- A. Suppose A is an $n \times n$ matrix. Show that A is symmetric (i.e. $A = A^T$) if and only if $A\mathbf{x} \cdot \mathbf{y} = \mathbf{x} \cdot A\mathbf{y}$ for all vectors \mathbf{x} and \mathbf{y} . (Hint: Find vectors \mathbf{x} and \mathbf{y} so that $A\mathbf{x} \cdot \mathbf{y}$ is the (i, j)-th entry of A)
- B. Let p(t) = 1 and q(t) = t. Find $\operatorname{proj}_p q$ under the usual inner product on C[0,1] ($\langle f,g \rangle = \int_0^1 f(t)g(t) dt$).
- C. Determine $||1 3t^2||$ under the usual inner product on C[0, 1] $(\langle f, g \rangle = \int_0^1 f(t)g(t) dt)$.
- D. For a pair of $n \times n$ matrices A and B, define $\langle A, B \rangle = \det(AB)$. Is this an inner product? For a pair of functions f and g, define $\langle f, g \rangle = f(0)g(0) + f(1)g(1) + f(2)g(2)$. Is this an inner product?
- E. Let p(t) = 1 and q(t) = t. Find $\operatorname{proj}_p q$ under the inner product $\langle f, g \rangle = f(0)g(0) + f(1)g(1) + f(2)g(2)$.
- F. Suppose $A = A^T$, $A\mathbf{v} = \lambda \mathbf{v}$, and $A\mathbf{w} = \mu \mathbf{w}$. Show that $\lambda(\mathbf{v} \cdot \mathbf{w}) = \mu(\mathbf{v} \cdot \mathbf{w})$.