December 4, 2008

Consider the graph of the function $z=\sin (x), 0 \leq x \leq \pi / 2$, in the $x z$-plane. Let S be the surface obtained by rotating this curve around the z-axis. S looks kind of like a cone that flares out at the wide end. Problems 1a and 1b refer to this surface.

1a)[3pts] Use Stokes' Theorem to compute the flux of $\nabla \times \mathbf{F}$ through S, where $\mathbf{F}=\langle-y, x, z\rangle$ and S is oriented "upward" (in the positive z direction).

The boundary C of S is parameterized by $\mathbf{r}(t)=\left\langle\frac{\pi}{2} \cos t, \frac{\pi}{2} \sin t, 1\right\rangle, 0 \leq t \leq 2 \pi$, so we have

$$
\begin{aligned}
\iint_{S}(\nabla \times \mathbf{F}) \cdot d \mathbf{S} & =\int_{C} \mathbf{F} \cdot d \mathbf{r} \\
& =\int_{0}^{2 \pi}\left\langle-\frac{\pi}{2} \sin t, \frac{\pi}{2} \cos t, 1\right\rangle \cdot\left\langle-\frac{\pi}{2} \sin t, \frac{\pi}{2} \cos t, 0\right\rangle d t \\
& =\int_{0}^{2 \pi} \frac{\pi^{2}}{4}\left(\sin ^{2} t+\cos ^{2} t\right) d t=\frac{\pi^{3}}{2}
\end{aligned}
$$

$1 b)$ [3pts] Parameterize S. Don't forget to include the bounds on the parameters.

Two possible answers:
$\mathbf{r}(x, \theta)=\langle x \cos \theta, x \sin \theta, \sin x\rangle$, with $0 \leq x \leq \pi / 2$ and $0 \leq \theta \leq 2 \pi$ $\mathbf{r}(x, y)=\left\langle x, y, \sin \left(\sqrt{x^{2}+y^{2}}\right)\right\rangle$, with $x^{2}+y^{2} \leq(\pi / 2)^{2}$. (note: the x in the second parameterization means something different from the x in the first one)
2) [3pts] Compute the flux of $\mathbf{G}=\langle x, y, z\rangle$ through the part of the cylinder $x^{2}+y^{2}=1$ where $0 \leq z \leq 1$, oriented "outward" (away from the z-axis).

A parameterization for the surface is $\mathbf{r}(z, \theta)=\langle\cos \theta, \sin \theta, z\rangle, 0 \leq z \leq 1,0 \leq \theta \leq 2 \pi$. Then $\mathbf{r}_{\theta}=\langle-\sin \theta, \cos \theta\rangle$ and $\mathbf{r}_{z}=\langle 0,0,1\rangle$, so $\mathbf{r}_{\theta} \times \mathbf{r}_{z}=\langle\cos \theta, \sin \theta, 0\rangle$ (this points out, not in, so it is the right normal vector). So

$$
\begin{aligned}
\iint_{\text {cylinder }} \mathbf{G} \cdot d \mathbf{S} & =\int_{0}^{1} \int_{0}^{2 \pi}\langle\cos \theta, \sin \theta, z\rangle \cdot\langle\cos \theta, \sin \theta, 0\rangle d \theta d z \\
& =\int_{0}^{1} \int_{0}^{2 \pi} 1 d \theta d z=2 \pi
\end{aligned}
$$

