\qquad
T is the linear transformation from \mathbb{R}^{2} to \mathbb{R}^{2} given by $T(x, y)=(x+2 y, x+y)$. 1)[5pts] Find the inverse of T and compute $T^{-1}(3,4)$. (Hint: express T as a matrix.)
$T(1,0)=(1,1)$ and $T(0,1)=(2,1)$, so the standard matrix of T is $\left[\begin{array}{ll}1 & 2 \\ 1 & 1\end{array}\right]$. The inverse of this matrix is $\frac{1}{1-2}\left[\begin{array}{cc}1 & -2 \\ -1 & 1\end{array}\right]=\left[\begin{array}{cc}-1 & 2 \\ 1 & -1\end{array}\right]$, so the inverse of T is given by $T^{-1}(x, y)=$ $(-x+2 y, x-y)$. Specifically $T^{-1}(3,4)=(5,-1)$.
2)[5pts] The pentagon P with vertices $(0,1),(1,2),(1,3),(0,4)$, and $(-1,2)$ has area $\frac{7}{2}$. Find the area of the image $T(P)$. (Hint: the exact shape doesn't matter ... the answer would be the same for any shape of area $\frac{7}{2}$.)

(not to scale)

A linear transformation scales area by the absolute value of its determinant. Since we computed that the matrix of T is $\left[\begin{array}{ll}1 & 2 \\ 1 & 1\end{array}\right]$, the determinant is -1 , so T scales area by a factor of 1 . Therefore, the area of $T(P)$ is $\frac{7}{2}$.

