1) Consider the differential equation $\frac{\partial^{2} u}{\partial x^{2}}+\left(\frac{\partial u}{\partial x}\right)^{2} \frac{\partial u}{\partial t}=0$. If you're looking for solutions of the form $u(x, t)=X(x) T(t)$, what differential equations would $X(x)$ and $T(t)$ have to satisfy? (Note: you don't have to solve those, just find them.)

Plugging $X(x) T(t)$ in, we get the equation $X^{\prime \prime}(x) T(t)+X^{\prime}(x)^{2} X(x) T^{\prime}(t) T(t)^{2}=0$. Separating the variables, we get that there is a constant K so that $\frac{-X^{\prime \prime}(x)}{X^{\prime}(x)^{2} X(x)}=K$ (or $\left.X^{\prime \prime}(x)+k X^{\prime}(x)^{2} X(x)=0\right)$ and $T^{\prime}(t) T(t)=K$.
2) Compute the Fourier series of $|\sin x|$ on the interval $[-\pi, \pi]$. (You may find the identities

$$
\begin{aligned}
\sin \theta \sin \phi & =\frac{1}{2}(\cos (\theta-\phi)+\cos (\theta+\phi)) \\
\sin \theta \cos \phi & =\frac{1}{2}(\sin (\theta-\phi)+\sin (\theta+\phi))
\end{aligned}
$$

useful.)

The function is even, so we compute $a_{0}=\frac{2}{\pi} \int_{0}^{\pi} \sin (x) d x=\frac{2}{\pi} \cdot 2=\frac{4}{\pi}, a_{1}=\frac{2}{\pi} \int_{0}^{\pi} \sin (x) \cos (x) d x=$ $\frac{1}{\pi} \int_{0}^{\pi} \sin (2 x) d x=0$, and for $n>1$,

$$
\begin{aligned}
a_{n} & =\frac{2}{\pi} \int_{0}^{\pi} \sin (x) \cos (n x) d x=\frac{1}{\pi} \int_{0}^{\pi}(\sin ((1+n) x)+\sin ((1-n) x)) \\
& =\frac{1}{\pi}\left[\frac{-1}{1+n} \cos ((1+n) x)+\frac{-1}{1-n} \cos ((1-n) x)\right]_{0}^{\pi} \\
& =\frac{1}{\pi}\left(\frac{1}{1+n}+\frac{1}{1-n}\right)\left((-1)^{n+1}+1\right)=\frac{1}{\pi} \cdot \frac{2}{1-n^{2}}\left((-1)^{n+1}+1\right) .
\end{aligned}
$$

So the Fourier series is

$$
\frac{2}{\pi}+\frac{4 \cos (3 x)}{\pi\left(1-3^{2}\right)}+\frac{4 \cos (5 x)}{\pi\left(1-5^{2}\right)}+\cdots=\frac{2}{\pi}+\sum_{k=1}^{\infty} \frac{4 \cos ((2 k+1) x)}{\pi\left(1-(2 k+1)^{2}\right)}
$$

