\qquad

October 2, 2008

1)[4pts] Prove that $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3}-y^{3}}{\sqrt{x^{2}+y^{2}+4}-2}=0$. (Hint: use the conjugation trick and then switch to polar coordinates.)

$$
\begin{aligned}
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3}-y^{3}}{\sqrt{x^{2}+y^{2}+4}-2} & =\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3}-y^{3}}{\sqrt{x^{2}+y^{2}+4}-2} \cdot \frac{\sqrt{x^{2}+y^{2}+4}+2}{\sqrt{x^{2}+y^{2}+4}+2} \\
& =\lim _{(x, y) \rightarrow(0,0)} \frac{\left(x^{3}-y^{3}\right)\left(\sqrt{x^{2}+y^{2}+4}+2\right)}{x^{2}+y^{2}} \\
& =\lim _{r \rightarrow 0} \frac{r^{3}\left(\cos ^{3} \theta-\sin ^{3} \theta\right)\left(\sqrt{r^{2}+4}+2\right)}{r^{2}}=0
\end{aligned}
$$

2)[5pts] The ideal gas law says that $P=\frac{x t}{v}$, where P is pressure, x is the number of gas molecules, t is temperature, and v is volume (all measured in appropriate units). Suppose you've measured $x=10, t=200$, and $v=1$, with each measurement accurate to within 1%. What should the value of P be? Using linear approximation, estimate the maximum possible error in P. (Hint: to estimate maximum possible error, you may have to assume your errors for x, t, v have different signs. For example, take $\Delta v=.01$ or $\Delta v=-.01$, whichever makes ΔP bigger.)

The measurement of P should be $10 \cdot 200 / 1=2000$. We have that

$$
\begin{aligned}
\Delta P & \approx \frac{\partial P}{\partial x} \Delta x+\frac{\partial P}{\partial t} \Delta t+\frac{\partial P}{\partial v} \Delta v \\
& =\frac{t}{v} \Delta x+\frac{x}{v} \Delta t-\frac{x t}{v^{2}} \Delta v \\
& =200 \Delta x+10 \Delta t-2000 \Delta v
\end{aligned}
$$

Because the measurements of x, t, and v are accurate to within 1%, we have that $\Delta x= \pm .1$, $\Delta t= \pm 2$, and $\Delta v= \pm .01$. The error ΔP is maximized when we take $\Delta x=.1, \Delta t=2$, and $\Delta v=-.01$. In this case, $\Delta P=20+20+20=60$. So the expected measurement of P could be off by as much as 3%.

