\qquad

Let $\mathbf{a}, \mathbf{b}, \mathbf{c}$, and \mathbf{d} be vectors in three dimensions, no two of them parallel. Let $V(\mathbf{a}, \mathbf{b})$ denote the plane through the origin consisting of all vectors of the form $\lambda \mathbf{a}+\mu \mathbf{b}$ (λ and μ constants). Let $\mathbf{r}=\langle x, y, z\rangle$ be a variable vector.
a) [3pts] Find vector equations for the planes $V(\mathbf{a}, \mathbf{b})$ and $V(\mathbf{c}, \mathbf{d})$. Find a formula for the cosine of the angle between these two planes. Do not use components.

The vectors \mathbf{a} and \mathbf{b} are in the plane $V(\mathbf{a}, \mathbf{b})$, so $a \times b$ is normal to $V(\mathbf{a}, \mathbf{b})$. The zero vector is in $V(\mathbf{a}, \mathbf{b})$, so and equation for $V(\mathbf{a}, \mathbf{b})$ is $\mathbf{r} \cdot(\mathbf{a} \times \mathbf{b})=0$. Similarly, an equation for $V(\mathbf{c}, \mathbf{d})$ is $\mathbf{r} \cdot(\mathbf{c} \times \mathbf{d})=0$. The angle between two planes is the same as the angle between their normal vectors so $\cos \theta=\frac{(\mathbf{a} \times \mathbf{b}) \cdot(\mathbf{c} \times \mathbf{d})}{|\mathbf{a} \times \mathbf{b}||\mathbf{c} \times \mathbf{d}|}$.
b) [3pts] Find a parameterization of the line that is the intersection of $V(\mathbf{a}, \mathbf{b})$ and $V(\mathbf{c}, \mathbf{d})$ (Hint: the line is in both planes, so it must be orthogonal to both normal vectors). Demonstrate that the direction vector of this line is in $V(\mathbf{c}, \mathbf{d})$ by writing it in the form $\lambda \mathbf{c}+\mu \mathbf{d}$ for some constants λ and μ. Do not use components.

The zero vector is on both planes, so I can use it as my \mathbf{r}_{0}. The direction vector must be perpendicular to both $\mathbf{a} \times \mathbf{b}$ and $\mathbf{c} \times \mathbf{d}$, so I'll take $\mathbf{v}=(\mathbf{a} \times \mathbf{b}) \times(\mathbf{c} \times \mathbf{d})$, so the line is given by $\mathbf{r}=t[(\mathbf{a} \times \mathbf{b}) \times(\mathbf{c} \times \mathbf{d})]$. To see that \mathbf{v} is of the form $\lambda \mathbf{c}+\mu \mathbf{d}$, note that $(\mathbf{a} \times \mathbf{b}) \times(\mathbf{c} \times \mathbf{d})=((\mathbf{a} \times \mathbf{b}) \cdot \mathbf{d}) \mathbf{c}-((\mathbf{a} \times \mathbf{b}) \times \mathbf{c}) \mathbf{d}$.
c) $[3 \mathrm{pts}]$ If $\mathbf{a}=\langle 3,0,4\rangle, \mathbf{b}=\langle 0,1,0\rangle, \mathbf{c}=\langle 2,2,1\rangle$, and $\mathbf{d}=\langle 1,0,1\rangle$, Find equations for the planes $V(\mathbf{a}, \mathbf{b})$ and $V(\mathbf{c}, \mathbf{d})$. Compute the cosine of the angle between these two planes. Find a parameterization of the intersection of these two planes.

Compute that $\mathbf{a} \times \mathbf{b}=\langle-4,0,3\rangle$ has length 5 and $\mathbf{c} \times \mathbf{d}=\langle 2,-1,-2\rangle$ has length 3 . $(\mathbf{a} \times \mathbf{b}) \times(\mathbf{c} \times \mathbf{d})=\langle 3,-2,4\rangle$. So $V(\mathbf{a}, \mathbf{b})$ is given by $-4 x+3 y=0, V(\mathbf{c}, \mathbf{d})$ is given by $2 x-y-2 z=0$, the cosine of the angle between them is $\frac{-8+0-6}{5 \cdot 3}=\frac{-14}{15}$, and the line of intersection is $\mathbf{r}=\langle 3 t,-2 t, 4 t\rangle$.

