\qquad

October 30, 2008

1)[4pts] Evaluate the integral $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{x^{2}+y^{2}} 1 d z d y d x$. (Hint: convert to cylindrical coordinates and write the integral in the order $d z d r d \theta$)

The integral is

$$
\int_{\theta=0}^{\pi / 2} \int_{r=0}^{1} \int_{z=0}^{r^{2}} 1 \cdot r d z d r d \theta=\int_{\theta=0}^{\pi / 2} \int_{r=0}^{1} r^{3} d r d \theta=\int_{\theta=0}^{\pi / 2} \frac{1}{4} d \theta=\frac{\pi}{8}
$$

2)[5pts] Let E be the part of the unit ball where x, y and z are positive, i.e. E is one eighth of the ball. Assuming E has density 1 , find the center of mass of E.
(Hint 1: by symmetry, you know that $\bar{x}=\bar{y}=\bar{z}$, so it is enough to find \bar{z}.)
(Hint 2: use spherical coordinates.)
(Hint 3: the mass is equal to the volume of E, which you can compute without doing any integrals.)

The mass of E is equal to it's volume, which is one eighth of the volume of the unit sphere, so the mass of E is $\frac{1}{8} \cdot \frac{4}{3} \cdot \pi \cdot 1^{3}=\pi / 6$.

$$
\begin{aligned}
\bar{z} & =\frac{6}{\pi} \int_{\phi=0}^{\pi / 2} \int_{\theta=0}^{\pi / 2} \int_{\rho=0}^{1} \overbrace{\rho \cos \phi}^{z} \cdot \rho^{2} \sin \phi d \rho d \theta d \phi=\frac{6}{\pi} \int_{\phi=0}^{\pi / 2} \int_{\theta=0}^{\pi / 2} \frac{1}{4} \overbrace{\cos \phi \sin \phi}^{\frac{1}{2} \sin (2 \phi)} d \theta d \phi \\
& =\frac{6}{\pi} \cdot \frac{1}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2} \int_{\phi=0}^{\pi / 2} \sin (2 \phi) d \phi=\frac{3}{8}\left[-\frac{1}{2} \cos (2 \phi)\right]_{\phi=0}^{\pi / 2}=\frac{3}{8}
\end{aligned}
$$

So the center of mass is $\left(\frac{3}{8}, \frac{3}{8}, \frac{3}{8}\right)$.

