Quiz 2 - Math 54 September 8, 2010

Name_____

1)[5pts] Let T be the rotation of \mathbb{R}^2 around the origin which takes $\begin{bmatrix} 4 \\ 3 \end{bmatrix}$ to $\begin{bmatrix} 5 \\ 0 \end{bmatrix}$. Find the standard matrix of T. (Hint: one way to do this is to figure out what T does to two specific linearly independent vectors, then express \mathbf{e}_1 and \mathbf{e}_2 as linear combinations of those vectors.)

The rotation takes
$$5\mathbf{e}_2 = \begin{bmatrix} 0 \\ 5 \end{bmatrix}$$
 to $\begin{bmatrix} 3 \\ 4 \end{bmatrix}$ and $5\mathbf{e}_1 = \begin{bmatrix} 5 \\ 0 \end{bmatrix}$ to $\begin{bmatrix} 4 \\ -3 \end{bmatrix}$. By linearity, $T(\mathbf{e}_1) = \begin{bmatrix} 4/5 \\ -3/5 \end{bmatrix}$ and $T(\mathbf{e}_2) = \begin{bmatrix} 3/5 \\ 4/5 \end{bmatrix}$, so the standard matrix of T is $\begin{bmatrix} 4/5 & 3/5 \\ -3/5 & 4/5 \end{bmatrix}$.

2)[5pts] Suppose
$$AB = \begin{bmatrix} 5 & 4 \\ -2 & 3 \end{bmatrix}$$
 and $B = \begin{bmatrix} 7 & 3 \\ 2 & 1 \end{bmatrix}$. Find A .

Either by row reducing $\begin{bmatrix} B & I \end{bmatrix}$ or by using the formula of Theorem 4, we compute $B^{-1} = \frac{1}{7 \cdot 1 - 3 \cdot 2} \begin{bmatrix} 1 & -3 \\ -2 & 7 \end{bmatrix} = \begin{bmatrix} 1 & -3 \\ -2 & 7 \end{bmatrix}$. Then $A = AB \cdot B^{-1} = \begin{bmatrix} 5 & 4 \\ -2 & 3 \end{bmatrix} \begin{bmatrix} 1 & -3 \\ -2 & 7 \end{bmatrix} = \begin{bmatrix} -3 & 13 \\ -8 & 27 \end{bmatrix}$.