Let C be the curve parameterized by $\mathbf{r}(t)=\left\langle t, t^{2}\right\rangle,-1 \leq t \leq 1$, and let B be the curve parameterized by $\mathbf{r}(t)=\langle t, 1\rangle,-1 \leq t \leq 1$. Let $\mathbf{F}=\left\langle y, \sin ^{8}\left(y^{2}\right)-2 x\right\rangle$.

1a) [3pts] Set up an integral to compute $\int_{C} \mathbf{F} \cdot d \mathbf{r}$. You don't have to evaluate the integral, but it should be in a form so that you could plug it into a computer integration program or try to look it up on a table of integrals.

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{-1}^{1}\left\langle t^{2}, \sin ^{8}\left(t^{4}\right)-2 t\right\rangle \cdot\langle 1,2 t\rangle d t=\int_{-1}^{1}\left(-3 t^{2}+2 t \sin ^{8}\left(t^{4}\right)\right) d t .
$$

1b) [3pts] Use Green's theorem to find a relationship between $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ and $\int_{B} \mathbf{F} \cdot d \mathbf{r}$ (be careful to get the signs right). Use this to compute $\int_{C} \mathbf{F} \cdot d \mathbf{r}$.

Green's theorem tells us that $\int_{C} \mathbf{F} \cdot d \mathbf{r}-\int_{B} \mathbf{F} \cdot d \mathbf{r}=\iint_{R}(-3) d A$, where R is the region enclosed by $y=x^{2}$ and $y=1$. We can compute

$$
\begin{aligned}
\iint_{R}(-3) d A & =\int_{-1}^{1} \int_{x^{2}}^{1}(-3) d y d x=\int_{-1}^{1}\left(3 x^{2}-3\right) d x=x^{3}-\left.3 x\right|_{x=-1} ^{1}=-4 \\
\int_{B} \mathbf{F} \cdot d \mathbf{r} & =\int_{-1}^{1}\left\langle 1, \sin ^{8}(1)-2 t\right\rangle \cdot\langle 1,0\rangle d t=\int_{-1}^{1} 1 d t=2
\end{aligned}
$$

So $\int_{C} \mathbf{F} \cdot d \mathbf{r}=-4+2=-2$.
2) [3pts] Consider the vector field $\mathbf{F}=\left\langle x+y, y^{2}+\sin z, z^{3}\right\rangle$. Compute $\nabla \times \mathbf{F}$ and $\nabla \cdot \mathbf{F}$. Could \mathbf{F} be of the form ∇f for some function f ? Could \mathbf{F} be of the form $\nabla \times \mathbf{G}$ for some vector field \mathbf{G} ? Be sure you explain your reasoning.
$\nabla \times \mathbf{F}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ \partial_{x} & \partial_{y} & \partial_{z} \\ x+y & y^{2}+\sin z & z^{3}\end{array}\right|=\langle-\cos z, 0,-1\rangle$. Since the curl of a gradient is always zero, \mathbf{F} cannot be of the form ∇f.
$\nabla \cdot \mathbf{F}=\left\langle\partial_{x}, \partial_{y}, \partial_{z}\right\rangle \cdot \mathbf{F}=1+2 y+3 z^{2}$. Since the divergence of a curl is always zero, \mathbf{F} cannot be of the form $\nabla \times \mathbf{G}$.

