\qquad
1)[5pts] Let T be the rotation of \mathbb{R}^{2} around the origin which takes $\left[\begin{array}{l}4 \\ 3\end{array}\right]$ to $\left[\begin{array}{l}5 \\ 0\end{array}\right]$. Find the standard matrix of T. (Hint: one way to do this is to figure out what T does to two specific linearly independent vectors, then express \mathbf{e}_{1} and \mathbf{e}_{2} as linear combinations of those vectors.)

The rotation takes $5 \mathbf{e}_{2}=\left[\begin{array}{l}0 \\ 5\end{array}\right]$ to $\left[\begin{array}{l}3 \\ 4\end{array}\right]$ and $5 \mathbf{e}_{1}=\left[\begin{array}{l}5 \\ 0\end{array}\right]$ to $\left[\begin{array}{c}4 \\ -3\end{array}\right]$. By linearity, $T\left(\mathbf{e}_{1}\right)=\left[\begin{array}{c}4 / 5 \\ -3 / 5\end{array}\right]$
and $T\left(\mathbf{e}_{2}\right)=\left[\begin{array}{l}3 / 5 \\ 4 / 5\end{array}\right]$, so the standard matrix of T is $\left[\begin{array}{cc}4 / 5 & 3 / 5 \\ -3 / 5 & 4 / 5\end{array}\right]$.
2) $[5 \mathrm{pts}]$ Suppose $A B=\left[\begin{array}{cc}5 & 4 \\ -2 & 3\end{array}\right]$ and $B=\left[\begin{array}{ll}7 & 3 \\ 2 & 1\end{array}\right]$. Find A.

Either by row reducing $[B I]$ or by using the formula of Theorem 4, we compute $B^{-1}=$ $\frac{1}{7 \cdot 1-3 \cdot 2}\left[\begin{array}{cc}1 & -3 \\ -2 & 7\end{array}\right]=\left[\begin{array}{cc}1 & -3 \\ -2 & 7\end{array}\right]$. Then $A=A B \cdot B^{-1}=\left[\begin{array}{cc}5 & 4 \\ -2 & 3\end{array}\right]\left[\begin{array}{cc}1 & -3 \\ -2 & 7\end{array}\right]=\left[\begin{array}{ll}-3 & 13 \\ -8 & 27\end{array}\right]$.

