Quiz 4 - Math 54
Name \qquad
September 22, 2010
A is the matrix $\left[\begin{array}{ccccc}1 & 0 & -2 & -1 & 2 \\ 1 & 1 & -1 & -2 & 1 \\ 1 & 1 & -1 & -2 & 2 \\ 0 & 0 & 0 & 0 & 1\end{array}\right]$.
1)[5pts] Find a basis for $\operatorname{Col}(A)$. (Hint: row operations do not change the linear relations among the columns of a matrix.)

Row reducing, we have $\left[\begin{array}{ccccc}1 & 0 & -2 & -1 & 2 \\ 1 & 1 & -1 & -2 & 1 \\ 1 & 1 & -1 & -2 & 2 \\ 0 & 0 & 0 & 0 & 1\end{array}\right] \sim\left[\begin{array}{ccccc}1 & 0 & -2 & -1 & 2 \\ 0 & 1 & 1 & -1 & -1 \\ 0 & 1 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right] \sim\left[\begin{array}{ccccc}1 & 0 & -2 & -1 & 2 \\ 0 & 1 & 1 & -1 & -1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0\end{array}\right] \sim$ $\left[\begin{array}{ccccc}1 & 0 & -2 & -1 & 0 \\ 0 & 1 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$. We see that the third and fourth columns can be expressed as linear
cominations of the first and second columns, and that the first, second, and fifth columns are linearly independent. So the three vectors $\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 2 \\ 1\end{array}\right]$ form a basis for $\operatorname{Col}(A)$.
2)[5pts] Find a basis for $N u l(A)$. (Hint: row operations do not change the linear relations among the columns of a matrix.)

The null space of A is the set of vectors $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5}\end{array}\right]$ so that $A \mathbf{x}=\mathbf{0}$. From the row reduction, we see that x_{3} and x_{4} are free variables, while x_{1}, x_{2}, and x_{5} are bound. Specifically, $x_{1}=$ $2 x_{3}+x_{4}, x_{2}=-x_{3}+x_{4}$, and $x_{5}=0$, so any element of the null space is of the form $x_{3}\left[\begin{array}{c}2 \\ -1 \\ 1 \\ 0 \\ 0\end{array}\right]+x_{4}\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 1 \\ 0\end{array}\right]$. Thus, $\left[\begin{array}{c}2 \\ -1 \\ 1 \\ 0 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 1 \\ 0\end{array}\right]$ form a basis for $\operatorname{Nul}(A)$.

