end{array}\right]=\left[\begin{array}{ccc}
5 / 9 & 4 / 9 & -2 / 9 \\
4 / 9 & 5 / 9 & 2 / 9 \\
-2 / 9 & 2 / 9 & 8 / 9
\end{array}\right]
$$

