Quiz 3 - Math 54 September 15, 2010

T is the linear transformation from \mathbb{R}^2 to \mathbb{R}^2 given by T(x,y)=(x+2y,x+y). 1)[5pts] Find the inverse of T and compute $T^{-1}(3,4)$. (Hint: express T as a matrix.)

T(1,0)=(1,1) and T(0,1)=(2,1), so the standard matrix of T is $\begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}$. The inverse of this matrix is $\frac{1}{1-2}\begin{bmatrix} 1 & -2 \\ -1 & 1 \end{bmatrix}=\begin{bmatrix} -1 & 2 \\ 1 & -1 \end{bmatrix}$, so the inverse of T is given by $T^{-1}(x,y)=(-x+2y,x-y)$. Specifically $T^{-1}(3,4)=(5,-1)$.

2)[5pts] The pentagon P with vertices (0,1), (1,2), (1,3), (0,4), and (-1,2) has area $\frac{7}{2}$. Find the area of the image T(P). (Hint: the exact shape doesn't matter ... the answer would be the same for any shape of area $\frac{7}{2}$.)

A linear transformation scales area by the absolute value of its determinant. Since we computed that the matrix of T is $\begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}$, the determinant is -1, so T scales area by a factor of 1. Therefore, the area of T(P) is $\frac{7}{2}$.