\qquad

QUIZ 1 - MATH 53

SEPTEMBER 4, 2008

Consider the curve given by the parametric equations

$$
x=1+\sin (t), \quad y=\cos ^{2}(t), \quad-\pi / 2 \leq t \leq \pi / 2 .
$$

a) [3pts] Compute $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ as functions of t.

$$
\frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{-2 \cos (t) \sin (t)}{\cos (t)}=-2 \sin (t) \cdot \frac{d^{2} y}{d x^{2}}=\frac{\frac{d}{d t} \frac{d y}{d x}}{d x / d t}=\frac{-2 \cos (t)}{\cos (t)}=-2 .
$$

b) [3pts] Set up integrals to compute the length of the curve and the area under the curve. You do not need to evaluate the integrals.

$$
\begin{aligned}
\text { Length } & =\int_{-\pi / 2}^{\pi / 2} \sqrt{\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}} d t=\int_{-\pi / 2}^{\pi / 2} \sqrt{\cos ^{2}(t)+4 \cos ^{2}(t) \sin ^{2}(t)} d t \\
\text { Area } & =\int_{-\pi / 2}^{\pi / 2} y \frac{d x}{d t} d t=\int \cos ^{3}(t) d t .
\end{aligned}
$$

c) [3pts] Eliminate t and plot the curve, indicating direction with an arrow.
$(x-1)^{2}+y=\sin (t)^{2}+\cos (t)^{2}=1$, or $y=1-(x-1)^{2}$, with $0 \leq x \leq 2$, so the graph is [downward parabola through (1,1) with roots at 0 and 2]

